
University of Luxembourg
Interdisciplinary Centre for Security,

Reliability and Trust

ÆGIS: Shielding Vulnerable Smart Contracts Against Attacks
Christof Ferreira Torres, Mathis Baden, Robert Norvill, Beltran Borja Fiz Pontiveros,

Hugo Jonker and Sjouke Mauw

Attacks on Smart Contracts

2

Motivation

q Smart contracts repeatedly suffer from exploits costing millions of dollars:

q 2016: The DAO hack

q 2017: Parity Wallet hacks

q 2018: Bancor, Fomo 3D and Spankchain hacks

q 2019: MakerDAO and bZx hacks

q 2020: Uniswap and Lendf.me hack

q 2021: ???

q Smart contracts cannot be modified once deployed

q Existing tools suffer from low precision and are not generic enough

!! Reentrancy Attacks !!

3

($50M)

($40K)

($25M)

Ethereum
Crash Course

Ethereum Blockchain

5

Ethereum Accounts

Externally Owned Account Contract Account
q Address
q Balance

q Address
q Balance
q Code
q Storage

$

$

$

6

Ethereum Smart Contracts

Developer Solidity Compiler Ethereum Blockchain

6080604052348015600f
57600080fd5b50600436
1060285760003560e01c
806319ff1d2114602d575
B600080fd5b603360a…

7

Ethereum Virtual Machine

EVM

q Over 100 instructions:

q Stack instructions:
PUSH, SWAP, …

q Arithmetic instructions:
ADD, SUB, MUL, …

q Memory instructions:
SLOAD, SSTORE, …

q Control-flow instructions:
JUMP, JUMPI, …

q Contract instructions:
CALL, SELFDESTRUCT, …

q Error handling instructions:
REVERT, INVALID, …

8

ÆGIS
Smart Shielding of
(not so) Smart Contracts

Reentrancy Example

1
2

10

Execution Flow of a Reentrancy Attack

CALL

CALL…

…
A.withdraw()

msg.sender.call.
value(…)()

CALL

CALL…

…
A.withdraw()

SSTORE …
credit[msg.sender] = 0

…

⟹

msg.sender.call.
value(…)()

…

…

SSTORE

⟹ …
credit[msg.sender] = 0

…

…
address = B
depth = 1

⟹

address = A
depth = 2

address = B
depth = 3

address = A
depth = 4

address = …
depth = n

⟹

⟹

⟹
⟹

⟹

pc = 272
stack = [", #, $, …]

pc = 937
stack = [", #, $, …]

pc = 272
stack = [", #, $, …]

pc = 937
stack = [", #, $, …]

pc = 8555
stack = [%, &, …]

pc = 8555
stack = [%, &, …]

11

ÆGIS
Generic Attack Detection

Generic Attack Detection

q We propose a domain-specific language (DSL)

q Tailored to the execution model of the EVM

q Describe malicious control and data flows as attack patterns

q Attack pattern: Sequence of relations between EVM instructions

q We distinguish between 3 relations:

q Control Flow (⇒)

q Data Flow (⤳)

q Follows (→)

13

Example: Designing an Attack Pattern for Reentrancy

Control flow relation

Share same destination
Executed by same contract

Share same program counter

Follows relation

Share same storage location
Executed by same contract

Higher call stack depth

14

ÆGIS
Decentralized Security Updates

Decentralized Security Updates

q Two questions remain open:

q How to distribute and enforce same patterns across all clients?

q How to prevent a single entity from deciding which patterns are added or removed?

q Solution:

q Store patterns inside a smart contract

q Blockchain protocol guarantees that every client uses the same patterns

q Governance of patterns is decentralized by allowing users to propose and vote for patterns

16

Decentralized Security Updates

4. Exploitation
Attempt

1. Propose Pattern
Benign User

2. Accept Pattern

✘
Attacker

Eligible Voter

Eligible Voter

3. Accept Pattern

17

ÆGIS
Putting it all together…

ÆGIS’s System Architecture

19

EVM Interpreter Data Flow
Extractor

Pattern
Parser

Execution trace

Revert

ÆGIS

Ethereum Client

ÆGIS
Smart Contract

Control Flow
Extractor

Evaluation

Experiments

q We compared ÆGIS to state-of-the-art runtime reentrancy detection tools:

q ECFChecker [POPL’18]

q Sereum [NDSS’19]

21

1. Comparison to Sereum

q Sereum: 16 suspect contracts, 14 false positives

q ÆGIS on same 16 contracts:

q No false positives

q No false negatives

22

2. Detecting Reentrancy With Manual Locks

q ECFChecker has difficulties in detecting

cross-function reentrancy

q Sereum has difficulties in detecting

manual locks

q ÆGIS correctly identifies cross-function
reentrancy and distinguishes between

manual locks and reentrancy

23

3. Detecting Unconditional Reentrancy

q Sereum does not detect unconditional reentrancy

à Authors assume reentrancy is always guarded

q ÆGIS detects unconditional reentrancy

à Attack pattern does not rely on conditions

Unconditional
Reentrancy

24

4. Comparison with Sereum’s Large-Scale
Blockchain Analysis

q On the same 4.5 million blocks:

q Sereum detects 2 reentrant contracts

q ÆGIS detects 7 reentrant contracts

Detected by
Sereum + ÆGIS

Detected
only by ÆGIS

25

Conclusion

Conclusion

q Smart contract protection of exisiting tools is insufficient or requires client updates

q ÆGIS detects and blocks attacks at runtime via generic attack patterns

q Compared to Sereum and ECFChecker:

q More attacks identified
q No false positives

q New mechanism for quick, transparent and decentralized security updates

27

Why You Should Read The Paper?

q It’s a fun paper!

q It has things not shown in the presentation, e.g.:

q How to specify attack patterns for other types of attacks?

q How to pick eligible voters for the selection of new patterns?

q How to provide incentives for voting?

q How to prevent attackers from exploiting contracts before pattern is accepted?

q …

28

Questions?

All code & data is available on GitHub:

https://github.com/christoftorres/Aegis

Contact information:

christof.torres@uni.lu

Supported by:

https://github.com/christoftorres/Aegis

