Deep Learning and Machine Learning in Industry, 3 applications

Dr Stefano Bromuri

Outline

What are Machine Learning and Deep learning

- Machine Learning and Machine Learning Process
- Feed Forward Networks
- LSTMs/CNNs
- NTMs and Encoders

What is representation learning

- Word2Vec
- Node2vec

Motivating use cases

- -Emotion recognition (the VERA project, Customer Management)
- -HSCodes Prediction (Neural Machine Translation, Logistics)
- -Representation Learning for Rule Learning (Customer Activation)

AI/Machine Learning/Deep Learning

Artificial Intelligence

Techniques mimicking human behaviour

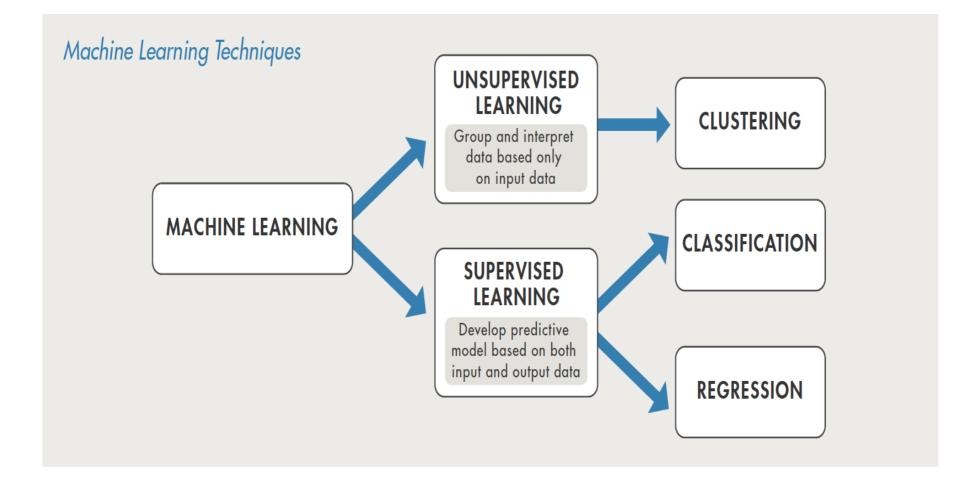
Machine Learning

Learn from data after specifying the features

Deep Learning

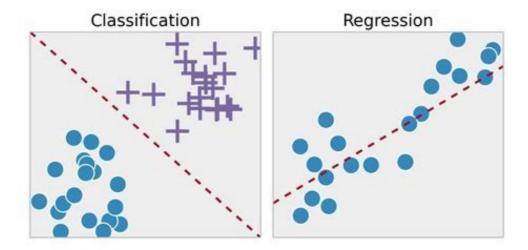
Learn the features while learning from data

What is Machine Learning?

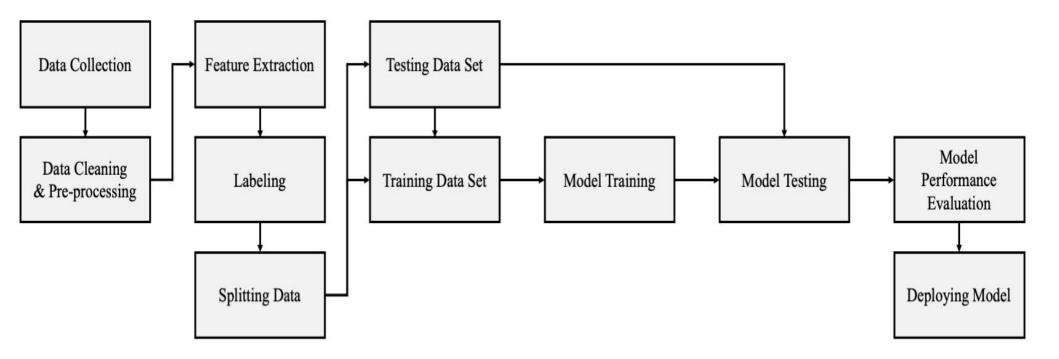


What is Machine Learning?

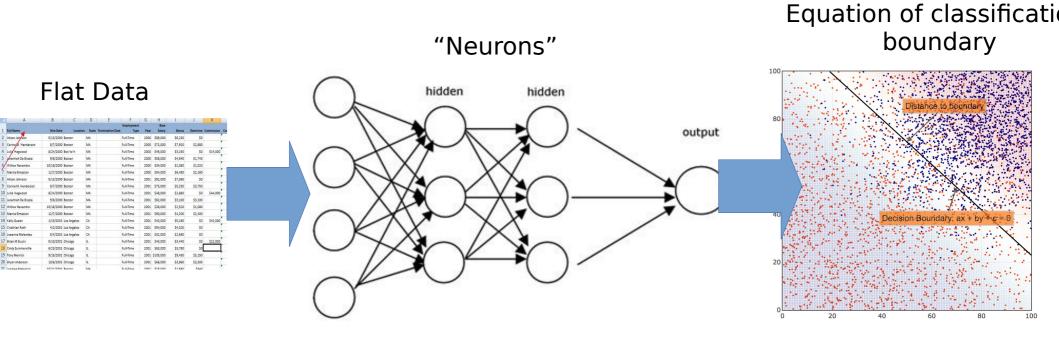
Machine learning trains mathematical functions to distinguish cloud of points in classes (classification or to find a trend that fits the cloud of points (regression).



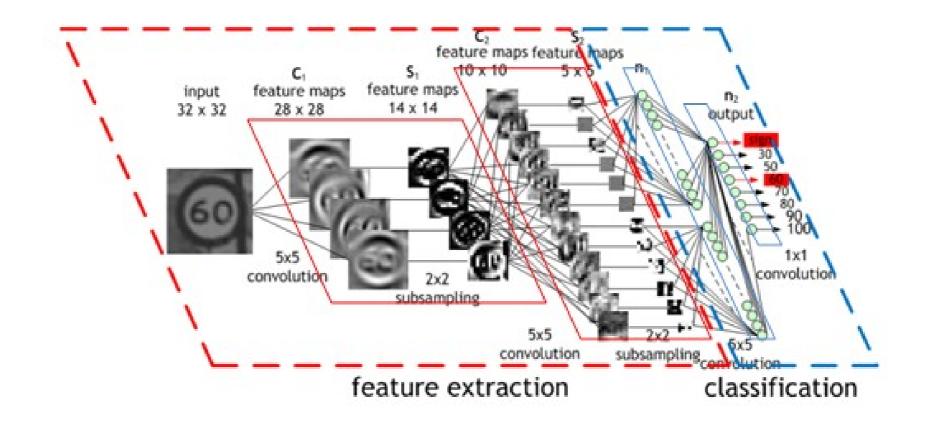
Machine Learning Process



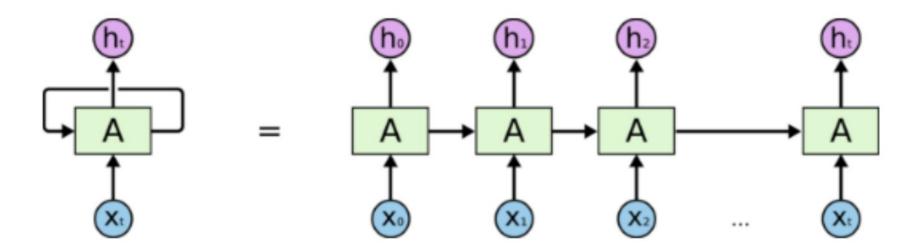
What is Deep Learning? Feedforward network



What is Deep Learning? Convolutional Network (for images)

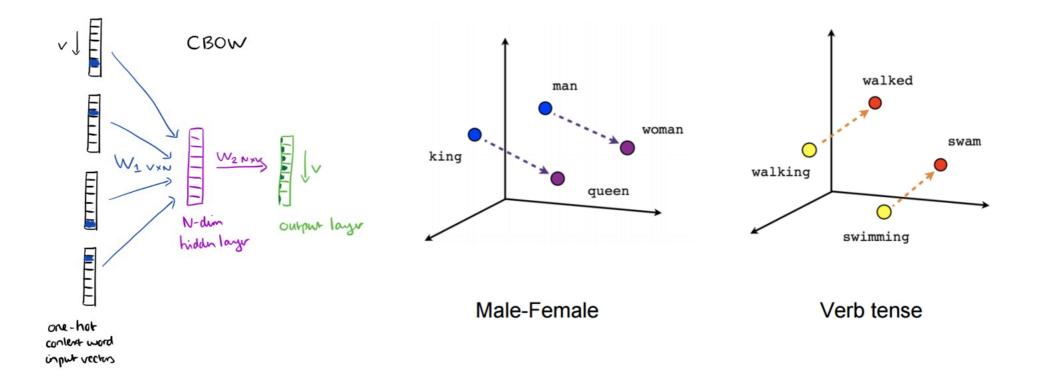


What is Deep Learning? LSTM Network (for sequences)

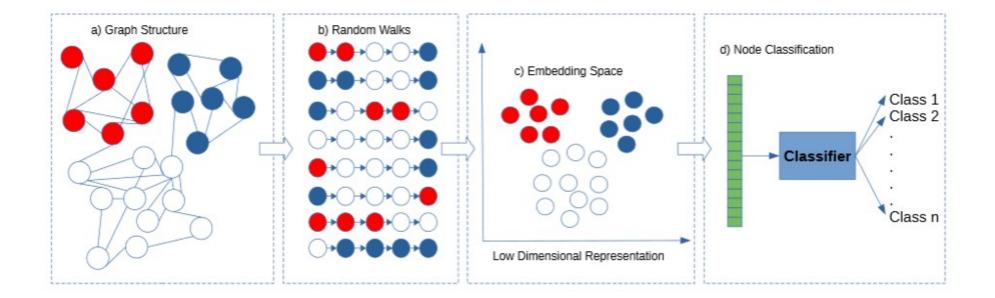


An unrolled recurrent neural network.

Representation Learning, Word2Vec



Representation Learning, Node2Vec



Motivating Use Cases

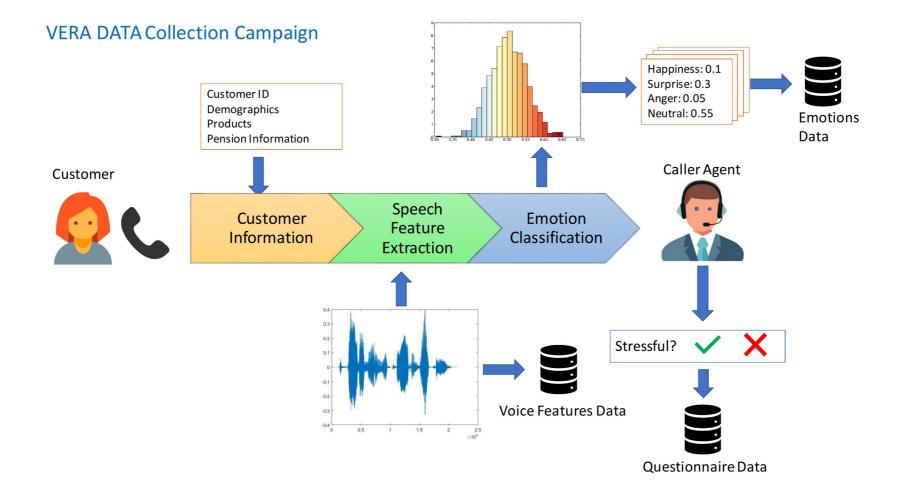
3 Applications from Industry:

Emotion recognition (the VERA project, Customer Management)

-HSCodes Prediction (Neural Machine Translation, Logistics)

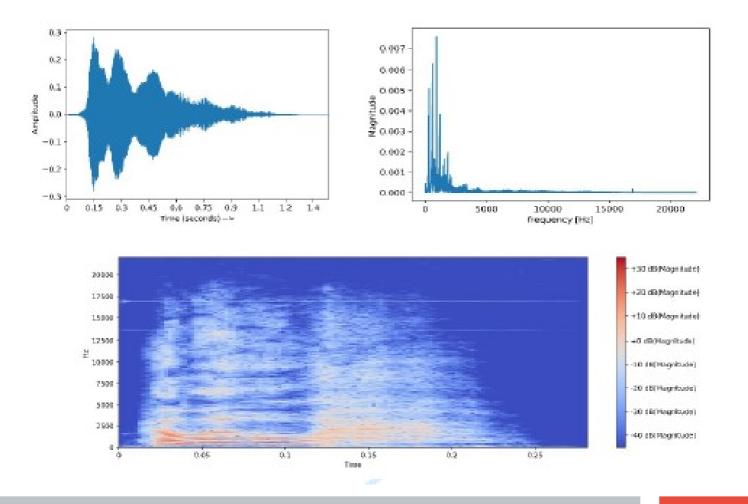
-Representation Learning for Rule Learning (Customer Activation)

Motivating Use Cases: VERA



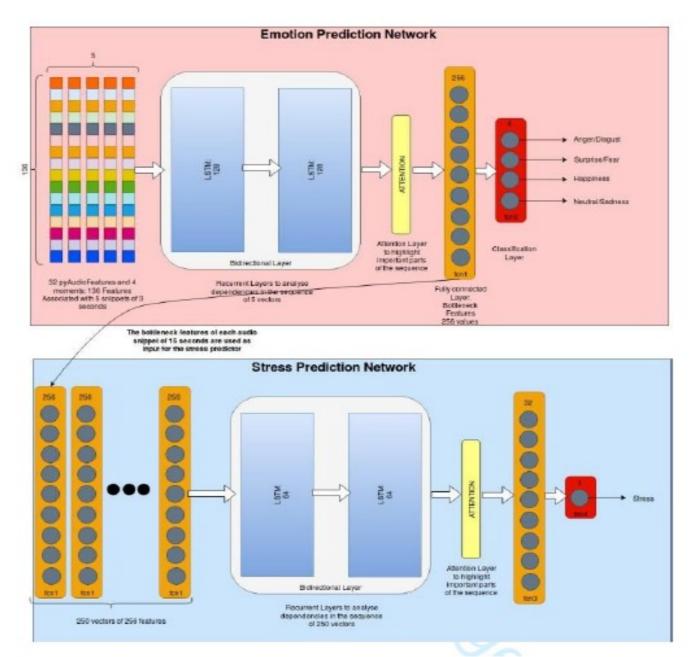
VERA Voice Signal

A2. Time-frequency representations of a voice signal



14

VERA Architecture



15

Results: Emotion and Stress Prediction

	<u>IDLA</u>			LA			BIL			Frequency Classifier		
	Prec.	Recall	fI	Prec.	Recall	fl	Prec.	Recall	fI	Prec.	Recall	<i>f</i> 1
Anger /	0.21	0.12	0.17	0.21	0.17	0.19	0.27	0.18	0.22	0.08	0.09	0.08
Disgust	(0.04)	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	(0.05)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Fear /	0.23	0.25	0.19	0.19	0.19	0.19	0.21	0.21	0.21	0.12	0.15	0.13
Surprise	(0.04)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)
Happiness	0.25	0.07	0.1	0.24	0.26	0.27	0.28	0.17	0.21	0.1	0.09	0.09
	(0.04)	(0.03)	(0.03)	(0.04)	(0.05)	(0.05)	(0.05)	(0.04)	(0.04)	(0.03)	(0.03)	(0.03)
Sadness /	0.78	0.88	0.83	0.8	0.81 (0.01)	0.81	0.8	0.86	0.83	0.73	0.68	0.71
Neutral	(0.01)	(0.01)	(0.01)	(0.01)		(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)
Micro Avg.	0.67 (0.01)	0.67 (0.01)	0.67 (0.01)	0.68 (0.01)	0.68 (0.01)	0.68 (0.01)	0.68 (0.01)	0.68 (0.01)	0.68 (0.01)	0.53 (0.01)	0.53 (0.01)	0.53 (0.01)

Note. The upper statistic represents the mean and the lower statistic in-between brackets represents the 95%-confidence interval (p <.05).

Table 4. Stress prediction network performance.

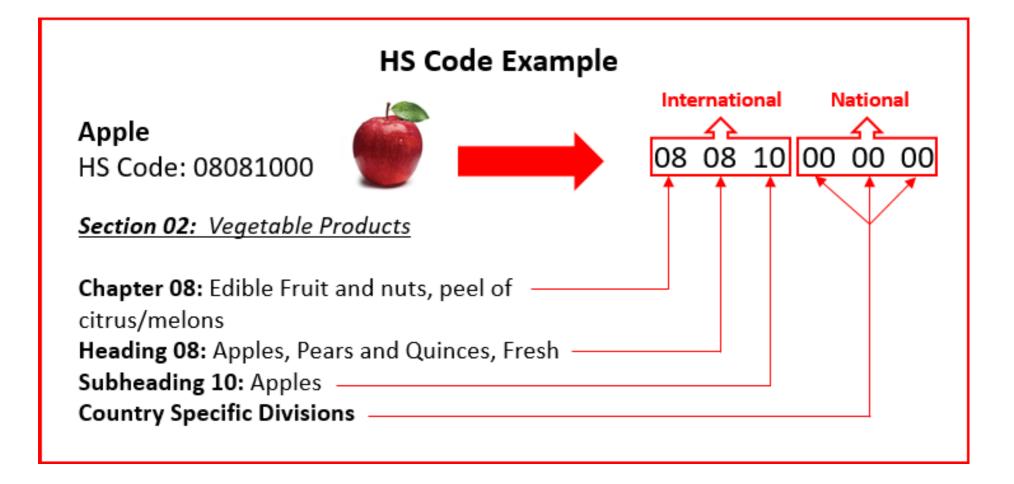
Stress network predictor	Precision	Recall	fl-score		
No-stress	0.86	0.84	0.85		
	(0.03)	(0.03)	(0.03)		
Stress	0.68	0.7	0.69		
	(0.06)	(0.06)	(0.06)		
Micro-avg	0.8	0.8	0.8		
	(0.03)	(0.03)	(0.03)		

Note. The upper statistic represents the mean and the lower statistic in-between brackets represents the 95%-confidence interval (p<.05).

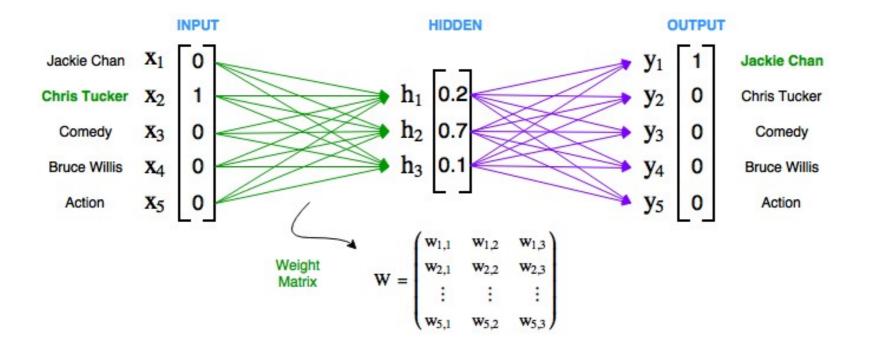
VERA: Ethical Problems

- Usage of emotions patterns to scam people into doing something
- Usage of emotion patterns to lure information
- Usage of emotion patterns to fire personnel
- Profiling and tracking people based on emotion responses

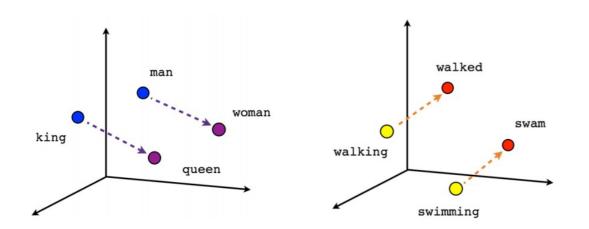
Motivating Use Cases: HS Codes

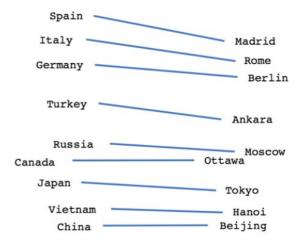


Component 1: Word Embeddings



Component 1: Word Embeddings



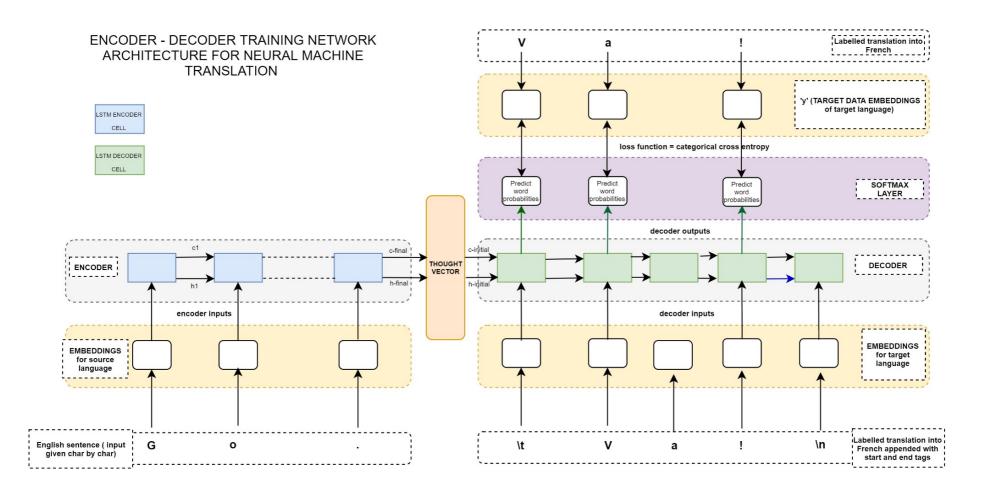


Male-Female

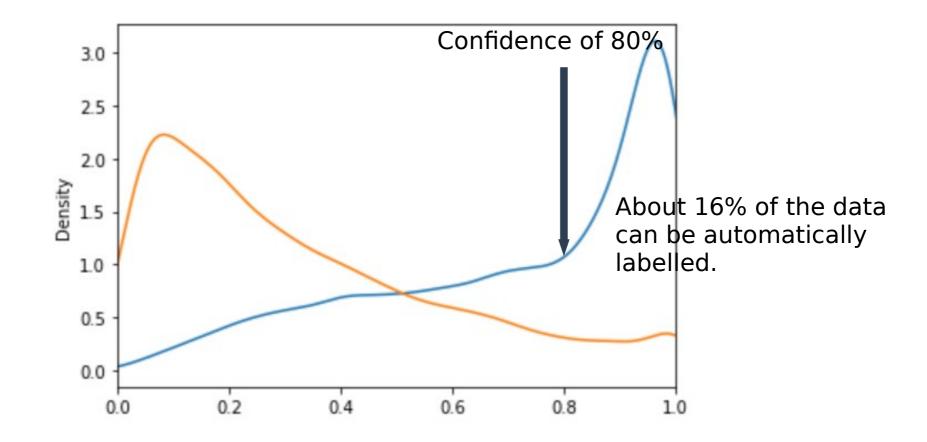
Verb tense

Country-Capital

Component 2: Neural Machine Translator



Quality Curves



- The NMT succeeds at classifying about 16% of the data with a 80% confidence.
- This result is going to be replicated through 11 states (the biggest ones being Germany and UK)
- Any percentage point of saving is tens of thousands of euros.

HS Codes: Ethical Problems

The main issue with **automating** everything is that less people will be hired to perform the job that the robot is taking care of.

Of course the same people could be used for something more **meaningful** if the process is particularly repetitive.

Profiling is also a problem, although less accentuated in this particular case, given that a code has to be provided by **law**.

Motivating Use Case, Segmenting Customers for Customer Activation

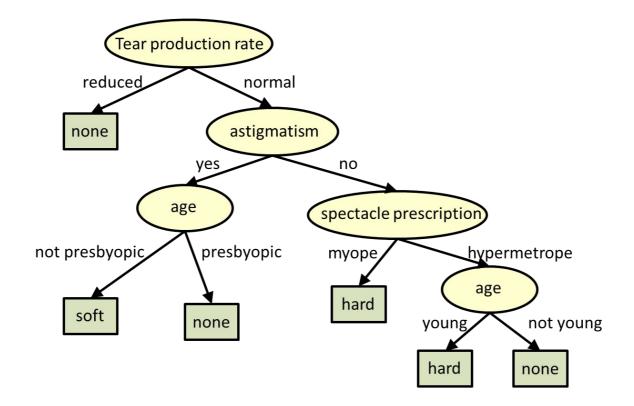
Pension funds send news letters to:

- Advise the customer concerning their pension
- Changes in the law
- Notify a new available service
- Notify changes in the taxation

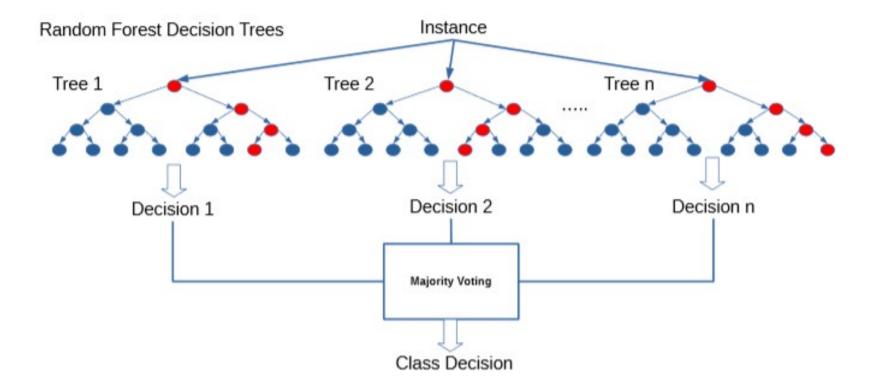
The pension fund really needs that as many customers as possible check the information, but the budget is limited! → Machine Learning to segment the customers!

The problem: Machine learning algorithms are black boxes (?)

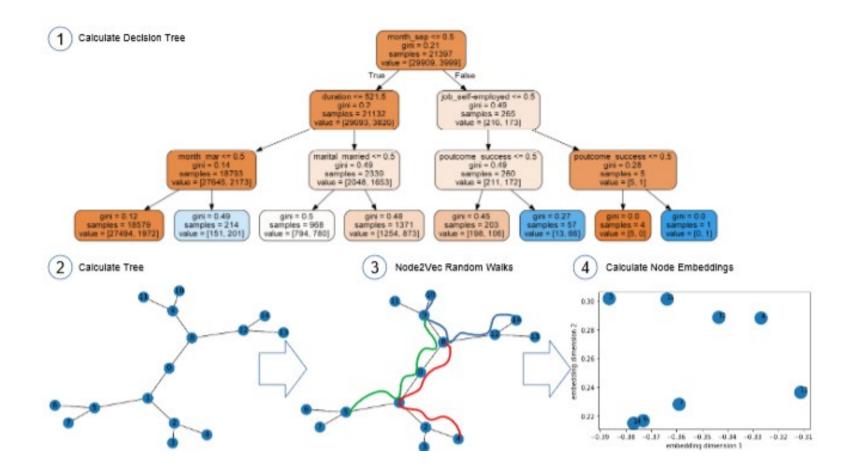
Not always, Decision trees are not black box. They define rules.



Motivating Use Cases: Random Forest Node Embeddings



Random Forest Node Embeddings Example

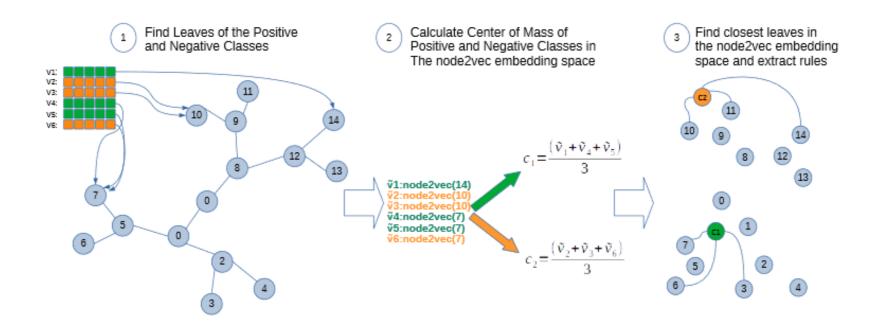


RFNE Some Results, classify

Method	D1	D2	D3	D4
KNN	0.849	0.533	0.566	0.931
Naive Bayes	0.0729	0.568	0.615	0.90
Logistic Regression	0.861	0.608	0.641	0.941
RandomForest	0.922	0.657	0.707	0.947
ExtraTrees	0.920	0.624	0.686	0.945
Random Forest Node Embeddings	0.907	0.657	0.722	0.948

It does not lose information wrt RandomForests, so it is a plausible feature extraction

RFNE, Describe



RFNE, Describe

	log odds	stde	Z	$\mathbf{P} > z $	[0.025	0.975]	odds
Intercept	-4.0580	0.186	-21.846	0.000	-4.422	-3.694	0.017284
feature_0	0.2344	0.134	1.751	0.080	-0.028	0.497	1.264150
feature_1	0.2812	0.078	3.620	0.000	0.129	0.433	1.324719
feature_2	0.3986	0.067	5.967	0.000	0.268	0.530	1.489738
feature_3	0.7227	0.098	7.346	0.000	0.530	0.916	2.059988
feature_4	-0.2204	0.069	-3.201	0.001	-0.355	-0.085	0.802198
feature_5	0.0864	0.093	0.924	0.355	-0.097	0.270	1.090242
feature_6	-0.1506	0.108	-1.392	0.164	-0.362	0.061	0.860192
feature_7	-0.0289	0.076	-0.378	0.706	-0.179	0.121	0.971514
feature_8	-0.1441	0.098	-1.473	0.141	-0.336	0.048	0.865801
feature_9	0.6914	0.096	7.192	0.000	0.503	0.880	1.996509
feature_10	-0.2434	0.133	-1.824	0.068	-0.505	0.018	0.783958

$rule_{d1} = pdays < 9.5$ and marital != 'single' and job \in ["admin.", "blue-collar", "entrepreneur", "housemaid"] and age < 61.5 and day > 18.5

- Segmenting Customers to hypertarget them with the perfect advertisement.
- Scamming customers very effectively and cheaply.
- Grouping Customers unfairly, without their consent.

Conclusion

AI offers many advantages

- Automation
- Targeting population
- Produce New insights

It comes with a number of negative aspects:

- People lose jobs
- Scamming
- Unfair use of data
- Intellectual property

Questions ?

