Expressing safe communication protocols

Luc Edixhoven

26 January 2021

Who am 1?7

Luc Edixhoven, internal PhD student,
under supervision of Sung-Shik Jongmans

» France (Rennes), 1995 — 2002

» Netherlands (Leiden), 2002 — now

» Computer Science (Leiden), 2013 — 2019
» Open University (CWI), 2019 — 20237

What are my research interests?

» In a word: puzzles

» Formal methods (formal languages, automata theory, formal
logic)

» Combinatorial game theory

» Bachelor thesis: SAT solvers and sliding puzzles
» Research project: CGT and 3-player Clobber

» Master thesis: BDDs, theoretical analysis and 2048

The remainder of this presentation

1. What are we studying?
2. What are we hoping to achieve?

3. How are we getting along?

Parallelisation

“The age of single-threading is over.
The time for multithreading has come.”

Parallelisation

“With great power comes great responsibility.”

Parallelisation

“With great power comes great responsibility.”

l

“With parallelisation comes synchronisation.”

Parallelisation

“With great power comes great responsibility.”

l

“With parallelisation comes synchronisation.”

The classical way

(Image from Wikipedia)

Parallelisation

“With great power comes great responsibility.”

l

“With parallelisation comes synchronisation.”

The classical way The modern way

(Image from Wikipedia) (Image from PostNL)

A message passing model

A message passing model

‘= Bob

1. A set of participants (Alice, Bob, Carol, Dave, ..

)

A message passing model

1.

2. A set of one-directional channels between participants

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

3. A description of allowed/desired behaviour
= communication protocol

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

EDoes a given system implement this protocol's behaviour?}

2.
3.

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

EDoes a given system implement this protocol's behaviour?}

[Does any system implement this protocol's behaviour?}
3.

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

EDoes a given system implement this protocol's behaviour?}

[Does any system implement this protocol's behaviour?}

[Is this protocol safe to begin with?}

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

A

EDoes a given system implement this protocol's be/IAaviour?}

[Does any system implement this protocol’s b)Kaviour? }

[Is this protocol safe to begin with? }/

A message passing model

Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave

A

EDoes a given system implement this protocol's be/IAaviour?}

[Does any system implement this protocol’s b)Kaviour? }

Is this protocol safe to begi 'th?}/
[S IS prO OCOl sare to egln W1 What is Safety?

Safety

What is sent must be received

Safety

What is sent must be received
What is received must have been sent

The problem

Expressiveness

The problem

Expressiveness

Can we do better?

Safety in formal languages

Formal languages over send and receive actions: x!, x?, yl y7 ...

Safety in formal languages

Formal languages over send and receive actions: x!, x?, yl y7 ...

Safety is similar to the Dyck language of balanced brackets

Safety in formal languages

Formal languages over send and receive actions: x!, x?, yl y7 ...
Safety is similar to the Dyck language of balanced brackets

Focus on regular languages

Safety in finite automata

Safety in finite automata

1. All channels should start out empty

Safety in finite automata

1. All channels should start out empty

Safety in finite automata

1. and end up empty

Safety in finite automata

1. and end up empty

Safety in finite automata

1.

2. Everything in between should be consistent

Safety in finite automata

1.

2. Everything in between should be consistent

Safety in finite automata

1.

2. Everything in between should be consistent

Safety in finite automata

1.

2. Everything in between should be consistent

Safety in finite automata

x:1,y:0

2. Everything in between should be consistent

Safety in finite automata

y?
— (a5)"(%)

x: 1, y:0
x! x?

[X: 0, y: O] [x: 0, y: 1]—7[x: 0, y: 0]
N— V!

N
x:1,y:0

1.

2. Everything in between should be consistent

Safety in finite automata

y?
— (a5)"(%)

x: 1, y:0
x! x?

[X: 0, y: O] [x: 0, y: 1] [x: 0, y: 0]
—

N
x:1,y:0

N—"

1.

2. Everything in between should be consistent

Safety in finite automata

1.

2. Everything in between should be consistent

Safety in finite automata

Py [x: 1, y: 1] [x: 1, y: O]

N—" ix?

[X: 0, y: O] [x: 0, y: 1] [x: 0, y: 0]

N
x:1,y:0

1.

2. Everything in between should be consistent

Safety in finite automata

Py [x: 1, y: 1] [x: 1, y: O]

[X: 0, y: O] [x: 0, y: 1] [x: 0, y: 0]

3. No balance should ever be negative

Safety in finite automata

Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Loop content has balance 0

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

T ¢ pGETE B G
¢) ClD
¢) T D

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

I
E2D Cmo)
T
T Clm
1
i oo
1

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?

x and Xmin both O: v

D)
C) C)
)
) C)
C CI)C

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

mismatching branches: X

Constructing safe expressions?

Constructing safe expressions?

ex=@ | A x| x? |y |y?]| ...

let+e|e-ele

Constructing safe expressions?

/\ Not safe

ex=@ | A x| x? |y |y?]| ...

let+e|e-ele

Constructing safe expressions?

/_\Notsafe
en= | A x|yl y?] ...
|effeYe-e|e”

Constructing safe expressions?

/_\Notsafe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=g | A|x-x?|yl-y?| ...

let+e|e-e]e

Constructing safe expressions?

/\Notsafe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=g | A|x-x?|yl-y?| ...

let+e|e-e]e

N Not enough control

Constructing safe expressions?

/_\ Not safe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=T | A| x!-glgyl-y?| ...
|e+e el|e

k\\—z-Notenoughconnol

Constructing safe expressions?

/_\ Not safe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=T | A| x!-glgyl-y?| ...
|e+e el|e

k\\—l-Notenoughconnol
ex=@ | A xt-x?|yl-y?]| ...
le+e|e-e]|e

lelelelelelle]l-..

Constructing safe expressions?

/_\ Not safe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=T | A| x!-glgyl-y?| ...
|e+e el|e

k\\—l-Notenoughconnol

ex=@ | A xt-x?|yl-y?]| ...

le+e|e-e]|e
/Ie\le!eue!eﬂe!---

Still not enough control

Constructing safe expressions?

/_\ Not safe
en= | A x|yl y?] ...
|effeYe-e|e”

ex=T | A| x!-glgyl-y?| ...
|e+e el|e

N Not enough control

/, e

Still not enough control

Constructing safe expressions!

Solution: parametrise the shuffle operator

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L1201112112(2abedef, ghij)

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

LU 2011121122 bedef, ghij)

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

LU 591112112(2bedef, chij) i
= ag i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L 501112112 (2bedef, 2hij) i
= agh i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L 501112112(2 bedef, 2hij) i
= aghb i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L 12112(2bcdef, ghij) i
= aghbc i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L 2112(ef, ohij) i
= aghbcd i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L 112(ef, 2hij) i
= aghbcdi i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

L 12(f, 2hij) :
J
= aghbcdie i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

LU o ,2hi) :
J
= aghbcdief i
h
g

Constructing safe expressions!

Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L (:4ll) .
J
= aghbcdiefj i
h
g

Constructing safe expressions!

Undefined (does not ‘fit"):

LLi;100(aaaa, bbbb) = abef...?

Constructing safe expressions!

Undefined (does not ‘fit"):

LLi;100(aaaa, bbbb) = abef...?

n > 2 dimensions:

LL103132(2a, bb, cc) = abcacb

Constructing safe expressions!

Undefined (does not ‘fit"):

LLi;100(aaaa, bbbb) = abef...?

n > 2 dimensions:

LL103132(2a, bb, cc) = abcacb

Languages:

Wi1102, 2011 ({aa, bb}, {cc, ddd}) = {aacc, bbec, ccaa, ccbb}

Constructing safe expressions!

Undefined (does not ‘fit"):

LLi;100(aaaa, bbbb) = abef...?

n > 2 dimensions:

LL103132(2a, bb, cc) = abcacb

Languages:

Wi1102, 2011 ({aa, bb}, {cc, ddd}) = {aacc, bbec, ccaa, ccbb}

Expressions: same as languages

Constructing safe expressions!

ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Constructing safe expressions!

ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Safe:

Constructing safe expressions!

ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Safe: v/

Constructing safe expressions!

ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Safe: v/

Expressive:

Constructing safe expressions!

ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Safe: v/

Expressive: 100% v/

Constructing safe expressions!

x(xIx? 4+ x?x1)*xIx?(x? + x7x!x7?)

Constructing safe expressions!

= xI((x!x?)*(x?x1)*) " xIx?(x? + x?x!x7?)

Constructing safe expressions!

; xH(xIXx7)*(x?x1)) xIx?x7?
+ xH((x!Ix?)*(x?x1)*)* xIx?x?x1x?

Constructing safe expressions!

:[X!((X!X?)*(X?X!)*)*X!X?X?J
+ xH((x!Ix?)*(x?x1)*)* xIx?x?x1x?

Constructing safe expressions!

Constructing safe expressions!

Constructing safe expressions!

Constructing safe expressions!

Constructing safe expressions!

Constructing safe expressions!

Constructing safe expressions!

LWqa3(x!, x?, x7)

i

W10 (x!x?, x7)

i oa] G

Constructing safe expressions!

[]%%[]

Constructing safe expressions!

Constructing safe expressions!

o b
sl

Constructing safe expressions!

o b
sl

Constructing safe expressions!

[Lul((ﬂ)*(ll)*)*((X!x?)*x!,(x!x?)*)} Ly 1o (x!x?, x7)

| T
x! ((:)x? LI

[x?7. X))
(T @
)

Constructing safe expressions!

x| }3x?

x| f[:)X?

x| ((:)X?

x| ((:)x?

Beyond regular languages

> w-regular: v
» Context-free languages: not yet
> Message data types

P Realisability

That's all, folks!

