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The remainder of this presentation

1. What are we studying?
2. What are we hoping to achieve?

3. How are we getting along?



Parallelisation

“The age of single-threading is over.
The time for multithreading has come.”
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The classical way The modern way

(Image from Wikipedia) (Image from PostNL)
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A message passing model

1.

2. A set of one-directional channels between participants
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If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
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3. A description of allowed/desired behaviour
= communication protocol
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Alice sends a message to
either Bob or Carol

If to Bob, then Bob sends a
message to Carol and Dave

If to Carol, then Carol sends a
message to Alice and Dave
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[ Does any system implement this protocol’s b)Kaviour? }
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Safety

What is sent must be received



Safety

What is sent must be received
What is received must have been sent
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The problem

Expressiveness

Can we do better?
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Safety in formal languages

Formal languages over send and receive actions: x!, x?, yl y7 ...
Safety is similar to the Dyck language of balanced brackets

Focus on regular languages
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Safety in finite automata

Py [x: 1, y: 1] [x: 1, y: O]

[X: 0, y: O] [x: 0, y: 1] [x: 0, y: 0]

3. No balance should ever be negative



Safety in finite automata




Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?



Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?




Safety in regular expressions

e = x!((x?x)* + yly?y)x?y?




Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?




Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?




Safety in regular expressions

e = xI((x?x)* + yly?yl)x?y?
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e = xI((x?x)* + yly?yl)x?y?

Loop content has balance 0
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e = xI((x?x)* + yly?yl)x?y?
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Safety in regular expressions

e = x!I((x?x)* + yly?y)x?y?

mismatching branches: X
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Solution: parametrise the shuffle operator

“Shuffle on trajectories” (Mateescu et al., 1998)

2

L ( :4ll) .
J
= aghbcdiefj i
h
g
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Constructing safe expressions!

Undefined (does not ‘fit"):

LLi;100(aaaa, bbbb) = abef...?

n > 2 dimensions:

LL103132(2a, bb, cc) = abcacb

Languages:

Wi1102, 2011 ({aa, bb}, {cc, ddd}) = {aacc, bbec, ccaa, ccbb}

Expressions: same as languages
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ex=g | A x-x?|yl-y?| ...

let+e|e-ele

| Wele) | wple,e) | ...

= |A|1]2]...
|0+616-6]6

Safe: v/

Expressive: 100% v/
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:[X!((X!X?)*(X?X!)*)*X!X?X?J
+ xH((x!Ix?)*(x?x1)*)* xIx?x?x1x?
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LWqa3(x!, x?, x7)

i

W10 (x!x?, x7)

i oa] G
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Constructing safe expressions!

[Lul((ﬂ)*(ll)*)*((X!x?)*x!,(x!x?)*)} Ly 1o (x!x?, x7)
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x| }3x?

x| f[:)X?

x| ((:)X?

x| ((:)x?




Beyond regular languages

> w-regular: v
» Context-free languages: not yet
> Message data types

P Realisability



That's all, folks!




