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My position within AI and research themes

• Theme 1: More context for predictive models.

• Theme 2: Efficient data-structures & 

Algorithms.

• Theme 3: Application to business relevant 

real-world problems.
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PART 0: Deep Learning Basics



Data, model and training

• Data: collection of [Input,Label] pairs [x,y]

• Model: A nonlinear function x -> y*,

– Implemented by multi-layer network 

with weights

• Training (for batches b of examples [xb,yb]):

– Feed model examples xb, returns prediction yb*

– Compare:  yb*, yb => loss (loss=0 when equal)

– Compute gradient of loss with respect to network weights

– Apply loss gradients: change weights to decrease loss
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Based on:
Gideon Maillette de Buy Wenniger, Thomas van Dongen, Eleri Aedmaa, Herbert Teun Kruitbosch, Edwin A. 
Valentijn and Lambert Schomaker. 2020. Structure-Tags Improve Text Classification 
for Scholarly Document Quality Prediction. First Workshop on Scholarly Document 
Processing (SDP 2020), at EMNLP 2020. pages 158--167. https://aclanthology.org/2020.sdp-1.18/

Thomas van Dongen, Gideon Maillette de Buy Wenniger and Lambert Schomaker. 2020. 

SChuBERT: Scholarly Document Chunks with BERT-encoding boost Citation 
Count Prediction. First Workshop on Scholarly Document Processing (SDP 2020), at EMNLP 2020. 
pages 148--157. https://aclanthology.org/2020.sdp-1.17/

 

Structure-Tags Improve Text 

Classification for Scholarly Document 

Quality Prediction

Structure-Tags Improve Text 

Classification for Scholarly Document 

Quality Prediction

7

PART 1: Scholarly Document 
Quality Prediction

https://aclanthology.org/2020.sdp-1.18/
https://aclanthology.org/2020.sdp-1.17/


Scholarly Document Quality Prediction
• Predict quality from the document alone

• What indicators of quality to predict?
– Accept/Reject

• Simple and well understood 
• Scarce data

– Number of Citations
• Large data availability

Source:https://m.xkcd.com/1945/
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Motivation: Correlation paper 
acceptance and number of citations
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Word embeddings

10
Image Source: 
https://www.r-craft.org/r-news/get-busy-with-word-embeddings-an-introduction/



Methods: BiLSTM-based model (Shen et al., 2019)
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Methods: HAN-based predictive model
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Methods: structure tags
• Tags added at begin and end every sentence
• Indicate the origin in the text structure:

– Title, Abstract, Body_Text
• Similar to principle of “command-string” in:  “Google's Multilingual Neural Machine 

Translation System: Enabling Zero-Shot Translation” (Johnson et. al, 2016)
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Experiments
• PeerRead accept/reject prediction

– Standard benchmark
– 3-domains: AI, ML, CL
– Small datasets: 5.0K (ML), 2.6K, 4.1K (AI)
– Imbalanced

• Number of citations prediction:
– Predict log(Number of citations + 1)
– 88K examples
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PeerRead accept/reject prediction 

● PeerRead accept/reject prediction: small and unbalanced datasets
○ But still the standard, for lack of good alternatives

● Accept/Reject labels are heuristically defined:
○  based on publication at top conferences or not
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Model performance on PeerRead
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HANST : comparison to state of the art
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Results  Summary
Both tasks:
– HANST outperforms HAN in all experiments

Accept/Reject prediction PeerRead:
– HANST best on CL domain
– BiLSTM and joint (textual+visual) model best on other two 

domains

Number of citation prediction:
– HANST outperforms other models on number of citation 

prediction
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Conclusion
• Presented Hierarchical Attention Networks with structure tags 

HANST 
– Outperforms HAN and best on number of citations 

prediction

• Number of citations prediction: 
– Predict Log(#Citations + 1), large data available,  strong 

correlation with accept/reject
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PART 1B: Saliency Maps for Scholarly 
Document Quality Prediction



Motivation and setting

● Goal: obtain a heatmap of what inputs are most important for a 
prediction

● Setting: Input consists of word embeddings or full-sentence embeddings 
(when working with BERT)

21
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Data
● PeerRead data: accept/reject prediction

○ Small dataset: beneficial for faster development
○ Accept/Reject labels: binary prediction easier to work with than 

regression labels, for saliency map producing methods
○ https://github.com/allenai/PeerRead

● Stanford Sentiment Treebank
○ Easy to interpret, in terms of saliency at the word level
○ Reported benchmark scores
○ Small dataset:

■ 5-class prediction: train (8544), dev (1101) and test splits (2210) 
■ Binary (positive/negative): train (6920), dev (872), test (1821) sentences

○ https://nlp.stanford.edu/sentiment/
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Selected Literature

● Gradient-Based Attribution Methods
○ Marco Ancona, Enea Ceolini, Cengiz Öztireli, Markus Gross
○ Chapter 9 “Explaining AI: Interpreting, Explaining and Visualizing 

Deep Learning

● TOWARDS BETTER UNDERSTANDING OF GRADIENT-BASED 
ATTRIBUTION METHODS FOR DEEP NEURAL NETWORKS
○ Marco Ancona, Enea Ceolini, Cengiz Öztireli, Markus Gross
○ https://arxiv.org/pdf/1711.06104.pdf

● Visualizing and Understanding Neural Models in NLP
○ Jiwei Li, Xinlei Chen, Eduard Hovy and Dan Jurafsky
○ https://www.cs.cmu.edu/~./hovy/papers/16HLT-visualizing-NNs.pdf
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Explored approach
● Baseline approach: saliency as Gradient X Input
● Why?

○ Easy to implement
○ Easy to understand
○ Passes Sanity checks for Saliency Maps

■ Sanity Checks for Saliency Maps
■ Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, Been Kim
■ https://papers.nips.cc/paper/2018/file/294a8ed24b1ad22ec2e

7efea049b8737-Paper.pdf

● Later: explore different approaches: 
○ Integrated Gradients
○ Layer-wise Relevance Propagation
○ Other 24

https://papers.nips.cc/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf
https://papers.nips.cc/paper/2018/file/294a8ed24b1ad22ec2e7efea049b8737-Paper.pdf


Gradient-based methods: multiplying with the 
input

● Sensitivity methods: how does the output changes when one or
more of the inputs is changes?

○ i.e. how to get more cat features in the input?

● Saliency methods: effect of feature on the output for same input
with feature removed

○  i.e. how to explain prediction for this input?

● Multiplying gradient with input yields a saliency method:
Ri (x) = xi × δyc (x) / Δxi

Source: M. Ancona, E. Ceolini, A.C. Öztireli and M.H. Gross. Gradient-Based Attribution Methods. 
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
https://link.springer.com/chapter/10.1007/978-3-030-28954-6 13 25



Benchmark results original paper
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Reproducing the benchmark scores

● Using a slightly different model (not RNN):
○ BiLSTM+MaxPooling+Linear+ReLu
○ Model worked well on PeerRead Dataset :(Shen et.a, 2010) baseline)

● number of examples: 1821

 

Still not at the benchmark score level, but getting there

27

Average Word 
Embedding

BiLSTM BiLSTM+MaxPooling+Linea
r+ReLu

Accuracy 77.2% 79.8%  79.2%

AUC Score .772 0.798 0.792



Stanford Sentiment Treebank Saliency: 
an impression
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PeerRead Saliency: architecture impression
● The same technique can be applied to multiple-sentence documents
● Quality of saliency predictions is work in progress...
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PART 1C: SDP with full text: 
BERT-based models



SChuBERT

Scholarly Document Chunks with 
BERT-encoding boost Citation Count 

Prediction

Thomas van Dongen,
Gideon Maillette de Buy Wenniger,

Lambert Schomaker
(Based on slides by Thomas van Dongen)



Introduction

Scholarly document quality prediction
Content-based citation prediction

In this paper we show the benefits of:
- More (and better) data: ACL-BiblioMetry dataset
- Pre-trained language models: SChuBERT model
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ACL-BiblioMetry dataset

Title + abstract + full text information
Citations and log citations labels
All papers scraped from ACL (CL + NLP papers)

Train Test Validation

Number of 
papers

27853 1549 1548
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BERT: brief overview

State-of-the-art language model released by Google in 2018.
Several pre-trained models have been released.
Can be used out-of-the-box to generate contextualized 
embeddings for sentences. 
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Issues with BERT

BERT has a time complexity that is quadratic with respect to the input length.
Max tokens for BERT-base: 512
Average tokens in our dataset: around 20000
Solution: chunking
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Methods
Model architecture:
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Experiments

Longer vs. shorter input texts:
- Abstract only vs. full text
- All chunks vs. a portion of chunks

Larger vs. smaller training data set:
- 100% vs. 50% vs. 10% of training data

SChuBERT is compared to two state-of-the-art models: HAN and a BiLSTM
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Main Results
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Results: Does full input text help?
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Results: Does more training data help?
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Other advantages

SChuBERT training is much faster:

SchuBERT has far less (trainable) parameters:

SChuBERT converges much faster:
40 epochs vs ~100 epochs 41



Beyond SChuBERTJoint: Multi-modal 
prediction

42



Joint Results
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Conclusion

Advantages of more data:
● Larger training sets lead to much better results.

Advantages of pre-trained language models for scholarly document 
quality prediction:
● SChuBERT outperforms the other models significantly and has 

other benefits.
● Image + Text information are complementary:

○ SChuBERTJoint best model so far. 
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Future work

● Different (more powerful) language models: 
longformer/reformer

● More training data

● Adding context 
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Based on:
Gideon Maillette de Buy Wenniger, Lambert Schomaker and Andy Way. 2019. "No 
Padding Please: Efficient Neural Handwriting Recognition" 2019 International 
Conference on Document Analysis and Recognition (ICDAR). Sydney, Australia. pages 
355--362. doi: 10.1109/ICDAR.2019.00064. 
https://ieeexplore.ieee.org/document/8978156
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PART 2: Neural Handwriting 
Recognition

https://ieeexplore.ieee.org/document/8978156


The handwriting recognition task

Output (Hopefully…)
• A|MOVE|to|stop|Mr.|Gaitskell|from
• Prime|Minister|after|Prime|Minister|speaks|out
• The|production|by|Bill|Duncalf
• the|Synoptics|can|be|reasonably|solved|by|paying|due|regard|

to|the|time|and 47

Input:



MDLSTM-based handwriting recognon 
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What are MDLSTMs?
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Efficient MDLSTM computation by 
convolution1 

50

1  First proposed in Pixel Recurrent Neural Networks. (Van Den Oord et.al, 
2016)



MDLSTM Cell 

• State can grow over time causing instability

51



MDLSTM Problems
• State can grow over time causing instability

– Gradient clipping cannot solve this

• Multiplying S1 and S2 by 0.5? => State decays too fast…

• Better solution is needed that:
– Prevents the state from growing to much and becoming instable
– Still enables preserving state over a long time

=> Leaky LP Cells
52



Stable MDLSTM cells: Leaky LP 
Cell
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Experiments
• Line-strip handwriting recognition on the IAM benchmark 

dataset
• Material: lines taken from 1M word Lancaster-Oslo-Bergen 

(LOB) corpus          
• Lines written by multiple writers

• 3-gram language model trained on unused parts LOB corpus 
+ Brown corpus. 

• Results with/without language model
54



CER on IAM test-set
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WER on IAM test-set
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Handwriting recognition quality 
on IAM
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IAM results (continued)
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Lessons learned
• Right combination of weight initialization scheme, optimizer and learning 

rate is crucial 

• Xavier Glorot (Xavier Glorot and Joshua Bengio, 2010) uniform weight 
initialization in combination with Adam optimizer works well.

• Using Leaky LP cell (Leifert et. al, 2014) variant of MDLSTMs essential 

• Dropout is required to get real good results and avoid overfitting
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Padding
• Many neural models expect equal-sized inputs
• But input lengths differ 
• Padding is a solution

– But wastes a lot of computation

60



Solution : Example Packing
Idea: Pack variable-sized examples
together, to minimize padding 
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Some observations and details
• Every row is filled greedily up to the maximum width

• Examples within a row must share same height, but 
different rows are allowed to have different heights

• Major gains especially in word-based handwriting 
recognition setting (due to large variance in word 
lengths)
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Some observations and details 
(continued) 

• Packing/unpacking done in pairs:
– packing: List → Tensor
– unpacking: Tensor → List

• Packing done before every MDLSTM layer, unpacking  after it 

• For block-strided convolution layers (after MDLSTM layers): 
use simplified packing/unpacking algorithms 
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Speedup of example packing
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Conclusions
• MDLSTM-based handwriting recognition

– Importance of Leaky LP cells, Dropout, Xavier weight 
initialization, optimizer and learning rate

• Example packing: making better 
• use of computational resources: 
• 6.4 times speedup on words

• Full MDLSTM-based neural handwriting recognition 
in pytorch, open source
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Number of citations prediction
• Predict log(Number of citations + 1)

Why?
– Compensates for Zipfian character number of citations
– Always number in range [0, infinity], suitable for 

regression models
– Alternative: predicting fixed categories (“low”, “medium”, 

“high” etc) 
• requires outlier analysis 
• more domain-dependent
• Potential instability for articles with number of 

citations on the border of two classes/bins
68



S2ORC experiments  number of 
citations prediction

• Large number of examples
• Retrieve number of citations any paper from open Semantic 

Scholar database
• But text length remains limited in our experiments for this 

paper

69



Number of citations prediction results
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Related Work
Number of citations prediction:

• Fu and Aliferis (2008): citation count prediction using paper content (title, 
abstract and keywords) + bibliometric information. 

• Li et al. (2019) and Plank and van Dale (2019): improved results using 
review information.

Accept/Reject prediction
• Shen et al. (2017) perform hybrid hand-crafted features + text content 

DL-based quality prediction of Wikipedia articles.
• Shen et al. (2019) combine visual and textual content using a CNN and 

LSTM respectively. Wikipedia and the PeerRead arXiv datasets.
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Bright and dark side of deep learning

- Unprecedented performance with same technology 
and similar models on many tasks 

- Training models: takes long time and often inefficient 
in use of computational resources 
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Leaky LP Cell - variant
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Handwriting results
>>> evaluate_mdrnn  - output: "for|himself|only|,|instead|of|all|to|help|to|gather|your"

reference: "for|himself|only|,|instead|of|all|to|help|to|gather|your" --- correct

>>> evaluate_mdrnn  - output: "midst|of|plenty|.|Hal|will|not|be|easily|forth"

reference: "midst|of|plenty|.|Help|will|not|be|easily|forth-" --- wrong

>>> evaluate_mdrnn  - output: "coming|for|the|people|in|need|.|They|will"

reference: "coming|for|the|people|in|need|.|They|will" --- correct

>>> evaluate_mdrnn  - output: "think|of|the|animals|first|(|which|is|of|course"

reference: "think|of|the|animals|first|(|which|is|of|course" --- correct

>>> evaluate_mdrnn  - output: "our|duty|)|.|Of|course|the|individual|will"

reference: "our|duty|)|.|Of|course|the|individual|will" --- correct
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Bonus Material
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Where citations come from
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Are all structure-tags necessary?

• Ablation experiment 2 tags: merge Title and Abstract tags

• Result: performance loss on all PeerRead datasets
• Sometimes performing worse than plain HAN
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Hyperparameters used
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