

SIKS Dissertation Series No. 2017-xx

ISBN/EAN: xxx-xx-xxxxx-xx-x

© Brigit van Loggem, Overberg, The Netherlands, 2017
Cover design by xxx
Printed by xxx, The Netherlands

All rights reserved

 Towards a Design Rationale

for Software Documentation

A Model of Computer-Mediated Activity

Proefschrift

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. mr. A. Oskamp

ten overstaan van een door het
College voor de promoties ingestelde commissie

in het openbaar te verdedigen

op ____________________ 2017 te Heerlen
om xx.00 uur precies

door

 Brigitte Elisabeth van Loggem
Geboren op 11 augustus 1957 te Amsterdam

Promotor
Prof. dr. G.C. van der Veer
Open University of the Netherlands

Overige leden van de beoordelingscommissie

Prof. dr. M.C.J.D. van Eekelen
Open University of the Netherlands

Dr. J. Karreman
Universiteit Twente

Prof. dr. P.A. Kirschner
Open University of the Netherlands

Prof. dr. D.R. Olsen Jr.
Brigham Young University, UT, USA

For Matthew

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity

Table of Contents

1. RESEARCH QUESTIONS AND SCOPE 1

INTRODUCTION 1
CHAPTER CONTENTS 4

2. THE CASE FOR USER DOCUMENTATION 9

THE PARADOX OF THE ACTIVE USER 9
USER DOCUMENTATION AS THE CINDERELLA OF USER SUPPORT 12
DOCUMENTATION AS A DESIGN DISCIPLINE 17
THE NEED FOR RESEARCH 25

3. THE DOCUMENTATION JOURNEY 33

INTERACTION WITH DOCUMENTATION: THE SECONDARY TASK 33
STAGEPOST 1: NEEDING INFORMATION 36
STAGEPOST 2: SEEKING INFORMATION 37
STAGEPOST 3: FILTERING INFORMATION 40
STAGEPOST 4: APPLYING INFORMATION 41

4. A MODEL OF COMPUTER-MEDIATED ACTIVITY 43

INTERACTION WITH SOFTWARE: THE PRIMARY TASK 43
CMA AS REPEATED DECISION-MAKING 44
LEARNING FROM PRACTICE 47
SATISFICING AND AMBITION IN CMA 50
COGNITIVE LOAD IN CMA 53
MENTAL MODELS AND THE USER VIRTUAL MACHINE 54
UNCERTAINTY AND ILL-DEFINEDNESS 58
THE DOCUMENTATION JOURNEY IN CMA 62
CMA AS A KNOWLEDGE ENGINE 64

5. DOCUMENTATION AS ARTEFACT 71

EXPERTISE AND MASTERY 71
ASSESSING USE COMPLEXITY 73
DOCUMENTATION REQUIREMENTS FOR OPERATORS, ACTORS AND ACTIVATORS 83

6. SDDPL VALUE SYSTEM AND ORGANIZING PRINCIPLE 89

DESIGN PATTERNS AND DESIGN PATTERN LANGUAGES 89
COMMON VALUE SYSTEM 92
COMMON ORGANIZING PRINCIPLE 94
A PROPOSED FORMAT 100

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity

7. MACRO PATTERNS 103

1. DOCUMENTATION ENVIRONMENT 103
2. MEDIA MIX 109

8. MESO PATTERNS 117

3. SEPARATION OF PURPOSE 117
4. MOTIVATOR 126
5. EVERY PAGE IS PAGE ONE (EPPO) 130
6. STEP LADDER TUTORIAL 134
7. MINIMAL MANUAL 137
8. COOKBOOK 140

9. MICRO PATTERNS 143

9. JOB AIDS 143
10. SCREEN CAPTURE 147
11. CONCEPTUAL MODEL 154
12. CROSS-REFERENCE 160
13. CHAPTER SUMMARIES & CHAPTER INTRODUCTIONS 163
14. STEPWISE INSTRUCTIONS 166

10. DISCUSSION AND CONCLUSIONS 169

COMPONENT RESEARCH QUESTIONS: CONCLUSIONS 169
OVERALL RESEARCH QUESTION: DISCUSSION 174
A WORD TO PRACTITIONERS 176

11. APPENDIXES 179

APPENDIX 1. SOFTWARE DOCUMENTATION: A STANDARD FOR THE 21ST CENTURY 179
APPENDIX 2. “NOBODY READS THE DOCUMENTATION”—TRUE OR NOT? 189
APPENDIX 3. USING THE REPERTORY GRID TECHNIQUE FOR MINING DESIGN PATTERNS 203
APPENDIX 4. TERMS LIST 211

12. REFERENCES 215

13. SAMENVATTING 237

14. CURRICULUM VITAE 239

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity

Dedication

In 1992 or perhaps 1993, an employee of a computer shop arrived at the office to
install a new PC. In those days, getting a PC to actually do any work was a non-
trivial exercise, and one not to be left to the uninitiated. Computer suppliers could
distinguish themselves from the competition by not simply shipping the box, but
hand-delivering the new equipment and installing operating system and
applications software at the customer’s premises. All this tended to take time. As
the man sat feeding floppy disks into the new computer, occasionally reaching out
to press a key, in an attempt to kill time and make conversation he asked what line
of business we were in. Software manuals, we told him. But surely, our new friend
said, manuals did not need to be written? After all, didn’t they always come with
the software? The idea that someone had to actually write those manuals proved
difficult to grasp. Did we perhaps translate them? No we didn’t, we wrote them. Ah.
So we re-wrote them, those that were difficult to understand? No, we wrote them
from scratch. But why, if they already came with the software? The conversation
became a little bit strained. When DOS and WordPerfect were ready to do their
work on the new office computer and our technician left, he seemed still
unconvinced that software manuals were not somehow brought down from Mount
Sinai by Moses, on the same stone tablets that contained the Ten Commandments;
but that they are written by people, from scratch.

The man who installed a computer for me in the early 1990s, and whose name I
never knew, is not part of the documentation design community at which this
work is aimed. Yet in an indirect way, it was written for him.

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
1

1. Research Questions and Scope
Abstract: User documentation for software-driven tools lacks a comprehensive framework within
which its products can be positioned for discussion, design, research and evaluation. Practising
documentation designers and academic researchers into user documentation need to know what
the process is that the documentation artefacts aim to support, as well as how and under which
conditions the proposed support products can be expected to intervene in this process. This PhD
thesis presents such a comprehensive framework in the shape of a model of Computer-Mediated
Activity (CMA). It is then explored how the CMA model can provide design rationale for
documentation artefacts, by outlining a Software Documentation Design Pattern Language
(SDDPL).

Introduction
The use of software by others than specialists began roughly with the advent of the
personal computer in the 1970s and has been problematic from the very
beginning. Software is for most users a means to an end, not an end in itself:
people start out with the intention to get something done. They turn to a piece of
software to help them achieve their objective; but if the tool does not immediately
seem to meet requirements, then rather than find out how to apply it to the
problem at hand, they lower their aims to match what they think the software can
do. Sometimes the bar is lowered considerably, to such a degree even that I have
seen quite a few instances of (costly) software hardly being used at all.

The answers that people give when asked why they are satisfied with
unsatisfactory results of their often considerable efforts, seem to be a variation on
either of two themes: “I have a job to do now, but one day I will find the time to
look into this” is one; and “I don’t need all those advanced features, I only use the
software to do simple things” is the other. To me, this has always sounded like the
new car owner who, not knowing about the concept of gears, regards anything
higher than first gear as an advanced feature that it is not necessary to explore,
because the car is used only for simple tasks such as doing the weekly shopping.
Personally, I have never met anyone who told me, First gear gets me there, doesn’t
it? When I have to travel out of town I take the train, so I’ve no problem with driving
along at ten miles per hour. All those old biddies behind me can honk their horns as
much as they want! And when I get to the parking space, I just drive around the block
if I have to, so why should I take the trouble to learn about difficult things such as
reverse gear? Yet I must have met dozens, if not hundreds of people who told me
something along the lines of, I’m sure that styles and templates are very useful if you
do clever things with a word processor; but I don’t need them for my ten-page
articles. It’s good fun playing with all those fonts on my computer, and if my table of

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
2

contents comes out funny then so be it — I’m an author, not a computer scientist!
Sure, my editor grumbles about the files I deliver; and re-using bits of an article I
wrote last year in something I’m writing today can be a real pain. But that’s life, isn’t
it? Whereas driving instruction is in most countries enforced by law, not all
company employees are trained before or even during their work with the
sometimes very powerful computer software installed on their desktops. Without
the documentation, how can they learn?

When I started out on the present work, I had been working as a technical writer
for more than twenty years. All that time I had been seeing end users struggle with
software, using it inefficiently, ineffectively or only partially. I had been hearing
them complain about their chosen tools, yet sometimes point-blank refusing to
actually learn how to use them what I saw as ‘properly’. This has always filled me
with equal measures of frustration and incomprehension. The desire to ‘do
something about it’ initially brought me to a rather ambitious research question, as
follows:

Can academic theory and research contribute to documentation designers’
efforts to support users of all types of software; so that these users acquire
all the knowledge that they need to make full use of their tools, improving
their day-to-day work and overall satisfaction?

Gradually it became clear to me that answering this question would involve
developing a complete, evidence-based approach to documentation for all types of
software and all types of user. Reluctantly I was forced to conclude that I had set
myself too tall an order to be met in one PhD dissertation. This thesis is therefore
restricted to laying the foundation for such a complete approach, by defining a
framework within which documentation and documentation designs can be
discussed in terms of what a particular product should aim to do to its reader,
under what conditions, and why; as well as how it may be designed so that it can
be expected to do what it aims to do.

This brings me to the following, somewhat more feasible, research question that
this thesis sets out to answer:

RQ: Can design rationale for a coherent approach to the design of software
documentation artefacts be found in a framework that describes the system
dynamics of human performers interacting with, and learning from the
interaction with, software and information?

This thesis purports to offer a reference framework for discussing software
documentation artefacts in terms of their application as an intervention to a
particular end. Such a framework is found in an abstract model of computer-
mediated activity, which describes the problem space in which documentation
designers move.

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
3

Figure 6 on page 24 shows the problem space in terms of a primary and a
secondary task. This is taken as a starting point. An analysis of the secondary task,
describing how people interact with and learn from documentation, is given in
Chapter 3. In Chapter 4, the analysis is embedded in a wider analysis of the
primary task, that of repeatedly interacting with software and learning from the
experience. This is what I call the CMA model, where CMA stands for Computer-
Mediated Activity. It is an abstract description of the problem space, which in
Chapter 5 is shown to yield concrete, prescriptive considerations in real-life design
contexts.

To move on to a possible solution space and to answer the research question, an
attempt is then made to validate the CMA model. Can it provide design rationale
for a coherent approach to the design of documentation artefacts?

One possible “coherent approach” is a design pattern language. A design pattern
language is slightly different things to different people. Sometimes, it is taken to be
no more than a collection of design patterns; where a design pattern, in the words
of the visionary architect who first developed the idea, “describes a problem which
occurs over and over again in our environment, and then describes the core of the
solution to that problem” (C. Alexander, Ishikawa, & Silverstein, 1977). It has
however been proposed that for a collection of design patterns to be a language,
the individual patterns need to share an underlying value system and an
organizing principle (see Chapter 6 for a more detailed discussion). The value
system underlying the pattern langue describes the problem space in which
designers move. The patterns themselves describe the solution space, and the
organizing principle allows practitioners to use the pattern language when
analysing a specific design context and creating specific design products.

The presence of an underlying value system and organizing principle common to
the separate patterns is what can make a pattern language a “coherent approach”;
more so than, for example, a set of guidelines or a style guide. To validate the CMA
model as providing design rationale for software documentation, a tentative
design pattern language is therefore presented: the Software Documentation
Design Pattern Language or SDDPL. The SDDPL finds its underlying value system
in the CMA model and its organizing principle in considerations of usability for
practitioners. In Chapter 6, the pattern language is formalized. Three further
chapters present a number of design patterns for software documentation, and the
work is rounded off with a conclusion.

Users of software are as varied as the software they use. It is a mistake to think of
‘end users’ as always non-technically oriented, just as it is a mistake to think of
them as forever novices. If, for example, a particular software product is used by
seismic interpreters, then much more algorithmic detail is required in the
documentation than in that for a word processor. Analysis of the intended
audience is always the first step in the workflow of any professional

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
4

documentation designer. A close second is the analysis of the possible forms that
the documentation can take: there is no law prescribing a book, nor one
prohibiting the use of video, comics, or flash cards; to name but a few of the near-
endless possibilities. These are design decisions, to be based on that which the
documentation sets out to do—a user manual is after all a document with a job,
and its quality can be judged only by how well it does that job. This work purports
to provide a language in which a documentation artefact’s design rationale can be
discussed: not one by which an absolute label ‘good’ or ‘bad’ can be assigned to
such an artefact or its components.

Chapter Contents
The overall research question is worked out in a number of chapters, each
addressing a separate sub-question; as follows:

Chapter 2—The Case for User Documentation

SRQ: What is the relevance of the current work to society and academia?

This chapter first describes the problem that all disciplines involved with the
support of software users aim to solve: the frequently-observed phenomenon of
users failing to achieve full mastery of software-driven tools. It then makes a case
for the design of user documentation as a legitimate topic of interest and discusses
the relatively low profile of documentation design in the academic (although not
professional) literature, evidenced by a lack of current research studies and
theory-building.

Two small-scale studies have been carried out in the context of this chapter, each
described in detail in an Appendix.

Concepts and theoretical frameworks discussed in this chapter include:

 the Paradox of the Active User

 yoking

 hierarchical task analysis

 design theory

Part of this chapter has been presented in a full conference paper at the 2013
World Conference on Information Systems and Technologies (WorldCIST'13), held
on 27-30 March 2013 in Olhão, Portugal (van Loggem, 2013b).

The study referenced in this chapter and fully described in Appendix 1. Software
Documentation: A Standard for the 21st Century has been presented in a full

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
5

conference paper at the Information Systems and Design of Communication
(ISDOC 2014), held on 16-17 May 2014 in Lisboa, Portugal (van Loggem, 2014b).

The study referenced in this chapter and fully described in Appendix 2. “Nobody
Reads the Documentation”—True or Not? has been presented in a full conference
paper at ISIC 2014: The Information Behaviour Conference, held on 2-5 September
2014 in Leeds, United Kingdom (van Loggem, 2014a).

Chapter 3—The Documentation Journey

SRQ: What is known about the way in which people interact with
documentation?

This chapter consists of a literature review, describing the secondary task in the
field of user documentation design: that of referring to documentation when using
a particular piece of software to a particular end.

Concepts and theoretical frameworks discussed in this chapter include:

 information behaviour

Chapter 4—A Model of Computer-Mediated Activity

SRQ: How can the process be modelled that software documentation is
designed to support?

In this chapter, an abstract model of Computer-Mediated Activity (CMA) is
constructed, describing the primary task in the field of user documentation design.
The CMA model is assembled from a number of pre-existing models and theories
describing human behaviour in naturalistic settings. It describes how people
interact with software, and how they achieve mastery (that is, expertise) while
doing so over time.

Concepts and theoretical frameworks discussed in this chapter include:

 Naturalistic Decision-Making and the Recognition-Primed Decision model

 cognitive constructivism

 the SRK framework of cognitive performance

 mental models theory

 satisficing

 Cognitive Load Theory

 uncertainty and ill-definedness

A first, more limited, version of this chapter has been presented in a full
conference paper at the 31st European Conference on Cognitive Ergonomics (ECCE
2013), held on 26-28 August 2013 in Toulouse, France (van Loggem, 2013a).

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
6

Chapter 5—Documentation As Artefact

SRQ: How can a generic, theoretical model of computer-mediated activity
(CMA) be instantiated to apply to specific, practical documentation design
problems?

In this chapter, we move away from a description of the situation ‘as is’, before any
artefacts are designed, to the goal that any such artefacts aim to achieve. The twin
concepts of expertise and mastery are explored. As not all software systems are
equally difficult to master, rather than using generic denominations such as
‘simple’ and ‘complex’, a more rigid three-tier categorization of software is given.
This is then shown to provide a map of the requirements for the software’s
documentation.

Concepts and theoretical frameworks discussed in this chapter include:

 activity theory

 expertise, mastery and knowledge

 use complexity

A first version of the section on use complexity in this chapter has been presented
in a short conference paper at the 4th International Conference on Human-Centred
Software Engineering (HCSE 2012), held on 29-32 October 2012 in Toulouse,
France (van Loggem, 2012).

Chapter 6—SDDPL Value System and Organizing Principle

SRQ: How may a Software Documentation Design Pattern Language (SDDPL)
be constructed on the foundation of the CMA model?

A pattern language is presented in which design patterns can be written that
discuss the design of documentation artefacts with reference to the underlying
values identified in the previous chapters.

Concepts and theoretical frameworks discussed in this chapter include:

 design patterns and design pattern languages

 usability

 Cognitive Dimensions

A first version of this chapter has been presented in a writer’s workshop at the
EuroPLoP 2016 conference, held on 6-10 July 2016 in Kaufbeuren, Germany. The
current version will be included in the Proceedings (van Loggem, 2016).

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
7

Chapters 7, 8 and 9—Reality Check

SRQ: Can proposed and existing documentation design solutions be
expressed in terms of the SDDPL?

A number of proposed patterns taken from the academic literature are presented
and described in terms of the SDDPL. In addition, a selection of existing
documentation artefacts is mined for patterns and described in terms of the
SDDPL.

Some of the patterns were mined during a ‘focus group’ held on 9 July 2015 during
the EuroPLoP 2015 conference in Kaufbeuren, Germany (van Loggem, 2015). A full
report of the focus group is given in Appendix 3. Using the Repertory Grid Technique
for Mining Design Patterns.

Chapter 10—Discussion and Conclusion

The preceding chapters are discussed and conclusions are drawn. Furthermore, an
agenda for further research is presented.

Notes
 In the opening chapters of this PhD thesis, some ideas are discussed that were

already mentioned in my Master’s thesis (van Loggem, 2007). Where this was
the case, the argument may have been phrased in similar or even identical
terms in the two works.

 This thesis pulls together ideas, approaches, and theories from different
disciplines. As a result, different concepts may be discussed that in the various
separate literatures have similar or even identical labels. I have therefore
habitually re-labelled existing terminology. Then, this thesis discusses people
doing things. In such discussions it is inevitable that everyday-English words
and phrases are given a meaning that is more restricted than their standard
dictionary definitions. Whenever a word or phrase is re-labelled by me, or
used in a more restricted meaning than its usual one, I say so explicitly and
provide a definition delineating its use for the purpose of this work. Such
terminology is italicised on first use in the body of the text, and the definitions
are repeated in Appendix 4. Terms List.

 Throughout this work, hypothetical people of unknown gender (such as a
person, user, performer) are referred to using the grammatically gender-
neutral personal pronouns he, him and his. No value judgment is intended, nor
should one be inferred.

Research Questions and Scope

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
8

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
9

2. The Case for User Documentation
Part of this chapter has been presented in a full conference paper at the 2013 World Conference on
Information Systems and Technologies (WorldCIST'13), held on 27-30 March 2013 in Olhão, Portugal
(van Loggem, 2013b).

The study referenced in this chapter and fully described in Appendix 1. Software Documentation: A
Standard for the 21st Century has been presented in a full conference paper at the Information Systems
and Design of Communication (ISDOC 2014), held on 16-17 May 2014 in Lisboa, Portugal (van Loggem,
2014b).

The study referenced in this chapter and fully described in Appendix 2. “Nobody Reads the
Documentation”—True or Not? has been presented in a full conference paper at ISIC 2014: The
Information Behaviour Conference, held on 2-5 September 2014 in Leeds, United Kingdom (van
Loggem, 2014a).

Abstract: This chapter first describes the problem that all disciplines involved with the support of
software users aim to solve: the frequently-observed phenomenon of users failing to achieve full
mastery of software-driven tools. It then makes a case for the design of user documentation as a
legitimate topic of interest and discusses the relatively low profile of documentation design in the
academic (although not professional) literature, evidenced by a lack of current research studies
and theory-building.

The Paradox of the Active User
Results of numerous studies (for a listing, see Bhavnani & John, 1997) suggest that
expert usage of computer software does not automatically follow from either good
design or any degree of experience of its users. Even the most experienced users of
the best possible designs are at times seen to encounter problems, sometimes
quite serious ones. Ben-Ari and Yeshno (Ben-Ari & Yeshno, 2006) make the
following comment about a group of science teachers who use a particular word
processor extensively in the course of their everyday work: “… almost all of them
claimed that they were not fit subjects for the experiment because they were not
expert users … Considering the high levels of education and experience of the
subjects, the most surprising result was the simplistic level of their interaction
with this sophisticated but very familiar software tool …” (p. 3). Fu and Gray note,
in more formal terms but no less bemused: “From our analyses, people chose to
use suboptimal procedures even when they apparently had knowledge of the
optimal procedures, and thus have violated the normative principle of rationality”
(Fu & Gray, 2004, p. 928).

Such observations tie in with the general awareness amongst technical writers,
trainers and software support staff that people encounter difficulties coming to
terms with the software they use to carry out their work. In an earlier work (van

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
10

Loggem, 2007), I distinguished three types of problem that are frequently
encountered:

 Inefficient use is when the end result is what was wanted and needed, but the
work took longer than necessary; without this being the result of fulfilling a
particular desire. Applying multiple typefaces one after the other to the same
piece of text in a word processor constitutes inefficient use when done
because the user does not know how to get out of the dialog box presenting
the font formatting options. On the other hand, when the typefaces are tried
one after the other to judge their suitability, it does not.

 Ineffective use is when the end result is unsatisfactory while the software is
perfectly capable of delivering perfection. Attempting to lay out a table
inserting spaces between text elements resulting in columns not lining up
constitutes ineffective use of a word processor—unless the program simply
cannot handle tabular text.

 Under-use, finally, is when only part of the software’s functionality is applied
to the task at hand, and this is not the result of a conscious decision. There is
under-use when a user enters his text without any formatting in a word
processor that is capable of automatically laying out a complete publication,
then saves the result as plain text and sends it off to a print shop to be set in
Times New Roman with all the headings in bold. But there is no under-use
when the user decides not to use any of the pre-defined layouts because they
are judged to be unsatisfactory.

It has been shown (Charness, Tuffiash, Krampe, Reingold, & Vasyukova, 2005;
Ericsson, 2005) that the acquisition of expertise requires many hours of deliberate
practice. Practice makes perfect, as the saying goes, and expertise is regularly seen
as a direct function of experience (e.g., van der Veer, Tauber, Waern, & van
Muylwijk, 1985). However, it is that which we practise that we become perfect at:
whichever strategies and concepts are used during performance of a task will be
reinforced through repeated practice. This goes for optimal as well as suboptimal
strategies and for correctly as well as incorrectly understood concepts. In the
1980s and early 1990s, Yvonne Waern and others carried out a number of
learning-by-doing studies, to study the development (or not) of expertise by
computer users who did not receive any form of training. In such a situation
learning is a side-effect of attending to task requirements, Waern concluded. As
such, it is tenuous. “People […] may try to learn by doing, but they fail, and
therefore need help from somebody else” (Waern, 1993, p. 333).

The phenomenon that people have considerable trouble acquiring all the
knowledge that underlies expertise in the use of software, and that their skills tend
to converge at relative mediocrity even after extensive practice, is so widespread
that a phrase has been coined for it: the ‘Paradox of the Active User’ (John M.
Carroll & Rosson, 1987). Originally referring to the paradoxical situation that while

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
11

people skip the learning stage in order to save time, they could save considerably
more time later on by earlier investing some in learning, the phrase has stuck.
Giving a slight twist to it, its meaning has since been neatly summarized as “the
persistent use of inefficient procedures by experienced or even expert users when
demonstrably more efficient procedures exist” (Fu & Gray, 2004). Software users
are primarily interested in getting things done, yet all their practice fails to make
perfect. After a certain degree of expertise has been acquired, no further progress
is made. A beautiful example of the Paradox of the Active User was provided by
one respondent in a study conducted in the course of my Master’s thesis (van
Loggem, 2007), who estimated that carrying out a particular task using a complex
software package took her on average one-and-a-half working days of extremely
unpleasant and RSI-inducing work, spread out over one working week. The same
task could have been performed in no more than twenty minutes, provided she set
up the system appropriately—a one-off effort that could demonstrably be done in
about half an hour. The task was one that she carried out five times per year. Yet it
had never even occurred to her to see if any features might be available that would
help her do what she was ultimately trying to achieve.

Carroll and Rosson, who first identified the Paradox of the Active User (1987),
identified two underlying ‘biases’ working together so that even extensive practice
still does not result in perfect performance: the production bias and the
assimilation bias.

First, there is the production bias. People generally do not use computers just for
fun. They have an ulterior motive, in that there is something that they want done.
Their paramount goal being throughput, they have little patience with learning for
learning’s sake, nor with activities that, once carried out, do not bring the desired
goal noticeably closer. Although they may very well know that effort spent now
will be of benefit later, they are driven by the wish to get things done. Whilst there
is nothing wrong with wanting to get a job done—indeed, without such a wish
there would be no motivation to attempt to use any tool in the first place—this
desire may lead to required learning being skipped.

Definition: The production bias is the tendency to put short-term before long-term
results when using a tool in order to meet an objective.

The second bias, the assimilation bias, follows from the first. In learning, people
assimilate new knowledge into existing structures. These existing structures have
been acquired at a sometimes considerable cost and are not easily replaced.
People will go to great lengths to not give up on something that they think they
know. When, driven by the desire to get the job done, the performer begins to
compromise, the assimilation bias kicks in and seduces him to cling to actions that
worked before in situations that seem similar to the current one, and to disregard
dissimilarities or even plain undesired results.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
12

Definition: The assimilation bias is the tendency to actively or passively ignore
newly-acquired knowledge when using a tool in order to meet an objective.

The assimilation bias is not restricted to software users. Students of science, or
indeed practicing natural scientists, have been shown to be just as reluctant to
change the theories by which they explain the natural world. Indeed, so closely
related are the two situations that well-respected studies have been carried out
aiming to develop a model of the scientific reasoning process, in which the
behaviour was studied of subjects trying to figure out the workings of a
programmable device (Klahr & Dunbar, 1988). These researchers mention what
they refer to as “a pervasive confirmation bias” (p. 3): when evaluating hypotheses
(of how a system works), subjects focus on attempts at confirmation and over and
over again fail to test potentially disconfirming instances. Neither do they change
their hypothesis in the face of disconfirming outcomes (p. 41). Chinn and Brewer
(1993) distinguish seven different ways of dealing with data that is incompatible
with the established conceptions that constitute a currently held view. Only one of
those is that of actually changing the incorrect theory of how the world works and
this strategy seems to be not at all popular. The bodies of literature (in history of
science, education, and psychology) studied by Chinn and Brewer present a rather
discouraging multitude of students and learners on the one hand and practicing
scientists on the other, opting time and again for one of the other six ways of
coming to terms with what is perceived as anomalous data: ignoring it, rejecting it,
excluding it, holding it in abeyance, reinterpreting it or, if there is really no other
way out, yielding to it marginally by making only peripheral changes to non-core
aspects of the current theory. These findings, and many others (e.g., Griffin &
Ohlsson, 2001; Shulz, Katz, & Lepper, 2001) from the study of scientific reasoning
and discovery, correspond closely to the assimilation bias that is encountered in
computerised homes and workplaces.

Almost thirty years after it was first identified, the Paradox of the Active User is as
predominant as ever. People still struggle with software, even when they have
access to documentation and instruction. They still get stuck at a level of persistent
suboptimal use or “asymptotic mediocrity” (Novick, Elizalde, & Bean, 2007). They
still need help from somebody else.

User Documentation as the Cinderella of User
Support
User documentation is the Cinderella of user support, regularly dismissed as
irrelevant because only there to make up for defects in the software’s user
interface. If the latter were better, the argument goes, the former would not be

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
13

required: so all our efforts should be geared towards improved interaction design.
The dismissal is sometimes strengthened with the corollary that “nobody reads
the manual anyhow”; after which the speaker turns away to attend to more
pressing business.

It is my contention that the main argument and its corollary are both rooted in
misconception. The ‘documentation as unnecessary evil’ as well as the ‘nobody
reads the manual’ lines of reasoning can be easily disproved. User documentation
is (or should be) a core deliverable of any but the most trivial of software systems
(P. Wright, 1998): the need for it is not something that will quietly go away if
ignored long enough.

“Well-Designed Software Needs No Documentation”

The first to suggest that good design of software user interfaces removes the need
for user support was Donald Norman, who in 1988 re-defined the term affordance
to refer to “...the perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing could possibly be used.
[...] When affordances are taken advantage of, the user knows what to do just by
looking: no picture, label, or instruction needed.” (Norman, 1988). Although
Norman went on to become one of the founding fathers of user interaction design,
not least on the basis of this and similar appeals made in the same book, it cannot
be ignored that the appeals were made with reference to ‘everyday things’ which
were not software-based—such as water taps and, indeed, sliding doors. In 1999,
Norman described the “single, general” personal computer as “a great
compromise, sacrificing simplicity, ease of use, and stability for the technical goals
of having one device do all” and as a “fundamentally difficult machine” (Norman,
1999). By trying to make one product do many things, Norman noted, complexity
increases. Thus, complexity is built into any artefact that is not geared towards one
specific, well-defined task. Many of today’s large-scale, sophisticated software
packages certainly fit this description.

Norman concluded his 1999 book with a passionate cry for the computer to
disappear into tools specific to tasks: “a world of information appliances”. Some
ten years later this vision had become reality when Apple launched the first so-
called tablet, the iPad™, which took the world by storm and was soon followed by
similar devices from other manufacturers. A tablet is a flat, hand-held device
consisting, as far as the user is concerned, mainly of a screen. The start-up screen
is populated with so-called ‘apps’ that each perform one very specific task. Almost
without exception, apps do not require documentation and indeed most come
without. However, there is no evidence that multi-functional software is being
replaced with app-like information appliances, presumably because there are
always tasks for which a complete toolbox is required rather than one single tool.
And indeed, at around the time of the spectacular rise of the iPad, Norman

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
14

dedicated a whole book to the necessity of complexity, in which he wrote: “I find it
interesting that we complain when a new technology requires an hour or two of
study. [...] When new items are appropriately complex, it is reasonable that they
require time and effort to master” (Norman, 2010, p. 31).

It is highly unlikely that a company such as Microsoft Corporation leaves the
design of the user interaction of its products to amateurs. We must assume, rather,
that Microsoft’s products are carefully designed by competent professionals,
striving for the highest possible usability. Yet it is Microsoft’s flagship word
processor Word™ that was used in Ben-Ari and Yeshno’s study (Ben-Ari & Yeshno,
2006) and that prompted these authors’ expression of surprise at the
manifestation of the Paradox of the Active User that they witnessed. Word™ is
complex, not unnecessarily so because it was badly designed; but necessarily so
because it is a very sophisticated tool that can be put to a multitude of uses—
including some that its designers could not even dream of. To give an example:
Word was almost certainly not designed with an explicit view to supporting people
in the task of creating cross-stitch patterns. Still, I have personally witnessed a
friend’s mother-in-law doing exactly this.

For those systems that are necessarily complex, insights from earlier years (van
der Veer et al., 1985) will continue to hold: that there are types of information
regarding the system that the user must know and that cannot be communicated
within the user interface but for which documentation is required. For this reason
alone documentation will always be needed. But there is another reason.

Figure 1 shows ad-hoc documentation for a sliding door; obviously created to meet
a real-life requirement. Arguably, the door was designed badly. But it was there in
the cold winter of 2010-2011 at a railway station in the Netherlands: and people
were, quite literally as well as figuratively one presumes, stuck with it.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
15

Figure 1: Instructions on how to use a sliding door:
This is a sliding door. Therefore do not push or pull! Door does not
automatically open and close. (Photo courtesy Ester Moraal, 2010)

Bad designs do happen, in the world of software as well as that of sliding doors.
Moreover, the market mechanism almost guarantees that bad designs will
continue to happen. Almost all software is developed to satisfy the needs and
requirements of those who pay for it; which is not necessarily those who use it.
Systems that do things such as controlling traffic lights, supporting the trade in
stocks and bonds, or keeping track of the location of lab coats in hospitals is what
we might call ‘non-consumer software’: and unless it is employed in high-risk
environments such as aerospace, the additional design expenditure following from
attention to usability, user satisfaction or ultimately user experience is unlikely to
ever be reclaimed. Being not economically viable, these matters will remain
forever neglected. The imperfect world in which we live contains many badly-
designed products that people have to deal with, whether they like it or not.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
16

So, although unnecessary complexity is the inverse of usability and would ideally
be removed through good design of the user interface, this cannot be an excuse for
refusing to pay attention to documentation. Unnecessary complexity will always
exist and badly-designed products will always have to be documented. Then, even
in a perfect world in which all software designs are of the highest possible
standard, a need for documentation will arise from the necessary complexity that
is a consequence of versatility. For these two reasons, the idea that the need for
user documentation will eventually fade away is a “persistent myth”
(Mehlenbacher, 2003).

“Nobody Reads Documentation, Anyhow”

The respondents who caused Ben-Ari and Yeshno (Ben-Ari & Yeshno, 2006) such
puzzlement over their lack of expertise almost certainly worked with a version of
Word™ that came equipped with online Help, and possibly with an extensive
printed user manual as well. Although Microsoft stopped delivering printed user
manuals when Word97 came on the market in December 1996, every version of
this popular word processor thus far has come with online Help. Does this then
mean that users, as has often been said (Rettig, 1991), ‘simply won’t read the
instructions’? Documentation developers the world over secretly hope for
permission from management to have printed on every page the catch-phrase,
‘Read The F… Manual!’ or RTFM for short. Yet a respondent in a study on the
appropriation of the iPhone was quoted to say: “I don’t have the time to explore. I
miss having a manual that I can lean back and read.” (Bødker & Christiansen,
2012).

A handful of research studies have been carried out to determine whether users
are indeed reluctant to consult the documentation that is delivered with the
product, and they are surprisingly unanimous in their findings. All cast at least
reasonable doubt on the assertion that documentation is ignored. Invariably, it is
shown that—at least for complex and unfamiliar products—the documentation is
consulted; even if it is not read, marked, learned, and inwardly digested in its
entirety. Appendix 2. “Nobody Reads the Documentation”—True or Not? gives an
overview of existing research, then describes a study carried out in 2013/2014
when sixty-nine students at an institution for short tertiary education and thirty
employees of a developer of scientific software for the interpretation of seismic
data were questioned as to their use of documentation and other sources of
information on the use of software. The results again offered strong evidence that
reports of the death of user documentation have been greatly exaggerated.
Depending on what exactly is counted, between 24% and 80% of information-
seeking behaviours consist of recourse to documentation. Interestingly, all the
numbers attempting to describe frequency of recourse to documentation in this
study were higher for the (better educated, older) group labelled ‘professionals’
than for the (less educated, younger) group labelled ‘students’. Although the

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
17

sample sizes were relatively small and therefore it is not known whether they
extrapolate to the general population, this can be seen as encouraging. If
professional users of software are as willing to consult documentation as the
findings suggest, then taking pains to design and develop documentation of the
highest possible quality is a worthwhile endeavour.

In addition to the results of studies such as these, there is another strong
indication that users of software do not necessarily avoid consulting
documentation, or have given up altogether on the idea of getting help from an
acknowledged authority: we can see them vote with their feet. A visit to any
bookshop will show long shelves filled with software-related books (van der Meij,
Karreman, & Steehouder, 2009; D. Wright, 2008). These books, many of them
running to hundreds of pages, bear witness to a genuine demand. If there was no
market for them then they would not be there. But instead, people go out and buy.
This particular market is a thriving one.

Figure 2: Tag line printed on the covers of books in the ‘Missing Manuals’
series, published by O'Reilly, Sebastopol, CA, USA

Documentation as a Design Discipline
Whether the persistent suboptimal use of software is indeed a paradox in the
dictionary meaning of the word or not, it is without doubt a highly undesirable
state of affairs. If software systems in organizations are routinely used
inefficiently, ineffectively or only partially, then the economic consequences
cannot be other than serious. Man-hours wasted; incorrect or invalid results;
reduced acceptance of the system after implementation; that what has been paid
for not being fully utilized: all these are known to cost an organization dearly1.

1 Hard proof of this claim is difficult to find. The following quotation offers no more than anecdotal
evidence: “I once commissioned a study tracing all efforts to correct a faulty invoice sent to the
customer. The cost of correcting a mailed invoice was 20 to 30 times the cost of an error-free invoice.
We could not find any computer errors … All errors were human errors, which in each instance
originated from inadequate training or poor management practices.” (Strassman, 1990, p. 314) More
anecdotal evidence is provided in the trade press (e.g. Gartenberg, 2005).

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
18

For this reason, practitioners in different disciplines have been called up to fight
the Paradox of the Active User and provide the help that Yvonne Waern (Waern,
1993, p. 333) called for. They do so by design. Although design is sometimes
understood to refer to the aesthetic aspects of artefacts, in a more general sense it
refers to the intentional creation of a tangible or intangible product for application
at a later time, often (but not necessarily) by somebody other than the designer.

Definition: Design is purposeful endeavour resulting in a particular product for
the benefit of a human performer.

Targeting the tool: HCI design

One possible target for improvement through design is the software tool itself.
This is the responsibility of those who design the user interface (UI), also referred
to as the Man-Machine Interface (MMI) or the Human-Computer Interface (HCI);
where the letter I is frequently understood to stand not for ‘interface’ but for
‘interaction’.

HCI design is concerned with the usability and usefulness of software-based
artefacts. The ISO 9241-11:1998 standard defines usability as “The extent to which
a product can be used by specified users to achieve specified goals with
effectiveness, efficiency, and satisfaction in a specified context of use.” Enhancing
usability has different aspects. One approach is to incorporate meta-
communication. This road is taken when meaningful names are given to
commands in a command-line interface or CLI and to controls in a direct
manipulation interface or DMI, or when the appearance of currently unavailable
choices is made to dynamically change (‘dimming’). Another has to do with making
the right way obvious and the wrong way as good as unthinkable. Unfortunately,
the suggestion that problems with the use of software could be eradicated through
cleverly-designed user interfaces has in later years shown to be wishful thinking
for all but the most simple software systems (as discussed on p. 13).

Targeting the user before the work is undertaken: instructional
design

Not only the task environment is open to improvement by design. Another strategy
targets the user; either before the work is undertaken, or during its execution.

Before the work is undertaken, instruction can be delivered: either through a
teacher (classroom training) or through self-study. This undoubtedly improves
future performance, and instructional design is a discipline that can draw on
decades of experience in as well as a vast body of literature. Instruction can
however not easily move along with increasing expertise over time, and is most
naturally administered to novices.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
19

Targeting the user whilst the work is undertaken: information
design

User support during execution of the work confronts the Paradox heads-on, filling
the knowledge gap between that which is known and that which is required
through the provision of information.

Definition: Information is knowledge that is implicitly or explicitly formulated so
as to be of value to a human being.

Such user support through information can again be designed in different ways.
Information on how to work with the software can be offered personally, one-on-
one, delivered to users at the moment they need it and pertaining to their
individual problems. In this setting a particular question or problem is formulated
by the user and put to another person. Depending on whether the person so
approached is another user or a representative of the software manufacturer, we
speak of a user community or of a Helpdesk (for an interesting discussion of the
latter, see Steehouder, 2002).

Targeting the user whilst the work is undertaken through pre-
recorded information: documentation design

Learning can take place not only through instruction before performance, but also
through practice during performance. If we accept that achieving mastery of much
software requires learning, and also that generally speaking software users cannot
be expected to expend time and energy on the act of learning per se, then we must
devise appropriate tactics in our designs.

The information on how to work with the software can also be recorded and
stored beforehand in ‘information artefacts’: physical or electronic objects that are
created to express ideas and meaning such as books, drawings, photographs, audio
recordings and websites (Marchionini, 2010). These are created not to meet one
particular request for support but to meet all future requests: one-on-many. This is
what I refer to as documentation: a design approach to counteracting the Paradox
of the Active User that targets the user during the work through one-on-many
information artefacts.

Definition: Documentation is pre-recorded information that is purposefully
selected and presented to assist future users deploying a particular tool.

Documentation can be delivered as a standalone product but it can also be
embedded inside the software: in the form of messages that provide feedback on
interactions, or as ‘tooltips’ that display a brief explanation when the mouse
hovers over a particular software control. With the increased availability of
processing power, it has even become possible to present embedded information

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
20

in a personal-seeming manner, depending on the particular context of use but still
pre-recorded and stored. Microsoft’s (now defunct) ‘Office Assistant’, remembered
by many as ‘Clippy, the talking paperclip’, is a well-known example of such an
approach. Embedded information may be considered documentation just as much
as information that is delivered separately from the software. For practical
reasons, however, the focus in this thesis will be almost exclusively on the latter:
standalone documentation artefacts are simply more easily available and
accessible as study objects.

Figure 3 below shows the various design disciplines working to combat the
Paradox of the Active User.

Figure 3: Positioning software documentation amongst other design
disciplines for user support

Primary and secondary tasks

Regardless of the discipline in which they work, designers find it useful to
distinguish between primary and secondary tasks; the primary task being that
which someone sets out to achieve, and the secondary task that which follows
from any design put in place to enable completion of the primary task. Architects,
for example, design an environment that fulfils the desire for shelter and to move
from ‘inside’ and ‘outside’ and back again at will. To meet this desire, every
architectural design will contain at least one doorway. An industrial designer may
then come in to design a door, at which point a secondary task is created: that of
operating the door. Here is where a tension between user desires and needs is first

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
21

established. The designer now attempts, through the content of his design, to
maximize support for the primary task while, through its usability, minimizing the
disruption caused by the secondary task.

In line with the traditional view of design as creating a means to a pre-existing end,
difficulty in learning to use computers has been attributed to there being a gap
between the software world and the outside world that needs to be bridged.
Software design disciplines focus on bridging the gap. This is routinely achieved by
first carrying out a task analysis describing the current situation, labelled ‘Task
Model 1’ (van der Veer, Lenting, & Bergevoet, 1996) or ‘Descriptive Study I’
(Blessing & Chakrabarti, 2009). Then, when designing the new task environment
incorporating the new tool, the aim is to achieve a close parallel between the
‘before’ and ‘after’ situations; making the secondary task as transparent as
possible. The design of the new situation is described in a ‘Task Model 2’ or
‘Descriptive Study II’, which ideally is user-tested and adjusted where required
before full-scale implementation. After implementation, again in an ideal situation,
the performance of users is then evaluated to determine the value of the solution.
Task Models 1 and 2 are described as a hierarchical structure of main tasks and
sub-tasks, and user performance is judged against some ‘ideal’ task performance.
This is an extremely popular approach, extensively described in the literature as
“hierarchical task analysis”. Various methods have been developed, usually known
by an acronym and often over the years elaborated and refined: MAD (Sebillotte,
1988), GOMS (Card, Moran, & Newell, 1983), TAG (Payne & Green, 1986), ACTA
(Militello & Hutton, 1998) and many others. This focus on separation of task and
tool, of primary and secondary task, is reflected in measures of learnability and
complexity of tools. The user is then, for example, seen as ‘yoking’ the problem
space (the real-life situation) and the device space (the software world), by
mapping tasks in the problem space to manipulations in the device space. As the
gap to be bridged becomes wider, yoking becomes more problematic (Payne,
1992; Payne, Squibb, & Howes, 1990). In line with the idea of the primary task
being if not known then at least knowable, the concept of yoking pre-supposes the
feasibility of ultimately establishing a mapping between tasks in the problem
space to manipulations in the device space; as does an early measure of the
complexity of software from a user’s perspective (D. Kieras & Polson, 1985).

But tool and task can become indistinguishable. Even when they are not, any tool
will still qualitatively change the nature of the task to which it is applied (Bødker,
1991; John M. Carroll, 2000; Kaptelinin & Nardi, 2006). Over the years, software
has become ever more sophisticated. In the first decades of computer use by the
general public, people used computers mostly for reproducing their work, for
automating tasks that they could at least theoretically have done without a
computer. Nowadays more and more software enhances people’s work in such a
way that it enables them to do non-routine things that were unthinkable before

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
22

(Mirel, 1998a). Bødker & Bertelsen (2003) distinguish three scenarios (see Figure
4).

Figure 4: The positioning of the object with regard
to the software (taken from Bødker & Bertelsen,

2003, p. 307)

In the first, the object (that is: the final outcome of the work done) is contained
within the software world and has no presence in the outside world, while
engagements with the software have consequences in the software world only.
The other extreme is the scenario in which the object exists in the real world only
and has no presence in the software world, while any engagement with the
software has consequences to be inspected on the object. In between the two
extremes Bødker & Bertelsen envisage the scenario in which the object exists in
the real world while a representation of it is held in the software world. It is this
representation that is continually being changed through engagement with the
software.

When the object exists in the software world only, as shown in the first of Figure
4’s three descriptions, the work is undertaken with the sole objective of creating a
particular software state, stored in a file or a set of files. People create
spreadsheets to help plan their annual budgets, their vegetable gardens or their
cross-stitch projects; they create websites, page-by-page or through a Content
Management System; they send and receive electronic mail; they create long,
camera-ready manuscripts; they write smaller or larger programs; and they set up
software environments for themselves or others to work in. For this type of
activity there no longer exists a distinction between the task and the tool: rather,
the task can be defined as working with the tool. A software tool’s new capabilities
may well lead to people coming up with new uses to put it to, in which case a task

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
23

analysis undertaken before the tool is created will by definition fail to capture the
full range of activities that is eventually carried out with the software. And just like
tasks, sub-tasks may originate from the software: for example, when a word
processor introduces the concept of templates or an image processor that of
layers.

In all these examples, the idea of a task analysis undertaken before the software is
designed becomes untenable, and traditional measures of performance—which
also pre-suppose yoking—no longer suffice (Frøkjær, Hertzum, & Hornbæk, 2000).
How can yoking describe the difficulties encountered when writing a program, for
example, or creating camera-ready copy? Suboptimal performance can now be
evidenced not only by inefficiency or ineffectiveness, as before, but also by an
overly narrow intention horizon; which encompasses that which the user sees as
possible applications of a tool’s capabilities, and beyond which he does not
perceive any information or situation as relevant to the work at hand. When the
intention horizon lies within the total functionality of the software, under-use of
the software will be the result.

Definition: The intention horizon is the perimeter of the solution space that a user
perceives to be offered by a particular tool.

Using documentation is not a primary task, as is, for example, moving between
outside and inside, or writing a report. It is not even a secondary task, as is
operating a door to go inside, or using a word processor to write a report. Using
documentation is in fact a tertiary task: documentation must sometimes be
endured in order to use a tool (such as a sliding door or a word processor) in order
to fulfil a desire (such as going inside or writing a report). And it does not always
end here. Some software artefacts are so complex that in order to use them to their
full potential, users must find their own solutions to problems they encounter; and
this they can do only after learning the ins and outs of the system. The learning
process then becomes a task in its own right, turning the interaction with
documentation into a quaternary (!) task. Now as many as three steps removed
from the original motivation, as far as the user is concerned the documentation
might easily become nothing but yet another obstacle between his desires and
their fulfilment (see Figure 5).

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
24

Figure 5: Documentation as a quaternary task

Put like this, the whole idea of designing documentation that works sounds rather
hopeless. But when we collapse this task hierarchy so that only a (re-defined)
primary and a secondary task remain, we are back in familiar design territory (see
Figure 6). I propose to describe the primary task of software users as computer-
mediated activity or CMA; legitimized by the fact that task and tool are always
interwoven. Their secondary task is then the ‘documentation journey’: the
engagement with documentation as and when required. Learning is understood as
being part and parcel of both primary and secondary task and not as a separate
activity.

Figure 6: Learning through documentation as a secondary task

A key characteristic of documentation is that the communication between the
creator of the documentation—in the context of a particular documentation
artefact more commonly referred to as the product’s author—and the user in his
role of reader is asynchronous. Sender and receiver of the message are separated
in time and place. As a result, individual reader differences and preferences cannot
be catered for. Although the information contained in software documentation

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
25

may be presented to the user interactively, its scope is always predetermined. Also
because of its asynchronous nature, documentation is used at the reader’s
discretion. The author cannot enforce the quality or quantity of use and must
depend on the readers’ willingness to use it, and to do so in the way the author
envisioned (Novick & Ward, 2006). Referring to Figure 5, we must acknowledge
that no user can be forced to work his way through the whole pyramid. He may
easily go round part or all of it, dispensing with the documentation and perhaps
with the learning process as well. This is the challenge facing designers of
documentation.

Although we can never ‘force-feed’ information, we can certainly attempt to ‘drip-
feed’ learning where required. It seems worthwhile to try and support
unsupervised practice in ways that contribute not only to the user’s immediate
goal but—where appropriate—equally well to the development of true expertise,
of being able to tackle situations of ever-increasing complexity successfully and
satisfactorily; so that over time, practice makes perfect.

The Need for Research
Throughout the centuries, people managed to become expert users of complex
tools such as, for example, the astrolabe, the loom and the combine harvester.
They read the instructions where available, then practised and became perfect.
The Paradox of the Active User entered our lives only when software-driven tools
became commonplace. War stories about struggles with personal computers, VCRs
and mobile telephones have become part of our popular culture (see, for example,
Figure 7). This suggests a fundamental difference between physical tools and
software-driven tools that may not always have been fully appreciated. We shall
come back to this many times: this current work takes the existence of such a
fundamental difference as pivotal to all attempts to defeat the Paradox of the
Active User.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
26

Figure 7: Donald Duck fighting a mobile telephone and its
instruction manual (translated into English from the Dutch

original publication)2

If the problem is not that users are unwilling to ‘RTFM’ then it must be that their
reading the manual just does not help them enough. It will be necessary to
challenge established beliefs and to re-think the design of documentation artefacts
on a fundamental level. In the words of Mark Baker, a professional documentation
designer who developed the ‘EPPO’ approach to software documentation (see page
117):

Technical documentation is a decision support system. Insofar as it fails to
support the user’s decision making, it fails its purpose, even if all the physical
procedural steps are documented correctly. (Baker, 2013, p. 95)

The presence of user documentation in itself is, as we have seen, not enough to
defeat the Paradox of the Active User. The way in which a documentation artefact
is designed can qualitatively change the way it is read (P. Wright, 1998). There are
strong indications that the single most relevant predictor of success in learning
new technology through documentation is not a person’s demographic
background, experience or education but rather the documentation’s quality
(Schriver, 1997, p. 458). ‘Quality’ of documentation, like that of other products, is
achieved by following a design path rather than making ad hoc decisions as and
when the need arises (P. Wright, 1994). Unfortunately, documentation designers’
knowledge and skills have not developed at the same pace as the software that
they document (P. Wright, 1998). Software in the 2010s is a far cry from that in the

2 story H28339, © Disney, 2009, reproduced with permission

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
27

1980s, when guidelines for documentation were first formulated. Yet user
documentation in the 2010s looks very much as it has looked for a long time.

A typical user manual or Help system is hierarchically structured with the chapter
as its main unit. Sometimes the chapters are grouped into sections, or groups of
chapters are split off into separate documentation artefacts. In this manner, the
‘installation manual’ and the ‘advanced user’s guide’ may come about. Each
chapter contains an operational description of and (usually stepwise) instructions
for working with a particular program concept or user task. Conceptual
descriptions are added to place that which follows in context; in addition, a
number of introductory chapters or appendixes provide program-wide meta-
information by listing hardware requirements, providing installation and
troubleshooting instructions, and informing the reader of terminology and
typographical conventions used in the manual.

This prototypical approach to software documentation has remained unchanged
for a number of decades. It is led by guidebooks and standards originally dating
from the 1980s. Although regularly updated and added to, such guidelines tend to
change only slowly and superficially and by their nature cannot reflect the latest
developments. Moreover, they largely ignore the particular problems posed by
software-driven as opposed to physical tools.

In the last decade of the 14th century, a 10-year old boy addressed as “little Lewis”
who was the son of Geoffrey Chaucer (or perhaps of one of Chaucer’s friends)
wanted to master the astrolabe. To help him, Chaucer started to write an
instruction manual, describing the use of this highly complex tool (Chaucer, 1391).
The work was never finished, but enough of it was written for us to see that most if
not all of the recommendations laid down in the above-mentioned standards were
already faithfully followed by Chaucer. Structure and tone of voice of the “Treatise
on the use of the astrolabe” do not differ significantly from those applied in
present-day instruction manuals, be they for physical tools or for software-driven
artefacts. Similarly, it has, for example, proven quite possible to validate an
instruction manual for a table loom, published in 1925, to ISO/IEC Standard
26514:2008 (Systems and software engineering — Requirements for designers and
developers of user documentation) and establish a high level of conformance (see
Appendix 1. Software Documentation: A Standard for the 21st Century). The
Standard’s focus turns out to be on form rather than function.

In this, the Standard is not alone. The quality of software development
documentation, for example, is often expressed in terms of numerical values of
measurable properties (Abran, Desharnais, & Cuadrado-Gallego, 2012) which can
be quantified automatically (Dautovic, Plosch, & Saft, 2011). Extension of such
ideas into the domain of user documentation then results in attempts at automatic
assessment or even generation (Olaverri-Monreal, Dlugosch, & Bengler, 2013) of
user instructions. But development documentation has very little in common with

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
28

user documentation. Development documentation is created for developers, who
have technical knowledge of the underlying implementation and need to know the
details of how the software was built. User documentation, on the other hand, is
created for end users. This is a completely different audience which does not need
to know how the software is constructed, but rather how to use it. Development
documentation is really about the software, which is measurable and quantifiable.
User documentation is really about the end user and his learning requirements—
which are not.

There is no reason why the traditional user manual or Help file described earlier
should remain the only genres of user documentation. The authors of
commercially available computer books certainly do not restrict themselves to it.
On the contrary: they develop new genres in abundance. They experiment with
placing screen shots central to the whole of the discourse3, come up with so-called
‘cook books’ revolving around re-usable solutions that readers/users can copy and
modify to match their own projects4, and generally speaking allow their
imagination to be limited only by perceived usefulness to their readership.
Although users hold such works in much higher esteem than they do
documentation that is delivered with the software (M. D. T. de Jong & Karreman,
2017), whether their new designs are indeed useful, and if so, under which
conditions, is not known. The need for theory-based and evidence-based guidance
on how to document different types of software in an appropriate manner is felt
both by the documentation design community and by the beneficiaries of its
efforts: the users of software (Schriver, 1997, p. 227). This need has not
sufficiently been met by the academic community.

Like a true Cinderella, documentation is regularly overlooked as ‘not sexy’.
Theories of learning tend to be swept up to form a starting point for the design of
classroom instruction and self-study materials, while theory and experimental
results from cognitive psychology have been taken up by the applied field of
interaction design; which is where the interest of computer science in user
support ends. Library and information science is highly system-oriented and has
an established tradition of focusing on formal information systems for document
retrieval from repositories rather than on information retrieval from documents
(Vakkari, 1999). Communication science, finally, covers a broad area of which
technical communication form but a small part and the design of documentation,
be it for software tools or other artefacts, an even smaller part.

Even when research into documentation is carried out, this tends to embrace new
technology-enabled media of communication without questioning. Almost as soon
as it was recognized that written instructions are vital for optimal performance,

3 as exemplified by the “Visual Technology Book” series (published by Wiley, Hoboken, NJ, USA)
4 as exemplified by the “Cookbooks” series (published by O'Reilly, Sebastopol, CA, USA)

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
29

the research focus shifted from paper-based documentation to hypertext and soft
copy (P. Wright, 1998). Since then, it has shifted further: to the World Wide Web,
then to CSCW or ‘computer-supported cooperative work’, to social media, and at
the time of my writing this to mobile appliances and ubiquitous computing
channels for the delivery of information. Experimental research (such as Byrd &
Caldwell, 2011; Spannagel, Girwidz, Löthe, Zendler, & Schroeder, 2008) and
theory-building (e.g. de Souza, Marconi, & Dyson, 2008; Selber, 2010) tend to focus
on the deployment of a particular medium or modality. Lured away by the
beckoning of glamorous new media in cyberspace, researchers seem sometimes to
overlook fundamental yet less exciting matters such as the content of the
documentation or the application of printed publications, and “do not always make
clear the boundary conditions within which their findings will apply” (P. Wright,
1998). Research questions ask how a particular medium of communication can
most fruitfully deployed; glossing over the question when (that is, under which
conditions) or why any effects that are found may hold. The subject of Karen
Schriver’s seminal work (Schriver, 1997), which on publication almost
immediately became the thinking technical writer’s one-book-library, is document
design rather than documentation design: a subtle but important difference as it
presumes that certain choices have been a priori made.

A documentation artefact is a form of non-fictional, instructional writing: the fields
of communication science and library and information science are heavily
involved, as are those of instructional design and cognitive psychology. Finally, the
creation of software documentation requires technical and business knowledge of
computer use and information processing. This multi-disciplinary nature is
something that documentation design has in common with the other user-support
disciplines shown in Figure 3. But unlike HCI, instruction, and information,
documentation is not an established academic discipline. There exists no
recognized ever-growing body of knowledge, constructed by an established
academic community that is served by multiple dedicated conferences and
journals.

Documentation has remained a niche interest: as a consequence, the literature in
the field is fragmented. There are very few obvious places to look for publications
reporting on research studies and theory-building. To ‘keep up with the literature’,
one will need to diligently perform searches in search engines covering a large
number of disciplines. Since every imaginable keyword has other dominant
meanings, weeding out irrelevant search results is a non-trivial exercise. Searching
for publications using the search term ‘instructions’, ‘manuals’, ‘guides’,
‘documentation’ or ‘information’ yields publications relating to almost every topic
under the sun other than the one intended (P. Wright, 1998); see also Figure 8.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
30

Figure 8: The problem with database searches for ‘user manual’.

The fragmented nature of the literature in the field makes for an incoherent body
of knowledge. Even a researcher who has gone through the laborious search
process will find it difficult to relate the different publications, which may appear
in places such as the International Journal of Audiology (Caposecco, Hickson, &
Meyer, 2014) or Computers and education (Nistor, Schworm, & Werner, 2012), to
each other. Indeed, the field as a whole does not seem to make much progress.
Only two methodologies for the creation of documentation have been proposed in
the past decades that constitute a clear deviation from the time-honoured format
described earlier. The first of these is the minimalist approach, which applies
specifically to software documentation (see p 137). Unfortunately, research as to
the effectiveness of this approach has been sparse and limited to documentation
specifically geared towards novice users (van der Meij et al., 2009). The second
attempt to improve the traditional user manual is Information Mapping™, for the
documentation of software and non-software products alike. Although it was
claimed that the effectiveness of this commercially marketed and jealously
guarded methodology has been corroborated by academic research, closer
inspection makes short shrift with any such claims and the method has been
shown to perform no better than any other (Jansen, 2002; Jansen, Korzilius, le Pair,
& Roest, 2003).

Before we can think about designing interventions to guide a process towards a
particular outcome, we need to understand the mechanism of the process when it
runs its natural course. To know the conditions under which a particular design
solution is useful, such a solution must be built upon a naturalistic and descriptive
model on an abstract level (Kirlik, 2006, p. 7). The informed design of software
documentation demands that the choice for medium and format of the
communication, as well as its content, be based on an understanding of the
underlying processes of people interacting with software and its documentation
(Schriver, 1997, p. 389; P. Wright, 1998). Only then can we begin to understand
the mechanisms underlying the Paradox of the Active User; to attack the Paradox
purposefully through documentation designs; and to express design rationale
(MacLean, Young, Bellotti, & Moran, 1991a, 1991b; Moran & Carroll, 1996)
underlying documentation design decisions.

When user interaction design was still a fledgling field, dreams were dreamt of
finding “a set of basic design rules of the following kind: IF user(i, j…) AND task (k, l
…) THEN apply design principles (m, n …) where i, j stand for variables that

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
31

characterize particular (groups of) users, k, l for task variables, and m, n for design
principles […]” (van der Veer et al., 1985). In a similar vein dreams should at least
be dreamt, even if turning them into reality will prove as elusive as it has been for
interaction design, of a set of basic design rules expressed in the form IF
user_behaviour(i, j …) AND software_characteristics(k, l…) THEN apply
design_principles (m, n …); where i, j now stand for variables that characterize the
way people interact with software and its documentation; k, l for variables
characterizing the inherent complexity, from the user’s point of view, of a
particular piece of software; and m, n for design principles in user documentation.
What is needed is a framework within which the dreamt-of complete set could be
expressed: insight is needed into the nature of the parameters i, j … , k, l … and m, n
… .

In this thesis I propose such a framework, in the shape of an abstract description
of people interacting with software and documentation. Such a model will not
magically dispel the Paradox of the Active User. But it will provide a vocabulary
with which documentation artefacts can be described, discussed, and designed.
This will give Cinderella the support she needs to put on her slippers; so that she
can go to the ball.

The Case for User Documentation

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
32

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
33

3. The Documentation Journey
Abstract: This chapter consists of a literature review, describing the secondary task in the field of
user documentation design: that of referring to documentation when using a particular piece of
software to a particular end.

Interaction with Documentation: the Secondary
Task
The way in which people interact with information became a focus of academic
interest in its own right in the early 1900s, under the generic names of
‘information interaction’ or ‘information behaviour’. Initially, in the first two-thirds
of the century, most if not all research into information behaviour was conducted
from a viewpoint of not the users of the information but the artefacts in which it
resides and the venues in which it is sought (Case, 2007). Information and Library
Science (ILS; also known as Library and Information Science or LIS or simply as
Library Science or LS, or as Information Science or IS) was concerned with
information in the shape of books: their description, indexing, archiving,
cataloguing and disclosure. Information Retrieval (IR) then became interested
particularly in formal querying of mainly electronic information systems, such as
databases and electronic library catalogues. Both ILS and IR are highly system-
oriented and their focus is on formal information systems (Vakkari, 1999).
Exemplary of IR has long been the series of experiments known as the ‘Cranfield
experiments’ (Cleverdon, 1970; Cleverdon, Mills, & Keen, 1966), which aimed to
increase the effectiveness of electronic catalogue systems by employing better
indexing languages and methods. These experiments were conducted without any
involvement of actual people carrying out the queries and judging the relevance of
the documents found.

More recently the focus has shifted and widened to become more naturalistic and
person-oriented, placing the search for information in the particular context in
which the information is sought. Blandford and Attfield (2010) speak in this
respect of an ‘information journey’. Figure 9 shows the information journey
generalized and narrowed down to the case of interaction with not any type of
information but specifically with that relating to the use of a (software) tool: the
documentation journey.

Definition: The documentation journey is the search for information on the
deployment of a particular tool.

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
34

Figure 9 identifies four separate stageposts along the journey, but these are not
necessarily visited sequentially. Return loops in Figure 9 reflect the fact that the
information journey is not mapped out completely beforehand. Instead, it is
iterative and self-shaping (Marchionini, 1995). Pieces of information that are
found change the direction of subsequent behaviours. Kuhlthau (Carol Kuhlthau,
1991; Carol Kuhlthau, 1993), for example, sees the information journey as cyclic
and aimed at a gradual refinement of the information need. In Bates’ ‘berry-
picking’ model of information behaviour (Bates, 1989), an information seeker is
likened to a hunter-gatherer looking for food, in this case, berries. Once a bush
carrying berries is encountered, its berries are picked; further berries are looked
for depending on the quality and quantity of what the first bush has yielded. For
the information gatherer, this means that an often poorly-defined need for
information leads him to a first titbit, which then is applied not only to the
situation from which the original need arose, but equally well to the need itself.
The next piece of information may then be picked from the same location within
the same source; from a different location within the same source; or from a
completely different source.

Figure 9: The documentation journey (based on:
Blandford & Attfield, 2010)

The berry-picking metaphor, in which information gathering is likened to
‘browsing’ in the original meaning of gathering food, is part of a persistent

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
35

tradition. Miller (Miller, 1983) described information gathering as an instinctive
behaviour not just in humans but in all higher organisms and coined the term
‘informavore’, describing man as an ‘information eater’. Ever since, seeking
information has been likened to food gathering. After berry-picking, browsing, and
‘grazing’ (Blandford & Attfield, 2010) entered the literature, a recent elaboration
of the metaphor is the Information Foraging Theory (Pirolli & Card, 1999). This
sees information seekers as moving from one ‘patch’ of information to the next
driven by ‘scent’, provided by the description of a remote information ‘patch’ that
is present in the current one. The available information patches become apparent
to the forager only after he has embarked on the hunt for information. Again, in
this model the requirements are re-shaped and re-directed as the process unfolds.

An information seeker is under no compulsion to visit all the stageposts but can
decide at any moment to abandon the journey altogether. Based on a certain
amount of empirical evidence, Atkin (Atkin, 1973) describes a model in which “an
individual will select a [mass media] message when his estimate of its reward
value exceeds his expectation of expenditures involved in seeking or avoiding
it.”(p. 237) Taking a slightly different approach, Case (Case, 2007) even sees all
searches for information ending in the subject deciding to give up, as the potential
amount of information on any topic is infinite so that there is always more to be
known. A more mundane consideration is that the information may be simply
unfindable even when present, or not presented in such a manner that the user
can understand it or apply it in context. Arrows pointing ‘nowhere’ in Figure 9
show that just as we can lead a horse to water but we cannot make it drink, we can
offer a person information but we cannot make him do anything with it. All that we
can do is, depending on how the information journey is ideally shaped, make the
preferred ‘route’ easy whilst others are downplayed.

Returning to the literature on Information Behaviour, it is possible to describe the
information journey in more detail. Using its own nomenclature in accordance
with the objectives of this work, Figure 10 shows for each stagepost one or more
aspects that form a part of its description. Whereas the stageposts are visited one
after the other in a sequence indicated in the diagram by arrows, the aspects come
into consideration in no particular order.

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
36

Figure 10: The information journey in greater
detail

Stagepost 1: Needing Information
People interact with information in the service of some broader activity, as a
consequence of wishing to satisfy a goal (Wilson, 1999). Recognition of an
information need has been described as “a recognition that your knowledge is
inadequate to satisfy a goal that you have” (Case, 2007) or “recognition and
acceptance of an information requirement” (Marchionini, 1995). In a food-
gathering metaphor, the need for information would correspond to a person’s
appetite. An information need may be the expression of a recognized anomaly in
the state of one’s current knowledge (Belkin, 1982) or a sense of uncertainty
regarding (Atkin, 1973; Carol Kuhlthau, 1993) or dissatisfaction with (Taylor,
1962) the situation as it presents itself to the individual. Atkin (1973) pinpoints
the experienced sensation further, by distinguishing extrinsic uncertainty, that is,
related to the situation, and intrinsic uncertainty, or relating to the individual’s
current state of knowledge.

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
37

recognition

The descriptions vary and so does the specificity with which the various authors
regard the nature of the information need (Case, 2007). Almost constant however
is the mention of recognition of the need for information. Existence of need is a
necessary condition for embarking on an information journey but it is not a
sufficient one: inadequate as an individual’s current state of knowledge on a
particular topic in a particular context may be, if he is not aware of the fact he may
experience the need to satisfy a goal but he will not experience the need for
information. Without recognition of an information need, no information is sought.

Taylor (1962) distinguishes the visceral information need from the conscious
need. The former is the actual, as yet unexpressed, need for information, whereas
the latter is the “conscious within-brain description of the need”. Case (2007)
points out that, precisely because of their subjectivity once experienced, needs are
open to discussion: It is quite possible to be mistaken as to the exact nature of
one’s own needs, or even to be unaware of one’s ‘true’ needs. Indeed, Taylor notes
that the conscious need may lead to discussion with others, in order to refine it
further before attempts are made to meet it.

frame

Once an information need is recognized, it begins to take shape in the subject’s
mind. The ambiguity that characterizes the conscious need is phased out by
further refinement of the question until, still according to Taylor, a formalized
need has been reached at. This is framed so as to be rational and properly
qualified. A conscious or subconscious selection is made as to which aspects of the
conscious need are included and which are discarded. Inevitably, nuance will be
lost, as the subject is now in Taylor’s terminology three steps removed from the
‘real’ need.

acceptance

Finally, before a subject can begin seeking the information required to alleviate his
felt need, he must make a decision to do so. At any time, a subject may simply
decide not to bother; to ignore and live with the information need, without
attempting to do anything about it.

Stagepost 2: Seeking Information
After an information need has presented itself, information is sought. This has
been described as “a conscious effort to acquire information in response to a need

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
38

or gap in your knowledge” (Case, 2007), or “a subset of information behaviour that
includes the purposive seeking of information in relation to a goal” (Spink & Cole,
2006). Information seeking, then, is undertaken in order to alleviate an
information need: in a food-gathering metaphor, this stagepost would correspond
to obtaining the food.

Note that information may also be accessed without a prior awareness of need and
therefore in a non goal-directed manner, simply ‘for the fun of it’ or even for lack of
anything better to do. Aimless browsing of a magazine or undirected clicking to
follow one hyperlink after another on the Internet is common human behaviour,
not driven by a felt need nor a requirement for information. Although such drifting
through an information landscape is not information seeking, it can develop into it:
when not given up in favour of a totally unrelated activity, it may become more
focused at the moment a salient piece of information is encountered. The first
inkling of an information need is then beginning to make itself felt and this may
grow, so that an information journey is begun.

strategy

Very different behaviours may be displayed at the seeking stage. A general
distinction can be made between on the one hand directed search (White & Roth,
2008), information search (Atkin, 1973), or simply searching (Carol Kuhlthau,
1993) as opposed to on the other hand non-directed search (White & Roth, 2008),
information receptivity (Atkin, 1973) or browsing (Carol Kuhlthau, 1993).
Sometimes, non-directed browsing is seen as a stage prior to directed searching
(e.g. Carol Kuhlthau, 1991), although all authors stress the cyclic nature of the
information behaviour and agree that non-directed browsing and directed
searching may alternate more than once during one information journey.

The two strategies can both be described in a more fine-grained manner. For
example, Ellis (Ellis, 1989, 1993) describes a number of information behaviours,
three of which take place during seeking: chaining (following cross-references),
browsing (scanning a document to see what’s in it) and differentiating (organising
the sources). In this thesis no distinction is made further than that between
‘searching’ and ‘browsing’.

Definitions: Searching is directed information seeking, undertaken to find the
answer to a well-formulated question. Browsing is interaction with information
sources that is driven by a general desire for as-yet unspecified knowledge related
to a particular topic.

As Belkin points out (1982, 1993), missing knowledge is difficult to formulate.
Because people can’t easily express what they don’t know or what is missing,
questions submitted to information systems based on an individual’s request often
don’t adequately represent what is needed. It is for this reason that if an

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
39

information source needs to provide knowledge that its readers do not know is
missing, it should support, facilitate and encourage browsing as well as searching.

query

The term ‘query’ is often associated with electronic information systems, and
linked exclusively to searching (which, according to one definition (Spink, 2010), is
the act of “entering queries often created from multiple words and making
judgements about the retrieved documents or websites”). However, a query or
question put to the information system is just as well formulated during browsing,
and/or when accessing printed materials. While searching is driven by a more-or-
less strictly delineated query, browsing comes from a more general desire for
‘finding out about’ or FOA (Belew, 2000). Still, even then there is an awareness of
what it is that needs finding out about and an attempt to formulate a question. On
consciously turning to sources of information, there is always a moment where
“the question is recast in anticipation of what the files can deliver” (Taylor, 1962).
This results, after the visceral, the conscious and the formalized stages, in what
Taylor describes as the fourth stage of a need and which he refers to as the
compromised need. ‘Compromised’, because practical considerations shape the
need into a query matching the expected capabilities of the information system.
The query is phrased to match what the inquirer thinks he will get out of the
information sources.

This recasting of the question is visible in experienced search engine users who
add to the query words or phrases that they expect to be present in the type of
result they are after, for example by including a non-English word when looking to
buy a product with an English name in a non-English-speaking country. It is
equally manifest in people asking a librarian for information in terms that are
much more generic than those in which their own formalized need is expressed.
However, when it is not immediately obvious that a query is formulated to match
expected capabilities of the information system, this does not mean that no
adaptation has taken place. Without such adaptation, very few attempts to locate
information in a printed manual through its index of even Table of Contents (TOC)
would ever be successful.

source

Refining and enhancing a number of previous studies, Agarwal, Xu and Poo (2011)
conducted an investigation into the information seeking behaviour of 352
professionals in a wide range of disciplines, which confirmed that information
seekers demonstrate a strong and stable ranking of preference for information
sources of different types. Whether it was the order of use that was measured or
the amount or frequency of use, most popular was online information gathering,
then face-to-face, then via phone or chat, then via e-mail or forums, and only as a

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
40

last resort through books or manuals. Similar results were obtained in the (much
smaller) study described in Appendix 2. “Nobody Reads the Documentation”—True
or Not?. Unfortunately, as is the case in many sourcing studies (Novick et al., 2007),
the categorization used by Agarwal, Xu and Poo was rather coarse and not strictly
defined. Examples given by the authors to characterize ‘online information’
included nothing more specific than “Google, company digital library, intranet” (p.
1092) so that it is not clear whether an online Help system would in this
categorization qualify as ‘online’ or as ‘manual’which is all the more unfortunate
as these two types of information source proved the most and the least popular,
respectively. In line with results found almost forty years earlier (Gerstberger &
Allen, 1968), source quality and access difficulty proved important antecedents of
source use, with seekers placing more weight on source quality as the importance
of the task increased. Note that ‘access difficulty’ in the 2011 study was defined as
“the time and effort required and the difficulty encountered in reaching a
particular information source” (p. 1089); not the time, effort and difficulty
encountered in reaching a particular piece of information within a source.
Likewise, Gerstberger and Allen in 1968 considered the ‘accessibility’ of a number
of ‘information channels’ rather than the accessibility of the information contained
in a document. In the context of documentation, the latter concept is of more
interest, as the documentation artefact as a whole is a given: it is either readily
accessible, or not present at all.

Stagepost 3: Filtering Information
Filtering the information is not simply selecting a subset of that which is available:
it is a transformative process. In a food-gathering metaphor, filtering the
information would correspond to preparing the food that has been obtained. Once
found, information is matched against existing knowledge and against the
situation that made the information need felt. This is a ‘sense-making’ process: is
the information relevant to me and the situation I am in, here and now? Can I
internalize it, fit it in, apply it? Should I keep it in the back of my mind, or use it
now? Or is this perhaps something to be ignored altogether? By the time the
information is acted upon, it may be not just quantitatively but also qualitatively
changed. Two of Ellis’ (Ellis, 1989) information behaviours take place in the
filtering stage: extracting (identifying fragments for further use) and verifying
(checking accuracy and reliability).

relevance

Judgments of relevance of the information that is found shift during the course of
the information journey (Carol Kuhlthau, 1991). Moreover, such judgments are, as

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
41

are most elements of the information journey, subjective. What one information
seeker judges to be relevant may not be so to another one, even if both were to
experience exactly the same information need. For this reason a distinction is
sometimes made between relevance, which is then taken to be an objective
judgment (‘does the information apply?’) and the more subjective concept of
pertinence (‘is the information useful to me?’) (Kemp, 1974).

interpretation

Newly-found information is organized and lined up so as to fit in with the
information seeker’s current knowledge base. Details may be lost or created
during this part of the process, when information is interpreted to align with
rather than contradict earlier-held views (Spink, 2010) (Spink & Cole, 2006).

Stagepost 4: Applying Information
The result of filtering the information in the previous stage is translated into a
decision as to what to do next. In a food-gathering metaphor, applying the
information would correspond to eating. Implementing this decision changes the
environment, which in the situation under consideration is a software-supported
task environment. The next chapter will look at this environment in more detail.

The Documentation Journey

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
42

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
43

4. A Model of Computer-Mediated
Activity

A first, more restricted version of this chapter has been presented in a full conference paper at the 31st
European Conference on Cognitive Ergonomics (ECCE 2013), held on 26-28 August 2013 in Toulouse,
France (van Loggem, 2013a).

Abstract: In this chapter, an abstract model of Computer-Mediated Activity (CMA) is constructed,
describing the primary task in the field of user documentation design. The CMA model is
assembled from a number of pre-existing models and theories describing human behaviour in
naturalistic settings. It describes how people interact with software, and how they achieve
mastery (that is, expertise) while doing so over time.

Interaction with Software: the Primary Task
So far, we have considered the documentation journey: how people interact with
information sources. This is the secondary task depicted in Figure 6. For every
secondary task, there exists a primary task. In this chapter, we will turn our
attention to that primary task, that is, the context in which the documentation
journey is undertaken. This primary task is what documentation aims to support:
and in order to design documentation that does so, its characteristics must be
known

No comprehensive model of human interaction with software is readily available,
but separate pieces of the larger picture are. Combining insights from various
disciplines that study human behaviour in naturalistic settings (psychology,
instructional science, cognitive science, risk analysis and management,
information behaviour, and economics) like so many pieces of a jigsaw puzzle, a
complete model can be assembled of Computer-Mediated Activity or CMA. The
admittedly eclectic nature of the resulting model allows it to cover the entire field
of interest. All its constituent parts have been tried and tested in naturalistic
settings, and their validity as ways of looking at various aspects of human
cognition ‘in the wild’ is widely accepted: all are regularly applied in disciplines
other than those they originated in.

CMA being human behaviour, variables in the CMA model cannot plausibly be
quantified. The model is therefore a qualitative one. It is built up step by step,
taking into account one or two pre-existing insights at a time. Starting point is a
generic positioning of CMA as repeated decision-making. The model is then in
subsequent sections gradually refined and expanded.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
44

Each section contains the following components:

1. A grounding in the literature of the part of the model under discussion.

2. An influence diagram showing system dynamics. Parts that have been
previously developed are dimmed. The direction of influences is marked with
a plus or minus sign; if an arrow indicates flow or sequence rather than
influence, it is not marked. Influences manifesting themselves after a time
delay are indicated with dashed connectors.

3. A summary of the main implications of the part of the model under discussion
in words and, insofar as possible, through one or more monotonic functions.
(A monotonic function shows how increase or decrease in one entity causes
another entity to increase or decrease. For example, the monotonic function X
= M+(Y) says that if Y goes up, then so does X; and X = M-(Y) says that if Y goes
up, X goes down.)

CMA as Repeated Decision-Making
When working with software, a potentially large number of interactions is carried
out one after the other; where the decision to choose one particular interaction
and not any other takes into account the feedback from the system as a result of
the previous interaction. Computer-mediated activity can be viewed as repeated
decision-making as to which interaction to carry out next.

Definitions: An interaction is an observable behaviour, carried out by a user to
direct the functioning of a software-driven system.

Theories and models of naturalistic decision-making have been developed that
describe how human performers choose a course of action in naturalistic settings.
Because of their origins and applications in high-stake environments such as
aviation and the military, such models are typically associated with high risk and
time pressure. However, there is evidence for them to apply in all situations where
decisions are made that are not presented as choice between alternatives and
where the decision problem has a significant perceptual component (Lipshitz &
Pras, 2005). It is thus with confidence that I take a representative model, known as
the Recognition-Primed Decision model, as the basis of this section.

Theories of naturalistic decision-making assert that in naturalistic settings,
decisions are not made based on detailed reasoning. Rather, a process often
known as ‘situation assessment’ but which I prefer to label situation processing is
carried out, during which a situation model is dynamically constructed, driven by
recognition of perceived cues from the environment against the backdrop of pre-
existing structures in the knowledge base.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
45

Definition: The knowledge base is the total of a performer’s current knowledge in
a particular domain.

Situation processing is characterised by a focus on sensemaking, on coming to
terms with the situation. External cues are perceived, comprehended and finally
projected (through the predominant interaction that is part of the situation model)
into the near future (Klein, 2006a). Re-framing takes place until the situation
model is felt to be satisfactory. The driving force in perception as well as
comprehension is recognition —hence the name ‘Recognition-Primed Decision’
model. Furthermore, selection of an interaction is incorporated in situation
processing from the very beginning.

The situation model is a representation of a human’s knowledge and
understanding of the present state of the system (Endsley, 2000a, p. 2), or, the
operator’s internal model of the state of the environment (Endsley, 2000b, p. 4).
The situation model includes not just objective features and subjective judgements
but also possible actions that can be undertaken. This is different from other,
‘rational’ models of decision-making, that ascertain a more or less conscious lining
up of the possibilities, then evaluating them one after the other and finally
selecting the most promising one. In the Recognition-Primed Decision model, one
or more possible interactions form an intrinsic part of every situation model that
is constructed. The final situation model may then be subjected to a mental ‘trial
run’, a thought experiment in which the current model is evaluated and the
consequences of the predominant interaction are explored. However, such a trial
run takes place only if the situation is perceived as worthy of further deliberation.
When recognition is strong, the most ‘obvious’ interaction that is part of the
situation model, the one most strongly recognized as being appropriate, will be
carried out immediately (Klein, 1989, 1993; Lipshitz & Pras, 2005).

Definitions: A situation model is an internal model of the current state of the
environment as perceived, comprehended, and projected into the near future.
Situation processing is the process by which a situation model is constructed.

(In the literature, the situation model is also referred to as Situation Awareness,
with initial capitals. Situation Awareness or SA for short is then the product of the
process referred to as situation assessment or sa, in all lowercase. There are a few
problems with this convention. The two phrases are very similar and when
abbreviated, the distinction depends exclusively on capitalization. Furthermore, it
is not immediately obvious which of the two refers to the process and which to the
product. Finally, and perhaps most importantly, both are also used to describe
sometimes very different concepts.)

It is interesting to note that naturalistic decision-making is not the only field in
which recognition rather than rationality is seen as the driving force behind
decision-making. Theories of embedded cognition maintain that perception of and

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
46

interaction with the world underlie all human cognition (Prinz, 1997). This
assertion forms the cornerstone of much work carried out in robotics and
cognitive science, where a mainstream tendency is to model behaviour based on
recognition of the environment, without the intermediate layer of a separate
control structure. Such models, in which a straightforward response to the
environment is the main drive for action, often provide a close data fit, lending
them ecological validity (see, for example, Taatgen, Huss, Dickison, & Anderson,
2008).

Figure 11: CMA as repeated decision-making

To summarize: Computer-mediated activity can be seen as repeated processing of the
current situation as it is perceived, resulting in a mental situation model which
includes an interaction. Recognition, fed from the knowledge base containing all the
knowledge that the performer currently possesses, dampens situation processing.

recognition = M-(perception)
recognition = M+(knowledge)
situation processing = M-(recognition)

recognition

perception

situation
model

knowledge
base

+

-

situation
processing

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
47

Learning From Practice
Until relatively recently, instructional practice was built on the assumption that,
through the simple provision of information, knowledge can be transferred from
one who possesses it (the trainer or teacher) to one who as yet does not (the
trainee or student). Over the past half century instructional theory has come to
accept what is commonly referred to as the ‘cognitive constructivist’ view, which is
that meaningful, applicable knowledge is not passively received either through the
senses or by way of communication but is actively constructed by the learner,
based on their interpretations of experiences: that is, practice (von Glasersfeld &
Massachusetts Univ, 1989).

Figure 12: Constructivist learning during CMA

Cognitive constructivism asserts that information is not the same as knowledge.
Rather, information is the input to a process of which the output is knowledge.
Note that constructivism does not express an opinion as to the quality of the
knowledge that is constructed. When experiencing, people will learn: even if it is
only that the sun revolves around the earth and will continue to do so until the end
of time. We live and learn, but the learning will be neither necessarily ‘good’ nor
‘bad’.

recognition

perception

situation
model

knowledge
base

+

-

+situation
processing

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
48

Cognitive constructivism is incorporated into the CMA model by allowing for the
knowledge base to expand as a consequence of the cognitive effort embodied in
the situation processing.

Just like every other process, situation processing has a quantitative and a
qualitative aspect. Quantity of situation processing is the amount of effort that
goes into it. Were it this alone that results in additional knowledge (i.e., learning),
then any struggle during CMA would cause the performer to learn. In reality, hard
work does not guarantee successful completion of a task, let alone learning from
the experience. To further understand the learning mechanism in the CMA model,
it proves fruitful to examine not quantity but quality of the situation processing.

The SRK (Skill, Rules, Knowledge) framework developed by Jens Rasmussen builds
on a number of previously developed models of human reasoning and decision-
making. It describes three levels of cognitive performance, from very specific,
inflexible and effortless to ever more general, flexible and effortful (Vicente &
Rasmussen, 1992).

1. The most elementary level of performance in the SRK framework is skill-based
(SB) performance. Routine interactions in a familiar situation are carried out
without much thought: the situation model is constructed immediately by
matching the external cues to a structure in the knowledge base on the basis of
recognition. It will contain only one interaction, which is carried out without
further situation processing. Conscious attention is applied only when an error
becomes apparent, at which time performance will move up to the next, the
rules-based or RB level. A person performing at SB level will find it difficult, if
not impossible, to formulate a rationale for his interactions. The interaction to
be undertaken seems so obvious that no alternatives present themselves
(Reason, 1990; van der Veer et al., 1996, p. 316). The reply to the question,
“Why did you do that?” will run along the lines of, “there is nothing else I can
do”, or, “this is how it’s done”.

2. When an error is detected that cannot be quickly and easily corrected, the
performance level shifts one up to rules-based (RB) performance. Some more
effort now goes into situation processing: the knowledge base is actively
searched for a structure that seems to match the situation. This level of
performance is called ‘rules-based’ because no matter what shape or form
knowledge structures in the knowledge base may assume, what the performer
is interested in is applying a ‘rule’ that runs along the lines of, “if the situation
is like [XXX] then do [YYY]”. Justification for selecting a particular interaction
can be given when asked and will take the form of straightforward reference
to something stated as fact (Reason, 1990).

3. The third and highest, most effortful, level is knowledge-based (KB)
performance. When there seems to be really no alternative, the performer will
move up yet another gear into this level, where situation processing is

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
49

thorough. Rather than trying to avoid error situations, the performer now
actively seeks a route to success, if necessary from first principles. He analyses
abstract relations between structure and function in order to gain new
insights. Again (Reason, 1990), justification for selecting a particular
interaction can be given when asked and will take the form of creative
thinking and conjecture.

The SRK level at which people need to operate is directly related to the complexity
of a particular domain and inversely related to their expertise in that domain. A
salient feature of expertise is that relatively much of its performance takes place at
SB and possibly RB level. As expertise increases, performance can and will take
place on lower levels. At the same time, the knowledge involved in the situation
model that is being constructed will be qualitatively different (Goodstein,
Andersen, & Olsen, 1988); see also Chapter 5.

Expertise being that which follows from learning, if SRK level of performance is
inversely related to expertise and performers strive to keep performance at the
lowest possible level, then moving up to performance at higher levels must be a
precursor to learning. I shall use for this the term upgrading.

Definition: Upgrading is undertaking situation processing at a higher, more
effortful SRK level of cognitive performance.

Upgrading to situation processing at KB level can lead to the construction of truly
new knowledge structures that are accessible to future performance at RB level.
Upgrading to situation processing at RB level can lead to existing knowledge
structures being embellished with corollaries or contingencies. When existing
knowledge structures are so modified and fine-tuned, they may eventually allow
for future performance at SB level.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
50

Figure 13: Learning through upgrading in CMA

To summarize: Upgrading to higher levels of cognitive performance during situation
processing results in learning.

knowledge = M+(upgrading)

Satisficing and Ambition in CMA
How much situation processing and upgrading is a performer willing to do? More
than a half century ago, social scientist and later Nobel laureate (economics, 1978)
Herbert Simon realized that ‘economic man’, who is completely rational in his
decisions and choices and makes them after fully evaluating all the possible
alternatives together with their pay-offs and results, lives in a world far removed
from ours (Simon, 1955). In the real world inhabited by real people, many
decisions and choices are made on a good-enough basis. Human performers tend
not to continue reflecting on a real-life problem until the best possible solution has
been found. People do not usually optimize. Rather, they make do with the first
adequate solution that presents itself: they satisfice, a word adopted by Simon to
denote striving for good-enough rather than optimal results.

recognition

perception

situation
model

situation
processing

upgrading

knowledge
base

+

-

+

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
51

Satisficing works by the deliberate introduction of simplifications into the model of
the current situation, in order to bring that model within the range of the
performer’s capability. One such simplification concerns the pay-off of
interactions. Pay-off, asserted Simon, is rated not on a continuous scale, but as one
of two (unsatisfactory or satisfactory) or three (bad, acceptable or good) values. A
performer’s so-called aspiration level determines at which point a choice is
deemed to yield sufficient (satisficing) pay-off. The satisficing choice is then acted
upon and no further effort is expended on finding an even better solution.

Definitions: Satisficing is an approach to decision-making in which no more
cognitive effort is expended than that which is required to arrive at a decision that
meets the current aspiration level.

In a situation that is dynamic in that the pay-off of a particular interaction in a
sequence depends not only on the immediate result but also on the ultimate goal
of the sequence, the aspiration level takes into account long-term as well as the
immediate pay-off. Thus, quality and quantity of the situation processing are
related to the performer’s short-term and long-term ambition: that which he
initially set out to do.

Definition: The ambition is the intention with which a performer embarks on a
course of action. It has a long-term and a short-term component.

Aspiration level and ambition may vary from performance to performance. In
general, they tend to rise when the individual finds it (subjectively) easy to come
up with satisficing interactions. When on the other hand finding a satisficing
interaction is felt to be difficult, aspiration level and ambition may drop. This
means that if the end result of the CMA (the value) is felt by the performer to
outweigh the situation processing involved in achieving it (the load), then the next
time round the initial ambition may aim higher, so that further situation
processing can still take place. Conversely, if the value is not felt worth the load,
the next time around the initial ambition will be set lower, so that less situation
processing will be required to come up with a situation model that meets it.

Definitions: The value of an activity is the worth that the performer attaches to
the situation that results from it. The load of an activity is the effort that the
performer experiences in carrying out the activity. Value and load are both
subjective.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
52

Figure 14: Satisficing during CMA

To summarize: Situation processing is driven by an ambition. Over time, the ambition
will go up when experienced value exceeds experienced load, and down when it does
not.

ambition = M+(value)
ambition = M-(load)
situation processing = M+(ambition)

ambition

recognition

perception

situation
model

upgrading

situation
processing

value

load

 knowledge base

+

+

-

+

+

-

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
53

Cognitive Load in CMA
The fact that subjective load has a negative effect on subsequent ambitions is
problematic, as learning results from upgrading to more effortful processing,
which is driven by ambition; but which also, by definition, constitutes cognitive
load. At first sight this seems a Catch-22: learning inevitably involves cognitive
load but this lowers future ambition, which in turn reduces subsequent learning.

Fortunately, things are not quite so clear-cut. Cognitive Load Theory (Sweller, van
Merriënboer, & Paas, 1998; van Gog, 2006) is based on the assumption that human
cognitive architecture is organized around (1) a virtually unlimited long-term
memory where knowledge is stored, and (2) an extremely limited working
memory where information processing takes place. No (further) learning can
occur when working memory is overloaded. Cognitive Load Theory distinguishes
three types of (objective) cognitive load to be taken into account. First of all there
is the intrinsic cognitive load that is part and parcel of the subject to be learned and
cannot be manipulated. Then there is the cognitive load that is a function of the
design of the learning environment. Some of it is extraneous, in that it springs from
the design without serving any purpose. The ‘good’ cognitive load, finally, is called
germane and this consists of all the processing in working memory that is
necessary for learning to take place. Germane cognitive load contributes towards
learning whereas extraneous load detracts from it (Paas, Renkl, & Sweller, 2004).
Therefore, instruction must be designed so as to make much room as possible in
working memory for germane cognitive load, by reducing extraneous and (where
possible) intrinsic cognitive load (van Gog, 2006).

Within the framework of the CMA model, non-intrinsic cognitive load is germane
when it is part of upgrading in a situation in which such upgrading is required, but
it is extraneous when not related to upgrading, or when the upgrading is not
necessary for (further) learning. Being a theory of formal instruction, Cognitive
Load Theory is concerned mainly with reducing non-germane cognitive load. This
is different from a context in which learning is a by-product of practice, yielding
real-life results. In the latter case, not all cognitive load is subjectively felt as a
burden. Work done that leads somewhere, to better results or greater insight, can
feel like an interesting challenge rather than ‘load’. The value then not only
counterbalances the load but even negates it.

To summarize: ‘Load’ being subjective, it is reduced when the cognitive effort
involved in the situation processing is pleasant and worthwhile. Removing as much
extraneous and intrinsic cognitive load as possible further reduces the subjectively
experienced load.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
54

Mental Models and the User Virtual Machine
Let us now turn to the user’s ‘knowledge base’, which in the CMA model is the total
of a performer’s current knowledge, especially that about the particular computer-
mediated activity in which the user engages. It is a generally accepted idea that
knowledge is not stored in long-term memory as disparate indexed facts, but in
non-tangible constructs relating the various ‘pieces’ of knowledge to one another.
There is less agreement as to the nature of these “higher-order, generic, cognitive
structures that underlie all aspects of human knowledge and skill” (Reason, 1990,
p. 26). Many different constructs (e.g. scripts, threads, propositions, schemata,
networks) have been proposed, each with their attendant features,
presuppositions and applications. One that is specifically thought to support
reasoning about complex systems is the mental model.

There is more than one theory of mental models, and no general consensus on
what the term means exactly (Al-Diban, 2012; see also O'Malley & Draper, 1992,
p.73; and Payne, 1992, p.109-111)—so much so that the tongue-in-cheek phrase
‘mental muddles’ has been deployed (Rips, 1986). A core argument can, however,
be distilled. This runs as follows.

A mental model is a simplified abstraction in the mind that is used not to describe
but to understand and to reason about relevant aspects of a (natural or man-
made) complex system (Seel, 2006). It evolves naturally (Payne, 1991) and its
construction takes place continuously during interaction with the referent (the
target system). Mental models are highly individual. Development of the mental
model is strongly influenced by individual factors as diverse as past experience,
external information sources, interaction with the target system, the current state
of the mental model, and original thinking (Payne, 1991). As a result, “a mental
model is not one thing, but a combination of several interacting component
representational structures” (Bibby, 1992). Mental models have been observed to
be both parsimonious (in that they contain as little detail as the user can ‘get away
with’) and sticky (in that they are maintained for as long as the user can ‘get away
with it’) (Norman, 1987). Interestingly, Norman’s observed parsimony runs
parallel to the production bias component of the Paradox of the Active User, while
what he labels the stickiness of mental models reflects the assimilation bias.
Norman also notes that mental models are typically incomplete, unstable, vaguely
defined, unscientific and not at all the “precise, elegant models” described in the
literature; rather, they can “include knowledge or beliefs that are thought to be of
doubtful validity” and can sometimes even be characterized as “superstition”.

Many authors (Craik, 1943; de Kleer & Brown, 1981; Johnson-Laird, 1983;
Kahneman & Tversky, 1981) hold that in order to predict what the target system
will do under certain conditions, those conditions are mentally applied to the

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
55

model which is then ‘run’, after which the envisaged outcome is (still mentally)
observed. The first author to propose the term ‘mental model’ wrote:

“My hypothesis is that thought models, or parallels, reality… If the organism
carries a “small-scale model” of external reality and its own possible actions
within its head, it is able to try out various alternatives, conclude which is the
best of them, react to future situations before they arise, utilize the knowledge
about the past events in dealing with the past and future…” (Craik, 1943)

Others maintain that to postulate the possibility or even the necessity of a trial run
is to take the analogy with physical small-scale models one step too far, and that
what distinguishes mental models from other knowledge structures is simply their
being representational in one way or another of an underlying reality (Rips, 1986).

At first sight there is much similarity between a mental model, especially a
runnable one, and the situation model that we have seen earlier. However, there
are crucial differences. A mental model 1) mirrors a well-delineated target system
that has an independent existence whereas the situation model consists of
disparate elements brought together only by the perception of the individual.
Then, a mental model 2) remains available in the knowledge base for subsequent
use whereas the situation model is discarded immediately after its predominant
interaction has been carried out. As a consequence, a mental model 3) evolves over
time whereas the situation model is re-constructed from scratch every time.
Finally, a mental model 4) is part of the knowledge that is input to the situation
processing, whereas the situation model is output of the situation processing.

For a wide-ranging and multi-disciplinary overview of mental model theories and
their various applications, see (Rogers, Rutherford, & Bibby, 1992). An older
seminal work is (Gentner & Stevens, 1983). Finally, (Schwamb, 1990), although
unpublished, provides a thorough overview of mental models theories. What they
all have in common is their tremendous intuitive appeal. Mental models just
‘sound right’. But are mental models really ‘runnable’ or does the intuitive
correctness refer to a more holistic idea of ‘some sort of internal representation of
an external system’? Fundamental as this question is, from a pragmatic point of
view it does not really matter whether the mental model is runnable or no more
than representational. In both cases, an adequate mental model of the software
tool being used will help the user’s performance (Bayman & Mayer, 1988; Bibby,
1992; Santhanam & Sein, 1994).

Definition: A mental model is a simplified representation in the mind of a complex
system, that remains available in the knowledge base and evolves over time.

To describe what makes a mental model of a software tool ‘adequate’, we can
imagine a ‘User Virtual Machine’ or UVM, which is defined as “not only everything
that a user can perceive or experience (as far as it has a meaning), but also aspects

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
56

of internal structure and processes as far as the user should be aware of them”
(van der Veer & van Vliet, 2001). The visible part of the UVM is what these authors
refer to as the ‘perceptual interface’ and what is more commonly referred to as the
user interface; but the UVM as a whole is a much larger conceptual mechanism. A
software system, as we have discussed before, is a self-contained ‘world’ with its
own objects (think of the Clipboard in many operating systems; of templates, style
sheets and fields in a word processing environment; or of layers in an image
editor). When visible to the user, such software-specific objects, their mutual
dependencies, and the rules governing their behaviour are as much part of the
UVM as is the user interface through which they are accessed.

Definition: The User Virtual Machine or UVM is a conceptual mechanism,
containing all meaningful elements of a particular software system that the user
can perceive or experience, as well as those that are not directly visible but
influence others which are.

The UVM is man-made and finite, and therefore in principle knowable. Although
conceptual rather than tangible, the UVM can be said to ‘exist’ in the same way that
the laws of nature exist. Adequacy of the user’s mental model now is the degree to
which it is correct and complete with reference to the UVM.

‘Correct’ means that the user’s mental model indeed matches the UVM. ‘Complete’
means that it contains all the different types of knowledge that are required for
masterful performance. Knowledge can be categorized as to its nature. In the
literature the notion of procedural (‘knowing how’) versus declarative or
conceptual (‘knowing that’) knowledge plays an important role (see Marshall,
1995; Ohlsson, 2005; Ummelen, 1994). Sometimes, a third knowledge type is
distinguished: conditional knowledge or ‘knowing when’. One problem with such a
simple distinction is its lack of specificity. The terms cover a multitude of sins. In
fact, they are collective terms for a number of subtypes (Ummelen, 1994). Various
authors have attempted to establish more fine-grained classification schemes and
indeed many have been proposed, all with their associated terminology (see P. A.
Alexander, Schallert, & Hare, 1991). One such scheme (T. de Jong & Ferguson-
Hessler, 1996, pp. 106-107) is of particular interest, as it offers a matrix in which
four types of knowledge are set off against a number of qualities5. Thus it has the
virtue of being fine-grained enough, in the qualities, to do justice to the many
nuances of knowledge encountered in the reality of human philosophy, while still
meeting the demands of Occam’s razor through the limited number of types. De
Jong and Ferguson distinguish the following knowledge types:

5 deep versus surface; structure; automated versus nonautomatic; modality; general versus domain-
specific

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
57

 Situational knowledge is knowledge about situations as they typically appear
in a particular domain.

 Conceptual knowledge is static knowledge about facts, concepts, and principles
that apply within a particular domain.

 Procedural knowledge contains actions or manipulations that are valid within
a particular domain.

 Strategic knowledge helps organise the problem-solving process by directing
which stages should be gone through to reach a solution.

All these types of knowledge are required for masterful performance (van Loggem,
2007) and therefore, for the user’s mental model of the UVM to be complete, it
must contain all four types. Situational knowledge is required for apposite
perception and recognition. Conceptual and procedural knowledge are required,
together, for constructing a valid situation model. Strategic knowledge, finally, is
required for formulating an appropriate ambition.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
58

Figure 15: A mental model of the UVM as part of the knowledge base

To summarize: The knowledge base contains a mental model of the User Virtual
Machine, which is constructed over time as the user interacts with the software.
Eventually, the user’s mental model of the UVM should be correct (that is, match the
UVM) and complete (that is, contain all four types of knowledge required for
masterful performance).

Uncertainty and Ill-Definedness
The model developed thus far, in the previous sections, describes the prolonged
use of a reasonably complex tool, where 1) a potentially large number of decisions

ambition

recognition

perception

situation
model

upgrading

situation
processing

value

knowledge base

+

+

-

+

+

UVM

load
-

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
59

as to intermediate steps must be taken and their outcomes evaluated before the
initial intention for using the tool is fulfilled; 2) the intention itself can become
more or less ambitious both during the activity and from one instance of an
activity to the next; and 3) information on the tool and its use may be sought from
sources external to the activity. Although many non-software, physical, tools fail to
meet these criteria, there is nothing in the model that is necessarily software-
specific. This final section refines the model to specifically describe the
development of mastery when repeatedly using software-based tools.

Physical tools act directly on the material world. Operating a hammer causes
(hopefully) a nail to be driven into a piece of wood. Operating a table loom causes
strands of textile to be interwoven as warp and weft. Operating a typewriter
causes ink to be rubbed onto paper in character-shaped patches. When operating a
physical tool, the result of every operation is a state of the outside world that is—
leaving fundamental philosophical argument out of the discussion—in principle
open to inspection, either directly or through the intermediary of instruments.
What you see is what you get: a change in an object that can be touched, heard,
smelled, and/or viewed from different angles. When using a physical tool, the
evidence before one’s very eyes is indisputable. Incorrect previously held beliefs
as well as errors having been committed show up immediately so that they can be
corrected. Activities can be undertaken step by step and a user can in principle
determine whether things have been done right. Also, the intermediate results as
well as the end result of working with a physical tool would have been fully
imaginable even before the tool came into existence, and a user can in principle
determine whether he is doing the right things.

Software-driven tools, on the other hand, act at least in the first instance only on
the software environment itself. Operating a PC running a word processing
application causes a re-configuration of the software’s definition of how a
document is constructed; not directly related to character-shaped ink stains on
paper. When operating a software-drive tool, the result of every operation is a
state of an autonomous, self-contained ‘world’ with its own concepts, rules and
dependencies which is never open to inspection. What you see in this case is
usually no more than a change in the text and images on a relatively small screen
that has no meaning in itself but needs interpretation. What you get is a change in
the arrangement of bits in the computer’s memory that may or may not have been
defined by the creator of the software to cause a change to the outside world. Thus,
when interacting with a software-driven tool, the moment when success or failure
becomes apparent is delayed, sometimes indefinitely; and it is in principle not
possible for a user to determine whether things have been done right.

For these reasons, there is always a degree of uncertainty as to the results of one’s
actions in the interaction with the present generation of software. In CMA,
perception is by definition incomplete. The previous interaction has changed the
arrangement of the computer’s memory, which cannot be directly inspected—and

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
60

even if it could, inspection would not yield any information that is comprehensible
to the user. The cues from the environment consist of no more than a change in
any output devices (very often a visual display). Almost inevitably the number of
possible arrangements of the output device is smaller than the number of possible
arrangements of the internal computer memory. One combination of perceived
cues matches multiple, possibly very different situations ‘inside’ the computer. As
a consequence, recognition is impaired. A situation may be wrongly recognised,
causing errors may go unnoticed and no upgrading taking place to correct them.
Figure 16 shows this uncertainty by adding a ‘crossed roads’ symbol to the
recognition.

Furthermore, neither the intermediate results nor the end result of working with a
software-driven tool would have been fully imaginable before the tool came into
existence. The software ‘world’ on which the user operates will always have
concepts that do not directly correspond to anything that the user is a priori
familiar with and he may not even know whether he’s doing the right things. The
desired outcome of the interaction might not be fully known to a user who does
not yet know the ins and outs of the software tool he is using. In this respect, the
interaction with software tools has a degree of ill-definedness built in that is not
present when interacting with a physical tool. Pressing the space bar on a
typewriter moves the carriage and leaves a particular location on a tangible sheet
of paper as it was, creating a blank space. But pressing the space bar when using a
word processor does just as much a pressing any other key: it inserts a character
(albeit an invisible one) into a non-tangible document. Understanding the
difference, unimportant as it may seem at a first glance, can well be vital to the
quality of the final result of the work.

In the CMA model, a user who does not understand a particular concept, or even
does not know of its existence, cannot formulate an ambition in which that concept
is gainfully utilised. Figure 16 shows this by adding a ‘crossed roads’ symbol to the
ambition.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
61

Figure 16: Uncertainty and ill-definedness in CMA

To summarize: The uncertainty built into computer-mediated activity compromises
recognition. The ill-definedness built into computer-mediated activity compromises
the ambition.

Difficulty in performing a task is proportional to its uncertainty and the degree to
which it is ill-defined (Byström & Järvelin, 1995; D. J. Campbell, 1988). If
uncertainty and ill-definedness are fundamental aspects of the use of software,
then this will always be a ’difficult’ activity and the Paradox of the Active User will
not disappear of its own accord.

ambition

recognition

perception

situation
model

upgrading

situation
processing

value

knowledge base

+

+

+

+

UVM

load
-

-

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
62

The Documentation Journey in CMA
With repeated performance involving upgrading, the knowledge base expands
over time. Paradoxically, however, knowledge is not just a consequence of
upgrading, but equally well a prerequisite for upgrading. Without rules no RB
performance is possible. Nor can KB performance take place without first
principles to be combined and elaborated. When the required knowledge to
upgrade during situation processing is not available in the knowledge base, a
performer may act more or less randomly, hoping for things to sort themselves
out. The other option is for him to consult external information sources, e.g. by
asking another person, by referring to the Internet, or by consulting a
documentation artefact.

Until mastery has been achieved, external sources of information will be needed to
enable adequate refinement of the current situation model. When no sufficient
knowledge is (yet) available in the knowledge base, external information sources
kick-start the initial situation processing and turn explorative, non-directed
performance that is carried out really for lack of something better to do into
directed performance. When there is already a certain amount of knowledge
present, the information sources can promote upgrading and enable further
situation processing until eventually, the additional knowledge allows for
downgrading again and learning stops.

The documentation designer’s task is to design documentation artefacts in
accordance with the requirements for a particular design case. The CMA model
describes the problem space in which documentation designers move. The context
in which the Paradox of the Active User manifests itself is broken up into distinct
cognitive constructs (perception, recognition, situation processing, upgrading,
documentation journey, situation model, value, load, intention and goal) that
interact with each other in a closed loop. Each of the constructs embodies a
possible locus of breakdown in the process of learning from practice through
repeated CMA; and each offers a target for interventions in the form of elements in
the documentation that is designed.

As we have seen in Chapter 3, roughly speaking, the same stageposts on this
‘information journey’ are identified by different authors, albeit under sometimes
very different names. Disregarding findings and frameworks that are not
applicable to the area of software documentation, consensus is found on a cyclic
pattern in what can now be called the documentation journey of 1) needing; 2)
seeking; 3) filtering and 4) applying information. In the CMA model:

 needing information (N), that is, realizing and accepting that the knowledge
base is not sufficient to meet the current ambition, follows after a lack of
recognition, when situation processing begins;

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
63

 seeking information (S), that is, attempting to fill the gap between that which is
known and that which is as yet unknown, is part of the upgrading component
of situation processing;

 filtering information (F), that is, sorting out the information that is found to
match the current need, is part of the situation processing resulting in the
situation model;

 applying information (A), that is, acting on the information retained and
understood after filtering, is part of the final situation model that is decided
upon, which contains the interaction to be taken.

Definition: The documentation journey is the sequence of stages that a performer
(mostly unconscious) completes when interacting with documentation.

The different aspects of the various stageposts in the documentation journey are
all places where documentation can ‘do something’. Since documentation will be
used more than once, an author can create his documentation designs to influence
(future) behaviour at every one of the stageposts; not just the one currently being
visited.

However, this process is seriously compromised by the inevitable presence of
uncertainty and ill-definedness, leading to an inappropriate information need.
Another problem is that the documentation journey itself will constitute load.
Finally, the author of an information product cannot force a reader to handle the
product in any particular way. What he can do, however, is steer the reader’s
attention in a particular direction, strengthening or weakening the ease with
which a reader can access different units of information from a particular location
within the product.

In Figure 17 below, information sources are included in the CMA model, overlaid
with a ‘crossed roads’ symbol to emphasize the fact that their influence is
dependent on a large number of factors that lie outside the model.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
64

Figure 17: The documentation journey during CMA

To summarize: If the information required for upgrading is not already present in
the knowledge base, it must be externally available, appropriately accessed, and
correctly applied for situation processing to result in an adequate situation model.

CMA as a Knowledge Engine
The CMA model developed in this chapter is repeated in full in Figure 18. It is a
model of unsupervised practice in which upgrading transforms information into
value, with knowledge as a by-product; ideally the process continues until mastery
of the software has been achieved.

recognition

ambition

perception

situation
model

upgrading

situation
processing

value

load

information sources

knowledge
base

+

+

-

+
N

S

F

A

+

+

-

UVM

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
65

Figure 18: The complete CMA model

The process can be summarized using a metaphor. Imagine upgrading as an
engine, fuelled by goal-setting. As long as the engine runs, information is fed into it
and processed and as a result, the knowledge base expands. As the knowledge base
expands, it will offer increasing resistance against further expansion so that the
process slows down. Ideally the engine continues running until the knowledge
base is full and mastery has been achieved.

Such idealized development is illustrated in the plot below (Figure 19, where the X
axis represents time). As long as nothing untoward happens a novice starting out
with mastery close to zero and an ambition that corresponds to 100% of the
software’s capabilities, will eventually—provided he keeps putting in all the
cognitive effort that is needed—end up with mastery close to 100%. Practice will
have made perfect.

recognition

ambition

perception

situation
model

upgrading

situation
processing

value

load

information sources

knowledge
base

+

+

-

+
N

S

F

A

+

+

-

UVM

-

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
66

Figure 19: The achievement of mastery with
practice over time, in an ideal situation

However, the process cannot be expected to always run quite so smoothly. First of
all, it is highly unlikely that even the most driven individual would always be
willing and able to put in all the effort required to bridge the gap between a
current mastery level of close to zero percent and an ambition of close to one
hundred percent.

Then, the CMA model shows two inputs to upgrading. The first is the ambition. The
need for upgrading arises from the difference between that which a performer
wants to do and that which he is currently capable of doing. When the gap between
an performer’s current mastery and his ambition is narrow, the performer never
learns to perform far beyond his current competence level. When the gap is too
wide, he may simply opt out and give up. At the very least he will satisfice. The
ambition itself is driven by the experienced value-load balance. If the perceived
value of the end result may not be what he had been hoping for, the next time he
encounters a similar context, he may approach it with a (much) lower ambition.
When the value does not at least outbalance the load, the fuel supply will dwindle
so that the engine runs down, leaving the software user stranded at a suboptimal
level of performance. Rather than the competence moving up in the direction of
the ambition, the ambition moves down to match the competence and full mastery
will then never be achieved (see Figure 20).

0

20

40

60

80

100

ambition 100 perception 50 recognition upgrading mastery 10 exload 0 totalload value 100

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
67

Figure 20: The effect of load exceeding value

The more generally an ambition is framed, the less appropriate will its constituent
goals be set and the less chance there is that the interactions will be appropriately
selected or their outcomes correctly assessed. Only when the ambition is rich, i.e.,
takes into consideration all concepts held in the software universe, will it be able
to drive gainful situation processing. For continuous learning, the ambition should
be always a little beyond the performer’s ‘comfort zone’, in his ‘zone of proximal
development’ but not beyond (L. Vygotsky, 1978). Therefore, a good design of
documentation again exposes the full richness of the task domain and does not
overly simplify.

The other, negative, input to upgrading is recognition. In the words of James
Reason: “human beings are furious pattern-matchers” (Reason, 1990). Considering
also the fact that the if clause in the knowledge patterns used in RB performance
only contains features and characteristics that the current situation model should
match and not those that it should not match, we begin to see that “there will be
powerful cognitive and affective forces conspiring to encourage the problem
solver to accept inadequate or incomplete solutions as being satisfactory at this
point” (pp. 66-67). Recognition in its turn is inversely related to the degree to
which relevant aspects of the environment are perceived: the more you
consciously see, the less chance there is that you unjustifiably recognize it.

In Figure 21, the effect is shown of inappropriate recognition.

0

20

40

60

80

100

ambition 100 perception 50 recognition upgrading mastery 10 exload 25 totalload value 20

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
68

Figure 21: The effect of inappropriate recognition

Finally, the two inputs to upgrading reinforce each other. Lowering the ambition to
match results is self-reinforcing. When it happens, the performer is left with a
sense of the task having been difficult. That in itself is enough to lower the
ambition further during future practice. In addition, as a situation continues in
which no more upgrading takes place, existing knowledge is re-applied over and
over again. Recognition thus grows stronger and it becomes less likely that
upgrading and learning are resumed. As Glaser notes: “People may attain a level of
competence only insofar as it is necessary to carry out the activities or to solve
problems at the given level of complexity presented. Situations that extend
competence may be less forthcoming as experts settle into their working
situations” (Glaser, 1985, p. 7). When value becomes limited and/or load is seen as
unacceptable, a downward spiral rapidly causes no further upgrading to take
place.

Thus, the CMA model offers one possible explanation of why the two ‘biases’
underlying the Paradox of the Active User manifest themselves so much more
strongly for computer-mediated activity than they do for other tool-mediated
activity.

 The production bias hinders the balancing of (expected and perceived) load
against value. It leads to the performer satisficing beyond that which would be
seen as ‘good enough’ if there was no tendency to press on, and interrupts the
gradual positioning of the ambition at an ever higher level: even when the
performer is aware of the potential future benefits of doing so. The production
bias also hinders the application of knowledge to the ambition: that which is

0

20

40

60

80

100

ambition 100 perception 50 recognition upgrading mastery 10 exload 0 totalload value 100

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
69

deemed ‘too much work right now’ will be ignored. The production bias
throws a spoke in the engine’s wheels exactly there where its smooth running
is already impaired by ill-definedness.

 The assimilation bias stops the performer from learning both directly and
indirectly. Directly, because it hinders the inclusion of new knowledge
resulting from situation processing into the knowledge base. Indirectly,
because it makes the performer inappropriately eager to recognize the
currently perceived cues from the environment where really there are reasons
to not recognize and act immediately, but rather look again and upgrade. The
assimilation bias puts a spoke in the engine’s wheels in both places where its
smooth running is already impaired: once where ill-definedness is located, and
again where uncertainty is present.

Documentation should therefore strive to minimize unproductive load, and to
maximize the chances of a genuinely valuable outcome. They should also aim to
direct attention to as many of the external cues as possible, and slow down
recognition further by exposing the full richness of the situation, including
elements in the current situation model that do not match the recognized
situation.

A Model of Computer-Mediated Activity

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
70

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
71

5. Documentation As Artefact
A first version of the section Assessing Use Complexity in this chapter has been presented in a short
conference paper at the 4th International Conference on Human-Centred Software Engineering (HCSE
2012), held on 29-32 October 2012 in Toulouse, France (van Loggem, 2012).

Abstract: In this chapter, we move away from a description of the situation ‘as is’, before any
interventions are designed, to the goal of any such interventions. The twin concepts of expertise
and mastery are explored. As not all software systems are equally difficult to master, rather than
using generic denominations such as ‘simple’ and ‘complex’ tools, a more rigid three-tier
categorization of software is given, based on ‘use complexity’. This is then shown to provide a
map of the requirements for the software’s documentation, expressed in and following from the
CMA model.

Expertise and Mastery
‘Mastery’ is expertise in a particular, applied domain. From the existing literature
on expertise (regardless of the domain in which the expertise is acquired) a
characteristic pattern emerges (Cellier, Eyrolle, & Mariné, 1997; Farrington-Darby
& Wilson, 2006; Glaser, 1985; Shanteau, 1992). Experts have shown consistently to
(1) achieve different results compared to novices. They come to qualitatively
better results and solve problems overall faster. In addition, experts are seen to (2)
build different representations. They have more complete representations of the
task domain containing a wider range of variables that are more highly interlinked,
in terms of contextual data as well as data from the knowledge base. Although just
like non-experts they can hold no more than a handful of units or ‘chunks’ of
knowledge in working memory at any given time, these have been aggregated over
time from smaller, disparate units until they contain (much) more detail and
(many) more different aspects: so that the same number of ‘chunks’ in working
memory represents considerably more knowledge (de Groot, 1946). They focus on
deep relational features of the situation whereas novices focus on surface features
(Sloutsky & Yarlas, 2000). When discerning patterns, an expert is better capable of
ignoring noise, possessing a sense of what is relevant when making decisions.
Then, it can be said that experts (3) employ different strategies. They devote more
time to initial problem encoding and building a representation of the situation.
They simplify complex problems, break problems down, and develop a divide-and-
conquer strategy; and they make better predictions of process evolution and
changes in a system, seeing the implications of their actions. Experts pay more
attention, seek further information (whereas novices focus on directly available
data) and extract more information. They encode new information more quickly
and effectively and grasp the meaning behind information. They process cues

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
72

proactively rather than reactively and are less easily thrown by adversity and
exceptions. Finally, experts (4) have a different knowledge base: they have a larger
number of situational patterns available, have extensive content knowledge, and
have a wider range of options at their disposal. This enables an expert to display
self-confidence and to justify his decisions. Experts rely more on automated
processes (Shanteau, 1992). Their knowledge has become highly procedural and
their memory search and general processing are greatly reduced (Glaser, 1985). In
layman’s terms: experts do not have to labour to come up with the next
interaction. They just go ahead and recognize what needs doing. It is only during
the learning process that existing knowledge structures prove insufficient.

Two of Jens Rasmussen’s colleagues at the Risǿ National Laboratory in Denmark
examined expertise against the backdrop of the three SRK levels of performance.
Their conclusion was that, with the acquisition of expertise over time, the
knowledge available to a performer changes (Sanderson & Harwood, 1988, p. 31).
People, Sanderson and Harwood state with reference to the table reproduced
below as Table 1, “will enter training with a repertoire of general rules-based and
skill-based behaviours (bracketed terms). By the expert stage, the SRK levels are
qualitatively different from when they were being learned, and this is indicated by
the numerals. For example, expert knowledge-based behaviour at K-B3 level will
operate differently from the way it does for the novice at K-B1. The knowledge
base itself may be considerably refined and enriched. More importantly, the
knowledge will be used in a very different way.”

Table 1: The development of expertise in the SRK framework

novice intermediate expert

KB1 KB2 KB3

(RB) RB2 RB3

(SB) (SB) SB3

Expertise, it turns out, is not evidenced by all performance being carried out at SB
level. Rather, experts carry out as much performance at SB level as is possible in
the context of the current activity. And this is exactly what a complete and correct
model of the UVM will allow software users to do.

It has been observed that when asked about their current activity (“What are you
doing?”), performers may respond with different degrees of abstraction (Vallacher
& Wegner, 1987; Wegner, Vallacher, Macomber, Wood, & Arps, 1984). Dependent
on the particular context the answer may be, for example, “seeing if someone is at

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
73

home” or “forecasting next year’s budget”; “pushing a doorbell” or “building a
spreadsheet”; “moving a finger” or “entering a formula into a cell”. The degree of
abstraction on which identification takes place is mediated by the context, the
difficulty, and the familiarity of the task. In general, Vallacher and Wegner
observed, performers try to maintain the highest possible degree of abstraction;
until the identification cannot be maintained and drops down one step. When
discussing expertise in the use of a particular tool this means that, as expertise
increases and ever more performance takes place at ever more effortless levels of
performance, the activity will be gradually positioned at an ever higher degree of
abstraction: until the full extent is taken into account of what the tool is capable of.
At this stage, the intention horizon (p. 23) includes all of the UVM (p. 56), and
mastery of the tool has been achieved.

Definition: Mastery is expertise in a particular domain of tool-mediated activity,
enabled by the ability to instantiate, for any actual need, a complete and correct
mental model of those aspects of the User Virtual Machine that are actually
relevant. Mastery is evidenced by successfully completed activities at the highest
possible level of abstraction that the tool allows for.

A naturalistic description of interaction with software cannot discuss the
interaction and the software in isolation but must consider software-in-use, as a
man-machine system in which two partners—the human and the machine (driven
and defined by software)—work together (Benyon, 1992; Mirel, 1998a;
Steehouder, 1997). Having thus far mostly explored the perspective of the human
partner in the man-machine system, we will now shift to that of the software-
based partner; and align the two perspectives to arrive at a complete analysis of
software-in-use, with a view to documentation requirements.

Supporting the acquisition of mastery is what documentation ultimately aims to
achieve. In order to defeat the Paradox of the Active User, the knowledge engine
must not be allowed to run down prematurely, that is, before the knowledge base
is full. What constitutes ‘full’, now, is dependent upon the nature of a particular
software tool and the context in which it may be deployed.

Assessing Use Complexity
It seems obvious that more learning is required when the task to be learned is
more ‘complex’. A user needs a thorough understanding of the User Virtual
Machine or UVM to gain complete mastery of a particular software tool, and apply
it successfully to every task it can possibly be applied to. To determine the extent
of the UVM, I propose a series of analyses to assess use complexity: software
complexity from the user’s point of view.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
74

Use complexity is closely related to what Kieras and Polson (D. Kieras & Polson,
1985) call ‘cognitive complexity’ or ‘user complexity’. I have chosen not to use
either term used by these authors, for a number of reasons. First, (1) ‘cognitive
complexity’ is regularly, by authors other than Kieras and Polson and in areas
other than software development, taken to describe a personality characteristic. A
particular individual may exhibit high or low cognitive complexity just as he may
exhibit, for example, high or low creativity or self-confidence (e.g. Adams-Webber,
2001; Manojlović & Nikolić-Popović, 2002; Quinn, 1980). Then (2), ‘user
complexity’ linguistically suggests a characteristic of the user rather than the tool
used. Finally (3), Kieras and Polson’s concept of cognitive/user complexity
presupposes ‘yoking’; which, as we have seen (p. 21) cannot in itself account for
the problems encountered when working with much of present-day software.

Use complexity is a characteristic of the software only, irrespective of any
characteristics inherent to the user or the task environment. It provides a measure
of what the UVM consists of rather than how a user interacts with it. As such it is
separate from the concept of usability, which is defined in the ISO 9241-11
standard as the extent to which a product can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfaction in a specified context of
use. Usability focuses on the user interaction component of the UVM and is
prescriptive, in that high usability is desirable; whereas use complexity is
descriptive, in that high use complexity is not necessarily undesirable. Use
complexity is a necessary consequence of versatility (Norman, 1999, 2010). A
complex system may, but need not, have low usability: just as a simple system
may, but need not, have high usability.

Neither is use complexity directly related to design complexity: that which lies
‘under the hood’ of the software. A program is complex in the design sense of the
word if it exhibits emergent behaviour (Aiguier, Le Gall, & Mabrouki, 2008); but
sophisticated as it may be, to know whether it has use complexity a separate
assessment must be undertaken. Use complexity is no more or no less than a
measure of the learning requirements (and by extension the documentation
requirements) for a particular piece of software.

Definition: Use complexity is that part of task complexity that originates from the
software rather than from other elements in the task environment, including the
user.

Complexity is a multi-dimensional construct (S. Kim & Soergel, 2005; Nadolski,
Kirschner, van Merriënboer, & Wöretshofer, 2005). The quality and quantity of the
learning required to achieve full mastery of a particular software tool can be
analyzed from a number of different viewpoints. Although absolute values for the
different dimensions cannot feasibly be determined, a relative scale can be
envisaged ranging from, say, ‘almost none’ to ‘huge amounts’. It then becomes

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
75

possible to take the idea of dimensions literally and map out the results of the
separate analyses.

Width: Quantity

The first dimension of use complexity to consider is its ‘width’. This is involved
with how much novelty is brought to the work by the software, and therefore with
how much is to be learned.

Novelty comes in the form of hitherto unknown concepts, with their associated
rules and interdependencies, that are exposed to the user and with which he may
choose to engage. A first step towards assessing where there is width in the use
complexity of a particular tool is to split its application up into a number of levels
(usually, three or four). Several theoreticians have independently identified such a
hierarchy at which to consider tools and tool use. David Marr (Marr, 1982), for
example, identified the computational, algorithmic, and implementational levels on
which a cognitive system should be accounted for. The computational level
describes the system’s goal, the reason why it is appropriate, and the logic of its
strategy. The algorithmic level specifies the system’s method and its
representations for the input and the output. The implementational level, finally,
describes the system’s means and physical implementation.

Marr presented his insights in the context of human vision; closer to home and one
year earlier, Thomas Moran (1981) distinguished four levels on which a user’s
conversation with a software tool can be described. The most general of these is
the task level, which describes the things that a user can accomplish with the
software. One level down, Moran identifies the semantic level, containing the
conceptual entities representing the system’s functional capability through which
the user’s tasks are accomplished. Then, Moran goes down one more to the
syntactic level, where commands, arguments, contexts, and state variables are laid
out. Finally, there is the interaction level, which describes physical interactions
with the computer hardware such as “key presses and other primitive device
manipulations.” (Moran, 1981, p. 6)

In a context of standard computer use, at least for fully-grown users who are not
physically restricted and who have a minimum of experience in computer use, the
interaction level can always be assumed to be fully mastered. Situations in which
this is not the case (involving very young children, or adults whose motor skills are
impaired, or able-bodied individuals who are completely new to computers) are
outside the scope of this current work: the interaction level seems best mastered
through physical practice that does not involve information (van der Veer et al.,
1985). In this discussion I will borrow Moran’s ideas as far as the remaining three
levels are considered, changing the labels slightly but maintaining the spirit in
which the hierarchy was originally defined:

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
76

Definitions: The task layer is that aspect of a software tool that describes the
possible end results of the user’s engagement with the software. The semantic
layer is that aspect of a software tool that describes the intermediate steps that the
user may carry out to realize a particular result. The syntactic layer is that aspect of
a software tool that describes a user’s choice of commands with which he directs
the software’s behaviour.

At the task layer, the user chooses to work towards a certain end result. At the
semantic layer, he chooses the next step to realize the result. At the syntactic layer,
finally, he chooses which screen area to click or touch, which key or keys to press,
which sequence of characters to enter, or which command to vocalize. Where the
user is exposed to many novel concepts that he can choose to engage with, there is
much to learn before full mastery is reached. Where at the opposite end of the
spectrum there is no visible novelty, or every choice is equal to every other choice,
there is hardly any requirement for learning at all.

This quantitative dimension, related to the number of meaningful choices open to
the user that originate from the software world and that he is not familiar with,
can be pictured as the width of the use complexity. The width of the use complexity
shows how much procedural and situational knowledge a user needs to achieve
mastery: whenever there is novelty to be engaged with, a user will need to know
how to engage with it, and under which conditions a particular engagement is
valid.

The use complexity is not necessarily equally wide at all three layers. The width of
the use complexity can be assessed separately at every one of the three layers
(syntactic-semantic-task).

Definition: The width of a software system’s use complexity is a measure of the
number of hitherto unknown concepts (with their associated rules and
interdependencies), brought to the work by the software, that are exposed to the
user and with which he may choose to engage so that his choice makes a
difference.

When analysing the layers one by one, it is important to take all novel
opportunities for choice into account, as there is no way of knowing which are
important and which are not. Since the higher layers build upon and provide
meaning to the lower ones, even misunderstandings at the syntactic layer can lead
to grief. Concepts such as pressing the Enter key on the keyboard resulting in a
paragraph being created, can—when not thoroughly understood—make creating
even the simplest text document very difficult. As another example, the presence
of the ‘wildcards’ concept at the semantic layer may lead to unexpected results for
an uninitiated user attempting to search his text for the occurrence of an asterisk.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
77

In Figure 22, the width of the use complexity is roughly plotted, using a relative
scale of ‘almost no novelty’ to ‘huge amounts of novelty’ to engage with, for three
different text processing applications that have all been marketed by Microsoft®.
The base corresponds to the syntactic layer, then comes the semantic layer, and
the top represents width of the use complexity at the task layer.

Figure 22: Width of use complexity sketched for Notepad (left), WordPad
(centre) and Word2007 (right)

Notepad is judged to have very little novelty to engage with at the syntactic layer.
Its interface is uncluttered and most of the options open to engagement are well
known. At the semantic layer a bit more novelty is found, for example in Notepad’s
dealing with word wrapping and the use of variables in its page setup; while at the
task layer its uses are acknowledged as a tool for holding and converting electronic
text that was never intended to be printed. WordPad on the other hand holds some
more novelty at the syntactic layer, mostly due to its formatting capabilities. At the
task layer WordPad offers less, as it is very much geared towards one task:
producing a document that is later to be printed exactly as laid out on the screen.
For Word2007, much more novelty is found at all three layers, increasingly so as
we move up towards the task layer.

Depth: Quality

The next dimension of use complexity is its ‘depth’. This is involved with the
quality of things to be learned.

Where visible novelty in the software corresponds to pre-known ideas in the pre-
existing task world, it allows for new ways of doing things. There is uncertainty but
no ill-definedness, and the knowledge that needs to be acquired is mostly
procedural and situational: how to do something new. This knowledge is relatively
easily acquired. It is not open to discussion or interpretation and can be embodied
in written instructions which, over time, are internalized. Yet where the software
exposes its users to novelty that does not map directly onto pre-known ideas there
is more of a problem. A user who is not even sure what it is that he should be doing
in the first place, is unable to frame his engagements in such a manner as to use
the software to its full potential. There are now new things to do, leading to ill-

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
78

definedness and a need for conceptual and strategic knowledge: the user needs to
learn why and when he could decide to do something new.

This distinction constitutes a dimension of use complexity that can be visualized as
its depth. The less tightly that the novelty brought to the task by the software is
coupled to pre-known concepts that the user is already familiar with, the deeper
the use complexity.

Definition: The depth of a software system’s use complexity is a measure of the
degree of mapping between on the one hand the novelty brought to the task by the
software, and on the other pre-known concepts that the user is already familiar
with.

The degree of mapping between software novelty and familiar concepts can most
readily be determined by considering the outcome of the user’s current
engagement with the software (compare p. 22). When the outcome of the
engagement lies within the software only, there is no direct mapping. This is the
case, for example, at the task layer of software for creating websites and at the
semantic layer of text editing software that allows for regular expressions in
searching and replacing. In other cases, the outcome of the engagement lies partly
outside and partly inside the software. The software then holds a model of
something in the physical world or in the user’s mind, and it is the model that is
modified. The mapping is then much more straightforward. Think, for example, of
a kitchen planner such as offered by many home furnishing stores, where the task
layer is involved with constructing a model of your new kitchen; or a calculator
program where at the semantic layer the various memory functions mimic a
scratchpad holding intermediate results.

Figure 23 shows the sketches from Figure 22 enhanced with depth to indicate
novelty for which there is no straightforward correspondence with the pre-known
world.

Figure 23: Depth of use complexity added to the analysis for Notepad (left),
WordPad (centre) and Word2007 (right)

Approximately half of Notepad’s novelty at the semantic and task layers is
considered not to correspond to pre-known concepts; whereas WordPad is judged
to expose the user to non-mapping novelty only at the semantic layer, and a

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
79

considerable proportion of Word2007’s novelty at all layers has meaning within
the software world only.

Height: Impact

The third and final dimension of use complexity is its ‘height’. This is involved with
the impact of things to be learned, and thus with the amount of effort that is ideally
expended upon the learning. While width and depth of use complexity other must
be assessed on every one of the three layers (syntactic-semantic-task), the layers
themselves are the same for every software tool. If we position the three layers
with reference to the user’s ambition, then ‘height’ of use complexity becomes a
variable dimension, which says something about the impact of the software on the
user’s work.

A coherent framework for studying the interaction with tools in the context of
real-life human endeavour is found in the relatively recent dusting-off of activity
theory, first developed in the Soviet Union in the early decades of the 20th century
(L. S. Vygotsky, 1978) but now sparking widespread interest in the field of UID
(see Bødker, 1991; Nardi, 1996). Human activity in this framework is regarded as
a form of doing that is directed towards a material or immaterial object satisfying a
need. Furthermore, all human activity is mediated by the context, social and
otherwise, in which the activity is carried out and by the tools that are used
(Bødker, 1991; Kaptelinin & Nardi, 2006). Deployment of a particular tool changes
the quality of the activity, as does the knowledge currently present in the
performer’s knowledge base.

The performer consciously or unconsciously formulates an intention towards the
object, based on what is felt to be attainable; and this is dependent on the current
state of the knowledge base. The intention provides the motivation and is what
distinguishes one activity from another. Activities are carried out through chains
or networks of actions which find their minimal meaningful context in the activity
and which each have an objective result meeting a particular goal. Actions in their
turn are realised through a sequence of operations, which are habitual routines
used as responses to conditions faced during the unfolding of the action.

Operations are observable behaviours, whereas actions and activities are mental
constructs driving the behaviour. The activity provides the ‘why’ of something
taking place, whereas the actions are ‘what’ takes place and the operations are
‘how’ the work is carried out (Bødker, 1997).

Definitions: An activity is a sequence of actions, undertaken one after the other in
order to achieve an overall intention providing a motivation. An action is a
sequence of operations, undertaken one after the other in order to achieve a
particular goal within the wider framework of the activity’s overall intention. An
operation is a routinely carried-out observable behaviour.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
80

Figure 24: The relationships between an activity,
its constituent actions and their constituent

operations

Note that the combined long-term motivation and short-term goal that at any
given moment provide the incentive to carry out an interaction, have in the CMA
model been jointly referred to as the user’s ambition.

An important activity-theoretical idea is that this three-tier hierarchy is not
absolute, but relative within the context of the situation. Also, it is dynamic rather
than static. When a ‘breakdown’ occurs, an operation that is no longer habitual by
that token becomes an action; whereas an action that is practised many times and
is thoroughly mastered is likely to become an operation. Likewise, the goal of an
action can be raised to a higher plan so that the action becomes an activity, and an
activity that loses its motive can become an action. Such shifts may happen more
than once, perhaps even many times, before the performer ends the activity.
Figure 25 (taken from Bødker & Bertelsen, 2003, p. 301) illustrates this idea,
which ties in with Vallacher and Wegner’s observations (see p. 72):

activity operationaction

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
81

Figure 25: The dynamic relationship among levels
of human activity (taken from Bødker & Bertelsen,

2003, p. 301)

The task layer in any given software tool does not necessarily correspond to the
activity, nor the semantic layer to actions or the syntactic layer to operations. Task
layer, semantic layer and syntactic layer are tool-centred, fixed, and objective. To
determine what they consist of, it is sufficient to consider only the software.
Activities, actions and operations on the other hand are human-centred, fluid, and
subjective. They change over time and from one performer to another, and to
determine what they are, it is sufficient to consider only the user. It cannot be
stated a priori what constitutes an activity, an action, or an operation: at any given
moment these levels are dependent on the current familiarity with and difficulty of
the task.

Aligning the human-centred (activity-action-operation) and the tool-centred (task-
semantic-syntactic) hierarchies exposes the relative roles of the two partners in a
man-machine system. These are not always the same (Mirel, 1998a). The software
component does not necessarily affect all the levels in an activity: situations are
easily imaginable in which only part of the activity is computer-mediated. Software
that affects the activity only insofar as it changes the nature of operations is less
complex than that which touches upon actions, or even changes the nature of the
activities that are possible. As the software’s mediation reaches further ‘up’ into
the activity, it adds more uncertainty to constructs that were not very well defined
to begin with: the goals of actions and the intention of the activity.

Definition: The height of a software system’s use complexity is a measure of the
degree to which the software can affect an activity (in the activity-theoretical
sense of the word).

The height of the use complexity is therefore determined by first asking whether
the outcome of the task layer of the software could ever be imagined to constitute
a valid object, providing an expert user’s intention to sit down to work. Can the

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
82

end result of the work, if completed successfully and easily, ever be imagined to be
something a person could look back on with satisfaction at the end of the day? Is it
something he might, over breakfast, put on his mental to-do list for the day? If so,
the software reaches up into the level of the activity. If not, its application reaches
no further than the level of the separate actions.

The height of the use complexity modifies the ‘grid’ on which the width and depth
are plotted, as shown in Figure 26. The degree to which they have an impact on the
user’s activity is reflected in the visualization by overlaying the three equally
spaced interaction layers with the also equally spaced activity-theoretical levels, so
that the top of the software’s task layer aligns with either the level of the actions
(left and centre in Figure 26) or that of the overall activity (right).

Figure 26: Height of use complexity added to the analysis for Notepad
(left), WordPad (centre) and Word2007 (right)

In this manner, the use complexity of a software tool that affects the user’s
activities covers a larger area that that of software affecting only the separate
actions. Effectively, the width and depth are multiplied with a factor that is greater
as the software reaches further up into the activity.

The outcomes of Notepad’s and WordPad’s task layers are relatively modest, and
in this example they are not seen to provide more than the goal for an action such
as writing a short note or making a shopping list. The outcome of Word2007’s task
layer on the other hand could well be imagined to be of genuine interest in itself,
such as the complete production and layout of a camera-ready manuscript, or the
programming of a word processing environment for third parties to use.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
83

Documentation Requirements for Operators,
Actors and Activators
Figure 27 below is essentially the same as Figure 26, but for greater clarity the
boundaries between operations, actions, and activities are included in the
visualisation.

Figure 27: Aligning the human-centred (activity-action-operation) and the
tool-centred (task-semantic-syntactic) hierarchies

We can immediately see how ‘high’ up there is depth in the use complexity. For
Notepad (left), this is within the ‘actions’ band: this we can refer to as actor
software. For WordPad (centre), the highest depth of use complexity is positioned
around the ‘operations’ band and we can refer to this type of software as operator
software. Word2007 (right) has considerable depth in the use complexity within
the ‘activities’ band, so that it can be labelled activator software.

Definitions: Operator software is software in which there is depth in the use
complexity only at the level of operations. Actor software is software in which
there is depth in the use complexity at the level of actions, but not at that of
activities. Activator software is software in which there is depth in the use
complexity at the level of activities.

The use of discrete labels does not mean to imply that the three categories are
discrete: there exists a gliding scale of use complexity, increasing from operator
software through actor software to activator software. The labelling is no more
than a rough positioning of a particular software tool on this scale. It shows where
the highest depth of the use complexity is located: so, what we are really talking
about when making the categorization, is how far up in the activity the software
brings to the work environment novelty that does not correspond to pre-existing
elements in the outside world. The further this is, the more important it is that the

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
84

user learns to fully understand the software’s UVM. He will need to put real effort
into this. And to get him to do so, the documentation will have to pull out all the
stops.

Full mastery of actor software has been reached only when the user’s ambition
encompasses activities which are completely shaped within the software
environment. Such an ambition may not be pre-existent and must then be
engendered during the learning process. The further the software ‘reaches into’
the activity, bringing novel things to do not only to the interactions themselves but
also to the short-term or long-term ambition, the more scope there is for ill-
defined variability and thus for the end results to be disappointing and the
perceived load outweighing the perceived value; again putting an end to further
upgrading and learning. Thus, the categorization indicates the relative importance
of conceptual and strategic knowledge and with it, the demands placed on support
materials (such as documentation) to foster their acquisition.

The Paradox of the Active User Re-phrased

Clearly, users of operator software have the least knowledge to acquire and those
of activator software the most. Then, as the volume of required learning increases,
the ease of learning decreases when we move from operator to actor and on to
activator software. Correctly interpreting the external cues resulting from a
particular interaction is easiest in operator software and most difficult in activator
software, with actor software again occupying a middle position. Actors and
activators need to take into account the context in which an interaction is carried
out. “Stepping back” by one or two steps is proportionally more difficult and less
likely to happen than directly relating outcomes to interactions. Also, by slowing
down the CMA such stepping back runs into the production bias. Error detection is
a strong trigger for upgrading to higher SRK levels of performance: thus,
upgrading is least likely to be triggered in activator software and most in operator
software.

This means that the relatively small amount of new knowledge required for
operator software is sooner acquired than the larger amounts required for actor
and activator software. Then, the chances of correctly interpreting system
feedback so that upgrading and learning take place are higher in operator software
than in actor software, and higher again in activator software. Finally, users of
operator software may run into the assimilation bias but not the production bias,
which first comes into play in actor software and becomes a real problem in
activator software.

From the CMA model a new interpretation now emerges of the Paradox of the
Active User: The more learning is required, the less easily it takes place. To which a
corollary can be formulated as follows: the more learning is required, the less users
are likely to seek it.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
85

Operator software

In operator software, the ill-definedness is mainly at the level of operations and is
kept in check by the well-definedness of the actions and the activity. As long as the
user knows what he is doing, the conceptual and strategic knowledge required to
remove the ill-definedness at operational level has a good chance of being actively
sought. Even if it is never acquired, its absence can do only limited damage. In
operator software, primary and secondary tasks are still reasonably well described
in the ‘traditional’ manner employed when discussing the design of physical tools
(see p. 20). Such manuals are produced from what in instructional design is
referred to as an ‘objectivist’ point of departure, founded on the belief that
knowledge can through the provision of information be transferred from one who
possesses it (author) to one who as yet does not (the reader). This type of
documentation is developed to enhance short-term performance of a particular
task. The underlying assumption is that if the author writes down everything that
the user needs to know in order to work with the software, then this information
will be stored as knowledge on how to do things. Consequently, it is hoped, skills
will emerge: which in operator software is a reasonable expectation. In operator
software the tasks are pre-known, so that transfer to future performance is a
matter of repeated practice.

Actor and activator software

To be helpful, it is often said that documentation must be task-oriented rather than
system-oriented (Schriver, 1997). Yet the distinction between task-oriented and
system-oriented becomes meaningless when user tasks are ultimately shaped by
system capabilities. In such a case the documentation cannot just give users the
straightforward procedural information that they ask for. Instead, it must give
users what they need rather than what they want: information from which the
knowledge and skills can be constructed needed to find their own solutions to
their own problems.

In actor software, there are places where there is no well-defined goal to counter-
balance the ill-definedness at the operational level; and in activator software even
a well-defined intention is missing to direct the way the activity unfolds. The
higher up we move from operator software to actor and activator software, the
more need there is for meaningful, constructive learning, which it is distinguished
from straightforward reproductive learning “by emphasizing personal meaning
making and intentionally seeking to relate new ideas to experiences and prior
learning and in doing so, engaging conceptual and strategic thinking” (Jonassen,
1999, p. 236).

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
86

The ‘constructivist’ point of view, as opposed to the objectivist one, holds that
meaningful, applicable knowledge cannot be directly transmitted but is actively
constructed by the learners, based on their interpretations of experiences (see also
p. 47). If this is so, then documentation for actors and especially activators should
not ‘dumb down’ by spelling out what to do in every imaginable possible context.
Instead, the information sources should provide the raw material from which
meaningful knowledge can be constructed during situation processing. Van
Nimwegen found that a user interface that takes the user completely by the hand,
has a detrimental effect on learning (Van Nimwegen, 2008). There is no reason to
assume that the same would not hold for documentation that takes the user
completely by the hand, spelling out what to do next without requiring the reader
to wonder when or why to act. Users of software other than operator software
would in the long term be best served if the documentation were to support the
acquisition of long-term learning, resulting in enhanced future performance of
related tasks.

Although little attention has been given to undirected, unsupervised learning,
many guidelines have been drawn up for the constructivist design of instructional
environments in which directed, supervised practice engenders learning (Collins,
Seely Brown, & Newman, 1989; Ertmer & Newby, 1993, p. 75; Jonassen, 1999;
Seely Brown, Collins, & Duguid, 1989; Spiro, Coulson, Feltovich, & Anderson, 1988;
Spiro, Feltovich, Jacobson, & Coulson, 1992). These guidelines can be summarized
as follows:

 Learning should take place in authentic and real-world environments. It is
experience that provides the opportunity for knowledge construction, and this
knowledge construction is enhanced by authenticity of the experience. The
learning environment should have at its focus an authentic question or
issue, case, problem, or project that learners attempt to solve or resolve.

 An emphasis must be placed on the identification of the context in which the
skills will be learned and subsequently applied, anchoring learning in
meaningful contexts. The learning environment should be embedded in
social interaction, which provides the stimulus for the cognitive processing
required for knowledge construction. The learning environment should foster
content and skills that are relevant to the learner. The adaptive nature of
knowledge construction requires that new knowledge is merged into the
learner’s current knowledge base. Any new knowledge that seems irrelevant
to the learner will not be stored. The case at the focus of the learning
environment should therefore be interesting, relevant and engaging, as the
key to meaningful learning is ownership of the problem. Ownership provides
motivation.

 The learning environment should place cases at the centre of the
experience. The real world shows great variability from case to case
regarding the relevance of concepts and the combinatorial patterns of existing

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
87

knowledge. If general principles are placed at the centre of the experience,
then problem solving becomes a matter of trial-and-error to see which
principle applies in any given situation. This process will stop as soon as a
reasonably satisfactory result is obtained; which may or may not be the
optimal result. In this manner, suboptimal knowledge structures may be
stored. The case at the focus of the learning environment should be ill-defined
or ill-structured, so that some aspects of the problem are emergent and
definable by the learner. The learning environment should provide related
cases, to scaffold student memory (engender induction) and to provide
multiple perspectives (enhance cognitive flexibility). The learning
environment should present conceptual knowledge as knowledge-in-use,
since in domains where there is no one-on-one mapping between elements in
the problem space and elements in the solution space, the meaning of a
concept is strongly connected to its application.

 Since a single representation will inevitably miss important facets of complex
concepts, the learning environment should provide multiple
representations and perspectives in order to allow the learner to develop
complex, viable knowledge structures relevant to the experience. The
knowledge that is constructed will be used in many different ways; therefore it
also has to be learned, represented and tried out in application in many
different ways. Different ‘lenses’ through which information is viewed, provide
a multitude of ways of looking at one and the same problem or situation. The
learning environment should present information in a variety of different
ways; revisiting content at different times, in rearranged contexts, for
different purposes, and from different conceptual perspectives. The learning
environment should also present alternative ways of representing
problems to support the use of problem-solving skills that allow learners to
develop pattern-recognition skills and go ‘beyond the information given’. The
learning environment should stress the interconnectedness between multiple
concepts and cases, to mirror the complexity of the domain and to avoid
compartmentalization of knowledge.

 The learning environment should demonstrate complexities and
irregularities: it should highlight component interactions to foster
combination of concepts. Learners must be aware that the domain is not as
simple and ordered as they might have wished, in order to avoid the
application of overly simple and regular existing knowledge structures. The
learning environment should promote a shift from knowledge retrieval to
knowledge assembly. In well-structured domains where complexity is low,
retrieval of knowledge suffices for problem solving. In ill-structured, complex
domains on the other hand, existing knowledge must be combined and applied
in novel ways: this is what constitutes learning.

Documentation As Artefact

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
88

 The learning environment should provide guidance and facilitation rather
than direct instruction, and promote active participation. Knowledge cannot
be just handed to the learner: it must be constructed by the learner. The
learning environment should provide access to rich sources of information
which must be learner-selectable and just-in-time. The learning
environment should provide cognitive tools that scaffold the learners’
abilities to perform the tasks.

 The learning environment should stimulate meta-cognition. The learner is
responsible for the learning. Only through active processing can new
knowledge be constructed, and without meta-cognition no adequate
processing can take place. The learning environment should place an
emphasis on learner control and the capability of the learner to manipulate
information to actively use what is learned. The learning environment
should foster content and skills that build upon prior knowledge, as
inappropriate reasoning must become explicit before it can be adapted. The
learning environment should provide formative assessment rather than
evaluative assessment. Old knowledge is enhanced or replaced by the learner
only when the result of its application does not match expectations. The
learning environment should provide assessment focused on transfer of
knowledge and skills by presenting new problems and situations that differ
from the conditions of the initial instruction.

“Kunnen zonder kennen kan niet” says Tamara van Gog (van Gog, 2006), a highly
alliterative Dutch phrase which my best attempt at translation, “Doing without
knowing cannot be done”, does not do justice. Only users who have the knowledge
required to interpret the value of concepts that have meaning only in the software
world itself, and for which no straightforward mapping exists with elements in the
outside world, are capable of developing and implementing an appropriate
strategy (Mirel, 1998a).

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
89

6. SDDPL Value System and
Organizing Principle

A first version of this chapter has been presented in a writer’s workshop at the EuroPLoP 2016
conference, held on 6-10 July 2016 in Kaufbeuren, Germany. The current version will be included in the
Proceedings (van Loggem, 2016).

Abstract: This chapter explores the question of how design patterns could be combined into and
presented as a design pattern language. A choice for the organization of the SDDPL is made on
the basis of usability, so that the language may meet the requirements of the two stakeholder
groups in any design community: practicing designers, and those that record design knowledge
for the former group to use.

Design Patterns and Design Pattern Languages
Designers would make little progress if they had to invent every wheel for
themselves, over and over again. For individual designers to come up with the best
possible solution to a particular design problem, and for a particular field as a
whole to grow and improve, all available design knowledge in that field must be
shared between practitioners. One way of recording and sharing design knowledge
is through design patterns, collected in design pattern languages.

The idea of design patterns was first developed by Christopher Alexander, an
architect, in the 1970s. Alexander (initially with collaborators) published a
number of books on the design of urban spaces. Two of these went on to become
seminal in other design communities: A Pattern Language (C. Alexander et al.,
1977), and The Timeless Way of Building (C. Alexander, 1979). In Alexander’s own
words:

Each pattern describes a problem which occurs over and over again in our
environment, and then describes the core of the solution to that problem, in
such a way that you can use this solution a million times over, without ever
doing it the same way twice. (A Pattern Language, p. x.)

Design patterns are intended not as how-to-recipes to be followed blindly and
resulting in identical solutions to similar problems. Rather, as the name suggests,
they must be seen as recurring patterns underlying widely varying solutions. In
line with current practice rather than Alexander’s original definition, I will use the
following definition of a design pattern, taken from (Kohls & Uttecht, 2009):

Definition: A design pattern is a description of the invariant parts of proven
designs as a solution to a problem in a specific context.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
90

Design patterns are collected and combined in so-called design pattern languages.
Again quoting Alexander:

All 253 patterns together form a language. (p. xxxv) […] A pattern language
has the structure of a network. (p. xviii) […] to present each pattern connected
to other patterns, so that you grasp the collection of all 253 patterns as a
whole, as a language, within which you create an infinite variety of
combinations. (A Pattern Language, p. xi)

Alexander sees his pattern language as the basis for each reader’s own, individual,
collection. He takes considerable space to “describe a rough procedure by which
you can choose a language for your own project, first by taking patterns from this
language we have printed here, and then by adding patterns of your own”. The
reader is invited to make a copy of the list of patterns (suggestions for an
alternative working method are given in case the reader does not have access to a
copying machine), then find in the list the pattern that best seems to describe the
overall project and read it through. This becomes the starting point. Those
‘smaller’ patterns at the end of the overall pattern should also be marked for
inclusion in the project, unless there is doubt as to their applicability. Next, the
reader should turn his attention to the next highest pattern that has been thus
marked, and the process is to be repeated. This continues until “you have ticked all
the patterns you want for your project” but the process doesn’t stop there: the
reader is instructed to change any patterns as he sees fit, and to add any patterns
that are felt to be missing (C. Alexander et al., 1977, pp. xxxviii – xxxix).

The first to take the pattern approach outside its original context as a way of
describing the design of urban spaces were Kent Beck and Ward Cunningham
(Beck & Cunningham, 1987). Building on their work, four authors who became
subsequently known as the ‘Gang of Four’ wrote a book Design Patterns—Elements
of Reusable Object-Oriented Software (Gamma, Helm, Johnson, & Vlissides, 1994)
which is still widely used in the world of object-oriented programming.

Since then, the development and application of design patterns and pattern
languages has become a field of interest in its own right. Successful conferences in
the field of design patterns are held regularly. The ‘Pattern Languages of Programs’
or PLoP conference has been held in the US since 1994, with regional conferences
(AsianPLoP, ChiliPLoP, EuroPLoP, KoalaPLoP, MensorePLoP, MiniPLoP,
ScrumPLoP, SugarLoafPLoP, VikingPLoP) throughout the world. PUARL (Portland
Urban Architecture Research Laboratory) started in 2011 and PURPLSOC (In
Pursuit of Pattern Languages for Societal Change) in 2014. Despite their names,
the work done at these gatherings is not limited to programming, architecture, or
societal change but covers patterns in a wide variety of disciplines. This is
reflected by a quick, by no means exhaustive, search on the Internet carried out on
3 December 2015 which yielded (self-styled) pattern languages for the design of,

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
91

amongst others, games6, websites7, something called Smart Cities8, behaviour-
influencing elements 9 10, public spheres11, instruction12 13, enterprise
integration14, productivity15, group dynamics16, and government services17. Areas
in which design patterns have become a mainstream approach include software
engineering, educational design (Kohls & Uttecht, 2009; Sharp, Manns, & Eckstein,
2003) and user interaction design (Borchers, 2001; Tidwell, 2010; van Welie,
2001).

In the transfer of design patterns from the domain of urban planning to that of
object-oriented programming and beyond, Alexander’s ideas were changed in a
number of ways.

 First, the domain being a design technique (a particular programming
method), the problems to which the patterns offered a solution no longer were
those experienced by end users, but rather those experienced by the designers
(that is: programmers) creating artefacts for end users.

 Second, in line with conventions in the programming domain, Alexander’s
verbose, ‘narrative’ way of describing individual patterns was often replaced
by a strongly-structured format.

 Third, the explicit requirement was added for a design pattern to capture
proven design solutions that can be found more than once in existing practice.

 Fourth, no more suggestion is made that the user create his own pattern
language by selecting patterns from the collection, then modifying them as
needed and adding his own.

There is little consensus on what exactly turns a collection of design patterns into
a pattern language. In some of the collections mentioned above, a common format
for the description of a number of patterns is seen as sufficient. In others, the
implicit claim of a ‘language’ seems based on the interconnectedness of the
individual patterns. This interconnectedness allows patterns to be combined into a
complete design solution, and it is a core feature of Alexander’s work as well as
that of those which brought design patterns to the fields of object-oriented

6 gameprogrammingpatterns.com/
7 developer.yahoo.com/ypatterns/
8 theurbantechnologist.com/design-patterns/
9 designwithintent.co.uk/
10 ui-patterns.com/
11 www.publicsphereproject.org/patterns
12 csis.pace.edu/~bergin/PedPat1.3.html
13 www.cs.kent.ac.uk/people/staff/saf/patterns/gallery/MontessoriDesignPatterns1.pdf
14 www.enterpriseintegrationpatterns.com/
15 tools-for-thought.com/category/a-pattern-language-for-productivity
16 groupworksdeck.org/
17 www.gov.uk/service-manual/user-centred-design/resources/patterns/

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
92

programming (Gamma et al., 1994) and HCI (Borchers, 2001; Tidwell, 2010; van
Welie, 2001).

Fincher (1999) suggests that for a collection of patterns to be a language,
interconnectedness is only the first requirement. In line with Fincher, I define a
design pattern language as follows:

Definition: A design pattern language is a number of interconnected design
patterns related to a particular design discipline which share both a value system
and an organizing principle.

The common value system and organizing principle of the Software
Documentation Design Pattern Language are described in the next two sections.

Common Value System
First, consider the common value system that Fincher (1999) calls for.

A distinction is sometimes made between design patterns that help solving
designers’ problems and those that help solving problems for the people who work
with the designed product (van Welie, 2001). The difference between the two,
however, is not always clear-cut: presumably because all designers—whatever it is
that they are designing—are driven by a desire to alleviate the problems of those
they design for. For example, Tidwell’s UI design pattern collection solves designer
problems, while Van Welie’s collection purports to solve user problems; as we see
when comparing the opening paragraph of the “Use when” section for Tidwell’s
Wizard pattern (Tidwell, 2010, p. 55):

You are designing a UI for a task that is long or complicated, and that will
usually be novel for users—not something that they do often or want much
fine-grained control over (such as the installation of a software package).

with the “Problem” section in Van Welie’s Wizard pattern (van Welie, 2001, p.
174):

The user wants to achieve a single goal but several decisions need to be made
before the goal can be achieved completely, which may not be known to the
user.

The words are different but the sentiment is the same. Ultimately, a designer
works to alleviate his users’ problems; design patterns, in turn, aim to alleviate the
problems that the designer encounters when doing so.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
93

Alexander placed considerable emphasis on justifying his pattern language, and by
extension the individual patterns. On the first page following the front matter of A
Pattern Language (p. ix) it is explicitly stated that this book and the book The
Timeless Way of Building must be seen as two parts of an indivisible whole. Of this,
A Pattern Language describes in close to 1200 pages the patterns and how to apply
them, while the 500+ pages of The Timeless Way of Building are devoted to what
Alexander calls “the quality without a name”. Not having a name, this guiding
principle can be described only circumspectly, holistically, with reference to
concepts such as wholeness, life, fire, glowing, entirety.

The Timeless Way of Building is a poetic, inspirational book. It offers the value
system underlying the pattern language in terms of feelings and a state of mind
rather than hard description. Tidwell’s common value system is expressed
similarly, although much briefer, in terms of users’ happiness with the
conversation they are conducting with a computer (Tidwell, 2010, Chapter 1). Van
Welie on the other hand expresses his value system in much more measurable
terms, based on a systematically conducted user task analysis (van Welie, 2001).
Whether expressed in ‘soft’ or ‘hard’ terms, the presence of a common value
system underlying the patterns in a collection provides a reason why the
immediate problem that a particular pattern addresses needs solving in the first
place (Dearden & Finlay, 2006).

Definition: A design pattern language’s value system is the conceptual framework
within which justification can be expressed for the individual patterns in the
language.

Such an underlying value system, common to all the individual design patterns,
provides semantic coherence to a design pattern language. It is that which the
language ultimately ‘talks about’.

Alexander’s pattern language talks about incorporating the “quality without a
name” in people’s living environments. Tidwell’s pattern language talks about
scripting the conversation between man and machine, based on an understanding
of the human’s motives and intentions. Van Welie’s pattern language talks about
streamlining interaction with software to minimize effort. The Software
Documentation Design Pattern Language (SDDPL) talks about documenting
software to empower its users.

A documentation artefact that is designed by applying patterns from the SDDPL
aims to engender, over time, full mastery of the software that is being documented
(as discussed in Chapter 5). Justification of the individual patterns is explicitly
found in reference to the CMA model (as discussed in Chapter 4).

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
94

Common Organizing Principle
Now, consider Fincher’s (1999) common organizing principle, or the way in which
the design patterns are structured.

Definition: A design pattern language’s organizing principle is the format in which
the individual patterns in the language are presented.

Alexander’s format is structured weakly. His patterns are presented in the form of
narrative (running text). Every pattern opens with its name, and a confidence
rating as to its general applicability. A picture showing an archetypal example is
then followed by an explanation of how the pattern fits in with more general
patterns. Three diamonds () are followed by a headline, in bold type,
summarizing the problem. After the headline comes a long stretch of text
describing things such as empirical background, evidence for validity, and
examples of implementation. Then, again in bold type and in the form of an
instruction, the solution is given to the stated problem in the stated context and it
is illustrated with a labelled diagram. Finally, following another line of three
diamonds, smaller patterns are discussed which are needed to complete the one
under consideration.

To illustrate the so-called ‘Alexandrian’ format, Figure 28 below shows one
complete pattern taken from A Pattern Language.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
95

Figure 28: The Alexandrian format (A Pattern Language, pp. 392-396)

The structure in the Alexandrian format is relatively weak. Almost all of the
description comes in the form of narrative text and there are no subheadings. An
evocative image helps draw the reader in. Then, typesetting changes are used to
distinguish the different components of a pattern, which is separated from its
larger and smaller patterns with no more than a sequence of diamond shapes at
the very beginning and at the end, respectively.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
96

In contrast, if we look at the domain of UID (this being the closest to user
documentation), we see that with one notable exception (Borchers, 2001) most
pattern languages apply a more strongly-structured template to the pattern
descriptions, with fixed subheadings (Bernhaupt, Winkler, & Pontico, 2009; Deng,
Kemp, & Todd, 2006; Kohler & Kerkow, 2008; Segerståhl & Jokela, 2006; Tidwell,
2010; van Welie, 2001). For an example, see Figure 29 below. However, even
within this one discipline there is no consensus on what that structure should be.
An XML DTD has been proposed for all pattern languages in the UID domain to
adhere to, named PLML (Pattern Language Markup Language) (Deng et al., 2006;
Fincher, 2003), but this has nowhere near been universally adopted. Every one of
the pattern languages referenced in this chapter comes with its own structure
evidenced by its own set of mandatory and optional subheadings.

Figure 29: Strongly-structured format (van Welie, 2001)

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
97

Usability Aspects

So, which is ‘better’, the Alexandrian narrative format or a strongly-structured
format?

We should ‘practice what we preach’ and pay attention to the usability of our
pattern languages (Kotzé & Renaud, 2008). The general consensus is that a
strongly-structured format for pattern descriptions is a prerequisite for usability
(Engel, Märtin, Herdin, & Forbrig, 2013; Hennipman, Oppelaar, & van der Veer,
2008; Schobert & Schümmer, 2006; Todd, Kemp, & Phillips, 2004). However, it has
also been concluded that “although the use of patterns is reported, there is little
concrete evaluation of either the usefulness of pattern languages within the
process or the contribution that they have made to the quality of the end product
or to the design process (with notable exceptions)” (Dearden & Finlay, 2006). This
conclusion was drawn after a thorough examination of well-respected design
patterns and pattern languages in HCI, focusing on four key issues (“What is a
pattern?” “What is a pattern language?” “How are patterns and pattern languages
used?” and “Values and pattern languages”). The authors then laid out an extensive
agenda for future research. In the intervening years, some of this research was
carried out. Repeatedly, it was found that strongly-structured methods for
presenting design patterns do not immediately make for easy learning,
comparison, and application (Bernhaupt et al., 2009; Hennipman et al., 2008;
Kohler & Kerkow, 2008; Kotzé & Renaud, 2008; Kotzé, Renaud, & van Biljon, 2008;
Niebuhr, Kohler, & Graf, 2008; Segerståhl & Jokela, 2006).

Taking into account all the evidence, the assumption that a rigid description
format under all conditions improves a pattern language’s usability seems
untenable. Different stakeholders have different main uses of a system. The
question which format is ‘better’ thus cannot be answered directly: as usual, the
answer must be, ‘It depends’.

A pattern language is a way of recording information, that is, a notation. This being
so, its usability can be evaluated using the framework of Cognitive Dimensions
proposed by (Blackwell & Green, 2003), who pointed out that six generic types of
notation-use activity can be distinguished and gave generic examples of all. They
also pointed out that each has different requirements for support.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
98

Table 2: Six types of notation-use (first two
columns taken from (Blackwell & Green, 2003)).

use of the
notation

use case (general) use case (pattern-
language-specific)

incrementation adding cards to a cardfile,
formulas to a spreadsheet, or
statements to a program

adding patterns to the
collection

transcription copying book details to an
index card; converting a
formula into spreadsheet or
code terms

including selected
patterns into a working
document, such as a plan
of approach for a real-life
design project

modification changing the index terms in a
library catalog; changing layout
of a spreadsheet; modifying a
spreadsheet or program for a
different problem

changing pattern
descriptions

exploratory
design

sketching; design of
typography, software, etc;
other cases where the final
product cannot be envisaged
and has to be “discovered”

designing an intervention
using the pattern
language

searching hunting for a known target,
such as where a function is
called

finding a particular,
known pattern in the
collection; or finding a
specific aspect in a
pattern description

exploratory
understanding

discovering structure or
algorithm, or discovering the
basis of classification

discovering the
underlying value system

Table 2 above shows the six uses, with examples, quoted verbatim in the first and
second columns (note that the phrasing of the column headings is mine). The third
column shows how the six uses are instantiated for the more specific case of the
notation being a pattern language.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
99

Individual users of a pattern language are unlikely to display all six use activities: a
pattern language has more than one group of stakeholders. Design practitioners,
or ‘pattern users’, are any pattern language’s immediate stakeholder. But such a
language does not come into existence without the efforts of a second type of
stakeholder, one that we can label ‘patter writers’: experienced designers who
record their knowledge by writing patterns for others to apply in the course of
their work.

For a pattern writer, the most relevant uses of a pattern language are
incrementation and modification. A strong structure can ensure that nothing is
forgotten and that nothing ends up in the wrong place. It may on the other hand
also stifle the writer’s creativity. Some of the writer’s ideas may not fit comfortably
under any of the language’s headings, so that clarity is lost or valuable content
discarded. Conversely, the writer may struggle to come up with content for all of
the headings, leading to repetition and again loss of clarity.

For a pattern user, the most relevant uses of the language are transcription and
exploratory design. Those patterns that are selected for real-life application are
usually transcribed into a working document, for which some degree of
structuring would be conductive. Before transcription can take place, however, the
patterns must be selected in a process of exploratory design.

The Alexandrian format invites browsing more than searching. Indeed, as we have
seen earlier (p. 90), Alexander never intended his pattern language to be searched
for immediately-applicable guidelines. Design patterns do not take the creativity
out of the design process and are intended to be applied by experienced designers
rather than novices or those whose expertise is in a different design area
(Appleton, 1997; Coplien, 1998). An experienced designer would not search a
pattern language for a particular solution to a well-defined problem but approach
the collection as a whole, looking for inspiration and interesting suggestions. The
Alexandrian format then meets the needs of experienced designers better than a
strongly-structured format would. Still, a pattern language should ideally cater for
experienced and inexperienced users alike, so that the latter can over time hone
their design skills in the chosen domain. Designing things, whatever these things
may be, is after all a skill that can be developed only with practice. A strong
structure supports searching more than browsing. As a consequence, it is better
suited to disclosure through computerized means (de Moel & van der Veer; Deng
et al., 2006; Engel et al., 2013). This would imaginably make strongly-structured
languages more usable to novice designers or those whose experience is mainly in
a different field.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
100

A Proposed Format
Taking into account all the considerations, an attempt can be made to combine the
best of two worlds, to support a user’s exploratory design and transcription as
well as a writer’s modification and incrementation. Alexandrian weakly-structured
narrative to invite browsing is then combined with prescribed subheadings to
allow for a certain degree of searching. This gives a modified Alexandrian format in
which typography is maintained, as is the order in which elements are presented.
The reader’s interest is piqued by an evocative image immediately following the
pattern’s name, and a short description of what the pattern looks like is placed
underneath. The narrative is enhanced with a limited number of subheadings
drawing attention to the main elements. Care is taken to ensure that the
subheadings do not detract from the narrative and that the text can be read
without reference to them; as is the case in the original Alexandrian format
(shown in Figure 28) but not in a strongly-structured pattern language (e.g. Figure
29). Thus, the subheadings are complementary to the narrative. A reader who does
not wish or need to understand a pattern in great depth can limit himself to
scanning the overview and the paragraphs set in bold. Together with the pattern’s
name, these are also all that need to be copied when transcribing a pattern.

In this manner, the needs of both pattern users and pattern writers are met:

 When engaging in exploratory design, a user is encouraged to browse the
language. Elements that are needed to quickly grasp the essence of a particular
pattern stand out, so that patterns that are of no interest to the user can be
discarded straightaway without the need for them to be read in their entirety.

 When transcribing the selected patterns into a working document, a user can
skip the detail and easily focus on those same elements that together
summarize the pattern.

 When modifying a pattern, a writer can quickly find the appropriate location
to be changed, through the subheadings and boldface.

 When adding patterns to the language, a writer is guided by the subheadings
without being stifled in his creativity.

The SDDPL presented in the next three chapters of this thesis uses the following
subheadings:

 problem—the problem is phrased in terms of the underlying value system.
Where can we expect spokes in the wheels of the knowledge engine? The
problem is printed in a bold typeface.

 discussion—the discussion includes theoretical considerations as well as
examples from practice.

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
101

 solution—the solution is phrased in practically applicable terms. Like the
problem, the solution is printed in bold.

 rationale—the rationale explains how the proposed solution removes the
problematic obstacle from the knowledge engine.

 consequences—consequences include considerations on the effects of the
pattern on behaviour, and may lead to refinements of the proposed solution.
When present, such refinements are also printed in bold, to clearly link them
to the solution.

The SDDPL does not require for a solution to have been implemented repeatedly in
practice before it is captured in pattern form. In the SDDPL, for a pattern to be a
“proven design” as the definition requires, theoretical considerations are as
acceptable as repeated practice. This was a conscious decision. Only by following
the spirit of Alexander’s original definition (which requires that the problem
occurs “over and over again in our environment”; not that the solution does so) can
patterns be recorded that are informed by (fundamental or applied) research. This
is needed to push practice beyond its current world view. “If you do what you
always do, you get what you always get” as common wisdom has it; and then, little
progress will be made.

The organizing principle of the SDDPL was created so as to incorporate the
underlying value system and to meet the identified needs of the main
stakeholders. Every pattern language will pose its own demands on the
subheadings that are chosen. The subheadings in the SDDPL were chosen so as to
reflect most accurately that particular language’s dual purpose. The SDDPL’s
intended audiences include not only the stakeholder groups identified earlier
(users and writers of design patterns in a particular field, in casu, that of software
documentation) but also that personified by the examining committee of my PhD
thesis. This is a non-standard audience for design pattern languages. In languages
other than the SDDPL fewer references might be made to, for example, academic
underpinnings.

In the next three chapters of this thesis, a small number of design patterns for
software documentation is presented in this format. A hierarchy of scope is
applied, as follows:

 Chapter 7 contains a number of macro patterns: patterns that are applied to a
complete documentation set and underlie the complete approach to the
problem of ‘how to document software product X’.

 Chapter 8 contains a number of meso patterns: patterns that are applied to a
complete documentation artefact and drive the design of one particular
document (which may or may not be part of a set).

SDDPL Value System and Organizing Principle

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
102

 Chapter 9 contains a number of micro patterns: patterns that are applied to
components of a documentation artefact, yielding something that cannot stand
on its own.

It is hoped that practitioners, when designing a documentation artefact, will use
the collection of design patterns much as Alexander envisaged his to be used (p.
90). Unlike Alexander’s, however, this pattern collection is by no means even
remotely exhaustive. The patterns were selected more or less randomly, based on
informal discussion with various practitioners and academics. Some of those in
Chapter 9 were mined in a ‘focus group’ during the EuroPLoP 2015 conference in
Kaufbeuren, Germany (see Appendix 3. Using the Repertory Grid Technique for
Mining Design Patterns).

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
103

7. Macro Patterns
‘Macro’ patterns are applied to a complete documentation set and underlie the
complete approach to the problem of ‘how to document software product X’.

1. Documentation Environment

Documentation should empower the user. This will not happen when the
documentation is something that stands between the user and the work. Rather,
documentation must be part of the work environment, for the user to dip into
when he feels the need; and be rewarded with a more thorough understanding and
an increased sense of mastery.

problem To master software with high use complexity, constructive learning is
required in which the learner is actively engaged. A documentation journey
that is driven by the author will not maintain such engagement but rather
replace germane cognitive load in the form of upgrading with extraneous
cognitive load, as the chance of the author having correctly predicted what
the reader needs in any given situation is very small.

discussion For novices interacting with activator software, a large amount of effort must be
spent on the documentation journey to meet even the simplest of ambitions. The

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
104

documentation journey then truly becomes a separate task (see Figure 6), bringing
much more load than immediate value. As a consequence, the knowledge engine
can be expected to rapidly run down, and grind to a halt long before mastery has
been achieved.

The German philosopher Martin Heidegger (1889–1976) tells us that people
encounter things as either ready-to-hand (RTH) or as present-at-hand (PAH).
Something that is PAH constitutes more load than something that is RTH. Creating
artefacts (documentation) which are experienced as RTH despite being PAH may,
in principle, be impossible (Wheeler, 2015). We can, however, try; by providing a
documentation ‘environment’ as part of the work environment in which the user
moves. The aim is to maximize the chance that when the user reaches for the
documentation, there is something there that answers his felt information need.
This will not reduce the amount of effort that is required, but it will reduce the
subjectively experienced load.

A small-scale example of a documentation environment for users to access as and
when they see fit is the Crystal Caliburn Player Guide18, a printed booklet
accompanying a pinball simulator game. Rather than expecting the user to master
the software by reading the manual, it says explicitly (in the last paragraph of the
introductory page): “Please try playing first without reading the manual. Then
read the explanation of features and try again. You will find new ways to enjoy the
game.” This manual contains various types of information that is offered to the
reader without much advice as to how or when to access it. Even the Arthurian
legend is given to which the game’s name and visual design refer, as are various
playing techniques that have proven their worth in the physical world of pinball
machines.

A much more extensive example is found in software maker Adobe’s
documentation package for the FrameMaker 5 product19, which consists of four
separate printed products included in the box with the software, plus online Help,
collections of templates and clip art, and additional manuals that can be
downloaded in PDF format (see Figure 30, taken from the User’s Guide).

18 © 1992, LittleWing CO LTD
19 © 1995, Frame Technology Corporation

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
105

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
106

Figure 30: Documentation environment for FrameMaker 5 (User’s Guide,
pp. xiv-xv).

FrameMaker 5’s set of documentation products is reminiscent of a so-called
‘constructivist learning environment’ or CLE. A CLE embeds instruction in
authentic practice in accordance with the constructivist guidelines discussed
earlier (see p. 72). CLEs provide learning experiences through an authentic
problem, question or project surrounded with various interpretative and
intellectual support systems. The goal of the learner is to interpret and solve the
problem or complete the project. The support systems in a CLE take the shape of
modelling (showing how the task could or should be performed), coaching (helping
the learner to perform the task) or scaffolding (providing just-in-time materials
that are helpful in performing the task). The scaffolding must be faded out of

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
107

existence as the learner’s expertise progresses, as over time it will become
redundant and add to the cognitive load rather than reduce it (Jonassen, 1999).

Constructivist principles have been applied extensively and successfully to
multimedia and hypertext environments (Hummel, 2005; Spiro et al., 1988; Spiro
et al., 1992). They could equally well be applied in documentation. Many of the
constructivist guidelines are met by documentation naturally, without requiring
designer effort (see Table 3). In the same way that a CLE is designed to provide
explicit instruction, documentation can be designed to implicitly stimulate
learning.

Table 3: Constructivist guidelines for
instructional materials that are naturally met by

documentation.

 providing authenticity of practice

 anchoring practice in meaningful context

 embedding learning in social interaction

 stimulating the application of knowledge-
in-use

 fostering active participation of the learner

 placing a case at the focus of the
experience

 providing interest and relevance

 providing an ill-defined and ill-structured
learning environment

 demonstrating complexities and
irregularities

 demonstrating interconnectedness of
knowledge

 revisiting content

 providing related cases

The use of documentation is
always driven by authentic
practice springing from
externally imposed, real-life
ambitions. Its very nature
ensures that the other
requirements listed are met.

 providing learner control

 providing access to information

 providing cognitive tools

 offering multiple representations and
perspectives

Any form of documentation is
accessed exclusively under the
control of the user, at the exact
moment that the need is felt to
do so. Multiple representations
and perspectives can easily be
provided.

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
108

solution Therefore:

For activator software, provide a large number of fundamentally different
documentation products containing information of different types, formats,
approaches, modalities etc.; offering modelling, coaching and scaffolding.

rationale The variety of the information in a documentation environment ensures that there
is always something that immediately meets the user’s current need; whatever
that need may be. This allows for upgrading leading to value, while the
documentation seems useful and attractive so that the effort involved in the
documentation journey is not experienced as high load.

consequences Table 3 does not tell the whole story. Documentation may hold promises for
fostering learning by meeting many constructivist requirements naturally, it is also
handicapped in ways that explicitly designed instruction is not. Although learner
control is a requirement that follows from constructivist principles, it is not under
all circumstances an inducement to learning. The production bias can all too easily
result in premature acceptance of a suboptimal solution, prohibiting the assembly
of new knowledge structures. There exists a similar problem with the requirement
of building upon prior knowledge. This will definitely take place if real-world tasks
provide the learning environment, but the assimilation bias will do its utmost to
stop the learner from rejecting any existing yet undesirable conceptions. As it is
the learner himself who provides criteria and touch-stones for success or failure,
his lack of knowledge may result in incorrect interpretation. Also, the assessment
is by its very nature evaluative rather than formative and not automatically
focused on transfer. Finally, documentation can stimulate meta-cognition only
indirectly.

Therefore, when implementing this pattern:

Provide meta-information to explicitly define the context of applicability and
the criteria for successful application.

… A DOCUMENTATION ENVIRONMENT can be seen as a complete set of JOB AIDS
supporting not just the syntactic layers of operator software but also the semantic
and task levels of actor and activator software…

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
109

2. Media Mix

Documentation can be offered in two fundamentally different media: hard copy
(print) or soft copy (on-screen). As the choice of medium affects reader interaction
with a document in a number of respects, a documentation set ideally includes
both hard copy and soft copy. Only then can for every type of information the
choice be based on relative strengths and weaknesses.

problem When either hard copy or soft copy is selected for presentation of the
documentation, there will always be some bits of information that are
difficult to find, filter, or apply in the context of the current information
need. Such information cannot be used for upgrading and constitutes
extraneous cognitive load that is not offset by value.

discussion To clarify the difference between hard copy and soft copy, the following is taken
from page 14 of the Flare v11.1 Targets Guide (© 2015, MadCap Software). Note
that this supplier of software for documentation development uses ‘online output’
to denote the more traditional ‘soft copy’, and ‘print-based output’ for the more
traditional ‘hard copy’:

There is a fine line between what is called "online output" and what is called
"print-based output." The truth is that topics in virtually any of Flare's online
output types can be sent to a printer, and therefore considered print-based.
Similarly, any of the print-based output types can be viewed electronically,
and therefore considered online. The real distinction between online and
print-based outputs has to do with their primary purpose. Online outputs are
usually intended to be viewed on a screen, rather than on a printed page. The
idea is to show only small pieces of content at a time and allow users to jump
around to other topics or elements of the output. On the other hand, print-
based output follows a more traditional format that you would find in an
actual book or manual—with the pieces of the output following one after the
other on pages until the end of the book (e.g., title page, table of contents,

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
110

preface, chapters, index, appendixes—with page numbers, as well as header
or footer content, shown along the way). Then there is EPUB output, which is
intended to be viewed on a screen, but follows a structure closer to print-
based outputs.

In organizational practice, the choice between soft copy and hard copy is not
usually made exclusively by a documentation designer. Other roles within a
company will be involved, who bring to the decision considerations related to
available resources (tooling, budget, manpower) as well as personal preference
and prior experience. But the choice for soft copy or hard copy has far-reaching
consequences for the reader’s documentation journey. By creating a
documentation set containing both hard copy and soft copy products, all of the
information can be provided in the most suitable manner.

solution Therefore:

Rather than delivering the whole body of information in one documentation
product, or multiple products deploying the same medium, create one or
more hard copy products and one or more soft copy products depending on
the nature of the information.

rationale Information that is not, or not optimally, processed may as well not be present at
all. By offering all information in the medium best suited to it, upgrading is enabled
and extraneous cognitive load is removed from the documentation journey.

consequences Simply providing a printed user manual alongside an online Help system does not
in itself make a Media Mix. Rather, all the information must be offered through that
medium that best suits it, balancing considerations such as the following.

mediation

Hard copy is a stand-alone information artefact that can be accessed without any
further mediating technology. All that is needed, is sufficient ambient light. Soft
copy, on the other hand, requires a device (a computer, smartphone, tablet, e-
reader etc.) for the information to be accessed.

familiarity

Cognitive artefacts that are effortlessly recognized as ‘books’ have been around for
hundreds of years. Countless generations have learned, often at a very young age,
to interact with printed matter. Doing so is a skill that is reinforced by practice on
an almost daily basis. Moreover, the long tradition of books means that their
design has had a very long time to mature (Tebeaux, 1997). In contrast, soft copy is
presented in a possibly unfamiliar environment that itself needs to be mastered
before the information can be accessed.

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
111

modalities

Hard copy offers only a very limited number of modalities: text and static images.
In addition, soft copy offers diagrammatic and realistic video, spoken or non-
spoken audio, and any combination of these. (For a complete overview of all
theoretically imaginable modalities see Bernsen, 1994.)

accessibility

In hard copy, the reader can access any and all of the information almost
instantaneously and at any time, by turning to the appropriate page. It is possible
to know immediately how much information there is and to see at a glance what
the nature of that information is. In hard copy, the reader determines the
information journey and the author can do no more than suggest an itinerary.

In soft copy, on the other hand, the reader can go from one bit of information to
another only if the author has explicitly built links between them. A soft copy
product has no structure other than that created by the author. Searching, too, is in
soft copy limited to capabilities that have been explicitly built in by the author. In
soft copy, the author creates the experience and the reader is limited in his
choices: if he does not like what he gets, all he can do is walk out.

affordances

The two media allow for different ways in which the reader can get from one piece
of information to another. As a consequence, they also offer different strategies to
an author who wants to guide the documentation journey in a particular direction.

To understand this, the concept of affordances is helpful. Affordances are a
powerful concept in (ecological) psychology, albeit one that means slightly
different things to different people (Michaels, 2003). Its core is formulated in the
following definition: “Affordances are the actions permitted an animal by
environmental objects, events, places, surfaces, people, and so forth. An action is
understood as a goal-directed movement (or non-movement) that entails
intention, the detection of information, and a lawful relation between that
information and the control of the movement. […] Affordances exist independent
of being perceived.” (Michaels, 2003, p. 146). In the context of the information
journey, affordances can be defined as follows:

Definition: Affordances are the opportunities for access to information permitted
a reader by elements in the documentation.

Affordances may be purposely provided by the author; or they may occur as a
consequence of unrelated design decisions. All other things being equal, the more
affordances there are for a reader to access a ‘next’ piece of information, the less
probable it is that that particular ‘next’ piece is accessed. Imagine a documentation

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
112

product consisting of n pieces of information. Were every piece to have exactly one
affordance to another one, without any pieces being included more than once in
the sequence, then there exists only one possible path through all the pieces.
Unless the reader decides to opt out half-way through, the probability of the path
being followed is 100%. At the opposite end of the spectrum, now imagine that
every piece of information contains affordances to every other piece. Such a fully
connected network structure contains n! possible paths through all the pieces even
if every piece would be accessed only once. The probability of a particular path
being followed is 1/n!, which decreases rapidly with increasing values of n.

Rather than leaving to chance which path a reader follows through a
documentation product, the author of such a product will in most situations wish
to identify a subset of the full network, creating or strengthening some affordances
and downplaying others, to arrive at a design that presents information in a
premeditated order. Readers choose one (perceived) affordance over another on
the basis of the relative strength of the ‘information scent’, or the proximal cues to
the nature of remote content (Pirolli, 1997, 2006). The probability of a particular
affordance being selected is a function of the relative strength of its information
scent (Chi, Pirolli, Chen, & Pitkow, 2001) . Thus, the art and craft of stressing one
particular path through a documentation product and downplaying others lies in
the purposeful application of information scent.

Affordances, now, are highly dependent on the medium on which the information
is recorded. In hardcopy, and in soft-copy where pages may display multiple pieces
of information, there is information scent in proximity (Belew, 2000, p. 18);
expectation (familiarity with a particular design leads readers to expect
information of a certain type to be present in a particular location); and labelling
(textual or visual cues as to the nature of the information). All these manifestations
of information scent can be intentionally stressed or downplayed when designing
a particular documentation product.

Over the centuries, a vast number of canonized affordances for hard copy have
been devised to provide access mechanisms into the body of information. Some of
these rely on the presence of page numbering (Table of Contents, index, a list of
figures) while others do not (‘tabbed’ sections, alphabetical ordering, sequential
heading numbering).

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
113

Figure 31: Tabbed sections in hard copy

Those access mechanisms that rely on page numbering can by definition not be
used in soft copy, and neither can those that rely on physicality (such as the tabbed
sections shown in Figure 31). Soft copy offers its own access mechanisms: menu
structures, direct hyperlinks, and full-text search are the most familiar ones.

physicality

In hard copy, the reader physically interacts with the text: by reaching for a text or
pushing it away, by inserting bookmarks, underlining, making written marks in the
margin, folding the corner of a page or the spine or the stapled pile of sheets, etc.
All these affordances are built into the medium of hard copy. In soft copy, only
virtual approximations of the same actions can be carried out, and these only
insofar as explicitly provisioned by the author (e.g., Small, 1999). There is evidence
that when physically interacting with hard copy, readers incidentally remember
where on the page and where within the text a particular piece of information was
encountered (Mangen, Walgermo, & Brønnick, 2013; Rothkopf, 1971). This then
helps them build a mental model of the information which in turn is positively
correlated to improved comprehension (Cataldo & Oakhill, 2000; Mangen et al.,
2013; Rothkopf, 1971).

Soft copy allows for ‘hypertext’: separate stretches of text connected by
‘hyperlinks’, which are hot spots in the text on which the reader can click, to be
immediately taken to a different location. This can lead to a sense of being ‘lost in
hyperspace’, where the reader no longer knows ‘where’ in the text he is (Charnock,

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
114

Rada, Stichler, & Weygant, 1994; Gwizdka & Spence, 2007; Otter & Johnson, 2000;
Smith, 1996).

preference

At the turn of the century, the enthusiasm for the then-new medium of soft copy
was such that its desirability was pre-supposed, and work was done on mimicking
in soft copy highly physical ways of interacting with documents, such as that
engaged in by Jewish scholars when studying Talmud and Torah (Small, 1999).
Small’s work bore the title “Re-thinking the Book”, without considering whether
the book needs re-thinking in the first place.

The novelty has worn off. Many people have a preference for hard copy over soft
copy when it comes to text that needs internalizing, be it for work or for pleasure
(Geske & Bellur, 2008; Schriver, 1997, pp. 383-389). Despite the immense
computerization of knowledge work, the “paperless office” is still a myth (Sellen &
Harper, 2002); and the market share of e-books is still limited, for example to 5.9%
of total book sales in the Netherlands in the first quarter of 2016 (source: Centraal
Boekhuis20).

Prompted by such anecdotal evidence, numerous studies have been carried out to
determine whether information presented in soft copy is processed in the same
manner as that presented in hard copy. Occasionally, no differences are found
(Askwall, 1985; Margolin, Driscoll, Toland, & Kegler, 2013) but more often,
respondents are found to perform significantly better with hard copy than with
soft copy: devoting more attention to the reading task (Geske & Bellur, 2008),
scoring better on learning assessments (Emerson & MacKay, 2011), exhibiting a
greater degree of understanding and creativity (Wästlund, Reinikka, Norlander, &
Archer, 2005) or comprehension (Mangen et al., 2013; Mayes, Sims, & Koonce,
2001), showing more depth of recall (Noyes & Garland, 2003). Most of these
studies’ authors conclude that to the question of which medium is preferable, the
answer must be, “It depends”.

Therefore, when implementing this pattern:

 Use hard copy:

 for information that the reader should carefully consider and
thoroughly understand;

 for long stretches of narrative;

 for information that needs to be accessed before the software is
installed (such as installation instructions).

20 Accessed on 25 April 2016 at http://www.cb.nl/wp-content/uploads/2016/04/6-E-book-
barometer-NL-ENG-Q1-2016.pdf

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
115

 Use soft copy:

 for information that is highly modular;

 for information that need not be referred to for long stretches of time,
nor away from the computer;

 for information that is heavily cross-referenced;

 when there is a requirement for animation or audio.

… As the choice of medium determines the possible modalities, a MEDIA MIX allows
for the widest possible range of micro patterns such as SCREEN CAPTURES. A MEDIA
MIX is easily combined with the SEPARATION OF PURPOSE pattern…

Macro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
116

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
117

8. Meso Patterns
‘Meso’ patterns are applied to a complete documentation product and drive the
design of one particular document (which may or may not be part of a set).

3. Separation of Purpose

A document is not a monolith but is constructed from smaller units of information.
The author’s main purpose when creating any of these is one of a very limited
number. Making each unit ‘stick’ to its main purpose makes it easier for the reader
to find and apply pertinent information.

problem Faced with a large amount of information where no indication is given as to
what to do with it, it is difficult for a reader to determine what to do with the
information that is found. Applying the wrong information or applying
information wrongly will yield undesirable results with low value.

discussion A documentation product may contain a large amount of information. For software
with high use complexity, it is impossible to structure the information so that it is
in any context both correct and complete; and trying to do so means burdening the
user with extraneous cognitive load. Rather than guessing, the solution is to start
not from the reader’s unknown needs but from the author’s known purposes. The
reader will then be able to determine where to look and what to do.

Recorded information (such as documentation) is always intentional, in that the
author has a desire to have a particular effect on the reader (e.g. van der Meij,
1997). This purpose is the one taxonomy of information that is truly time-
invariant, medium-invariant and method-invariant. Whether we look at Sumerian

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
118

clay tablets inscribed thousands of years BCE (see Figure 35), at technical manuals
published in Renaissance England (for examples, see Tebeaux, 1997), or at the
Help system for a scientific software package, we find units of information each
having a particular purpose.

Over the ages, the number of possible purposes for recorded information has
remained limited to the same handful. The author’s purpose may be: for the reader
to read the information and act on it (read-to-act); to read the information and
remember it (read-to-know); to read the information and consider it (read-to-
consider); or to scan for a particular piece of information that is then immediately
applied and after its application, forgotten (read-to-use). In addition to these four,
other purposes can be for the reader to read and enjoy the information (as in
literature or entertainment) or to read the information and change his beliefs (as
in sales materials or political propaganda). These two are by their very nature not
often encountered in documentation.

read-to-act

Read-to-act information is created by an author wanting for the reader to act in a
particular manner. Traditionally, read-to-act information is presented in the form
of stepwise instructions (see p. 166), outlining the sequence of steps that must be
followed. They can however equally well be presented as running text or in non-
textual formats such as audio (‘walk-throughs’), video (as popular on YouTube), or
diagrams such as flow charts.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
119

Figure 32: Read-to-act information in (left) a user
manual for a mobile telephone21 and (right) one

for a Help development environment22.

Figure 32 shows read-to-act information at the syntactic layer. When internalized,
this becomes procedural knowledge. Read-to-act information can also discuss

21 Nokia N97 mini User Guide, ©2009, Nokia
22 Flare 11.1 AutoNumbers Guide, ©2015, MadCap Software

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
120

steps to be taken at the semantic layer. When internalized, the information then
becomes strategic knowledge.

read-to-know

Read-to-know information is created by an author wanting for the reader to
understand concepts and facts that are part of the software world. Such
information is value-free and can be re-used in different situations, under different
conditions, from different perspectives and to different ends. Read-to-know
information is descriptive and often presented in narrative text (perhaps
containing lists and/or graphics), or in static or dynamic graphics enhanced with
textual labels.

Figure 33: Read-to-know information in (left) a
user manual for a mobile telephone23 and (right)

one for a Help development environment24.

The leftmost image in Figure 33 shows read-to-know information at the syntactic
layer. When internalized, this becomes situational knowledge. The rightmost
image in Figure 33 shows read-to-know information at the semantic layer. When
internalized, this becomes conceptual knowledge.

read-to-consider

Read-to-consider information is created by an author wanting for the reader to
consider a particular circumstance when accessing or applying other types of
information. It may be visually marked so as to indicate a position outside the
main information stream. Read-to-consider information may aim to direct the use
of the documentation (e.g. lists of related documentation products, instructions on

23 Nokia N97 mini User Guide, ©2009, Nokia
24 Flare 11.1 Targets Guide, ©2015, MadCap Software

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
121

how to read a manual, or a table of contents) or that of the system itself (e.g.
warnings, exhortations, tips, examples, and vignettes to enhance motivation).

Figure 34: Read-to-consider information in (left) a
user manual for a mobile telephone25 and (right)

one for a Help development environment26.

Read-to-consider information is not likely to be internalized separately.

read-to-use

Read-to-use information is created to relieve the reader of the burden of
internalizing straightforward facts that can be directly applied, without further
consideration.

In a non-software context, a telephone directory is read-to-use information, as is
an ingredients list, or a record of the harvest of ripe dates in a particular year (see
Figure 35).

25 Nokia N97 mini User Guide, ©2009, Nokia
26 Flare 11.1 AutoNumbers Guide, ©2015, MadCap Software

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
122

Figure 35: Read-to-use information, recorded in 2035 BCE. This Sumerian
clay tablet records the harvest of ripe dates in two gardeners' date palm

orchards27.

In documentation, read-to-use information provides a reference sheet, for look-up
purposes. It lists facts that the user cannot be expected to remember in their
entirety even after a long period of intensive use of the software. A reference sheet
can simply be presented in tabular form on one or more pages in the
documentation product, giving an overview of (for example) toolbar icons,
parameters and their consequences, keyboard shortcuts, usage modes, installation
requirements or ‘known limitations’. Other formats are also possible: a series of
tooltips is also a reference sheet, albeit one where only one item in the list is
shown at any given time in any given context (see Figure 37). Yet another example
is a plasticized template that fits on the physical keyboard and shows what the
various function keys do.

27 http://www.brown.edu/Facilities/University_Library/libs/hay/focus/cuneiform/#translations

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
123

Figure 36: Read-to-use information in (left) a user
manual for a mobile telephone28 and (right) one

for a Help development environment29.

28 Nokia N97 mini User Guide, ©2009, Nokia
29 Flare 11.1 AutoNumbers Guide, ©2015, MadCap Software

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
124

Figure 37: Tooltip (with reference to more in-depth information), in
Microsoft Word 2013

Read-to-use information is not intended to be internalized other than, perhaps,
over time as a by-product of use.

The problem with mixing up information of the different types becomes apparent
in the fragments shown to the right-hand side in the figures in this section (the
ones taken from the Flare 11.1 user manual). Figure 32 shows steps 1-5 in a block
read-to-act information, starting on page 36 of the manual. Step 6 is given on page
38, and this procedure actually ends only with steps 9-11 on page 44. In between,
there is mainly read-to-use information (as on page 39, Figure 36) and read-to-
consider information in the form of examples and notes. As a result, the procedure
is very difficult to read or follow along. At the same time, the other types of
information are difficult to find. Finally, every attempt has been made to ensure
completeness of the read-to-use information, resulting in considerable repetition.
The sequence that occurs on page 39 (Figure 36) is also printed in full on page 29,
in the context of an only marginally different procedure. It will be very hard for a
reader needing that particular overview to find it; and if the two instances are
subtly different because of the different contexts in which they are presented,
there is a real risk of the reader ending up at the wrong instance and applying the
wrong information.

solution Therefore:

Separate the different types of information in accordance with the height of
the use complexity of the software. The higher the use complexity, the more
strictly the different types should be separated.

rationale When creating documentation for actor or activator software, the designer cannot
reliably predict the context in which a particular piece of information is applied.
One piece of information can be appropriate in many different contexts, depending
on the user’s current goal. Only the reader can know whether a particular piece of
information is required. Having to separate the wheat from the chaff would
constitute extraneous cognitive load. Doing the separation for him will help with
the searching, filtering and applying stageposts of the information journey and
increase the likelihood of valuable results.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
125

In an environment with low use complexity, on the other hand (such as the
fragments shown to the left-hand side of the figures in this section, taken from the
Nokia N97 mini documentation), there is much less ill-definedness. Every bit of
information is part of one workflow only and can be included in the
documentation at the appropriate point in that workflow. Putting it ‘where it
belongs’ in this situation does not add extraneous cognitive load but rather lowers
it, by removing the need to look for related and relevant information elsewhere
(see also Figure 47).

consequences Different types of information block bring slightly different consequences.

Read-to-act information is appropriate where there are ‘novel’ ways of interaction
for the user to choose from: that is, where there is width in the use complexity.
This type of information immediately increases the value. Playing along with the
production bias, read-to-act information is known to be the first thing that readers
look for in software documentation (Duggan & Payne, 2001; Eiriksdottir &
Catrambone, 2014; D. K. Farkas, 1999; Karreman & Steehouder, 2004; Karreman,
Ummelen, & Steehouder, 2005; van der Meij, Blijleven, & Jansen, 2003; van der
Meij & Gellevij, 2004; van Loggem, 2007).

Read-to-know information is appropriate where there is depth in the use
complexity. This type of information increases the value only in the long term; in
the short term, it adds to the load. For operator software, to counteract the
production bias it may be sufficient to offer the appropriate read-to-know
information alongside the corresponding read-to-act information. For actor and
activator software, there is no one piece of read-to-act information where the
read-to-know information finds a natural home; and the only way extraneous
cognitive load can be minimized is by making crystal-clear what knowledge is
missing and where it can be obtained.

Read-to-consider information is meta information, not directly related to the work
the user is carrying out. It will therefore always bring little subjective value to
offset the load. Much read-to-consider information can be omitted without adverse
effects—for example, typographical conventions in a printed manual are deployed
to help the reader, and should not need explicit explanation.

Read-to-use information is ‘external memory’, and this type of information reduces
cognitive load by freeing up processing power for things that matter. It adds to the
value but at the cost of situation processing, and therefore should be used only
when the latter is not required. Read-to-use information contains items which
each have meaning in total isolation from one another and achieves the highest
possible reduction of extraneous cognitive load if a particular item can be found
with as little effort as possible.

Therefore, when implementing this pattern:

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
126

No special effort has to be taken in order to get readers to access read-to-act
information.

When creating separate units of read-to-know information, mention them in
the read-to-act contexts where they are relevant and provide clear cross-
references.

Include read-to-consider information only where the benefits are obvious
(note however that in the case of safety warnings and copyright information,
legal requirements may exist).

Create read-to-use information only when there is little harm in the
information not being internalized, and pay attention to findability of both
the overview itself and one item amongst many.

… For the SEPARATION OF PURPOSE pattern to work, the information blocks must be
linked through CROSS-REFERENCES. A CONCEPTUAL MODEL can be used where
appropriate to link blocks of read-to-know information …

4. Motivator

When there is much to learn, the user will need to be motivated to persevere: both
with the software and with the documentation.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
127

problem The ambition to get the job done may not remain high enough for long
enough for full mastery to be achieved.

discussion Continuing learning in the CMA model relies on the ambition eventually covering
the full functionality of the software, and remaining at that level until full mastery
has been achieved. There are situations in which this may be too tall an order for
ambition that springs from real-life demands. The full functionality of software
with high use complexity is not known from the beginning, and such software
takes by definition considerable effort to master. The load is exacerbated by its
documentation being more voluminous than that for simpler software products.
But the ambition may also be insufficiently high if the use complexity is relatively
low: for example, when the intrinsic motivation is low in a particular individual, or
when the learning is difficult for a particular group of learners (such as the
elderly), or when bad design of the user interface introduces unnecessary
complication. A support mechanism must then be installed to reinforce the
existing ambition, to boost the engine when it is in danger of running down.

Practitioners have long been aware of the importance of a documentation
product’s motivational value. Not long before cell phone manufacturer Nokia was
bought by Microsoft, they completely re-designed their user manuals to be
attractive and inviting; Nokia’s Senior Offering Manager Minna Vänskä presented
the process to a fascinated audience at the 2013 conference organized by
TCeurope, the European umbrella organization for technical communication30. The
hugely successful ‘for Dummies’ series of reference books (published by Wiley,
Hoboken, NJ, USA) that help people “to solve problems and get up to speed on
topics that may seem difficult or intimidating”31 started out as a series of books on
popular software packages such as Microsoft Word™ and Excel™. And guidelines
have been provided (Horton, 1991) for the design of “user-seductive”
documentation to “woo and win the reluctant reader” (see Figure 38).

Satisficing (p. 50) is a powerful mechanism, but it is not the only determinant for
ambition and upgrading. An activity may be challenging in such a manner that its
challenging nature is also its appeal: athletes, artists, and amateurs do not satisfice.
Learning can be rewarding in itself and ‘finding out about’ or FOA can be fun
(Belew, 2000). In instructional design, the ARCS Model Approach to Motivational
Design for Learning and Performance (John M. Keller; John M Keller, 2009) offers
tools and strategies in the following areas:

 generating and sustaining attention (A)

30 presentation slides accessed on 25 April 2016 at http://slidehot.nl/resources/building-a-content-
portfolio-for-multi-channel-publishing-presentation-tceurope-colloquim-brussels-2013.214524/
31 http://eu.wiley.com/WileyCDA/Brand/id-9.html

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
128

 establishing and supporting relevance (R)

 building confidence (C)

 managing outcomes for satisfaction (S)

The first three of these were applied in Loorbach’s work, who added specific
motivational elements to a user manual for a cell phone and found positive effects
with senior citizens on confidence, motivation and usability (N. Loorbach,
Karreman, & Steehouder, 2007; Nicole Loorbach, Joyce Karreman, & Michaël
Steehouder, 2013; N. Loorbach, J. Karreman, & M. Steehouder, 2013; Nicole
Loorbach, Steehouder, & Taal, 2006).

solution Motivate the performer in his role as reader to persevere with the documentation
and in his role of user to persevere with the tool.

rationale Motivation can be thought of as a ‘boost’ to upgrading. As a bonus, higher
motivation reduces subjective load.

consequences Although Loorbach achieved positive effects by adding motivational elements to
existing user manuals, it must be borne in mind that her studies were done with a
very specific group of subjects, that is, senior citizens. In addition, the software
system being documented has little use complexity and as a consequence, the user
documentation was limited. These two aspects may account for the results
contradicting many others. As early as 1913, Dewey warned against attempts to
spice up existing materials with interest-enhancing detail (Dewey, 1913). Since
then, it has repeatedly been found that such a strategy is counterproductive (for an
overview of the literature, see Harp & Mayer, 1998). For products with
considerable use complexity, elements such as informally phrased exhortations, or
personas sharing their ‘personal’ experiences, will be annoying rather than
motivating.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
129

Figure 38: Contents of “Secrets of User-Seductive Documents: Wooing and
Winning the Reluctant Reader”(Horton, 1991)

Therefore, when implementing this pattern:

 Treat ‘motivation’ as an all-pervading characteristic of the
documentation (as in the ARCS model) rather than something that can be
added afterwards.

 Look for motivational elements that do not add to the load of using the
documentation.

 Use ‘fun’ elements for low-complexity software only.

… Motivation is especially important when the learning is completely under the
user’s control, as in the EPPO and DOCUMENTATION ENVIRONMENT patterns…

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
130

5. Every Page is Page One (EPPO)

Since users cannot be forced to read the documentation in any order prescribed by
the author, every ‘page’ of a documentation product can in practice be the first.
Rather than fight this fact of life, we could cater for it.

problem When all is said and done, the reader will read the documentation in an
order determined by himself. In doing so, he may miss interesting and useful
pieces of information. Especially when there is high use complexity, it is
necessary for the user to be shown the existence of concepts that he is not
yet aware of; so that his ambition is gradually raised and eventually, over a
number of iterations, the documentation journey will have covered all that
he needs to achieve full mastery.

discussion In his book Every Page Is Page One (“EPPO”), technical writer Mark Baker points
out that readers of documentation search for the solution to an actual problem
rather than satisfying a more general information need. He therefore advocates
documentation consisting of a potentially large number of separate ‘topics’ which
have the following characteristics (quoted verbatim from Baker, 2013, p. 78):

 Self-contained: An EPPO topic is self-contained. It has no previous topic and
no next topic. It does, however. rely on the whole information environment in
which it is located for supporting and ancillary information.

 Specific and limited purpose: An EPPO topic has a specific and well-defined
purpose. This is highly related to the purpose of the person who is reading it,
but it is not the same thing. One topic has to serve many readers, and is
designed to serve a community. not an individual.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
131

 Conform to type: It turns out that, unlike book length content, Every Page is
Page One topics seem to naturally conform to fairly well-defined types, often
the result of a community process that develops the best way to treat a
particular kind of subject. The type of a topic is based on its purpose: the type
defines the information necessary to serve its purpose.

 Establish context: Readers can come to an Every Page is Page One topic from
anywhere. An EPPO topic must establish its context in the real world so
readers knows where they are and what to expect.

 Assume the reader is qualified: An EPPO topic assumes readers are qualified
to complete the specific and limited purpose of a topic. Readers who are not
fully qualified can read other topics to get the information they need.

 Stay on one level: Books tend to change their level of abstraction and detail
over the course of the narrative. But information foraging readers prefer to
choose for themselves whether to go for detail or the big picture. An Every
Page is Page One topic stays on one level and allows readers to change levels
whenever they wish by changing topics.

 Link richly: An EPPO topic is meant to support effective information foraging.
Therefore, it links richly along the lines of subject affinity to help the reader
follow the scent of information.

Not mentioned explicitly but assumed implicitly is the need for a meaningful name
for every topic.

An example of EPPO given by the author is Wikipedia32. Wikipedia articles (for an
example, see Figure 39) are self-contained and can be read in isolation. They are
clearly scoped, stay on one level, conform to a particular type, and are embedded
in the context of a greater whole through hyperlinks to related articles. No matter
how much or how little a reader already knows about a subject, after reaching a
pertinent article he can always easily tailor the information journey to his
particular situation.

32 www.wikipedia.org

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
132

Figure 39: Part of a Wikipedia article33

solution Therefore:

Do not build a prescribed or even suggested reading order into the
documentation product but make it consist of separate, self-contained yet
interlinked articles so that the reader can map out his documentation
journey driven by the currently felt need for information. Make sure that the
whole User Virtual Machine is covered but leave to the reader which parts of
the documentation to access as and when required, depending on his current
activity and level of expertise.

rationale When no particular reading order is given, the reader is forced to actively consider
the documentation in order to find in it what he needs at any given moment. This
provides germane cognitive load and at the same time reduces extraneous
cognitive load from the documentation journey, as all the information that is found
will be pertinent and meet the felt information need. The wealth of cross-
references, finally, allows the author to show the existence of related, relevant
information which is easily reached; this raises the ambition.

33 screen captured on 6 October 2016 from https://en.wikipedia.org/wiki/Icelandic_horse

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
133

consequences The study described in detail in Appendix 2. “Nobody Reads the Documentation”—
True or Not? showed a predilection for ‘unauthorized’ sources of information such
as whoever happens to be around, or sources found on the open Internet. These
results fit a repeatedly-confirmed observation in areas other than that of recourse
to (software) documentation. Time and again it is found that ease of access and
convenience are the strongest determinants for the choice of an information
source, with online browsing as the single most popular method for seeking
information (Connaway, Dickey, & Radford, 2011; Fast & Campbell, 2004; Julien &
Michels, 2004; K.-S. Kim & Sin, 2011). Even software users who fully realize that
answers obtained from a non-authorized source are often not of the same quality
as those obtained from the software’s supplier—who, having created the software,
at least in theory knows it better than any third party ever could— can hardly be
blamed for taking the easy route first. It cannot be denied that asking the person at
the next desk or entering a few keywords into an online search engine hardly
‘costs’ at all, be it time or any other resource. And where asking still involves
admitting ignorance and imposing on somebody else’s time, barriers to turning to
one’s web browser are non-existent. Most of the time, a software user who wants
to obtain information about the program he or she is working with, is sitting at the
computer; and whatever the working environment, Internet access nowadays is as
good as ubiquitous.

The EPPO approach is heavily driven by this observed tendency to ‘Google for the
answer’. The approach, it is hoped, makes the official documentation so that it
ranks high in the list of results found by search engines, and then preferred by the
user over competing results. This does not mean that it is useful only for
documentation that is published on the open Internet: every soft copy product can
easily be searched for a particular word or phrase and supports effortless cross-
referencing of topics through hyperlinks. Hard copy seems less suited, as it
supports neither full-text searching nor effortless cross-referencing.

… The EVERY PAGE IS PAGE ONE pattern inevitably includes the CROSS-REFERENCE
pattern and can easily be combined with a MEDIA MIX and/or the SEPARATION OF
PURPOSE pattern. Include a CONCEPTUAL MODEL where appropriate to relate
conceptual topics to one another…

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
134

6. Step Ladder Tutorial

Learning progresses furthest if it takes place during practice sessions that are
sequenced so as to build on previous experience and previously acquired
knowledge.

problem The practice sessions offered by real-world situations are not ordered in any
particular manner. A learner may therefore easily attempt to undertake
work for which a large amount of learning is required all at the same time.
For software with high use complexity, the load will then easily outweigh the
value; causing the knowledge engine to run down.

discussion There are two ways imaginable in which during the learning stage the practice can
be broken down into smaller units, each with limited intrinsic cognitive load. In
educational settings, ‘part-task practice’ is the traditional approach, in which
component tasks are trained separately and assembled at a later stage. In contrast,
‘whole-task practice’ attends to the integration of constituent skills from the very
beginning and ties in with the constructivist idea of embedding learning in real-life
experience.

In formal training environments, the separate learning sessions in whole-task
practice are sequenced so as to build on previous experience and to keep the
practising learner in his or her ‘zone of proximal development’ (ZPD), which in a
context of children’s cognitive development is defined as “the distance between

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
135

the actual developmental level as determined by independent problem solving and
the level of potential development as determined through problem solving under
adult guidance, or in collaboration with more capable peers” (L. S. Vygotsky, 1978,
p. 86). In plain English: work done in the ZPD is just a little bit more taxing than
that which can be done without assistance. When during the work learning takes
place, the ZPD moves closer to expertise. By keeping the learner in his ZPD, a
designer of instruction of any kind can push the learner gradually towards
expertise, all the time managing cognitive load.

A well-known example of whole-task practice comes from driving instruction
(English & Reigeluth, 1996). To set up a whole-task series of learning experiences
where the learner is kept continuously in his ZPD, situate the first practice lesson
not in a busy town centre during rush hour in a car with standard transmission,
but in an empty parking lot in a car with automatic transmission. This is the
simplest possible driving task that is still realistic. Then, lesson by lesson, confront
the novice driver with ever more complex versions of the task, ensuring that every
one is complete and realistic. By the time the driving task is performed in a car
with manual transmission, start on the flat and add hill work only when the
intricacies of clutch, gas and hand brake have been mastered.

A complete approach to the teaching of complex skills based on Cognitive Load
Theory, whole-task practice, and keeping the learner in the ZPD is found in the
“Four-Component Instructional Design Model” or 4C/ID model (van Merriënboer,
1997; van Merriënboer, Kirschner, & Kester, 2003). Some salient design guidelines
from the 4C/ID model are:

 Design all learning tasks so that even the simplest one could be encountered in
real life.

 Group the learning tasks in classes with the same complexity and present
them from low to high complexity. This keeps the learner in the ZPD and
reduces intrinsic cognitive load.

 Before the learner starts working on the first task in a particular class, present
the necessary conceptual information. The information can then be applied to
all the tasks in the class, making the practice meaningful.

 As the learner works on the tasks within a class, present the necessary
procedural information; provide less of this scaffolding with each successive
task within a class.

 Add part-task practice only where more repetition is required than can be
offered in the whole-task sessions.

In documentation (as opposed to instruction), the designer’s problem lies not with
the whole-task nature of the practice: this is built-in. Sequencing of the practice
tasks, on the other hand, is very difficult to achieve. Only partial solutions will be
possible.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
136

solution Therefore:

Add to the documentation a tutorial in which a sequence of realistic, whole-
part practice sessions is presented, sequenced along the lines of the 4C/ID
model.

rationale A well-sequenced series of whole-task practice experiences will keep the user in
his ZPD, where the ambition is continuously raised and the load is minimized, until
full mastery has been achieved.

consequences When it comes to sequencing the learning tasks, the Elaboration Theory of
Instruction (ETI) suggests to start with the simplest version of the whole task that
is still representative of the task in general (the epitome), then tackle progressively
more complex versions of the task (elaborations), each slightly more complex,
more divergent, more authentic and less typical (English & Reigeluth, 1996; Y. Kim
& Reigeluth, 1996).

In documentation, the epitome could be a complete task for which there is no
depth of use complexity at the activity level nor at the action level. For activator
software, such a real-world task may be impossible to find: in that case, accept
factory defaults for those elements at the activity and action levels where there is
depth and make sure to mention such choices explicitly (if not, the epitome would
no longer be whole-task). Elaborations can then be defined by gradually including
depth of use complexity first at the action level, and later at the activity level.

However, a tutorial is always additional to the information need experienced by
the user, and yields subjective value only if following it is a pleasurable experience
in itself and/or produces immediate, real-life results.

Therefore, when implementing this pattern:

 Make sure that even the simplest of tasks that are described are realistic:
explicitly mention all areas where defaults are accepted or simple
conditions assumed.

 Use the Elaboration Theory of Instruction (ETI) to identify epitomes and
elaborations, guided by the use complexity of the software.

 Give references to the required conceptual (read-to-know) information
before any sequence of elaborations that requires them.

 Unless self-study is enforced (as may be the case in an organizational
setting), ensure that the tutorial is not the only documentation product;
or that it covers all of the software’s functionality. The latter will be the
case only for software where the use complexity is limited in all three
dimensions.

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
137

 Make the tutorial as attractive and easy-to-use as possible, and
interrelate it to the other elements in the documentation. Use it to show
the full extent of the software’s functionality, raising the user’s ambition.

…The STEP LADDER is most easily implemented when presented as a COOKBOOK …

7. Minimal Manual

When creating a documentation product that is explicitly intended to provide
learning, match the way people learn by doing.

problem People are reluctant to learn practical skills through theoretical discourse.
Documentation that is not referred to cannot fuel upgrading.

discussion The moniker “minimal manual” dates from a book written in 1990. Titled The
Nurnberg Funnel: Designing Minimalist Instruction for Practical Computer Skill
(John M. Carroll, 1990), it made a case for software instruction materials based on
four principles: 1) Choose an action-oriented approach; 2) Anchor the tool in the
task domain; 3) Support error recognition and recovery; and 4) Support reading to
do, study and locate. The new approach (John M Carroll, 2014) condemned the
then-current practice of describing the software’s functionality command by
command, replacing it with an active approach in which the users would follow
task descriptions which placed the functionality in the context of a real-life task
(principles 1 and 2). Minimal (or “minimalist”) manuals, as the end products of the
approach were called, provided no more information than was absolutely
necessary for carrying out the specified tasks (principle 4) and explained how to

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
138

solve any problems that were encountered (principle 3). Finally, they made careful
suggestions for guided exploration (principles 1 and 4).

The minimalist approach has been shown to be an effective way of familiarizing
users with the syntactic layers of software with relatively low use complexity
through self-study (van der Meij, 2003; van der Meij & Carroll, 1998).

solution Therefore:

Design self-study tutorials that lead the reader through real-life tasks. Do not
provide any information other than that required for the task at hand.
Support error recognition and recovery, and encourage the reader to try out
small variations on the solution provided.

rationale The principles of choosing an action-oriented approach and anchoring the tool in
the task domain are constructivist principles, which raise ambition and lower load.
The principle of supporting error recognition and recovery lowers recognition and
raises both upgrading and value. The principle of supporting reading to do, study
and locate raises upgrading.

consequences Minimal manuals tend to be considerably less voluminous than other
documentation products, a fact which—together with the name chosen for the
approach—has led some to conclude that the main maxim of minimalism is that
“most manuals would benefit dramatically from a considerable reduction in size”
(Mehlenbacher, 2003). This is however no more than a by-product of the
approach, which from the beginning has been misinterpreted by technical
communicators (Brockmann, 1998). The minimalist approach is not a panacea to
cure all ills (David K Farkas & Williams, 1990). Where the use complexity is wide, a
minimal manual could fast become extremely voluminous, unless it settles for
incompleteness (Draper, 1998).

The emphasis on procedural information means that a minimalist documentation
product has trouble counteracting any depth in the use complexity. All four
minimalist principles depend heavily on the writer knowing what is correct reader
behaviour and what is not: the approach relies on there being user tasks that are a
priori known. Their rejection of conceptual information places serious obstacles in
the way of its being appropriate for teaching complex, ill-defined decision-making
tasks (Mirel, 1998b) or for satisfying the needs of advanced users (Hackos, 1998).
Almost inevitably, a minimal manual for software with high use complexity will
clash with the constructivist guideline to not over-simplify.

A minimal manual is a tutorial document, intended to replace the documentation
journey with one or more self-study sessions. When the approach was first
developed, computers were new, seen as ‘difficult’, and encountered only
infrequently. Sitting down to learn before doing any real work would have been
feasible as well as reasonable. Taking a training course before attempting real-life

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
139

work with software was standard practice, and self-study tutorials were often the
only documentation product provided (van der Meij et al., 2009). Nowadays a
person encounters new software wherever he goes. This software has often much
higher use complexity than that for which the minimalist approach was developed,
and learning-before-doing is a luxury which time may no longer permit. As has
been pointed out earlier, a tutorial is always additional to the information need
experienced by the user, and yields subjective value only if following it is a
pleasurable experience in itself and/or produces immediate, real-life results.

Therefore, when implementing this pattern:

 Unless self-study is enforced (as may be the case in an organizational
setting), ensure that the tutorial is not the only documentation product;
or that it covers all of the software’s functionality. The latter will be the
case only for software where the use complexity is limited in all three
dimensions.

 Make the tutorial as attractive and easy-to-use as possible, and
interrelate it to the other elements in the documentation. Use it to show
the full extent of the software’s functionality, raising the user’s ambition.

… A MINIMAL MANUAL together with a set of JOB AIDS would constitute a complete
documentation set for operator or actor software with limited depth and width…

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
140

8. Cookbook

A Cookbook is a collection of solutions to real-life problems in a particular design
domain, presented in such a manner that they can be easily included in the
reader’s own work.

problem If multiple bits of information must be applied all at the same time, a vast
amount of reading and learning will be required before the user can see
‘what it all means’ in a real-world context. The reader will not know where to
begin and is likely to give up rather than to upgrade.

discussion A particular class of software tools is formed by those tools that enable
exploratory design, to be used at a later time by the user himself or by third
parties. Such software has by definition high use complexity, and support an
activity in which even relatively simple results may require a vast amount of
knowledge.

The Cookbook pattern is encountered frequently where the primary audience
consists of programmers, or of end-users attempting to modify the workings of
their chosen software tool. To describe what a Cookbook is, I can do no better than
quote from the introductory pages of the commercially available Access
Cookbook34:

34 By Ken Getz, Paul Litwin & Andy Baron. O’Reilly, Sebastopol CA, USA, 2002, ISBN 0-596-00084-7

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
141

This is an idea book. It's a compendium of solutions and suggestions devoted
to making your work with Microsoft Access more productive. […] [It] offers
you solutions to problems you may have already encountered, have yet to
encounter, or perhaps have never even considered. […] our goal is to show you
how to push the edges of the product, making it do things you might not even
have thought possible.

Like a cookbook in the original sense of the word, a Cookbook does not explain
first principles. The reader of the Access Cookbook is expected to know how to
create a query or how to switch to Design Mode in exactly the same manner that
the reader of The River Cook Book Green35 is expected to know how to turn on the
oven or how to chop up a bunch of parsley. Also like a cookbook containing
instructions for preparing food dishes, the separate ‘recipes’ are bundled roughly
by area of interest, for the reader to browse (see Figure 40) until he sees one that
he fancies.

Figure 40: Part of the Table of Contents of the Access Cookbook

All instructions are discussed and elaborated upon, giving the underlying rationale
to every step and inviting the reader to customize the solution to his particular
situation. When applicable, bits of code are included that can be copied into the
user’s own working environment.

solution Create a collection of complete solutions to real-world design problems and
present them in such a manner that they can be applied with little effort.
Walk the user through the solutions and explain the rationale behind every
aspect of them.

35 By Rose Gray and Ruth Rogers. Ebury Press, London, UK, 2000. ISBN 0-09-187943-4

Meso Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
142

rationale Since the examples are solutions to real-life problems, a Cookbook embeds the
learning experience in genuine practice, with learning as a by-product in a true
constructivist manner.

As the quote from the Access Cookbook on the previous page shows, the intention
of a Cookbook is explicitly to widen the user’s intention horizon. The solutions
contained in it work directly on the ambition. They then provide the scaffolding
needed for a user to fulfil his heightened ambition; and they work on value by
allowing for a more satisfying end result and on load by removing part of the work.
Customization provides germane cognitive load during situation processing,
resulting in learning.

consequences If the solutions can be copied without any customization, then they will not
stimulate upgrading but rather detract from situation processing. In addition,
when customization is difficult, the load will increase; and when the reader picks
the wrong solution or the wrong customization, the value will decrease.

Therefore, when implementing this pattern:

 Provide complete rather than partial solutions, where different parts of
the software are combined to achieve the result.

 Format so that invariable elements stand out from variable elements, to
facilitate customization.

 If the solutions consist of code, consider a further reduction of the load
by presenting them in soft copy to allow for copying and pasting.

… The solutions given in a Cookbook can be seen as elaborate JOB AIDS for activator
software. By ordering the solutions so that the results of one solution are the
starting point for the next, a STEP LADDER can be implemented. When the Cookbook
is for a programming environment where code is written, the load can be lowered
further by including the solutions partially or entirely in the soft copy component
of a MEDIA MIX …

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
143

9. Micro Patterns
‘Micro’ patterns are applied to components of a documentation product, yielding
something that cannot stand on its own.

9. Job Aids

Job aids are cognitive tools that are embedded in the work environment to
immediately facilitate performance. As they are never accessed away from the
work environment, the act of referring to them is not experienced as ‘reading’ but
rather as part and parcel of doing the job (which, as a consequence of the job aid,
becomes easier).

problem When there is exactly one ‘correct’ way to carry out a task, and this involves
multiple interactions, requiring the user to memorize the steps would add to
the load without having any benefits.

discussion Where the use complexity is wide, the user is required to select a particular
interaction from a large number that are visible to him. Whenever a whole
sequence of such decisions is dependent on one well-defined objective,
internalizing the steps would constitute extraneous cognitive load that is not offset
by any germane cognitive load. The load can then be off-loaded onto cognitive
artefacts that function as external memory.

An interest in embedded information products has developed independently from
that in user manuals or instructional design theory. Such cognitive artefacts are

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
144

referred to as ‘performance support systems’ (Nguyen & Woll, 2006), ‘job
performance aids’ (C. P. Campbell, 1998) or simply ‘job aids’ (Bullock, 1982;
Rossett & Gautier-Downes, 1991). Job aids enable the reader to successfully carry
out activities that without them would be difficult, or even beyond his reach. They
provide straightforward information ‘just-in-time’, at the exact moment that the
information is required, thereby reducing the amount of information that has to be
remembered (C. P. Campbell, 1998).

Job aids can be delivered through print, soft copy, audio or video. When print is
used, delivery is not restricted to traditional book or poster formats but may be “in
many sizes on many surfaces, such as plastic, adhesive tape, cardboard, metal,
laminated materials and so on” (Rossett & Gautier-Downes, 1991, p. 78).

Most office workers will be familiar with finding instructions for troubleshooting a
photocopier: in a booklet that fits in a sleeve on the control panel, or in a pictorial
guide integrated into the control panel, or in a series of animated images on a
display that show the next step to be performed at any stage in the
troubleshooting procedure. These are all examples of job aids. Countless further
examples can be found in everyday life. Stepwise instructions are found printed on
or attached to packaging; detailing assembly, use, storage or maintenance. We find
heating instructions on the packaging of pre-cooked meals, safety considerations
on a sheet in the pocket of aircraft seats (or on the headrest cover of those seats,
for the benefit of the person seated in the row behind), and instructions on how to
brush teeth on the blister packaging of a new toothbrush. A rose bush bought at a
garden centre may have a label attached to it specifying recommended planting
depth, expected height when fully grown, pruning instructions, and the month in
which flowers can be expected. A first-aid kit may contain a wallet-sized card
outlining what to do in which type of emergency, origami paper may show folding
lines, and the packing slip included with a home-delivered order from an online
shop may be found to double as a return form when folded in a particular manner
as indicated on the form itself. As I was writing this, a letter from the Town Council
arrived, advising of an upcoming change in the way household refuse is collected
in our neighbourhood. In addition to the letter, the envelope contained a sticky
label to be attached to my old wheelie bin before it is left at the roadside for
collection; this stated not only identifying information for the benefit of the
Council but also re-iterated where to leave the bin out, when to leave it out, in
which state to leave it out, and what to do in case of non-collection. Job aids are
everywhere.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
145

Figure 41: Job aid for bird-watchers36

Figure 42: Job aid for software operations (Trimble SketchUp) 37—the
illustration above the text is animated, and the appropriate topic is shown

automatically when the user selects a different tool icon.

36 The BirdSong iFlyer Scanning Wand: found on 6 October 2015 at
http://www.birdhousesbymark.com/iflyer.shtml
37 http://www.sketchup.com/

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
146

Job aids have a long tradition in process control situations. Most often encountered
are stepwise instructions, reference sheets, work sheets (fill-in forms), checklists,
and decision guides such as flowcharts and decision tables (Bullock, 1982; C. P.
Campbell, 1998). But this is not an exhaustive list: what makes a certain part of the
documentation a job aid, is that 1) it is present or can be made to be present at the
exact time and place where it is needed, and 2) it immediately helps performance.
For example, a fill-in form can be taken onto the shop floor to collect data relevant
to the task at hand. A work sheet can model process and product, by specifying the
steps to be performed during performance and forcing the user to keep track of
decisions that were made. A flow chart can guide decisions where there is width of
use complexity at the level of operations or at the action level.

In software environments, job aids can be included in the documentation, but
tighter integration with the working environment is achieved through tooltips
(Nguyen & Woll, 2006) or on-screen instructions (see Figure 37 and Figure 42).

solution Therefore:

Provide job aids where the cognitive load involved in internalizing the
knowledge would be extraneous rather than germane. Link the job aid as
tightly as possible to the work environment: make it printable or easily
portable when the job is carried out away from the computer.

rationale Job aids remove extraneous cognitive load.

consequences Job aids play along with the production bias and are for that reason tempting to
the user. Great care must however be taken that only extraneous cognitive load is
removed by a job aid. If the cognitive load involved in situation processing is
germane, then it should not be reduced: this limits the use of job aids to well-
defined tasks where there is only one ‘correct’ way of carrying out the job.

The use of job aids may have effects other than reducing cognitive load. Once filled
in, for example, a work sheet can be a useful tool for tracing wrong turns taken
when an error is detected. The work sheet then supports error correction and thus
learning, and induces self-reflection and formative assessment. Checklists can
model process as well as provide formative assessment leading to error correction.
As they list things to consider rather than actions to carry out, checklists directly
scaffold the active construction of knowledge, at any level of expertise.

Therefore, when implementing this pattern:

Do not provide job aids where their use would reduce germane cognitive
load. Consider additional benefits of every job aid and design for them
wherever possible. When creating a decision support tool such as a flowchart
or checklist, formulate the items so that they invite close consideration and
so that they cover every eventuality.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
147

… JOB AIDS are easily included in a MEDIA MIX, an EVERY PAGE IS PAGE ONE product, or
the SEPARATION OF PURPOSE pattern…

10. Screen Capture

Screen captures (also known as screenshots, screen images, screen grabs or screen
dumps) are representations of the screen, which help the reader place the
information in the context of the work with the software. Produced directly from
the memory on the graphics card , they present a ‘true’ facsimile.

problem Inappropriate recognition may take place when it is not clear to the reader
which particular state of the software a piece of information applies to; but it
is difficult to describe the software in words only.

discussion Screen captures show exactly what the screen should look like for the verbal
description to apply. A screen capture may show the whole screen or one
particular window (as in Figure 43), or only part of the screen or window. It may
include highlighted, greyed-out or selected screen areas as well as any expanded
menus or drop-down lists, the cursor, and the mouse pointer. A screen capture can
be annotated with graphical markers and/or text labels, which in turn may be
combined into a legend.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
148

Figure 43: Screen capture showing a complete screen38.

Van der Meij and Gellevij (1998) distinguish four “roles” for screen captures. First,
1) they “support the user’s switching attention between input device, manual and
screen”. In terms of the CMA model, this role concerns the documentation journey:
a screen capture ties the documentation journey to the work with the software.
Then, 2) they “support the user’s developing a mental model of the program”. The
authors are however not clear on the mechanism by which a screen capture fulfils
this role, unless we define a mental model as consisting of the user interface of a
program only. Thirdly, 3) they “help the user verifying screen states”; and finally,
4) they “help the user identify and locate window elements and objects”. These last
two roles are related to perception and recognition.

Looking at the way screen captures are used in practice will show the list to be
non-exhaustive, as even a limited number of examples will show.

38 EndNote X7, ©1988-2016, Thomas Reuters

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
149

Showing a complete window as in Figure 43 helps recognition of an overall state of
the software. The screen captures in Figure 44 and Figure 45, in contrast, remove
the need for the user to search for the screen element under discussion.

Figure 44: Screen capture cut out to show only the screen area under
discussion39.

Figure 45: Screen capture annotated with
highlighting to show location40.

In Figure 46, a screen capture is used in a procedure to show the desired result of
step 1 and the starting point for step 2. This helps the user recognizing if his
situation processing has resulted in success.

39 Surfer 12 Full User’s Guide p.13, © 2014 Golden Software, Inc
40 InkScape Manual p.4, undated, distributed under the GNU General Public License, accessed at
https://ma.ellak.gr/documents/2015/07/inkscape-manual.pdf on 11 December 2016

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
150

Figure 46: Screen capture to show the desired result of one interaction and
the starting point for another41.

Thus far, all the examples have been of screen captures used to enhance
perception and recognition. Let us now look at a few screen captures that do a
different job.

The screen capture in Figure 47 looks similar to the one in Figure 46, but works in
a different manner. Not linked to particular steps in the procedure and located
alongside rather than inline with the steps, it does little to support recognition but
rather reinforces the text by making the available choices visible. (Note that in this
example, conceptual or read-to-know information is provided together with
procedural of read-to-act information.)

41 Freemind Version 0.8.0 User Guide p.25, undated, distributed under the GNU Free Documentation
License, accessed at
http://freemind.sourceforge.net/FreeMind%20User%20Guide%20by%20Shailaja%20Kumar%20(ma
nual).pdf on 11 December 2016

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
151

Figure 47: Screen capture to complement an overview42.

A screen capture can also stand for a complete series of interactions, as in Figure
48. Here, the documentation explains not how to do something, but why to do it;
and the screen capture is part of an abstract image. Again, the purpose of the
screen capture is not so much to support recognition as to provide conceptual
(read-to-know) information.

Figure 48: Screen capture to represent a complete series of interactions43.

The screen capture in Figure 49, finally, enhances the verbal conceptual
information with an example. Here, it links the action to the result and provides
read-to-consider information:

42 Perfect Photo View User Manual p.70, ©2015 on1, Inc.
43 InkScape Manual p.98, undated, distributed under the GNU General Public License, accessed at
https://ma.ellak.gr/documents/2015/07/inkscape-manual.pdf on 11 December 2016

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
152

Figure 49: Screen capture to add information not explicitly mentioned in
the text44.

This limited number of examples shows that screen captures can be used not only
to support perception and recognition but may do many, subtly different, jobs in
user documentation.

solution Therefore:

Use screen captures to show what the user’s software environment ‘should
look like’ for the adjacent information to be relevant. Design them so as to do
as much additional work as possible and ensure that they have no undesired
side effects.

rationale A screen capture links the text to a particular state of the software, allowing the
user to verify that the text he is referring to is indeed appropriate in the current
context. It thus reduces the load involved in the documentation journey and
encourages the user to stick with the documentation. Depending on how a screen
capture is implemented, it can do additional work. In the images, we have seen
that screen captures may:

 help shape appropriate recognition, by showing what the screen should look
like after one step and before the next one (Figure 46);

 help raise ambition, by showing what options are open to the user (Figure 47),
by providing directly applicable conceptual information (Figure 48), or by
working together with the text to create an example (Figure 49);

44 InkScape Manual p.69, undated, distributed under the GNU General Public License, accessed at
https://ma.ellak.gr/documents/2015/07/inkscape-manual.pdf on 11 December 2016

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
153

 help lower the load in the interaction with the software itself, by removing the
need to search for the appropriate screen element (Figure 44 and Figure 45).

consequences Screen captures make a text considerably longer as well as more difficult to scan.
This could easily add extraneous load. In soft copy, screen captures can confuse
the reader, as the difference between the screen capture and the real software
environment is not immediately obvious.

Therefore, when implementing this pattern:

 Do not use more than you need and use them only where they add
information. Take care to make every screen capture more informative
than the screen itself by using cut-outs or annotations, and/or by setting
the screen up before you capture it so that the mouse pointer highlights
salient areas.

 Be careful when using screen captures in soft copy, especially in context-
sensitive Help: use them only when there is no other solution, do not
show a complete screen or window but use only cut-outs, and use
colouring, shading, and annotations to ensure that the screen capture
cannot be confused with the real software environment.

… When your MEDIA MIX includes hard copy, a SCREEN CAPTURE helps tie the
documentation to the reader’s interaction with the software. SCREEN CAPTURES help
provide the situational information required to assess the applicability of STEPWISE
INSTRUCTIONS …

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
154

11. Conceptual Model

A conceptual model uses words and/or diagrams to show the main conceptual
parts of a system, together with the way the parts relate to each other.

problem Read-to-know information (see page 120) is required for successful
upgrading but often fails to engage (Figure 33 is fairly typical in this respect).
Also, new concepts in the software may be interconnected and mutually
dependant, so that describing them in isolation does not help the reader
construct a valid UVM.

discussion Read-to-know information is called for where there is depth in the use complexity.
It does however cause the reader to experience load. When the depth corresponds
to interconnected features in the User Virtual Machine, the user will find in every
read-to-know block describing one concept references to others which are not yet
known. This will cause the reader to experience even more load, with little value to
counterbalance. If the use complexity is low, this may not be much of a problem;
but if it is high, then it probably is.

It has been proposed (Norman, 1987) that a correct and complete mental model is
more easily constructed if instruction is provided in the form of a conceptual
model. This premise has been studied by a number of authors, who tried to
establish the effect on learning and performance of presenting a conceptual model.
Unfortunately, the designs of these studies vary widely, making comparison rather
difficult. Sometimes, the effects of different types of conceptual model were
compared; without a control group being exposed to no conceptual model at all
(Sein & Bostrom, 1989; Shayo & Olfman, 1998). At other times, the target system

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
155

under consideration was not a software tool to be used to an end, but custom-built
to simulate a physical system: so that effectively, the target system itself
constituted a model of reality (Fein, Olson, & Olson, 1993; D. E. Kieras & Bovair,
1984).

Figure 50: Analogical conceptual model
illustrating an office suite (from: van der Veer &

Felt, 1988)

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
156

Figure 51: Abstract conceptual model illustrating the VAX Mail system
(from: Sein & Bostrom, 1989)

Even when the effect of a conceptual model on mastering software is studied,
study designs vary. Table 4 attempts to normalize the findings of a number of such
research studies, presenting every finding in a separate row so as to make
comparison possible. It is important to realize that concepts and approaches that
are currently familiar (such as GUIs and word processors), were not necessarily so
at the time a particular study was carried out. As computers began to play a role of
ever increasing importance, conceptual model studies targeted the period’s most
visible computer application: ranging from the BASIC programming language
(Bayman & Mayer, 1988) through the VAX mail system (Santhanam & Sein, 1994)
to WWW search engines (Colaric, 2003) and a sophisticated word processor (Ben-
Ari & Yeshno, 2006). My assessment of the depth of the use complexity of the
target system (or rather, that part of the target system under consideration in the
studies’ post-tests) is based on the temporal context of the study.

Table 4: Summary of some research studies on
the effectiveness of conceptual models in

instruction (in chronological order)

 post-test depth height model effect

RPN-based
calculator (F.

reproductive deep task
layer

abstract:
text and
diagram

none

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
157

 post-test depth height model effect

G. Halasz &
Moran, 1983) constructive

(problem-
solving)

deep task
layer

abstract:
text and
diagram

positive

programmin
g language
BASIC
(Bayman &
Mayer, 1988)

constructive
(programming
)

deep task
layer

abstract:
text and/
or
diagram

positive
(for low-
ability
subjects)

knowledge deep syntacti
c layer

abstract:
text and/
or
diagram

positive
(for low-
ability
subjects)

constructive
(programming
)

deep task
layer

abstract:
text and/
or
diagram

negative
(for high-
ability
subjects)

knowledge deep syntacti
c layer

abstract:
text and/
or
diagram

none (for
high-
ability
subjects)

integrated
office system
(van der Veer
& Felt, 1988)

knowledge deep task
layer

analogical
: diagram

positive

VAX Mail
(Santhanam
& Sein, 1994)

constructive
(near and far
transfer)

shallo
w

task
layer

abstract
and
analogical

none

knowledge shallo
w

task
layer

abstract
and
analogical

none

MS Word
(Ben-Ari &

constructive deep task
layer

abstract:
text

positive

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
158

 post-test depth height model effect

Yeshno,
2006; Yeshno
& Ben-Ari,
2001)

knowledge deep task
layer

abstract:
text

none

Web search
engine
(Colaric,
2003)

knowledge deep task
layer

abstract:
text with
or without
diagram

none (as
compared
to
instructio
n by
example)

In addition to a rough assessment of the depth of the use complexity of that bit of
the target system relevant to the post-test, Table 4 lists the nature of the post-test
(constructive or reproductive performance, or knowledge elicited from the
respondents in some way other than through observing interaction with the target
system); the layer of the software involved in the post-test; and the effect of
providing the respondents with a conceptual model during the training phase.

The data presented here suggests that, as predicted, performance increases after
instruction in which some sort of a conceptual model is presented when the nature
of the task that is post-tested is constructive and the task layer involved is higher
than the syntactic layer. In one study (Bayman & Mayer, 1988), this effect was
found to hold only for low-ability students (as determined by their scores on the
SAT test, a measure of general intelligence): the authors hypothesize that high-
ability students do not need the scaffolding offered by the model, so that for them
the model presents extraneous rather than germane load. Interestingly, the data
also suggests that a conceptual model does not help learners to score significantly
better when it comes to knowledge that can be elicited away from hands-on
practice.

solution Therefore:

When describing interconnected concepts that are mutually dependent and
that do not map directly on pre-known concepts in the outside world,
include a conceptual model to show how components of (part of) the UVM
relate to each other.

rationale A conceptual model explicitly encourages upgrading. By making the information
more engaging, it lowers the subjective load. By placing the separate read-to-know
blocks in an interrelated context, it lowers the load even further, and adds to the
value. As the model already places the subsequent learning in a ready-made
structure, the knowledge resulting from situation processing will be more easily

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
159

assimilated into the knowledge base. Finally, the model may dampen subsequent
recognition because it makes the interrelatedness of concepts in the UVM explicit.

consequences However, studying a conceptual model in itself may add to the load. An explicit
conceptual model may be text-based or diagrammatical. Hegarty and Just
conducted a number of experiments, studying the construction of a correct mental
model of a mechanical system (a system consisting of pulleys) from text and/or
diagrams (Hegarty & Just, 1993). Their results strongly suggested that readers
learn more from a text-and-diagram description than from either text or diagrams
alone. Diagram inspection was shown to be text-directed, and the authors propose
that the diagram acts as an external memory aid, primarily when visualizing the
dynamics of the system. The text, in turn, is required to stimulate readers to carry
out this visualization: without it, they are less prone to do so. When it comes to
generalization of the results to other domains, however, the authors point out that
readers may have more difficulty integrating information from text and diagrams
into a coherent mental model when the diagram cannot directly depict the system
under consideration (as is the case when we provide a representation of a User
Virtual Machine).

Another consideration concerns the nature of the model, rather than the way in
which it is presented. Such a model may be abstract (that is, not referring to
objects in the pre-known world) or analogical (that is, presenting a coherent
analogy). A problem with analogical models of software systems is that the
analogy will inevitably run out before it has done much explaining. Conversely,
there are always bits of the analogy that do not apply. So “To make effective use of
analogical models, the new user is faced with the confusing task of sorting out the
relevant inferences from among the many possible irrelevant or incorrect
inferences suggested by the analogy” (F. Halasz & Moran, 1982, p. 384). A
convincing argument can be presented for conceptual models to be presented in
abstract, rather than analogical form; because “Computer systems are unique. The
tasks they carry out may often be familiar, but their underlying conceptual
structures are not” (F. Halasz & Moran, 1982, p. 384). Halasz and Moran do see,
however, a role for analogy not in the form of complete models (“the computer is
like a typewriter”) but as literary devices when explaining an isolated concept
(“the computer’s keyboard is used to type letters, just like a typewriter keyboard”).

Therefore, when implementing this pattern:

 Use a diagram together with text and ensure that both are easy to relate
to the visible reality on the screen.

 Avoid drawn-out analogy.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
160

… A CONCEPTUAL MODEL is especially useful when using the SEPARATION OF PURPOSE
pattern and/or the EVERY PAGE IS PAGE ONE pattern, where you may struggle to
present interrelated blocks of read-to-know-information in a coherent manner…

12. Cross-Reference

Cross-references explicitly invite the reader to access a non-adjacent part of the
documentation and allow him to do so easily.

problem The order in which information is presented does not necessarily
correspond to the order in which it is needed by a particular reader in a
particular context. For the reader to work out which other bits of the
documentation to access next and where to find them constitutes
considerable extraneous load.

discussion Every information product, and therefore every documentation product, has a
sequential access order built in, in accordance with the language in which it is
written: left-to-right (for English and many other European languages) or right-to
left (for, amongst others, Hebrew and Arabic). The separate pages of the
information product are read from top to bottom and follow upon one another
(Belew, 2000, p. 18). Although an author will always do his best to make the
sequence logical and useful, there will always be situations in which the sequence
does not match the information need of the reader. The documentation journey
then breaks down.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
161

In hard copy, cross-references may point to a page number and/or to a section. In
soft copy, they are usually hyperlinks: the reader is directly taken to the
referenced location when he clicks on the cross-reference. The cross-reference
itself then no longer needs to explicitly mention the location within the document
of the remote information.

Figure 52: Cross-reference in the online Help system for a seismic
exploration tool45

Figure 53: Cross-references in the printed user manual for a document
development tool46

The examples above show in-line cross-references; cross-references can also be
collected in a separate read-to-use block, providing an overview of related sources
of information that are relevant to the current topic. Such an overview may, but
need not, be categorized.

Figure 54: An uncategorized cross-reference list in the online Help system
for a seismic exploration tool47

45 Jason Workbench 9.1, © 2015 CGG
46 Adobe FrameMaker 8 User Guide, © 2007 Adobe Systems Incorporated, p. 176
47 Jason Workbench 9.1, © 2015 CGG

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
162

Figure 55: A categorized cross-reference list from the author’s website48

solution Therefore:

Use cross-references to direct the reader to relevant, non-adjacent pieces of
information, in the same or in a different documentation product.

rationale Cross-references direct the documentation journey by bringing the user to exactly
that information that he needs. This removes extraneous cognitive load from the
documentation journey.

consequences As we have seen earlier (page 113), in a soft copy product that is presented in the
form of hypertext, the risk for the reader to get ‘lost in hyperspace’ is proportional
to the number of cross-references (hyperlinks). The risk is more limited in hard
copy, where following a cross-reference requires more effort and is therefore
perhaps less easily undertaken. In both hard copy and soft copy however, the
reader’s following a cross-reference means him leaving the default reading order.

48 http://www.byteryte.nl/en/bookshelf.html, screen grabbed on 8 December 2016

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
163

Another consequence has to do with the ‘information scent’ of the cross-reference,
which is carried by the way it is phrased. A simple reference to ‘page 38’ gives no
suggestion of what is to be found on that page, so that the information seeker
cannot judge whether he should follow the cross-reference or not. He might follow
cross-references that are irrelevant, resulting in a suboptimal documentation
journey bringing relatively high load, or he might neglect to follow cross-
references that enhance the documentation journey and result in increased value.

Therefore, when implementing this pattern:

 Deploy cross-references only where it is imaginable that an objective
need for the remote information could exist, in a particular working
context and/or for a particular type of reader.

 Phrase the cross-references so that the reader is helped to recognize
whether there is a need for the remote information or not.

… In many documentation products, CROSS-REFERENCES can optionally be deployed
to enhance the documentation journey. In the EVERY PAGE IS PAGE ONE and
SEPARATION OF PURPOSE patterns, cross-references are indispensable …

13. Chapter Summaries & Chapter Introductions

Chapters within a documentation product can be preceded with an introduction or
concluded with a summary. The introduction tells the reader what to expect; the
summary tells him what he has learned.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
164

problem Reading irrelevant bits of information constitutes load, while skipping
relevant bits hinders upgrading. A chapter’s title is usually too short to let
the reader know if he should read it.

discussion Readers of documentation need help determining what to read and what to
remember. Chapter introductions and summaries provide this help, by describing
the chapter’s contents in a few sentences.

People will invest time and effort in the documentation journey only when they
feel there is value to outweigh the load. Therefore, they need more than a chapter
title in order to determine whether to read a chapter, or bits of it; and to determine
which bits to read. All six participants to the ‘focus group’ held on 9 July 2015
during the EuroPLoP 2015 conference in Kaufbeuren, Germany (described in
Appendix 3. Using the Repertory Grid Technique for Mining Design Patterns)
indicated to read chapter summaries to this end.

In addition, a chapter introduction can be designed to be an “advance organizer”.
This is a brief narrative or diagram which is presented before the lesson itself and
which introduces the content of the lesson at a higher level of abstraction,
generality, and inclusiveness than the content itself. The advance organizer
provides a simple framework into which further learning can be assimilated and
which relates that which a student already knows to that which is being learned. In
formal learning situations, an advance organizer makes for better understanding
as well as retention of the lesson (Ausubel, 1968).

Similar to a chapter introduction is a chapter summary. This is placed at the end of
the chapter and relates its content to the reader’s real-life tasks and to other
content in the document or the documentation set; often, the next chapter. It is
used most regularly in long chapters, to reinforce retention. The participants to the
above-mentioned EuroPLoP 2015 focus group all mentioned reading chapter
summaries to make sure that they had not, based on the chapter introduction,
skipped any useful information. This suggests that it is worth writing the summary
from a different point of view than the introduction, giving the reader two
different ways of evaluating the chapter’s content without reading it from
beginning to end.

solution Therefore:

Start every chapter with a few paragraphs outlining the chapter’s content.
When the chapter contains much information, also conclude it with an
overview of what the reader should have learned by reading the chapter, and
where to find related information.

rationale Chapter introductions and summaries make it easier for the reader to skip
information that is not interesting at a given moment and to access those that are.

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
165

Thus, they remove load from the documentation journey and improve the chances
of upgrading. At the same time, the reader will obtain an idea of what is in those
bits of the documentation that he decides to skip; and this may help keeping the
ambition up. When a different information need is present at some other time, this
will more easily become manifest when the reader remembers having seen
‘something’; so that he can decide to go back to a chapter.

consequences Short chapters can be skimmed quickly enough and don’t need an introduction or
summary. To the contrary, this would add more load than it removes. Following on
from this consideration, participants to the EuroPLoP focus group felt that there is
no place for introductions or summaries in soft copy, where “chapters are always
very short” and an introduction or summary would be “an annoying waste of
space”.

Therefore, when implementing this pattern:

 Ensure that the length of the introduction and summary taken together
is in proportion to the length of the chapter and the amount of
information it contains.

 In soft copy, turn introductions and summaries into separate topics.

… In many documentation products, CHAPTER INTRODUCTIONS AND SUMMARIES can
optionally be deployed to enhance the documentation journey. They can be very
easily incorporated in the EVERY PAGE IS PAGE ONE pattern …

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
166

14. Stepwise Instructions

Tasks with well-defined starting and end points are easily presented as a sequence
of steps.

problem When the software calls for a fixed sequence of interactions and the separate
steps are not clearly described, users will experience considerable load
determining how to act.

discussion Users frequently want to be told ‘what to do’ and look in documentation for
instructions that take them step by step through the execution of a particular task.
This is not only what readers ask for, it is also what technical authors work hard to
produce and what many researchers regard as key (Duggan & Payne, 2001; D. K.
Farkas, 1999; Karreman & Steehouder, 2004; Karreman et al., 2005; van der Meij
et al., 2003; van der Meij & Gellevij, 2004).

A series of stepwise instructions, often called a ‘procedure’, has a rhetorical
component in that its goal is to get a person to actually do something. In addition,
there is a system–theoretical one: a procedure describes states (desired state,
prerequisite state, interim states and unwanted states) as well as the actions
(human, system and external) that bring about transition from one state to
another (D. K. Farkas, 1999).

After studying a large number of procedures as they are presented in actual,
existing hardcopy and softcopy documentation products, Farkas defined a

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
167

canonized form for them: the “streamlined-step procedure”. This consists of a
series of brief steps, each consisting of one action statement, perhaps enhanced
with an equally concise description of the resulting system state. The steps are
formatted simply and built around an imperative verb. Conceptual information is
optionally included, but only just before the first step and after the last: before the
first step, a brief paragraph may explain the conditions under which the procedure
applies while after the last step, supplementary information may be given.

Stepwise instructions provide procedural and possibly situational information at
the syntactic layer of the software. They are extremely common in documentation,
not just for software but for a wide range of products (see Figure 32, Figure 46 and
Figure 56).

Figure 56: Streamlined-step procedure in the printed user manual for a
document development tool49

solution Therefore:

Include stepwise instructions when a fixed sequence of interactions must be
carried out to transform the system from one well-defined state into
another.

rationale By providing a ready-to-use situation model, stepwise instructions remove load.
The streamlined-step format reduces additional load from the documentation
journey, by making the procedure that is described as easy to follow as possible.

consequences Where there is width in the software’s use complexity, the wrong procedure will
be selected if the user incorrectly recognizes a situation in which the procedure
applies. It is therefore advisable to dampen an overly-strong recognition that may
be present by including the optional non-procedural elements in the streamlined-
step procedure.

Stepwise instructions remove load by removing situation processing altogether.
Thus, little learning will follow from carrying out the steps. So, even if such a

49 Adobe FrameMaker 8 User Guide, © 2007 Adobe Systems Incorporated, p. 421

Micro Patterns

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
168

procedure is what software users want from and look for in documentation, it is
not necessarily always what they need.

Although stepwise instructions are traditionally given at the syntactic layer, they
can also be given at the semantic layer. Rather than procedural and possibly
situational information, they then contain strategical and possibly conceptual
information. Elaborating on earlier work (Duff & Barnard, 1990), Eriksdottir and
Catrambone (Eiriksdottir & Catrambone, 2011) found that “specific instructions
help initial performance, whereas more general instructions, requiring problem
solving, help learning and transfer”. “Specific” refers here to the syntactic layer,
and “general” to the semantic layer. In a study conducted a few years later
(Eiriksdottir & Catrambone, 2014) it was confirmed that using instructions at the
semantic layer is not the users’ first choice. However, as their skill increased,
participants were seen to move away from specific instructions at the syntactic
layer in favour of general instructions at the semantic layer.

To bring the need for situation processing back where situation processing is
required for learning, the streamlined-step format can be elaborated in a number
of ways.

Therefore, when implementing this pattern:

 To distinguish procedural from strategic knowledge, position the
procedure at either the syntactic or the semantic layer: do not mix.

 Where there is width in the software’s use complexity, include non-
procedural elements in the streamlined-step format to discuss the
conditions under which the procedure applies.

 For software with high use complexity, include in the non-procedural
discussion goal-dependent user decisions, as well as the long-term
consequences of applying the procedure.

… STEPWISE INSTRUCTIONS can be provided as separate JOB AIDS or embedded in a
wider narrative providing situational or conceptual information. Situational
knowledge of when to apply the instructions can be provided with SCREEN
CAPTURES. In an implementation of the SEPARATION OF PURPOSE pattern, STEPWISE
INSTRUCTIONS are used to implement read-to-act blocks…

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
169

10. Discussion and Conclusions
In this thesis, I set out to answer the following question:

Can design rationale for a coherent approach to the design of software
documentation artefacts be found in a framework that describes the system
dynamics of human performers interacting with, and learning from the
interaction with, software and information?

The separate chapters of this work deal with a number of component research
questions. These will now be discussed one by one, after which I shall return to the
overall research question.

Component Research Questions: Conclusions

RQ1: What is the relevance of the current work to society and
academia?

Chapter 2 shows how decades after the use of software became ubiquitous in all
aspects of life, users still tend to not fully master the software tools that they work
with. Inefficient use, ineffective use and under-use of software are the order of the
day. With repeated practice over time, users reach an intermediate level of
mastery; after which they no longer make further progress and find themselves
stuck at a suboptimal level of competence. The situation has become known as the
Paradox of the Active User.

If we define ‘design’ as purposeful endeavour resulting in a particular product for
the benefit of a human performer, then there exist various design disciplines that
work to alleviate the Paradox of the Active User. Human-Computer Interaction or
HCI design targets the software tool itself, aiming to make it as usable and as
useful as possible. Instructional design targets the user before any work is
undertaken, educating him in a classroom setting or through self-study. The user
can also be targeted during his work with the software: when this is done through
the provision of pre-recorded information, purposefully selected and presented to
assist future users, we speak of documentation design. Of these support
disciplines, documentation design has the least status. It is regularly dismissed as
irrelevant because only there to make up for defects in the software’s user
interface; and because “nobody reads it”— assumptions that do not stand up to
close scrutiny. There exists no recognized ever-growing body of knowledge in the
field, constructed by an established academic community that is served by
multiple dedicated conferences and journals. The literature in the field is

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
170

fragmented so that ‘keeping up with the literature’ is an impossible task for
scholars and practitioners alike. As a consequence, the field as a whole does not
make much progress. When research into documentation is carried out, this tends
to embrace new technology-enabled communication media without questioning.

The Paradox of the Active User entered our lives only when software-driven tools
became commonplace. There exists a fundamental difference between physical
tools and software-driven tools that is pivotal to all attempts to defeat the Paradox
of the Active User. Yet user documentation in the 2010s looks very much as it has
looked for a long time. At the same time, the authors of commercially available
software-related books develop new genres in abundance. But whether their new
designs are indeed useful, and if so, under which conditions, is not known.

The persistence of the Paradox of the Active User is frustrating for users and
detrimental to the economy, leading as it does to many wasted man-hours.
Dissatisfaction of users with documentation should be an incentive to improve the
documentation, rather than giving up on this form of user support altogether. To
create documentation artefacts that helps users to achieve mastery, practitioners
look to academia for research results which are not forthcoming.

Before we can think about designing interventions to guide a process towards a
particular outcome, we need to understand the mechanism of the process when it
runs its natural course. This will not in and by itself dispel the Paradox of the
Active User through documentation but it will offer a framework for description,
discussion, and design of documentation artefacts.

Conclusion: There exists no coherent body of research into user
documentation for software. As a result, documentation artefacts are
not evidence-based and often fail to help users fully master the
software they work with. This leads to considerable waste of
resources in the workplace, which is economically damaging.

RQ2: What is known about the way in which people interact with
documentation?

Chapter 3 shows how the way in which people interact with information was
initially conducted from a viewpoint of not the users of the information but the
artefacts in which it resides and the venues in which it is sought. More recently the
focus has shifted and widened to become more naturalistic and person-oriented,
placing the search for information in the particular context in which the
information is sought.

Seeing this process as an ‘information journey’ which is iterative and self-shaping,
we can identify four separate stageposts along the journey that are all visited,
although not necessarily sequentially. The information journey when narrowed

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
171

down to documentation of software tools becomes a ‘documentation journey’. An
information seeker is under no compulsion to visit all the stageposts but can
decide at any moment to abandon the journey altogether. We can offer the user
information but we cannot make him do anything with it. Yet all of the stageposts
can, and should, be leveraged when designing user documentation. Depending on
how the documentation journey is ideally shaped, the preferred ‘route’ can be
made easy whilst others are downplayed.

Conclusion: Although there is no way that a user can be forced to
access documentation in a particular, pre-defined manner, it is
possible to shape his documentation journey by designing for ease of
access to the different stageposts.

RQ3: How can the process be modelled that software documentation is
designed to support?

Publications for practitioners (such as Schriver, 1997) provide guidelines for
making the documentation journey as effortless and effective as possible. The
documentation journey describes however no more than a secondary task, which
has meaning only in the context of a primary task. Chapter 4 shows what the
documentation journey described in Chapter 3 looks like when embedded in the
context of repeated interaction with a particular software tool.

A model of Computer-Mediated Activity (CMA) is presented that describes how the
total amount of knowledge that an individual possesses with regard to a particular
software tool (the ‘knowledge base’) is added to during practice over time. The
process can be seen as a ‘knowledge engine’. The engine is fuelled by the
performer’s current ambition and transforms information into value, with
knowledge as a by-product. The fuller the knowledge base, the more it resists
further expansion. The process therefore slows down and eventually it comes to a
halt. Ideally, but not necessarily, this is at the exact moment that the knowledge
base is full and mastery has been achieved. The engine can easily stop
prematurely, before complete mastery has been achieved.

The CMA model presented in this chapter proposes a meaningful description of the
Paradox of the Active User and in doing so, points out goals for documentation
artefacts to achieve. It offers an explanation of why the knowledge engine is much
more likely to stop running prematurely in computer-mediated activity than it is in
other tool-mediated activity. It also shows how the engine can be made to continue
running for longer if ways are found to strengthen certain cognitive constructs
such as ambition and perceived value, or to weaken others such as recognition and
perceived load. Thus it shows potentials targets for documentation artefacts.

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
172

Conclusion: Combining tried-and-tested frameworks of human
cognitive behaviour in naturalistic settings, a model can be
constructed of Computer-Mediated Activity (CMA) that offers a
meaningful and practically applicable description of the problem
space in which documentation designers move.

RQ4: How can a generic, theoretical model of computer-mediated
activity (CMA) be instantiated to apply to specific, practical
documentation design problems?

Chapter 5 shows that ‘mastery’ means different things for different types of
software, and how to set the boundaries for any given documentation design
project by assessing the software’s use complexity.

Use complexity is a characteristic of the software only, irrespective of any
characteristics inherent to the user or the task environment. Use complexity is a
multi-dimensional construct. It is a measure of the quality and quantity of the
learning required to achieve full mastery of a particular software tool and can be
analyzed from a number of different viewpoints.

Although absolute values for the different dimensions cannot feasibly be
determined, a relative scale can be envisaged ranging from, say, ‘almost none’ to
‘huge amounts’. It then becomes possible to take the idea of dimensions literally
and map out the results of the separate analyses. This leads to a classification of
software according to its use complexity. A particular software tool can be
classified as operator software (least complex), actor software (more complex)
and activator software (most complex). As we move up, the demands placed on the
documentation quickly become more challenging.

Moving up in use complexity from operator software through actor software to
activator software, ever more constructive learning (as opposed to reproductive
learning) is required. Constructivist principles of learning as worked out for
‘constructivist learning environments’ become steadily more important: for
activator software, what is required is really a ‘constructivist documentation
environment’. From the CMA model a new interpretation emerges of the Paradox
of the Active User: The more learning is required, the less easily it takes place. Also:
the more learning is required, the less users are likely to seek it.

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
173

Conclusion: The CMA model can be instantiated for a particular
documentation design task through analysis of the use complexity of
the software being documented.

RQ5: How may a Software Documentation Design Pattern Language
(SDDPL) be constructed on the foundation of the CMA model?

Chapter 6 shows how so-called design patterns, combined into design pattern
languages, provide one way of recording and transferring design knowledge. Each
design pattern offers a description of the invariant parts of proven designs as a
solution to a problem in a specific context. A design pattern language is a collection
of design patterns in a particular domain, all sharing an underlying value system
and an organizing principle.

In this chapter a Software Documentation Design Pattern Language or SDDPL is
constructed, with empowerment, through the achievement of mastery, as the
underlying value system. The language contains patterns for the design of
documentation artefacts that aim to engender, over time, full mastery of the
software that is being documented. Justification of the individual patterns is found
in the CMA model.

Next, to determine the optimum organizing principle, practicing documentation
designers are identified as the main stakeholder group in the pattern language.
This group has two major interests in the language. During design practice,
patterns may be applied to solve a particular problem. Quite separately,
experienced designers may wish to record their knowledge by writing patterns.
The SDDPL’s usability is therefore discussed with a view to these two separate
uses of the language. The resulting organizing principle caters for both interests,

Conclusion: The SDDPL has the achievement of mastery as described
by the CMA model as its underlying value system. Its organizing
principle aims to maximize usability for its main stakeholders: those
who apply existing patterns to current design problems as well as
those who record their design knowledge for the benefit of others.

RQ6: Can proposed and existing documentation design solutions be
expressed in terms of the SDDPL?

Chapters 7, 8 and 9 present a number of SDDPL patterns. The first of these three
chapters contains ‘macro’ patterns: those are applied to a complete documentation
set. The next presents ‘meso’ patterns, for application to a complete
documentation artefact. The last of the three chapters presents a number of ‘micro’
patterns, for application to elements within a documentation artefact.

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
174

Some of the patterns originate from theory (e.g. CONCEPTUAL MODEL, DOCUMENTATION
ENVIRONMENT, EVERY PAGE IS PAGE ONE), while others were mined from existing
documentation artefacts (e.g. COOKBOOK, SCREEN CAPTURE, CROSS-REFERENCE).

Conclusion: Design patterns for software documentation can be
expressed in the SDDPL at all three hierarchical levels (macro, meso
and micro) and regardless of whether a pattern originates from
theoretical considerations or from existing practice.

Overall Research Question: Discussion

RQ0: Can design rationale for a coherent approach to the design of
software documentation artefacts be found in a framework that
describes the system dynamics of human performers interacting
with, and learning from the interaction with, software and
information?

The SDDPL (Chapter 6) is a design pattern language, and as such it is a coherent
approach to the design of software documentation artefacts. Its design rationale is
found in the CMA model constructed step-by-step in Chapters 3, 4 and 5, which is a
framework that describes the system dynamics of human performers interacting
with, and learning from the interaction with, software and information. Since
Chapters 7, 8 and 9 successfully present a number of SDDPL patterns, the overall
research question can be briefly answered with ‘Yes’.

There are however a number of caveats.

 The research question has been answered by creating a design pattern
language. This is not the only ‘coherent approach to the design of software
documentation artefacts ‘ imaginable. To the contrary: the design pattern
approach is relatively unknown in fields other than architecture, UID or
programming. Outside these fields, design practitioners are more commonly
provided with straightforward guidelines.

 Although the CMA model is based on a number of well-accepted descriptive
frameworks of human cognitive behaviour in naturalistic settings, validation is
problematic. The mechanics of the knowledge engine describe a complex
process that takes place almost exclusively within people’s heads. It cannot be
studied directly or even indirectly. There exist no metrics for ‘recognition’, say,
or ‘ambition’. Nor can we study people in a naturalistic environment for a long
enough period of time for them to actually add to their knowledge base; and if

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
175

we could, there would be no way to distinguish events that are part of the
process from those that are not. All we can do, therefore, is some sort of
algorithmic validation. The simple plots in Chapter 4 do certainly not reflect
quantifiable constructs working in a predetermined manner: they show no
more than a pattern of development of key elements in the CMA model over
time.

 The SDDPL thus far is no more than an academic exercise. Although it provides
an answer to the research question, it has not been tested in design practice.
Currently, it is not known whether the SDDPL can help documentation
designers create documentation artefacts that defeat the Paradox of the Active
User.

 The SDDPL has been structured with a dual purpose: to be a working design
pattern language, and to satisfy the demands of a PhD thesis examination
committee. The latter audience may well have compromised usability
requirements for the former.

 Although the hierarchy of scope for patterns within the language (expressed
as macro, meso and micro) proved workable, it is not perfect. Some patterns
could arguably be placed in a different group than that in which they are now
placed: for example, SEPARATION OF PURPOSE and MOTIVATOR are labelled meso
patterns, to be applied to a particular documentation artefact; but the
principles could just as easily be scaled up to apply to a complete
documentation set.

 No coherent approach has been applied to the mining of patterns in the
language. An attempt to ask users of documentation artefacts (Appendix 3.
Using the Repertory Grid Technique for Mining Design Patterns) yielded only
micro patterns. It is difficult to see how this could ever be otherwise: other
mining methods should be devised.

Research Agenda

These considerations bring me to a proposed research agenda, outlining further
work that needs to be done before the CMA model and the SDDPL can make a
genuine difference to current documentation design practice.

 Further validating the CMA model by ‘running’ it in an independently-
developed qualitative modelling environment, such as Garp3 (Bredeweg,
Linnebank, Bouwer, & Liem, 2009).

 Testing the SDDPL in design practice, to determine if it indeed helps defeat the
Paradox of the Active User through documentation.

 Testing the organizing principle (format) of the SDDPL for usability (see p.
100).

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
176

 Testing the contents of the individual patterns to ensure that those parts of the
narrative that are mainly of academic interest do not make the patterns less
accessible to practitioners.

 Further investigating the applicability of the hierarchy of scope for patterns
within the language (macro, meso and micro).

 Devising methodical methods for mining SDDPL patterns at all levels in the
hierarchy.

 Investigating whether the CMA model can be used to justify sets of guidelines
as well as a design pattern language.

 Adding further patterns to the SDDPL, until it offers a more or less complete
reference to the problem of “designing documentation”.

A Word To Practitioners
All the work outlined in the research agenda will not be finished in a few months
or even years. Even then, the SDDPL will never be complete. Therefore, I would
like to conclude this work by outlining a few very general guidelines (not
patterns!) for practicing documentation designers to bear in mind when
documenting software for end users.

It is my contention that for practice to make perfect in a naturalistic setting the
knowledge engine must be fuelled; specifically by:

 enabling and stimulating upgrading to as close to 100% of the difference
between the current ambition and the current level of expertise as possible;

 maintaining or eventually raising the ambition to match an intention horizon
enclosing 100% of that which the software is capable of.

Then:

 Cater for the production bias by making every information product visibly
useful to performance of either the task at hand or in the near future.

 Within the limitations posed by the production bias, induce generative
cognitive processing (self-reflection and self-explanation), to stimulate
learning and to raise a barrier against the overly eager application of the first
information that is found and that seems applicable to the situation at hand—
whether it actually is or not.

 Avoid oversimplification.

 Limit the information content of each separate information product to a well-
defined scope that is immediately visible to the user.

Discussion and Conclusions

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
177

 Ensure completeness within scope, to guarantee usefulness.

 Ensure that the set as a whole contains information products that throw light
on the same cases from different angles, providing different perspectives.

 Ensure that the set as a whole caters for expertise increasing over time.

If you bear all this in mind, then all the rest will follow. May your books be great,
your readers happy, and your pay rise imminent.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
179

11. Appendixes

Appendix 1. Software Documentation: A
Standard for the 21st Century
The study described in this Appendix has been presented in a full conference paper at the Information
Systems and Design of Communication (ISDOC 2014), held on 16-17 May 2014 in Lisboa, Portugal (van
Loggem, 2014b).

To lend credence to the author’s proposition that the ‘mainstream’ approach to
documentation has remained unchanged for a number of decades, and moreover is
hardly distinguishable from that adopted when documenting non-software-based,
physical tools, in this Appendix the level of conformance will be determined of an
instruction manual for a table loom, published in 1925, to ISO/IEC 26514:2008
(Systems and software engineering — Requirements for designers and developers of
user documentation); from now on, referred to as “the Standard”.

Method

Conformance to the Standard was verified for the publication Weaving with Small
Appliances, Book III: Table Loom Weaving, written by Luther Hooper and published
by Pitman & Sons in 1925 50. It contains 71 pages. Although one in a series of three,
this manual is intended to be read stand-alone. Other books in the series describe
how to use weaving appliances even simpler than the table loom: the weaving
board (Book I) and the weaving tablet (Book 2).

Verification of conformance was carried out by applying Annex G of the Standard:
Requirements clauses and checklist for documentation products. It exhaustively lists
those clauses in the body of the Standard “which contain requirements (shall
statements) for documentation products.” Annex G is, as is all of the Standard,
protected by copyright and may not be reproduced. Permission has been granted,
however, to put it at the disposal of the Examination Committee of this PhD thesis,
provided it is not included in the body of the work. This will be done separately.

Figure 57 below shows the first requirement as it is listed in Annex G.

50 http://www.cs.arizona.edu/patterns/weaving/books/hl_table.pdf. Downloaded on 12 March 2014
from http://www.cs.arizona.edu/patterns/weaving/topic_loom.html.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
180

Figure 57: The first requirement listed in Annex G; in this Appendix, given
reference #1

In the Annex, the requirements are separately listed but not uniquely identified.
Only a reference is given to the clause containing the requirement. A single clause
in the body of the Standard may contain multiple requirements. To enable
reference to the original, in the discussion that follows all requirements have
therefore been assigned a unique reference number by the author. The 101
requirements identified in the Annex have been numbered consecutively in the
order in which they are listed (which is the order in which they appear in the
Standard), from 1 to 101. For example, the requirement shown in Figure 57,
summarizing the first of a number of requirements following from clause 10 in the
body of the Standard, is given reference #1.

Analyses

In this section, the result of the verification process is looked at from two angles.

First, conformance is determined to all those requirements that are applicable in
the case of Weaving with Small Appliances. Homing in on requirements that are not
met, it is then discussed whether the non-conformance is related to a fundamental
mismatch between the type of manual verified (for a hand-weaving loom) and that
of the Standard against which it is verified (for software manuals): by seeing if the
manual could imaginably be changed so as to conform to all applicable
requirements.

Then, we turn our attention to requirements that turned out to be not applicable.
Arguably, any user manual could be made to conform to any Standard for user
manuals simply by declaring most of the Standard not applicable; which does away
with the need to conform altogether. It is therefore important to, once again,
determine whether the non-applicability is related to the fact that the manual does
not describe a product of the type that the Standard was intended for: by seeing if
the same set of requirements could equally well be not applicable in the case of a
software-related manual.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
181

Conformance and non-conformance

As a first step, straightforward conformance of Weaving with Small Appliances to
the Standard was determined. The result of this analysis is that out of in total 101
requirements, 49 are immediately met. For example, the document is structured
into units with unique content (#3), each page is uniquely labelled (#4), and each
documented feature is related to the overall process or task (#31).

Only the following 6 requirements are not or only partially met:

#10, referencing clause 10.4 of the Standard which lists, amongst a number of
other required elements, a glossary as required “if documentation contains
unfamiliar terms”. Weaving with Small Appliances does contain unfamiliar terms,
which are explained on first use, but it does not contain a glossary. The same
requirement, which is not separately counted, is #48, referencing clause 11.12 of
the Standard where it states that “Documentation shall include a glossary if terms
or their specific uses in the software user interface or documentation are likely to
be unfamiliar to the novice users in the audience.”

#13, referencing clause 10.5.1 of the Standard which states that “the introduction
is the first chapter or topic of the document. The introduction shall describe the
intended audience, scope, and purpose for the document and include a brief
overview of the software’s purpose, functions, and operating environment.” The
first chapter of Weaving with Small Appliances does describe the product and its
“purpose, functions, and operating environment” but the “intended audience,
scope, and purpose for the document” is missing. Clause 10.5.1 goes on to say that
“Introductions shall be provided within a document for each chapter and topic.
Introductory sections should be provided for each major feature or function of the
software being documented. The introductory sections shall provide an overview
of the topic, the purpose of the function, and environmental requirements,
warnings, cautions, or user requirements unique to the topic.” All chapters in
Weaving with Small Appliances are very short, typically no more than three or four
pages, and none open with an introductory section as prescribed by the Standard.

#29, referencing clause 11.4 of the Standard which states that “The documentation
shall include information on how it is to be used (for example, help on help), and
an explanation of the notation (a description of formats and conventions)”. There
is no information in Weaving with Small Appliances on how the book is to be read.
Neither is there a description of formats and conventions, although the latter
cannot be seen as a requirement as the book does not use a particular notation
(and this, itself, is not a requirement).

#33, referencing clause 11.7 of the Standard which states that “Procedures shall
include: preliminary information; instructional steps; completion information.” In
Weaving with Small Appliances, procedural instructions are given in running text,
not visually or stylistically distinguished from narrative. A related requirement is

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
182

for this reason not separately counted: #99, referencing clause 12.16 of the
Standard where it states that “Instructional steps shall be consecutively
numbered.”

#46, referencing clause 11.10 of the Standard which states that “The
documentation on resolving problems shall also include contact information for
reporting problems with software or its documentation, and suggesting
improvements.” The author of Weaving with Small Appliances (who is also the
manufacturer of the table loom) does not solicit readers’ questions or comments
and does not provide contact information.

#91, referencing clause 12.14.3 of the Standard which states that “The titles in the
list of tables, figures, or illustrations shall be identical in wording to those in the
document”. There is a list of illustrations but the titles of the illustrations appear
only in this list: the illustrations themselves are numbered but have no captions.

Six requirements turned out in this analysis to be not or not fully met. Could the
manual be modified so that all requirements other than those that are not
applicable are met? It seems that this would be quite feasible. Full conformance
would necessitate no more than the following:

 adding a glossary;

 stating the intended audience, scope, and purpose of the document in the
introductory chapter and adding a few introductory lines to every chapter;

 explaining how the book is to be used in conjunction with the product itself;

 breaking up the procedures into separate steps (and ensuring that they then
conform to a number of requirements pertaining to stepwise procedures,
which now were not applicable; see below);

 adding contact information for reporting problems with and suggesting
improvements to the product;

 providing every illustration with a caption corresponding to that printed in
the list of illustrations. (Alternatively, the list of illustrations could simply be
removed from the document. Its inclusion is not required when illustrations
are referred to in text immediately preceding or following them, as is the case
in Weaving with Small Appliances).

From this list we may conclude that Weaving with Small Appliances can be made to
conform to the Standard for software user documentation relatively easily.
Required changes are superficial: there is no need to re-consider the approach, the
structure, or the format of the book.

Non-applicability

The Standard offers the possibility to mark requirements as not applicable. As
pointed out earlier, all requirements that are software-specific would by definition

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
183

be not applicable in a manual for a physical tool such as a table loom. If this is the
reason why conformance of Weaving with Small Appliances can be achieved by
making only superficial modifications to the text as it was written in 1925, then its
conformance says little or nothing about the Standard’s specificity to software
documentation. The next step must be, therefore, to analyse the requirements that
were declared not applicable. We can then determine if the same set of
requirements could imaginably be not applicable in the case of a software-related
manual.

The following four main reasons were found for non-applicability of requirements
in the case of Weaving with Small Appliances:

 The requirement applies to a particular aspect of the context in which the
document is made available, and this is not the context in which Weaving with
Small Appliances is made available. In total, 8 requirements were not applicable
to Weaving with Small Appliances for this reason.

 There being only one intended audience results in non-applicability of
requirements #1, #2, #26, #28, and #84. These all reference clauses which
are explicitly declared valid only for document sets or sections each
addressing a separate audience.

 There being no updates or upgrades in table looms (or any other physical
tools) results in non-applicability of requirement #23 referencing clause
11.2 where it states that “If the previous documentation version is no
longer accurate, current documentation shall be available for customers
acquiring software updates or upgrades.”

 The publication being a book, which is not usually packaged, results in non-
applicability of requirement #25, referencing clause 11.3 where it states
that “Identification data shall appear on a package label, legible without
opening the package, and on a title page. A package label is not required if
the title page is legible without opening the package.”

 The author (who is also the manufacturer of the product) not being part of
an organization results in non-applicability of requirement #27,
referencing clause 11.3 here it states that “The identification of the
document and the software shall be consistent with the CM practices of the
issuing organization or the acquiring organization.”

 The requirement applies only to on-screen documentation. In total, 16
requirements were not applicable to Weaving with Small Appliances for this
reason. These would be not applicable also for any other paper-based
documentation product, including software documentation.

 The paper-based format of the documentation results in non-applicability
of requirements #6, #50, #52, #53, #54, #56, #57, #58, #59, #62, #63, #79,

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
184

#80, #81, #92, and #94. These all reference clauses which are explicitly
declared valid only for on-screen documentation.

 The requirement applies only when a particular element is present in the
documentation, and in Weaving with Small Appliances this element is not used.
In total, 21 requirements were not applicable to Weaving with Small Appliances
for this reason. These would be not applicable also for any other documentation
product, including software documentation, that does not make use of a
particular element. Note that presence of the element may (but need not) be a
separate requirement.

 The absence of reference information (not required) results in non-
applicability of requirements #8, #20, #21, #42, and #45.

 The absence of introductory sections (required) results in non-applicability
of requirement #14.

 The absence of warnings, cautions and notes (not required) results in non-
applicability of requirements #15, #16, #47, #64, #95, #96, #97, and #98.

 The absence of procedural steps (required) results in non-applicability of
requirements #34, #35, and #36.

 The absence of a glossary (required) results in non-applicability of
requirement #49.

 The absence of unusual, flexible, or complicated navigational features
results in non-applicability of requirement #75.

 The absence of sections within the chapters results in non-applicability of
requirement #88.

 The absence of long tables spanning more than one page results in non-
applicability of requirement #101.

 The requirement applies only when a particular element is present in the
documented system, and this element is not present in the table loom. The
following 9 requirements were not applicable to Weaving with Small Appliances
for this reason:

 #38, referencing clause 11.7.2 which states that “Procedural steps shall
include or provide reference to documentation of the acceptable range,
maximum length and applicable format, and unit of measurement of data
fields for user-supplied data.”

 #41, referencing clause 11.8 which states that “the documentation
developer shall explain the formats and procedures for user-entered
software commands, including required parameters, optional parameters,
default options, order of commands, and syntax”

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
185

 #43, referencing clause 11.8 which states that “Documentation shall
explain how to interrupt and undo an operation during execution of a
command and how to restart it, if possible.”

 #44, referencing clause 11.8 which states that “Documentation shall
describe how to recognize that the command has successfully executed or
abnormally terminated.”

 #70, referencing clause 12.11 which states that “Graphical user interface
(GUI) elements of the software, such as buttons, icons, and variable cursors
and pointers; special uses of keyboard keys or combinations of keys; and
system responses shall be represented in documentation by consistent
graphic or typographical formats so that the various elements are each
distinguished from the text.”

 #71, referencing clause 12.11.1 which states that “Documentation formats
for user-entered commands or codes shall clearly distinguish between
literals (to be input exactly as shown) and variables (to be provided by the
user).”

 #72, referencing clause 12.11.1 which states that “Formal notation, such as
the use of brackets, braces, greater than (>) and less than (<) characters,
and other marks, shall be defined in every document that uses it”

 #73, referencing clause 12.11.1 which states that “Quotation marks shall
not be used in command representations unless the user should input them
literally.”

 #74, referencing clause 12.11.2 which states that “The documentation shall
establish consistent conventions for representing special keyboard keys
and explain the conventions in documentation for software that uses
special keys for input.”

It is this last category, of requirements that are not applicable as a direct result of
the product that is documented being a physical rather than a software-driven
tool, that is of the most interest. Is the conformance of Weaving with Small
Appliances contingent on all software-specific requirements being not applicable?
Or, turning the question around: Are software manuals imaginable to which this
same complete set of software-specific requirements in the Standard would be not
applicable?

The answer is that such a software user manual is easily imaginable. In fact, one
would be hard pressed nowadays to find a software manual, at least for common
business software packages, for which the software-specific requirements in the
Standard are all applicable. Only one requirement out of the set does not refer to
software that is operated through a so-called Command Line Interface or CLI. In a
CLI, the keyboard is used to enter character-based commands and data values
following strictly prescribed syntactic rules. Yet in all but a very limited number of

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
186

present-day software packages for end users the CLI has been long superseded by
the Direct Manipulation Interface or DMI, where use of the keyboard is not
required for sending commands to the software. Microsoft® Windows NT 3.1
dates from 1993, at which time earlier versions of Windows were already well
established and competed with OS/2 on what was known as the “IBM-compatible
PC” and Mac OS on the Apple Macintosh. All these operating systems already
implemented a DMI rather than a CLI user interface. The CLI, to which most of the
software-specific requirements in the Standard refer, has not been the
predominant paradigm for at least twenty years.

Generally speaking, if software poses formal restrictions on user-supplied data
(#38) then nowadays it would convey these through the user interface itself,
making it impossible or at least very difficult for the user to enter them. End users
need hardly ever, if at all, enter commands with required or optional parameters
in a particular order and according to a particular syntax (#41) where literals and
variables must be distinguished (#71) and which need to be documented using a
formal notation (#72) with or without quotation marks (#73). Also, commands are
executed almost immediately, leaving no scope for interruption or restarting (#43)
nor doubt as to whether they have successfully completed (#44); and special
keyboard keys (#74) are not often of particular interest to the user.

Only one software-specific requirement in the Standard relates to present-day,
DMI-driven software: that graphical elements in the user interface be graphically
or typographically treated in a consistent manner and formatted differently from
the surrounding text (#70). But even this one remaining requirement is not
applicable when documenting the very latest generation of software products,
where such elements are used as sparingly as possible and only those are present
that are already thoroughly known to the user. When documenting, for example,
apps for the iPad it is hard to see where a description of “buttons, icons, and
variable cursors and pointers; special uses of keyboard keys or combinations of
keys; and system responses” would be appropriate.

Discussion

The previous section described how the user documentation for a physical tool,
written in 1925, was verified for conformance to an ISO standard for the user
documentation of software, last updated in 2008. Table 5 below summarizes the
total number of requirements that were immediately met; that were not or only
partially met; and that proved not applicable.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
187

Table 5: Conformance to the requirements

met not (fully)
met

n/a because
of the context
of
distribution

n/a
because
of the
medium
used
(print)

n/a because
a particular
element is
absent in
the
document

n/a
because a
particular
element is
absent in
the system

49 6 (+2
duplicates)

8 16 21 9

Taking into account not just the bare figures but also the considerations laid out in
the previous section, we conclude that:

 Weaving with Small Appliances all but conforms to the Standard;

 it would completely conform after only slight modifications and without
altering its style, approach, or structure;

 conformance is not contingent on the non-applicability of requirements that are
generally applicable to software-related user documentation.

The question now is whether conclusions can be drawn from this very limited test
as to the adequacy of present-day guidelines for the documentation of software. It
is the author’s contention that this is indeed the case.

The Standard must be taken as an example of state-of-the-art guidelines for
software user documentation. In ISO’s own words51: “ISO standards represent, by
an international consensus among experts in the technology concerned, the state
of the art. To ensure that ISO standards retain this lead, they are reviewed at least
every five years after their publication. The technical experts then decide whether
the standard is still valid, or whether it should be withdrawn or updated”. Further
evidence for the standard representing mainstream software documentation
practice is found in the fact that its Annex E contains “excerpts from the checklists
that are used to judge manuals and online help in international competitions of the
Society for Technical Communication”. The Society for Technical Communication
(STC) is the world’s largest professional society for technical communication, and
the STC’s involvement in the Standard must be seen as an endorsement from the
shop floor.

All 101 requirements in the Standard relate to surface characteristics of the
documentation, many of which are relatively trivial. Do we need this particular ISO

51 http://www.iso.org/iso/home/faqs/faqs_standards.htm, accessed on 12 March 2014

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
188

standard to prescribe the use of page numbers (#4) or the consecutive numbering
of instructional steps (99)? The attention to detail expressed by #93, which
specifies the allowed depth of cross-referencing within the index, is commendable;
but it is not necessarily spent on a particularly important consideration when
documenting software. Naturally, such surface aspects of documentation need be
prescribed somewhere. However, leaving them out of a standard that was
explicitly drawn up for the documentation of software would leave more room for
software-specific considerations. In the Standard, only about 10% of requirements
are software-specific—the same proportion of requirements, for example, as deal
with the presence and presentation of warnings, notes and cautions (#14, #15,
#16, #35, #47, #64, #95, #96, #97, and #98).

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
189

Appendix 2. “Nobody Reads the
Documentation”—True or Not?
The study described in this Appendix has been presented in a full conference paper at ISIC 2014: The
Information Behaviour Conference, held on 2-5 September 2014 in Leeds, United Kingdom (van
Loggem, 2014a).

Introduction

The study presented in this Appendix was carried out to provide empirical
evidence to confirm, or not, the widely held belief that software users don’t read
documentation.

A handful of research studies have previously been carried out to determine
whether users are indeed reluctant to consult the documentation that is delivered
with a product, and these are surprisingly unanimous in their findings. The
different studies vary greatly as to respondents, method and the exact nature of
the question. However, they invariably conclude that—at least for complex and
unfamiliar products—the documentation is consulted; even if it is not read,
marked, learned, and inwardly digested in its entirety. Table 6 below shows a
summary of the available research, showing the percentage of respondents
reported as ever having consulted documentation of a particular type.

Table 6: Earlier studies into the use of
documentation

% ‘yes’ N consultation of ref

82.9 44 the printed documentation for
complex equipment such as VCRs

(P. Wright,
Creighton, &
Threlfall, 1982)

96 201 instruction manuals (Schriver, 1997)

99 400 the printed manual for a major
word processing program

(Smart, DeTienne, &
Whiting, 1998;
Smart, Whiting, &
DeTienne, 2001)

65 400 the online Help for a major word
processing program

(Smart et al., 1998;
Smart et al., 2001)

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
190

% ‘yes’ N consultation of ref

95.5 224 the printed manual for an
accounting software package

(Vromen &
Overduin, 2000)

58.9 365 the manual of the vehicle that they
drive most often

(Mehlenbacher,
Wogalter, &
Laughery, 2002)

92 201 the manual that comes with a
product they buy

(Jansen & Balijon,
2002)

59 107 the printed manual for any piece of
software

(Martin, Ivory,
Megraw, & Slabosky,
2005)

57 107 the online Help for any piece of
software

(Martin et al., 2005)

91.2 70
(older
adults)

product manuals for technological
products

(Tsai, Rogers, & Lee,
2012)

In addition to the studies summarized in Table 6, there are a few reporting
considerably lower rates of recourse to documentation (Ceaparu, Lazar, Bessiere,
Robinson, & Shneiderman, 2004; Mendoza & Novick, 2005). These, however, are
characterized by a different focus, studying as they did the occurrence of users
turning to sources of support on experiencing “frustration” with software as a
result of poor usability. Many of the frustrations described did not result from lack
of mastery of the software but followed from network breakdowns, time delays,
and recognized user errors such as saving a file to the wrong location. In such
situations the origin of the frustration is already known, and it is not surprising
that no attempt is made to alleviate it by turning to documentation. Also, there is
no reason to assume that recourse to documentation is necessarily preceded by a
sensation of frustration. It is well imaginable for an individual to turn to
documentation while experiencing a non-frustrating desire to know. For these two
reasons, the “frustration” studies recorded only a subset of all recourses to
documentation, of unknown proportion. They are therefore not included in Table
6.

Doubt has been expressed (Novick et al., 2007) as to the validity of the results
summarized in Table 6. Moreover, some of them pertain to consumer products
whilst others discuss the use of documentation when working with software. The

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
191

study described here, therefore, specifically focused on the sources of information
that users of software refer to in the course of their work.

Study Design

Instrument and Method

A single-sheet questionnaire was prepared which offsets six possible sources of
information against four possible situations in which information can be required
when working with software. In the Netherlands, where the study was conducted,
the national language is Dutch but there are many environments where English is
the working language. For this reason, the questionnaire was prepared in two
language versions (Dutch and English). In all respects other than language, the two
versions of the questionnaire were identical. An image of the English language
version of the questionnaire is presented in Figure 58.

The information sources were described as follows (all quotations are taken from
the English language version of the questionnaire):

 instructions delivered with the software (in print or as a PDF)

 Help that you call up from within the software

 online sources (through a web browser)

 shop-bought book (either your own or borrowed)

 ask someone you know (colleague, family member, etc.)

 other, that is: _______________

The situations in which information might be sought were described as follows:

 understand how the program or part of it works, and what it can do

 look up how to carry out a particular procedure

 quickly look up a particular fact that you don’t know or cannot remember
right now

 find out what went wrong when there is a problem

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
192

Figure 58: English language version of the questionnaire

Rather than asking respondents for their preferences, a little narrative was
introduced to exert some gentle pressure, prompting respondents to consider
their choices more thoroughly than they might have done when presented with a
more straightforward questionnaire. Printed on the questionnaire itself were the
following instructions:

Below you see (from top to bottom) four situations in which you could imagine
needing information on how a software package that you are working with works.
From left to right, a number of possible sources of such information are listed.

Now imagine that, whenever a particular situation occurs, you can spend up to 8
cents on actually looking for the information that you need. There is however a
limitation: you may never spend more than 2 cents at a time on one particular source
of information. How would you spend your 8 cents? Please note, you need not spend
them all!

This unusual design, it was hoped, would slow down respondents enough to make
them carefully consider their answers; rather than breeze through a list of similar-
looking questions.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
193

In November 2013, the 69 students who attended class on the first day of an
introductory course on web applications were presented with the Dutch language
version of the questionnaire. These students were at the very beginning of their
studies at an institution for short tertiary education, and the course they were
taking was part of a study program in Communication and Multimedia Design.
Most were under 25 years old, having enrolled in the program directly or almost
directly after completing upper secondary education; 5 were between 25 and 30
years of age. None of these 69 respondents, who all returned the filled-in
questionnaire, held a tertiary educational qualification.

Then, in February 2014, the English language version of the questionnaire was
administered to employees at the Netherlands office of a developer of a scientific
software suite for the interpretation of seismic data. This is a highly skilled area of
expertise, as is reflected in these respondents’ relatively high level of education.
Out of the 30 professionals (as I shall refer to this group from now on) who were in
the office on the particular day on which the questionnaire was administered, and
who all returned the filled-in questionnaire, 11 held a doctoral degree or
equivalent and a further 10 held a master’s degree or equivalent. Their overall age
was, inevitably, higher than that of the students studied a few months earlier.

Data Processing

First, all the filled-in questionnaires were checked for clarity and for violations of
the rules that 1) on no situation that information could be needed, more than 8
‘cents’—from now on, I shall refer to these as tokens—in total could be spent and
2) no more than 2 tokens could be spent on a particular information source in a
particular situation. None of the questionnaires violated either of these rules, nor
was it ever unclear how many tokens were spent.

The filled-in questionnaires were also checked for ‘empty’ rows, to see if there
were situations in which a respondent had not spent any tokens at all. This was
not the case. All respondents had allocated at least one token to at least one
information source for every one of the four situations.

Separately considered were the explanations given for the information source
‘other’ in cases where tokens were spent on this source: as it turned out, only two
‘other’ sources of information were mentioned. One, exclusively mentioned by
students, was ‘YouTube’; the other, exclusively mentioned by professionals, was
‘Help Desk’.

To allow for the data obtained from the filled-in questionnaires to be analysed in
different ways, a relational database was then created which could be queried
using SQL, the standard query language for such databases. In doing so, the six
information sources were given a code determining whether that particular source
of information is an instance of ‘documentation’; where ‘documentation’ was

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
194

defined as pre-recorded information that is purposefully selected and presented by a
human designer to assist future human users deploying a particular tool. Application
of this definition led to the information sources ‘instructions delivered on paper or
PDF’, ‘Help system’, and ‘shop-bought book’ being labelled ‘documentation’, where
the remaining three categories of ‘information found online’, ‘asking somebody’,
and ‘other’ (which had turned out to be either YouTube or Help Desk) were not.

The database was then filled with the data from the questionnaires. For each
combination of a respondent, an information source, and a situation a value was
entered into the database recording whether 0, 1 or 2 tokens (the maximum
allowed) were allocated.

Finally, pertinent SQL queries were run and the results analysed as described
below.

Results

In this section, to determine if there is truth in the saying that “nobody reads the
documentation”, the question is looked at from a number of different angles.

First, an extension to Table 6 is drawn up, allowing for a summary of the results to
be compared to earlier studies.

Then, the relative use of documentation compared to other sources of information
is investigated.

Next, the results are investigated in more depth and split up by the type of
information source that respondents report they refer to.

Finally, the results reported in the first three paragraphs are split up by situation
in which information is sought.

Reference to documentation

The first question asked was, very simply and in line with the information
presented in Table 6: What is the percentage of respondents in both groups
(students and professionals) who at least sometimes, in some situations, refer to
documentation? The raw data is presented in Table 7.

Table 7: Numbers of respondents who spent at
least 1 token

 students (N=69) professionals (N=30)

book 13 8

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
195

manual 48 27

Help 44 24

online 69 30

ask 59 25

other 12 7

For the professionals this percentage is 100. Out of the six information sources to
which respondents were invited to allocate tokens in different situations, some
were coded ‘documentation’ whilst others were not. None of the professionals
allocated less than 1 token to the combined information sources instruction
manual, Help system and book. Even if we remove the tokens allocated to books
from the equation, the answer is still 100: all professionals indicate referring to the
‘traditional’ documentation genres of instruction manual and Help system at least
some of the time.

For the students these percentages are a little lower. 10 students never refer to the
instructions or the Help system, although 2 of these may occasionally refer to a
shop-bought book. This means that in this group 85% consult the instructions or
the Help, be it ever so occasionally, while 88.4% may consider turning to any
source of information that can be seen as documentation. These numbers are
summarized in Table 8 below, in a format similar to that used in Table 6.

Table 8: Use of documentation (present study)

%
yes’

N consultation of group year

88.4 69 Help system or instructions (in
print or PDF) or shop-bought book

students 2013

85 69 Help system or instructions (in
print or PDF)

students 2013

100 30 Help system or instructions (in
print or PDF) or shop-bought book

professionals 2014

100 30 Help system or instructions (in
print or PDF)

professionals 2014

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
196

Documentation versus other sources of information

High percentages of users indicating that under certain conditions they refer to
documentation are not difficult to obtain and therefore not very meaningful.
Indeed, almost the same result can be achieved if we count the percentage of
respondents that indicate referring, at some time or other, to sources of
information other than documentation: for the students as well as for the
professionals this turned out to be 100%.

In order to determine the relative importance of documentation, we need to know
how frequently other sources of information will be referred to when users have a
choice. The next question therefore was: To which of the two groupings of
information sources, documentation or not, was the highest proportion of tokens
allocated? Remember that ‘documentation’ may be a shop-bought book, an
instruction manual or a Help system. The raw data is presented in Table 9.

Figure 59: Proportions of tokens spent on documentation and non-
documentation information sources (outer ring: professionals; inner ring:

students)

Figure 59 shows a clear preference for information sources that cannot be seen as
documentation. Out of a total of 944 tokens spent by the 69 students, only 248
(26%) were allocated to documentation. The 30 professionals together spent 472
tokens, 190 (40%) of which were allocated to documentation.

doc
26%

doc
40%

non-doc
74%

non-doc
60%

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
197

Reference to different information sources

Thus far, the information sources labelled ‘documentation’ and those labelled ‘not
documentation’ have been lumped together. It is worth our while looking at the six
sources of information separately.

One way of doing this is by asking: How is the total number of tokens spent
distributed over the various information sources? (See Table 9.)

Table 9: Number of tokens spent

 students professionals

book 22

248

16

190 manual 107 73

Help 119 101

online 447

696

153

282 ask 215 113

other 34 16

 944 472

As it turns out, students and professionals had the same relative preferences.
Figure 60 shows how of all tokens that were allocated, by far the most are spent on
the information source ‘online’, with ‘ask somebody else’ as a good second. Only
then come the Help system and the instructions, followed by ‘other’ (which was
YouTube for the students and Help Desk for the professionals) and finally, the
shop-bought book.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
198

Figure 60: Proportions of tokens spent on the different information sources
(outer ring: professionals; inner ring: students)

Another way of looking at the use made of the various sources of information is by
counting those respondents who have allocated tokens to a particular information
source in at least one situation. As there are six categories rather than one, and the
percentages under consideration add up to more than one hundred, the numbers
do not lend themselves to presentation in a format comparable to the earlier
tables, nor the ‘doughnut’ chart format used thus far. Figure 61 presents the data
as a simple clustered column chart.

Although direct comparison between Figure 60 and Figure 61 is difficult, we can
still see that shop-bought book and ‘other’ are the least popular sources of
information in both analyses, just as asking somebody and online browsing are the
most popular. However, the differences between the information sources are
smaller when we ignore the total number of tokens allocated, and the classical
documentation genres of instruction manual and Help system manifest themselves
much more strongly.

Of the 30 professionals, 27 (90%) would refer to the user instructions in at least
one situation, and 24 (80%) would look for information in the Help system. Fewer
students than professionals would ever turn to traditional documentation
products, but still considerably more than half the students would in at least one
situation do so: out of the 69 students, 48 (almost 70%) would sometimes consult
the instructions and 44 (almost 65%) would sometimes consult the Help system.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
199

Figure 61: Percentages of respondents who consult the various
information sources in at least one situation

User instructions and Help in different situations

To conclude this analysis, let us consider the relative preferences for the
information sources ‘instructions’ and ‘Help’ against the different situations in
which information is sought. In which situations are these traditional
documentation products most frequently referred to?

Again, the different percentages do not add up to one hundred; this time because
only those tokens allocated to either instructions or Help are taken into
consideration while the others are ignored. Table 10 and Table 11 show the raw
data; Figure 62 and Figure 63 present the data once again in the format of a set of
clustered column charts.

Table 10: Number of tokens spent (students)

 how the
program

works

carry out a
procedure

quick
lookup

problem-
solving

book 8 7 3 4

manual 45 36 6 20

Help 38 32 11 38

online 113 114 119 101

ask 60 57 37 61

0%

20%

40%

60%

80%

100%

online ask Help instructions other book

students

professionals

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
200

 how the
program

works

carry out a
procedure

quick
lookup

problem-
solving

other 15 9 2 8

total: 944 279 255 178 232

Figure 62: Per situation, proportions of tokens spent on consulting the
instructions and the Help in the Students group

Table 11: Number of tokens spent (professionals)

 how the
program

works

carry out a
procedure

quick
lookup

problem-
solving

book 4 9 3 0

manual 28 23 11 11

Help 26 23 23 29

online 34 38 44 37

ask 31 24 27 31

other 5 2 0 9

total: 472 128 119 108 117

Students

16%
14%

3%

9%

14% 13%

6%

16%

0%

5%

10%

15%

20%

25%

how the program
works

carry out a
procedure

quick lookup problem-solving

instructions

Help

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
201

Figure 63: Per situation, proportions of tokens spent on consulting the
instructions and the Help in the Professionals group

Figure 62 and Figure 63 show that for problem-solving and quick lookup of simple
facts, Help is generally preferred over instructions delivered as a printed manual
or as PDF. For finding out how the program works and what it can do, and for
learning how to carry out a particular procedure, however, the two sources of
information are almost equally popular. If anything, the instruction manual is
marginally preferred to the Help.

Limitations

The study described here was based exclusively on self-reports. Doubts can be cast
on the validity of the results, as there is no way of knowing whether respondents
indeed interact with documentation as they say they do (Novick et al., 2007).
Indeed, at least once it was found (albeit in a relatively small-scale study), that
respondents’ replies to the question whether they consult the documentation
before starting a task or only after they have done so, bore no relationship to their
actual behaviour only minutes earlier (Eiriksdottir & Catrambone, 2008).

The unusual design of the questionnaire seemed to have met its objective of
forcing respondents to think before answering. No obvious patterns could be
detected simply by looking at the filled-in forms: almost all respondents had spent
their tokens so that the distribution over the information sources was different for
each of the four situations.

However, neither the students nor the professionals spent all the tokens that they
had at their disposal. Remember that every respondent was presented with four
distinct situations and eight tokens to spend on looking for information in any one
situation; they were explicitly told that they need not spend all eight tokens per
situation. So, every respondent had a total of 32 tokens to spend. Considering that
the students spent on average 13.68 tokens and the professionals 15.73, we see in
Figure 64 that in both groups more than half the tokens remained unspent.

Professionals

22%
19%

10% 9%

20% 19%
21%

25%

0%

5%

10%

15%

20%

25%

how the program
works

carry out a
procedure

quick lookup problem-solving

instructions

Help

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
202

It is difficult to determine how to interpret this. Does the proportion of unallocated
tokens somehow provide a measure for how often the average respondent would
give up and live with a lack of information rather than look for it? Or is it so that at
least some respondents have spent their tokens assigning a score of 2, 1 or 0 in
order to indicate a relative preference? Are there respondents who fully expect the
answer to a question in a particular situation to be found in one or two particular
sources of information, and do not feel the need to spend any ‘money’ on other
information sources? Or is the fact that not all information sources are always
available taken into consideration? Informal discussion with a few of the
professionals after they had filled in the questionnaire revealed that all of these
explanations, and undoubtedly more, in some cases apply. It is not possible
therefore to draw hard conclusions from the absolute numbers found; but we can
conclude that users of software refer to documentation as well as to other sources
of information, and that non-documentation sources are referred to relatively
more.

Figure 64: Percentages of tokens spent on documentation and non-
documentation information sources, including unallocated tokens (outer

ring: professionals; inner ring: students)

doc
11%

non-doc
32%none

57%

doc
20%

non-doc
29%

none
51%

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
203

Appendix 3. Using the Repertory Grid Technique
for Mining Design Patterns
Report of a ‘focus group’ held on 9 July 2015 during the EuroPLoP 2015 conference in Kaufbeuren,
Germany. A shorter version of this Appendix is included in the conference Proceedings (van Loggem,
2015).

The act of extracting design patterns from existing design artefacts is called
pattern mining. Pattern mining consists of distinguishing the invariant parts of
existing design solutions (the pattern) from their variant parts (the current
context). Attempts have been made to formally or even automatically mine design
patterns in software engineering from code, but in domains where there is no
formal intermediate layer between the design and its implementation, patterns are
by necessity mined through the application of human judgment, in a semi-formal
manner.

In the literature, a number of such semi-formal methods for pattern mining are
described. The authors of (Kohls & Uttecht, 2009) first scanned their own work for
possible patterns, then analyzed the work of others in the same field, which was
educational interactive graphics. Next, a panel of experts validated the candidate
patterns: first through direct comparison of pairs of artefacts, then through sorting
the same artefacts. A different approach is described in (Iacob, 2011), where
recurrent design issues were collected first during a series of workshops in which
team of interaction designers created the graphical user interface for a particular
application, then by analyzing a collection of existing interfaces. Those design
issues that occurred the most frequently, were treated as candidate patterns. In
yet another publication (Winters & Mor, 2009), the pattern mining process is
described as starting from case studies, provided by designers of educational
software.

In all these cases, the candidate patterns were mined by designers rather than end
users. As argued earlier, however, software documentation is a field in which the
end users can easily decide not to use an artefact at all; and therefore, it would be
desirable to take into account the end users’ preferences for certain design
patterns over others. Looking at a fairly typical simple pattern structure
containing the elements Problem; Solution; Use when; Don’t use when; How; Why,
it seems possible for the first four structure elements (Problem; Solution; Use
when; Don’t use when) to be provided by end users, even if the final two (How and
Why) are left to expert documentation designers. To test this hypothesis, I
developed an approach to pattern mining that involves end users, and conducted a
simple study.

A ‘focus group’ was organized on 9 July 2015 during the EuroPLoP 2015
conference in Kaufbeuren, Germany. This is a conference on design patterns and
pattern languages, drawing an international audience and having English as the

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
204

working language. The focus group was advertised as an attempt to find out if the
Repertory Grid Technique could be used for mining patterns. No information was
given beforehand on the nature of the artefacts to which the technique would be
applied; and the technique itself was outlined in only a few sentences. No pre-
notification was required for participating in the focus group.

Method

The method was based on the Repertory Grid Technique, originally devised as a
psychological diagnostic tool, mapping out characteristics of people rather than
artefacts (Kelly, 1955). However, variations on the technique have really taken off
as a tool for market research (Marsden & Littler, 2000). It is easy to administer,
and has the advantage of having researcher objectivity built in: in no way are
respondents guided in any direction.

The first step is triading. A number of subsets of three elements from a larger set
are presented to the respondent, who is asked to choose one that is in some way
different from the other two. In this focus group, triading yielded a list of features
of designed products (candidate patterns). The second step is laddering. The
respondents are asked to indicate which pole of the identified feature is ‘good’ and
which is ‘not good’, and how the feature is characterized. In this focus group,
laddering yielded a first, bare-bones description of the design pattern underlying a
feature. The final step is pyramiding. Ways are determined to get at the desired
positive pole of a feature. In this focus group, pyramiding fleshed out the results of
the previous step and yielded the beginnings of a full pattern description.

Execution

The group drew six participants, all male and between 30 and 40 years old. None
had any experience with or even interest in the design of user documentation of
any kind. After a brief introduction, they were given unrestricted access to five
hardcopy documentation artefacts that had been placed on a free-standing table:
three commercially available books, and two user manuals that came with a piece
of software. All were written in English. On the cover of each a white sticky label
was attached, with a number ranging from 1-5. The books and the numbering
scheme were as follows:

1: Mastering Prezi for Business Presentations

Anderson-Williams, Russell
Packt Publishing, Birmingham, UK, 2012
ISBN 978-84969-302

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
205

2: MYOB Accounting Plus(v15): User Guide

©2006, MYOB Technology Pty Ltd

3: Google SketchUp: The Missing Manual

Grover, Chris
O’Reilly, Sebastopol, USA, 2009
ISBN 978-0-596-52146-2

4: Beginning Joomla!: From Novice to Professional

Rahmel, Dan
Apress, Berkeley, USA, 2007
ISBN 978-1-59059-848-1

5: Paint Shop Pro 7 & Animation Shop 3: Getting Started Guide

©2001, Jasc Software

Each participant was handed writing materials and one printed form listing all
possible combinations of 3 out of the 5 documents. (This is 10: n! / (n-r)! * r!
where n=5 and r=3.) Participants were then asked to individually determine and
write down, for each combination of three documents, which was the ‘odd one out’
and why. In the Repertory Grid Technique, this step is called triading. The
participants were also asked to note whether the characteristic thus isolated was a
‘good thing’ or a ‘bad thing’, corresponding to the laddering step in the Repertory
Grid Technique. It was stressed that they should not look for superficial
characteristics, such as whether a book has a hard or a soft cover.

Filling in the forms, repeatedly referring to the documents, took about 45 minutes.
When all six participants were finished, the hand-written forms were scanned for
legibility, and clarification was asked where needed.

A list was drawn up of all the design features resulting from the triading and
laddering. Finally, in an adaptation of the Repertory Grid Technique step of
pyramiding, one of these was elaborated on during a group discussion, to give the
beginnings of a design pattern (often called a “patlet”) according to a pre-prepared
structure.

Candidate patterns

First it must be noted that two of the six participants looked for differences in the
subject matter (the software being described) only. For example, participants D
and E both saw 2 as different from 1 and 3, and for the same reason: “topic is
business/finance related, compared to forms of 3D design” (participant D) or
“math/accounting, other two are visual design” (participant E). Both participants

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
206

completed the form along these lines, never considering the design of the
materials. These two participants were excluded from the analysis.

Also excluded was participant F, who agreed with D and E that 2 was different
from 1 and 3 because “1 and 3 are creative; 2 is some boring accounting book” and
then looked exclusively for other, although equally superficial features: “costs
34.99 $ (the others 44.99 $)” for example, or “contains advertisement”.

In addition, it also seemed that if for one combination of samples someone had
noticed a particular feature, he looked for that feature in the next combinations as
well. It is likely that a larger number of design features would have been elicited if
participants had been instructed:

 not to look at subject matter;

 not to look at non-designer decisions;

 try and find something new for every combination of samples that was
evaluated.

As participant A on one occasion found the ‘odd one out’ to be characterized by “no
OS-specific port”, which refers to the subject matter rather than to the document
design and is therefore excluded, the forms filled in by participants A, B, and C
mention 29 non-unique design features of documentation products. Re-phrasing
every negative feature to yield a positive one, then consolidating and standardizing
for terminology, gives the unique positive design features listed below. The list is
sorted by frequency of mentioning and the number of times is given that a
particular feature was mentioned (a full transcription of the forms filled in by
respondents A, B and C is given in the final section of this Appendix).

 cross-references [4]

 introduction to the book (rather than to the software) [4]

 tips/cautions/notes, typographically marked [3]

 chapter summaries (at the end) [3]

 chapter introductions (at the beginning) [2]

 running example [2]

 back matter [2]

 running head (perhaps containing subheader or chapter number/name) [2]

 stepwise instructions (perhaps with main action highlighted) [2]

 limited number of pages [1]

 tool icons shown in instructions [1]

 glossary [1]

 quick start section [1]

 section headings phrased as questions [1]

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
207

During the discussion of which of these features to choose for working up into a
“patlet”, the group agreed that chapter summaries and chapter introductions had
very similar effects on the reader. Therefore, they were treated as one, under the
name Chapter Summary.

Patlet: Chapter Summary

A simple pattern structure had been pre-prepared, consisting of the following
elements: 1) Problem; 2) Solution; 3) Use when; 4) Don’t use when; 5) How and 6)
Why.

The identified feature (“Chapter Summary”) was filled in under Solution. Next, the
Problems that a chapter summary could solve were identified as not remembering
things; having skipped something without realizing; wanting to know if a chapter
is interesting enough to read. The group in their capacity as end users of
documentation easily came up with Use when: in narrative and in hard copy, and
Don’t use when: chapters are short. It was agreed that the remaining two pattern
elements, How and Why, should be left to expert documentation designers. This
was in line with the hypothesis.

Problem

 Not remembering things.

 Having skipped something without realizing it.

 Wanting to know if a chapter is interesting enough to read.

Solution

Provide a chapter introduction, explaining what will be discussed in the chapter,
and/or a chapter summary, describing what the reader has learned.

Use when

 Hard copy.

 Narrative.

Don’t use when

Chapters are short.

How and Why

[not discussed]

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
208

Forms filled in by respondents A, B and C

Participant A

which of the three is
the ‘odd one out’?

what makes it different
from the other two?

is that a good
thing
or a bad thing?

1 2 3 running example +

1 2 4 no tips/notes marking -

1 2 5 no OS-specific port (BvL: refers to the
subject matter)

~

1 3 4 no summary after chapters -

1 3 5 running example +

1 4 5
explicit questioning [BvL uncertain;
almost undecipherable]

+

2 3 4 no “tips” -

2 3 5 like a “Glossary”, to look up; not read
through

?

2 4 5 no 1. 2. 3. steps ?

3 4 5 no intro -

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
209

Participant B

which of the three is
the ‘odd one out’?

what makes it different
from the other two?

is that a good thing
or a bad thing?

1 2 3
A lot of page number references
(for more info) *

a bad thing and a good
thing

1 2 4
see previous [BvL that is: A lot of
page number references (for
more info]

see previous [BvL that
is: a bad thing and a
good thing]

1 2 5
see previous [BvL that is: A lot of
page number references (for
more info]

see previous [BvL that
is: a bad thing and a
good thing]

1 3 4
Subheader on upper page
heading instead of chapter
number/name

a good thing

1 3 5
In step instructions the main
action is highlighted

a good thing

1 4 5
Doesn’t have dedicated
Tip/caution/note boxes

a bad thing

2 3 4

[same as] * [BvL: refers to first
combination in the form, that is: A
lot of page number references
(for more info)]

[same as] * [BvL: refers
to first combination in
the form, that is: a bad
thing and a good thing]

2 3 5 Tool icons given in instructions a good thing

2 4 5
Doesn’t have any upper heading
info regarding chapter
number/name

a bad thing

3 4 5 It is the shortest in terms of pages a good thing

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
210

Participant C

which of the three is
the ‘odd one out’?

what makes it different
from the other two?

is that a good thing
or a bad thing?

1 2 3
Missing introductory part with
overview and “When and Why to
Read”

bad

1 2 4 Has a quickstart section good

1 2 5
Has a summary part to each
chapter

good

1 3 4 Has no summary for chapters bad

1 3 5 No back matter bad

1 4 5 see above [BvL that is: No back
matter]

see above [BvL that is:
bad]

2 3 4 has a structure above chapters good

2 3 5
see above [BvL that is: has a
structure above chapters]

see above [BvL that is:
good]

2 4 5 Has no “what has changed” part bad

3 4 5
see above [BvL that is: Has no
“what has changed” part]

see above [BvL that is:
bad]

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
211

Appendix 4. Terms List
The overview in this Appendix lists everyday-English words and phrases that I
have given a meaning that is more restricted than their standard dictionary
definitions. Italics indicate a term that is itself included in the overview.

action An action is a sequence of operations, undertaken one after
the other in order to achieve a particular goal within the wider
framework of the activity’s overall intention.

activator
software

Activator software is software in which there is depth in the
use complexity at the level of activities.

activity An activity is a sequence of actions, undertaken one after the
other in order to achieve an overall intention providing a
motivation.

actor software Actor software is software in which there is depth in the use
complexity at the level of actions, but not at that of activities.

ambition The ambition is the intention with which a performer
embarks on a course of action. It has a long-term and a short-
term component.

assimilation
bias

The assimilation bias is the tendency to actively or passively
ignore newly-acquired knowledge when using a tool in order
to meet an objective.

browsing In contrast with searching, browsing is interaction with
information sources that is driven by a general desire for as-
yet unspecified knowledge related to a particular topic.

depth The depth of a software system’s use complexity is a measure
of the degree of mapping between on the one hand the novelty
brought to the work by the software, and on the other pre-
known concepts that the user is already familiar with.

design Design is purposeful endeavour resulting in a particular
product for the benefit of a human performer.

design pattern A design pattern is a description of the invariant parts of
proven designs as a solution to a problem in a specific context.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
212

design pattern
language

A design pattern language is a number of interconnected
design patterns related to a particular design discipline which
share both a value system and an organizing principle.

documentation Documentation is pre-recorded information that is
purposefully selected and presented to assist future users
deploying a particular tool.

documentation
journey

The documentation journey is the search for information on
the deployment of a particular tool.

height The height of a software system’s use complexity is a measure
of the degree to which the software can affect an activity (in
the activity-theoretical sense of the word).

information Information is knowledge that is implicitly or explicitly
formulated so as to be of value to a human being.

intention
horizon

The intention horizon is the perimeter of the solution space
that a user perceives to be offered by a particular tool.

interaction An interaction is an observable behaviour, carried out by a
user to direct the functioning of a software-driven system.

knowledge
base

The knowledge base is the total of a user’s current knowledge
about the particular computer-mediated activity in which he
engages.

load The load of an activity is the effort that the performer
experiences in carrying out the activity.

mastery Mastery is expertise in a particular domain of tool-mediated
activity, enabled by the ability to instantiate, for any actual
need a complete and correct mental model of those aspects of
the User Virtual Machine that are actually relevant. Mastery is
evidenced by successfully completed activities at the highest
possible level of abstraction that the tool allows for.

mental model A mental model is a simplified representation in the mind of a
complex system, that remains available in the knowledge base
and evolves over time.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
213

operation An operation is a routinely carried-out observable behaviour.

operator
software

Operator software is software in which there is depth in the
use complexity only at the level of operations.

organizing
principle

A design pattern language’s organizing principle is the format
in which the individual patterns in the language are
presented.

production
bias

The production bias is the tendency to put short-term before
long-term results when using a tool in order to meet an
objective.

satisficing Satisficing is an approach to decision-making in which no
more cognitive effort is expended than that which is required
to arrive at a decision that meets the current aspiration level.

searching In contrast with browsing, searching is directed information
seeking, undertaken to find the answer to a well-formulated
question.

semantic layer The semantic layer is that aspect of a software tool that
describes the intermediate steps that the user may carry out
to realize a particular result.

situation
model

The situation model is an internal model of the current state
of the environment as perceived, comprehended, and
projected into the near future.

situation
processing

Situation processing is the process by which a situation model
is constructed.

syntactic layer The syntactic layer is that aspect of a software tool that
describes a user’s choice of commands with which he directs
the software’s behaviour.

task layer The task layer is that aspect of a software tool that describes
the possible end results of the user’s engagement with the
software.

Appendixes

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
214

upgrading Upgrading is undertaking situation processing at a higher,
more effortful SRK level of cognitive performance.

use complexity Use complexity is that part of task complexity that originates
from the software rather than from other elements in the task
environment, including the user.

User Virtual
Machine
(UVM)

The User Virtual Machine or UVM is a conceptual mechanism,
containing all meaningful elements of a particular software
system that the user can perceive or experience, as well as
those that are not directly visible but influence others which
are.

value The value of an activity is the worth that the performer
attaches to the situation that results from it.

value system A design pattern language’s value system is the conceptual
framework within which justification can be expressed for the
individual patterns in the language.

width The width of a software system’s use complexity is a measure
of the number of hitherto unknown concepts (with their
associated rules and interdependencies), brought to the work
by the software, that are exposed to the user and with which
he may choose to engage so that his choice makes a difference.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
215

12. References
Abran, A., Desharnais, J.-M., & Cuadrado-Gallego, J. J. (2012). Measurement and

quantification are not the same: ISO 15939 and ISO 9126. Journal of
Software: Evolution and Process, 24(5), 585-601. doi:10.1002/smr.496

Adams-Webber, J. R. (2001). Cognitive Complexity and Role Relationships. Journal
of Constructivist Psychology, 14(1), 43-50.
doi:10.1080/107205301451353

Agarwal, N. K., Xu, Y., & Poo, D. C. C. (2011). A context-based investigation into
source use by information seekers. Journal of the American Society for
Information Science and Technology, 62(6), 1087-1104.
doi:10.1002/asi.21513

Aiguier, M., Le Gall, P., & Mabrouki, M. (2008). A Formal Definition of Complex
Software. Paper presented at the Proceedings of the 2008 The Third
International Conference on Software Engineering Advances.

Al-Diban, S. (2012). Mental Models Encyclopedia of the Sciences of Learning (pp.
2200-2204): Springer.

Alexander, C. (1979). The timeless way of building (Vol. 1). New York: Oxford
University Press.

Alexander, C., Ishikawa, S., & Silverstein, M. (1977). A Pattern Language: Towns,
Buildings, Construction. New York: Oxford University Press.

Alexander, P. A., Schallert, D. L., & Hare, V. C. (1991). Coming to Terms: How
Researchers in Learning and Literacy Talk About Knowledge. Review of
Educational Research, 61(3), 315-343.

Appleton, B. (1997). Patterns and software: Essential concepts and terminology.

Askwall, S. (1985). Computer supported reading vs reading text on paper: a
comparison of two reading situations. International Journal of Man-
Machine Studies, 22(4), 425-439.

Atkin, C. (1973). Instrumental utilities and information seeking. In P. Clarke (Ed.),
New Models for Mass Communication Research (pp. 205-239). Beverly
Hills: Sage Publications.

Ausubel, D. P. (1968). Educational Psychology: A Cognitive View. New York, NY,
USA: Holt, Rinehart and Wilson, Inc.

Baker, M. (2013). Every Page Is Page One. Laguna Hills, CA, USA: XML Press.

Bates, M. J. (1989). The design of browsing and berrypicking techniques for the
online search interface. Online Information Review, 13(5), 407-424.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
216

Bayman, P., & Mayer, R. E. (1988). Using Conceptual Models to Teach BASIC
Computer Programming. Journal of Educational Psychology, 80(3), 291-
298.

Beck, K., & Cunningham, W. (1987). Using pattern languages for object-oriented
programs. Paper presented at the OOPSLA-87.
http://c2.com/doc/oopsla87.html

Belew, R. K. (2000). Finding Out About. Cambridge, Mass.: Cambridge University
Press.

Belkin, N. J. (1982). ASK for information retrieval: Part I. Journal of Documentation,
38(2), 61-71.

Belkin, N. J. (1993). Interaction with texts: Information retrieval as information-
seeking behavior. Information Retrieval, 93, 55–66.

Ben-Ari, M., & Yeshno, T. (2006). Conceptual Models of Software Artifacts.
Interacting with Computers, 18, 1336–1350.

Benyon, D. (1992). The role of task analysis in systems design. Interacting with
Computers, 4(1), 102-123.

Bernhaupt, R., Winkler, M., & Pontico, F. (2009). User interface patterns: A field
study evaluation. Paper presented at the IADIS international conference-
interfaces and human computer interaction 2009.

Bernsen, N. O. (1994). Foundations of multimodal representations: a taxonomy of
representational modalities. Interacting with Computers, 6(4), 347-371.

Bhavnani, S. K., & John, B. E. (1997). From sufficient to efficient usage: an analysis of
strategic knowledge. Paper presented at the Proceedings of the SIGCHI
conference on Human factors in computing systems, Atlanta, Georgia,
United States.

Bibby, P. A. (1992). Mental models, instructions and internalization. In Y. Rogers, A.
Rutherford, & P. A. Bibby (Eds.), Models in the Mind: Theory, perspective
and application (pp. 153-172). London [etc.]: Academic Press.

Blackwell, A., & Green, T. (2003). Notational systems: the cognitive dimensions of
notations framework. In J. M. Carroll (Ed.), HCI Models, Theories, and
Frameworks: Toward an Interdisciplinary Science (pp. 103-135): Morgan
Kaufmann.

Blandford, A., & Attfield, S. (2010). Interacting with Information Vol. 3. G.
Marchionini (Ed.) Synthesis Lectures on Human-Centered Informatics (pp.
1-99). Retrieved from
http://www.morganclaypool.com/doi/abs/10.2200/S00227ED1V01Y20
0911HCI006 doi:doi:10.2200/S00227ED1V01Y200911HCI006

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
217

Blessing, L. T. M., & Chakrabarti, A. (2009). DRM, a Design Research Methodology.
London: Springer Verlag.

Bødker, S. (1991). Through the Interface – A Human Activity Approach to User
Interface Design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Bødker, S. (1997). Computers in Mediated Human Activity. Mind, culture, and
activity, 4(3), 149-158.

Bødker, S., & Bertelsen, O. W. (2003). Activity Theory. In J. M. Carroll (Ed.), HCI
Models, Theories and Frameworks (pp. 291-324). San Francisco: Morgan
Kaufman Publishers.

Bødker, S., & Christiansen, E. T. (2012). Poetry in motion—appropriation of the
world of Apps. Paper presented at the ECCE2012, Edinburgh, Scotland, UK.

Borchers, J. (2001). A Pattern Approach to Interaction Design: John Wiley and Sons.

Bredeweg, B., Linnebank, F., Bouwer, A., & Liem, J. (2009). Garp3—Workbench for
qualitative modelling and simulation. Ecological informatics, 4(5), 263-
281.

Brockmann, R. J. (1998). Minimalism: A Case of Information Transfer in Technical
Communication. In J. M. Carroll (Ed.), Minimalism beyond the Nurnberg
funnel (pp. 375-392). Cambridge, MA, USA: The MIT Press.

Bullock, D. H. (1982). Guiding job performance with job aids. Training and
Development Journal, 36(9), 36-42.

Byrd, K. S., & Caldwell, B. S. (2011). Increased memory load during task completion
when procedures are presented on mobile screens. Behaviour &
Information Technology, 30(5), 643-658.
doi:10.1080/0144929x.2010.529944

Byström, K., & Järvelin, K. (1995). Task complexity affects information seeking and
use. Information Processing and Management: an International Journal,
31(2), 191-213. doi:http://dx.doi.org/10.1016/0306-4573(94)00041-Z

Campbell, C. P. (1998). Training course/program evaluation: principles and
practice. Journal of European industrial training, 22(8), 323-344.

Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of
Management Review, 13(1), 40-52.

Caposecco, A., Hickson, L., & Meyer, C. (2014). Hearing aid user guides: Suitability
for older adults. International Journal of Audiology, 53, S43-S51.
doi:10.3109/14992027.2013.832417

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer
interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
218

Carroll, J. M. (1990). The Nurnberg funnel: designing minimalist instruction for
practical computer skill. Cambridge, MA, USA: MIT press.

Carroll, J. M. (2000). Making use: scenario-based design of human-computer
interactions. Cambridge, MA: The MIT press.

Carroll, J. M. (2014). Creating Minimalist Instruction. International Journal of
Designs for Learning, 5(2).

Carroll, J. M., & Rosson, M. B. (1987). Paradox of the Active User. In J. M. Carroll
(Ed.), Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction (pp. 80-111). Cambridge, MA: MIT Press.

Case, D. O. (2007). Looking for Information (2 ed.). Baton Rouge: Emerald.

Cataldo, M., & Oakhill, J. (2000). Why are poor comprehenders inefficient
searchers? An investigation into the effects of text representation and
spatial memory on the ability to locate information in text. Journal of
educational psychology, 92(4), 791.

Ceaparu, I., Lazar, J., Bessiere, K., Robinson, J., & Shneiderman, B. (2004).
Determining causes and severity of end-user frustration. International
journal of human-computer interaction, 17(3), 333-356.

Cellier, J.-M., Eyrolle, H., & Mariné, C. (1997). Expertise in dynamic environments.
Ergonomics, 40(1), 28-50.

Charness, N., Tuffiash, M., Krampe, R., Reingold, E., & Vasyukova, E. (2005). The
Role of Deliberate Practice in Chess Expertise. Applied Cognitive
Psychology, 19, 151-165.

Charnock, E., Rada, R., Stichler, S., & Weygant, P. (1994). Task-based method for
creating usable hypertext. Interacting with Computers, 6(3), 275-287.
doi:http://dx.doi.org/10.1016/0953-5438(94)90016-7

Chaucer, G. (1391). Treatise on the Use of the Astrolabe. Retrieved from
http://www.chirurgeon.org/treatise.html

Chi, E. H.-h., Pirolli, P., Chen, K., & Pitkow, J. E. (2001). Using information scent to
model user information needs and actions and the Web. Paper presented at
the Proceedings of the SIGCHI conference on Human factors in computing
systems, Seattle, Washington, United States.

Chinn, C. A., & Brewer, W. F. (1993). The Role of Anomalous Data in Knowledge
Acquisition: A Theoretical Framework and Implications for Science
Instruction. Review of Educational Research, 63(1), 1-49.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
219

Cleverdon, C. W. (1970). The effect of variations in relevance assessments in
comparative experimental tests of index languages. Retrieved from
https://dspace.lib.cranfield.ac.uk/handle/1826/967

Cleverdon, C. W., Mills, J., & Keen, M. (1966). Factors determining the performance
of indexing systems. Retrieved from
https://dspace.lib.cranfield.ac.uk/handle/1826/863

Colaric, S. M. (2003). Instruction for Web Searching: An Empirical Study. College &
Research Libraries, 64(2), 111-122.

Collins, A., Seely Brown, J. S., & Newman, S. E. (1989). Cognitive Apprenticeship:
teaching the craft of reading, writing, and mathematics. In L. B. Resnisck
(Ed.), Knowing, Learning, and Instruction: Essays in Honor of Robert Glaser
(pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates.

Connaway, L. S., Dickey, T. J., & Radford, M. L. (2011). “If it is too inconvenient I'm
not going after it:” Convenience as a critical factor in information-seeking
behaviors. Library & Information Science Research, 33(3), 179-190.
doi:http://dx.doi.org/10.1016/j.lisr.2010.12.002

Coplien, J. O. (1998). Software design patterns: Common questions and answers
The Patterns Handbook: Techniques, Strategies, and Applications (pp. 311-
320). New York, USA: Cambridge University Press.

Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University
Press.

Dautovic, A., Plosch, R., & Saft, M. (2011). Automatic Checking of Quality Best
Practices in Software Development Documents. Paper presented at the
Quality Software (QSIC), 2011 11th International Conference on.

de Groot, A. D. (1946). Het denken van den schaker. Een experimenteel-
psychologische studie. (PhD PhD Thesis), Universiteit van Amsterdam,
Amsterdam.

de Jong, M. D. T., & Karreman, J. (2017). The Image of User Instructions: Comparing
Users' Expectations of and Experiences with an Official and a Commercial
Software Manual. Technical communication, 64(1), 38-49.

de Jong, T., & Ferguson-Hessler, M. G. M. (1996). Types and Qualities of Knowledge.
Educational Psychologist, 31(2), 105-113.

de Kleer, J., & Brown, J. S. (1981). Mental models of physical mechanisms and their
acquisition. Cognitive skills and their acquisition, 285-309.

de Moel, N., & van der Veer, G. (2011). Design pattern based decision support.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
220

de Souza, J., Marconi, B., & Dyson, M. (2008). Are animated demonstrations the
clearest and most comfortable way to communicate on-screen
instructions? Information Design Journal, 16(2), 107-124.
doi:10.1075/idj.16.2.03bez

Dearden, A., & Finlay, J. (2006). Pattern languages in HCI: A critical review. Human-
Computer Interaction, 21(1), 49-102.

Deng, J., Kemp, E., & Todd, E. G. (2006). Focussing on a standard pattern form: the
development and evaluation of MUIP. Paper presented at the Proceedings
of the 7th ACM SIGCHI New Zealand chapter's international conference on
Computer-human interaction: design centered HCI, Christchurch, New
Zealand.

Dewey, J. (1913). Interest and effort in education: Houghton Mifflin.

Draper, S. W. (1998). Practical problems and proposed solutions in designing
action-centered documentation. In J. M. Carroll (Ed.), Minimalism beyond
the Nurnberg funnel (pp. 349-374). Cambridge, MA, USA: The MIT Press.

Duff, S. C., & Barnard, P. J. (1990). Influencing behaviour via device representation;
decreasing performance by increasing instruction. Paper presented at the
Proceedings of the IFIP TC13 Third Interational Conference on Human-
Computer Interaction.

Duggan, G. B., & Payne, S. J. (2001). Interleaving reading and acting while following
procedural instructions. Journal of Experimental Psychology: Applied, 7(4),
297-307.

Eiriksdottir, E., & Catrambone, R. (2008). How do People Use Instructions in
Procedural Tasks? Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, 52(8), 673-677.
doi:10.1177/154193120805200814

Eiriksdottir, E., & Catrambone, R. (2011). Procedural Instructions, Principles, and
Examples: How to Structure Instructions for Procedural Tasks to Enhance
Performance, Learning, and Transfer. Human Factors: The Journal of the
Human Factors and Ergonomics Society, 53(6), 749-770.
doi:10.1177/0018720811419154

Eiriksdottir, E., & Catrambone, R. (2014). Instruction Use Depends on the Level of
Details. Proceedings of the Human Factors and Ergonomics Society Annual
Meeting, 58(1), 2365-2369. doi:10.1177/1541931214581492

Ellis, D. (1989). A behavioural approach to information retrieval system design.
Journal of Documentation, 45(3), 171-212.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
221

Ellis, D. (1993). A comparison of the information seeking patterns of researchers in
the physical and social sciences. Journal of Documentation, 49(4), 356-369.

Emerson, L., & MacKay, B. (2011). A comparison between paper‐based and online
learning in higher education. British Journal of Educational Technology,
42(5), 727-735.

Endsley, M. R. (2000a). Situation Models: An Avenue to the Modeling of Mental
Models. Paper presented at the 14th Triennial Congress of the
International Ergonomics Association and the 44th Annual Meeting of the
Human Factors and Engineering Society.

Endsley, M. R. (2000b). Theoretical Underpinnings of Situation Awareness: a
Critical Review. In M. R. Endsley & D. J. Garland (Eds.), Situation Awareness
Analysis and Measurement (pp. 3-32). Mahwah, NJ: Lawrence Erlbaum
Associates.

Engel, J., Märtin, C., Herdin, C., & Forbrig, P. (2013). Formal Pattern Specifications
to Facilitate Semi-automated User Interface Generation. In M. Kurosu
(Ed.), Human-Computer Interaction. Human-Centred Design Approaches,
Methods, Tools, and Environments (Vol. 8004, pp. 300-309): Springer
Berlin Heidelberg.

English, R. E., & Reigeluth, C. M. (1996). Formative research on sequencing
instruction with the elaboration theory. Educational Technology Research
and Development, 44(1), 23-42.

Ericsson, K. A. (2005). Recent Advances in Expertise Research: A Commentary on
the Contributions to the Special Issue. Applied Cognitive Psychology, 19,
233-241.

Ertmer, P. A., & Newby, T. J. (1993). Behaviorism, cognitivism, constructivism:
Comparing critical features from an instructional design perspective.
Performance Improvement Quarterly, 6(4), 50-70.

Farkas, D. K. (1999). The logical and rhetorical construction of procedural
discourse. Technical communication, 46(1), 42-54.

Farkas, D. K., & Williams, T. R. (1990). John Carroll's the Nurnberg funnel and
minimalist documentation. IEEE Transactions on Professional
Communication, 33(4), 182-187.

Farrington-Darby, T., & Wilson, J. R. (2006). The nature of expertise: A review.
Applied Ergonomics, 37, 17-32.

Fast, K. V., & Campbell, D. G. (2004). “I still like Google”: University student
perceptions of searching OPACs and the web. Proceedings of the American

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
222

Society for Information Science and Technology, 41(1), 138-146.
doi:10.1002/meet.1450410116

Fein, R. M., Olson, G. M., & Olson, J. S. (1993). A mental model can help with
learning to operate a complex device Interact '93 and CHI '93 conference
companion on Human factors in computing systems (pp. 157-158). New
York: ACM Press.

Fincher, S. (1999). What is a pattern language. Paper presented at the Patterns
Workshop at INTERACT.

Fincher, S. (2003). Perspectives on HCI patterns: concepts and tools (introducing
PLML). Interfaces(56), 26-28.

Frøkjær, E., Hertzum, M., & Hornbæk, K. (2000). Measuring usability: are
effectiveness, efficiency, and satisfaction really correlated? Paper presented
at the Proceedings of the SIGCHI conference on Human Factors in
Computing Systems, The Hague, The Netherlands.

Fu, W.-T., & Gray, W. D. (2004). Resolving the paradox of the active user: stable
suboptimal performance in interactive tasks. Cognitive Science, 28, 901-
935.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
Reusable Object-Oriented Software: Addison-Wesley.

Gartenberg, M. (2005). The High Cost of Not Training. Computerworld, July, 11,
2005, 21.

Gentner, D., & Stevens, A. (Eds.). (1983). Mental Models. Hillsdale, NJ: Erlbaum.

Gerstberger, P. G., & Allen, T. J. (1968). Criteria used by research and development
engineers in the selection of an information source. Journal of Applied
Psychology, 52(4), 272-279.

Geske, J., & Bellur, S. (2008). Differences in brain information processing between
print and computer screens: Bottom-up and top-down attention factors.
International Journal of Advertising, 27, 399-423.

Glaser, R. (1985). The nature of expertise (107). Retrieved from Columbus:

Goodstein, L. P., Andersen, H. B., & Olsen, S. E. (Eds.). (1988). Tasks, Errors and
Mental Models. London, New York, Philadelphia: Taylor & Francis.

Griffin, T. D., & Ohlsson, S. (2001). Beliefs Versus Knowledge: A Necessary Distinction
for Explaining, Predicting, and Assessing Conceptual Change. Paper
presented at the Twenty-third Annual Conference of the Cognitive Science
Society, Edinburgh, UK.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
223

Gwizdka, J., & Spence, I. (2007). Implicit measures of lostness and success in web
navigation. Interacting with Computers, 19(3), 357-369.

Hackos, J. T. (1998). Choosing a minimalist approach for expert users. In J. M.
Carroll (Ed.), Minimalism beyond the Nurnberg funnel (pp. 149-177).
Cambridge, MA, USA: The MIT Press.

Halasz, F., & Moran, T. P. (1982). Analogy considered harmful. Paper presented at
the Conference on Human Factors in Computing Systems, Gaithersburg,
Maryland, United States.

Halasz, F. G., & Moran, T. P. (1983). Mental Models and Problem Solving in Using a
Calculator. Paper presented at the CHI '83.

Harp, S. F., & Mayer, R. E. (1998). How seductive details do their damage: A theory
of cognitive interest in science learning. Journal of Educational Psychology,
90(3), 414.

Hegarty, M., & Just, M. A. (1993). Constructing mental models of machines from
text and diagrams. Journal of Memory and Language, 32(717-742).

Hennipman, E.-J., Oppelaar, E.-J., & van der Veer, G. (2008). Pattern Languages as
Tool for Discount Usability Engineering. In T. C. N. Graham & P. Palanque
(Eds.), Interactive Systems. Design, Specification, and Verification (Vol.
5136, pp. 108-120): Springer Berlin Heidelberg.

Horton, W. (1991). Secrets of user-seductive documents: wooing and winning the
reluctant reader: Society for Technical Communication.

Hummel, H. G. K. (2005). Design of Cueing in Multimedia Practicals. (PhD Thesis),
Open University of The Netherlands, Heerlen.

Iacob, C. (2011). A design pattern mining method for interaction design. Paper
presented at the Proceedings of the 3rd ACM SIGCHI symposium on
Engineering interactive computing systems.

Jansen, C. (2002). Reflecting on Information Mapping®: does the method live up to
the expectations?

Jansen, C., & Balijon, S. (2002). How do people use instruction guides? Confirming
and disconfirming patterns of use. Document Design, 3(3), 195-204.

Jansen, C., Korzilius, H., le Pair, R., & Roest, M. (2003). Testing an Information
Mapping text: Does the method live up to the expectations? Document
Design, 4(1), 48-59.

Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of
language, inference, and consciousness: Harvard University Press.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
224

Jonassen, D. H. (1999). Designing Constructivist Learning Environments. In C. M.
Reigeluth (Ed.), Instructional design theories and models, Volume 2: A new
paradigm of instructional theory (pp. 215-239). Mahwah, NJ: Lawrence
Erlbaum Associates.

Julien, H., & Michels, D. (2004). Intra-individual information behaviour in daily life.
Information Processing & Management, 40(3), 547-562.
doi:http://dx.doi.org/10.1016/S0306-4573(02)00093-6

Kahneman, D., & Tversky, A. (1981). The simulation heuristic. Retrieved from

Kaptelinin, V., & Nardi, B. A. (2006). Acting with Technology: Activity Theory and
Interaction Design. Cambridge, MA: The MIT Press.

Karreman, J., & Steehouder, M. F. (2004). Some effects of system information in
instructions for use. IEEE Transactions in professional communication,
47(1), 34-43.

Karreman, J., Ummelen, N., & Steehouder, M. F. (2005). Procedural and Declarative
Information in User Instructions: What We Do and Don't Know About These
Information Types. Paper presented at the Professional Communication
Conference, 2005. IPCC 2005.

Keller, J. M. Development and use of the ARCS model of instructional design.
Journal of instructional development, 10(3), 2-10.
doi:10.1007/bf02905780

Keller, J. M. (2009). Motivational design for learning and performance: The ARCS
model approach: Springer Science & Business Media.

Kelly, G. A. (1955). The psychology of personal constructs (Vol. 1). New York, USA:
WW Norton and Company.

Kemp, D. A. (1974). Relevance, pertinence and information system development.
Information Storage and Retrieval, 10(2), 37-47.

Kieras, D., & Polson, P. G. (1985). An approach to the formal analysis of user
complexity. International Journal of Man-Machine Studies, 22(4), 365-394.

Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning to operate
a device. Cognitive Science, 8, 255-273.

Kim, K.-S., & Sin, S.-C. J. (2011). Selecting quality sources: Bridging the gap between
the perception and use of information sources. Journal of Information
Science, 37(2), 178-188.

Kim, S., & Soergel, D. (2005). Selecting and measuring task characteristics as
independent variables. Proceedings of the American Society for Information
Science and Technology, 42(1), n/a-n/a. doi:10.1002/meet.14504201111

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
225

Kim, Y., & Reigeluth, C. M. (1996). Formative Research on the Simplifying Conditions
Method (SCM) for Task Analysis and Sequencing. Paper presented at the
1996 National Convention of the Association for Educational
Communications and Technology, Indianapolis.

Kirlik, A. (2006). Cognitive Engineering: Toward a Workable Concept of Mind. In A.
Kirlik (Ed.), Adaptive Perspectives on Human-Technology Interaction (pp.
3-9). Oxford, NY: Oxford University Press, Inc.

Klahr, D., & Dunbar, K. (1988). Dual Space Search During Scientific Reasoning.
Cognitive Science, 12(1), 1-48.

Klein, G. A. (1989). Recognition-primed decisions. In W. Rouse (Ed.), Advances in
Man-Machine Systems Research (Vol. 5, pp. 47-92). Greenwich, CT: JAI
Press.

Klein, G. A. (1993). A recognition-primed decision (RPD) model of rapid decision
making. In G. A. Klein, J. Orasanu, R. Calderwood, & C. E. Zsambok (Eds.),
Decision Making in Action: Models and Methods (pp. 138-147). Norwood,
NJ, USA: Ablex Publishing Corporation.

Klein, G. A. (2006a). Making Sense of Sensemaking 1: Alternative Perspectives.
IEEE Intelligent Systems(4), 70-73.

Klein, G. A. (2006b). Making Sense of Sensemaking 2: A Macrocognitive Model.
IEEE Intelligent Systems(5), 88-92.

Kohler, K., & Kerkow, D. (2008). Building and evaluating a pattern collection for
the domain of workflow modeling tools. In J. Gulliksen, M. Borup Harning,
P. Palanque, G. C. Van der Veer, & W. Janet (Eds.), Engineering Interactive
Systems (pp. 555-566): Springer.

Kohls, C., & Uttecht, J.-G. (2009). Lessons learnt in mining and writing design
patterns for educational interactive graphics. Computers in Human
Behavior, 25(5), 1040-1055.

Kotzé, P., & Renaud, K. (2008). Do we practise what we preach in formulating our
design and development methods? In J. Gulliksen, M. Borup Harning, P.
Palanque, G. C. Van der Veer, & W. Janet (Eds.), Engineering Interactive
Systems (pp. 567-585): Springer.

Kotzé, P., Renaud, K., & van Biljon, J. (2008). Don’t do this–Pitfalls in using anti-
patterns in teaching human-computer interaction principles. Computers &
Education, 50(3), 979-1008.

Kuhlthau, C. (1991). Inside the search process: Information seeking from the user's
perspective. Journal of the American Society for Information Science and
Technology, 42(5), 361-371.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
226

Kuhlthau, C. (1993). A Principle of Uncertainty for Information Seeking. Journal of
Documentation, 49(4), 339-355.

Lipshitz, R., & Pras, A. A. (2005). Not Only for Experts: Recognition-Primed
Decisions in the Laboratory How Profesionals Make Decisions (pp. 91-106).
Mahwah, NJ: Lawrence Erlbaum Associates.

Loorbach, N., Karreman, J., & Steehouder, M. (2007). Adding motivational elements
to an instruction manual for seniors: Effects on usability and motivation.
Technical communication, 54(3), 343-358.

Loorbach, N., Karreman, J., & Steehouder, M. (2013). Confidence-Increasing
Elements in User Instructions: Seniors' Reactions to Verification Steps and
Personal Stories. Technical communication, 60(3), 190-204.

Loorbach, N., Karreman, J., & Steehouder, M. (2013). Verification Steps and
Personal Stories in an Instruction Manual for Seniors: Effects on
Confidence, Motivation, and Usability. IEEE Transactions on Professional
Communication, 56(4), 294-312. doi:10.1109/TPC.2013.2286221

Loorbach, N., Steehouder, M., & Taal, E. (2006). The Effects of Motivational
Elements in User Instructions. Journal of Business and Technical
Communication, 20(2), 177-199. doi:10.1177/1050651905284404

MacLean, A., Young, R. M., Bellotti, V. M. E., & Moran, T. P. (1991a). Design space
analysis: Bridging from theory to practice via design rationale.
Proceedings of Esprit, 91, 720-730.

MacLean, A., Young, R. M., Bellotti, V. M. E., & Moran, T. P. (1991b). Questions,
options, and criteria: Elements of design space analysis. Human-Computer
Interaction, 6(3-4), 201-250.

Mangen, A., Walgermo, B. R., & Brønnick, K. (2013). Reading linear texts on paper
versus computer screen: Effects on reading comprehension. International
Journal of Educational Research, 58(0), 61-68.
doi:http://dx.doi.org/10.1016/j.ijer.2012.12.002

Manojlović, S., & Nikolić-Popović, J. (2002). Cognitive Complexity of Schizophrenic
Patients. Acta Medica Medianae, 41(2), 19-25.

Marchionini, G. (1995). Information seeking in electronic environments. Cambridge:
Cambridge University Press.

Marchionini, G. (2010). Information Concepts: From Books to Cyberspace Identities
(Vol. 16): Morgan & Claypool.

Margolin, S. J., Driscoll, C., Toland, M. J., & Kegler, J. L. (2013). E‐readers, Computer
Screens, or Paper: Does Reading Comprehension Change Across Media
Platforms? Applied Cognitive Psychology, 27(4), 512-519.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
227

Marr, D. (1982). Vision: a computational investigation into the human
representation and processing of visual information. San Francisco: W. H.
Freeman and Company.

Marsden, D., & Littler, D. (2000). Repertory grid technique: an interpretative
research framework. European Journal of Marketing, 34(7), 816.

Marshall, S. P. (1995). Schemas in Problem Solving. Cambridge: Cambridge
University Press.

Martin, A. P., Ivory, M. Y., Megraw, R., & Slabosky, B. (2005). Exploring the
persistent problem of user assistance (IS-TR-2005-08-01). Retrieved from
Washington DC: http://hdl.handle.net/1773/2079

Mayes, D. K., Sims, V. K., & Koonce, J. M. (2001). Comprehension and workload
differences for VDT and paper-based reading. International Journal of
Industrial Ergonomics, 28(6), 367-378.
doi:http://dx.doi.org/10.1016/S0169-8141(01)00043-9

Mehlenbacher, B. (2003). Documentation: not yet implemented, but coming soon.
In J. A. Jacko & A. Sears (Eds.), The HCI Handbook: Fundamentals, Evolving
Technologies, and Emerging Applications (pp. 527-543). Mahwah, NJ:
Lawrence Erlnaum.

Mehlenbacher, B., Wogalter, M. S., & Laughery, K. R. (2002). On the reading of
product owner's manuals: Perceptions and product complexity.

Mendoza, V., & Novick, D. G. (2005). Usability over time. Paper presented at the
Proceedings of the 23rd annual international conference on Design of
communication: documenting & designing for pervasive information.

Michaels, C. F. (2003). Affordances: Four Points of Debate. Ecological Psychology,
15(2), 135 - 148.

Militello, L. G., & Hutton, R. J. (1998). Applied Cognitive Task Analysis (ACTA): A
practitioner's toolkit for understanding cognitive task demands.
Ergonomics, 41(11), 1618-1641.

Miller, G. A. (1983). Informavores. In F. Machlup & U. Mansfield (Eds.), The study of
information: Interdisciplinary messages (pp. 111-113). New York: John
Wiley & Sons.

Mirel, B. (1998a). "Applied Constructivism" for User Documentation. Journal of
Business and Technical Communication, 12(1), 7-49.

Mirel, B. (1998b). Minimalism for Complex Tasks. In J. M. Carroll (Ed.), Minimalism
beyond the Nurnberg Funnel (pp. 179-218). Cambridge, MA: The MIT
Press.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
228

Moran, T. P. (1981). The Command Language Grammar: a representation for the
user interface of interactive computer systems. International Journal of
Man-Machine Studies, 15(1), 3-50. doi:10.1016/S0020-7373(81)80022-3

Moran, T. P., & Carroll, J. M. (1996). Design rationale: concepts, techniques, and use:
L. Erlbaum Associates Inc.

Nadolski, R. J., Kirschner, P. A., van Merriënboer, J. G., & Wöretshofer, J. (2005).
Development of an Instrument for Measuring the Complexity of Learning
Tasks. [measuring_task_complexity.pdf]. Educational Research and
Evaluation, 11(1), 1-27.

Nardi, B. A. (Ed.) (1996). Context and Consciousness: Activity Theory and Human-
Computer Interaction. Cambridge, MA: The MIT Press.

Nguyen, F., & Woll, C. A. (2006). A practitioner's guide for designing performance
support systems. Performance Improvement, 45(9), 37-45.

Niebuhr, S., Kohler, K., & Graf, C. (2008). Engaging patterns: Challenges and means
shown by an example. In J. Gulliksen, M. Borup Harning, P. Palanque, G. C.
Van der Veer, & W. Janet (Eds.), Engineering Interactive Systems (pp. 586-
600): Springer.

Nistor, N., Schworm, S., & Werner, M. (2012). Online help-seeking in communities
of practice: Modeling the acceptance of conceptual artifacts. Computers &
Education, 59(2), 774-784. doi:10.1016/j.compedu.2012.03.017

Norman, D. A. (1987). Some observations on mental models Human-computer
interaction: a multidisciplinary approach (pp. 241-244): Morgan Kaufmann
Publishers Inc.

Norman, D. A. (1988). The psychology of everyday things. New York: Basic Books.

Norman, D. A. (1999). The Invisible Computer. Cambridge, MA: The MIT Press.

Norman, D. A. (2010). Living with Complexity. Cambridge, MA: The MIT Press.

Novick, D. G., Elizalde, E., & Bean, N. (2007). Toward a more accurate view of when
and how people seek help with computer applications. Paper presented at
the SIGDOC 2007, El Paso, TX.
http://works.bepress.com/david_novick/16/

Novick, D. G., & Ward, K. (2006). What users say they want in documentation. Paper
presented at the Proceedings of the 24th annual ACM international
conference on Design of communication, Myrtle Beach, SC, USA.

Noyes, J. M., & Garland, K. J. (2003). VDT versus paper-based text: reply to Mayes,
Sims and Koonce. International Journal of Industrial Ergonomics, 31(6),
411-423. doi:http://dx.doi.org/10.1016/S0169-8141(03)00027-1

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
229

O'Malley, C., & Draper, S. (1992). Representation and Interaction: Are Mental
Models all in the Mind? In Y. Rogers, A. Rutherford, & P. A. Bibby (Eds.),
Models in the Mind: Theory, Perspective and Application (pp. 73-92).
London: Academic Press.

Ohlsson, S. (2005). Comparing Multiple Paths to Mastery: What is Learned?
Cognitive Science, 29, 769-796.

Olaverri-Monreal, C., Dlugosch, C., & Bengler, K. (2013). ManPro: Framework for
the Generation and Assessment of Documentation for Nuclear Facilities. In
Á. Rocha, A. M. Correia, T. D. Wilson, & K. A. Stroetmann (Eds.), Advances in
Information Systems and Technologies (Vol. 206, pp. 849-859): Springer
Berlin Heidelberg.

Otter, M., & Johnson, H. (2000). Lost in hyperspace: metrics and mental models.
Interacting with Computers, 13(1), 1-40.
doi:http://dx.doi.org/10.1016/S0953-5438(00)00030-8

Paas, F., Renkl, A., & Sweller, J. (2004). Cognitive Load Theory: Instructional
Implications of the Interaction between Information Structures and
Cognitive Architecture. Instructional Science, 32(1-2), 1-8.
doi:10.1023/B:TRUC.0000021806.17516.d0

Payne, S. J. (1991). A descriptive study of mental models. Behaviour and
Information Technology, 10, 3-12.

Payne, S. J. (1992). On Mental Models and Cognitive Artefacts. In Y. Rogers, A.
Rutherford, & P. A. Bibby (Eds.), Models in the Mind: Theory, Perspective
and Application. London: Academic Press.

Payne, S. J., & Green, T. R. (1986). Task-action grammars: A model of the mental
representation of task languages. Human-Computer Interaction, 2(2), 93-
133.

Payne, S. J., Squibb, H. R., & Howes, A. (1990). The Nature of Device Models: The
Yoked State Space Hypothesis and Some Experiments With Text Editors.
Human-Computer Interaction, 5, 415-444.

Pirolli, P. (1997). Computational models of information scent-following in a very
large browsable text collection. Paper presented at the Conference on
Human Factors in Computing Systems, CHI '97, Atlanta, GA.

Pirolli, P. (2006). The Use of Proximal Information Scent to Forage for Distal
Content. In A. Kirlik (Ed.), Human technology Interaction: Methods and
Models for Cognitive Engineering and Human-Computer Interaction (pp.
247-267). Oxford, NY: Oxford University Press, Inc.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
230

Pirolli, P., & Card, S. K. (1999). Information foraging. Psychological Review, 106,
643-675.

Prinz, W. (1997). Perception and action planning. European Journal of Cognitive
Psychology, 9(2), 129–154.

Quinn, E. (1980). Creativity and Cognitive Complexity. Social Behavior &
Personality: an international journal, 8(2), 213-215.

Reason, J. (1990). Human Error. Cambridge: Cambridge University Press.

Rettig, M. (1991). Nobody reads documentation. Commun. ACM, 34(7), 19-24.
doi:10.1145/105783.105788

Rips, L. J. (1986). Mental muddles. In M. Brand & R. M. Harnish (Eds.), The
representation of knowledge and belief (pp. 258-286): The University of
Arizona Press.

Rogers, Y., Rutherford, A., & Bibby, P. A. (Eds.). (1992). Models in the Mind: Theory,
Perspective and Application. London: Academic Press.

Rossett, A., & Gautier-Downes, J. (1991). A Handbook of Job Aids. San Diego, CA:
Pfeiffer & Company.

Rothkopf, E. Z. (1971). Incidental memory for location of information in text.
Journal of Verbal Learning and Verbal Behavior, 10(6), 608-613.
doi:http://dx.doi.org/10.1016/S0022-5371(71)80066-X

Sanderson, P. M., & Harwood, K. (1988). The skills, rules and knowledge
classification: a discussion of its emergence and nature. In L. P. Goodstein,
H. B. Andersen, & S. E. Olsen (Eds.), Tasks, Errors and Mental Models (pp.
21-34). London, New York, Philadelphia: Taylor & Francis.

Santhanam, R., & Sein, M. K. (1994). Improving End-user Proficiency: Effects of
Conceptual Training and Nature of Interaction. Information Systems
Research, 5(4), 378-400.

Schobert, W., & Schümmer, T. (2006). Supporting Pattern Language Visualization
with CoPE. Paper presented at the EuroPLoP, Irsee, Germany.

Schriver, K. (1997). Dynamics in document design. New York: John Wiley & Sons.

Schwamb, K. B. (1990). Mental Models: A Survey.

Sebillotte, S. (1988). Hierarchical planning as method for task analysis: The
example of office task analysis. Behaviour & Information Technology, 7(3),
275-293.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
231

Seel, N. M. (2006). Mental Models and Complex Problem Solving: Instructional
Effects. In J. Elen & R. E. Clark (Eds.), Handling Complexity in Learning
Environments: Theory and Research (pp. 43-66): Elsevier.

Seely Brown, J. S., Collins, A., & Duguid, P. (1989). Situated Cognition and the
Culture of Learning. Educational Researcher, 18(1), 32-42.

Segerståhl, K., & Jokela, T. (2006). Usability of interaction patterns. Paper presented
at the CHI '06 Extended Abstracts on Human Factors in Computing
Systems, Montreal, Quebec, Canada.

Sein, M. K., & Bostrom, R. P. (1989). Individual differences and conceptual models
in training novice users. Human-Computer Interaction, 4(3), 197-229.

Selber, S. A. (2010). A Rhetoric of Electronic Instruction Sets. Technical
Communication Quarterly, 19(2), 95-117.
doi:10.1080/10572250903559340

Sellen, A. J., & Harper, R. H. (2002). The myth of the paperless office: MIT press.

Shanteau, J. (1992). The Psychology of Experts: An Alternative View. In G. Wright &
F. Bolger (Eds.), Expertise and Decision Support (pp. 11-23). New York:
Plenum Press.

Sharp, H., Manns, M. L., & Eckstein, J. (2003). Evolving pedagogical patterns: The
work of the pedagogical patterns project. Computer Science Education,
13(4), 315-330.

Shayo, C., & Olfman, L. (1998). The Role of Conceptual Models in Formal Software
Training. In R. Argawal (Ed.), Proceedings of the 1998 ACM SIGCPR
Conference (pp. 242-253). New York: ACM Press.

Shulz, T. R., Katz, J. A., & Lepper, M. R. (2001). Clinging to Beliefs: A Constraint-
satisfaction Model. Paper presented at the Twenty-Third Annual
Conference of the Cognitive Science Society, Edinburgh, UK. CogSci01.pdf

Simon, H. A. (1955). A Behavioral Model of Rational Choice. The Quarterly Journal
of Economics, 69(February 1955), 99-118.

Sloutsky, V. M., & Yarlas, A. S. (2000). Problem Representation in Experts and
Novices: Part 2. Underlying Processing Mechanisms. Paper presented at the
CogSci2000.

Small, D. L. (1999). Rethinking the book. Massachusetts Institute of Technology.

Smart, K. L., DeTienne, K. B., & Whiting, M. E. (1998). Customers' use of
documentation: the enduring legacy of print. Paper presented at the
Proceedings of the 16th annual international conference on Computer
documentation.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
232

Smart, K. L., Whiting, M. E., & DeTienne, K. B. (2001). Assessing the need for
printed and online documentation: A study of customer preference and
use. Journal of Business Communication, 38(3), 285-314.

Smith, P. A. (1996). Towards a practical measure of hypertext usability. Interacting
with Computers, 8(4), 365-381. doi:http://dx.doi.org/10.1016/S0953-
5438(97)83779-4

Spannagel, C., Girwidz, R., Löthe, H., Zendler, A., & Schroeder, U. (2008). Animated
demonstrations and training wheels interfaces in a complex learning
environment. Interacting with Computers, 20(1), 97-111.
doi:10.1016/j.intcom.2007.08.002

Spink, A. (2010). Information behavior: An evolutionary instinct. Dordrecht:
Springer Verlag.

Spink, A., & Cole, C. (2006). Human information behavior: Integrating diverse
approaches and information use. Journal of the American Society for
Information Science and Technology, 57(1), 25-35.

Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Anderson, D. K. (1988). Cognitive
Flexibility Theory: Advanced Knowledge Acquisition in Ill-Structured
Domains. Retrieved from

Spiro, R. J., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive
flexibility, constructivism, and hypertext: Random access instruction for
advanced knowledge acquisition in ill-structured domains. In T. M. Duffy
& D. H. Jonassen (Eds.), Constructivism and the technology of instruction: A
conversation (pp. 57-76). Hillsdale, NJ: Erlbaum.

Steehouder, M. F. (1997). Author and reader in instructions for use. The effectiveness
of instructions Paper presented at the Crossroads in communication,
Piscataway, NJ.

Steehouder, M. F. (2002). Beyond technical documentation: users helping each
other. Paper presented at the IEEE International Professional
Communication Conference, IPCC 2002, Portland, Oregon, USA.
http://doc.utwente.nl/55875/

Strassman, P. A. (1990). The business value of computers: an executive's guide. New
Canaan, CT: Information Economics Press.

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (1998). Cognitive Architecture and
Instructional Design. Educational Psychology Review, 10(3), 251-296.

Taatgen, N., Huss, D., Dickison, D., & Anderson, J. R. (2008). The Acquisition of
Robust and Flexible Cognitive Skills. Journal of Experimental Psychology:
General, 137(3), 548-565.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
233

Taylor, R. S. (1962). The process of asking questions. American Documentation,
13(4), 391-396. doi:10.1002/asi.5090130405

Tebeaux, E. (1997). The Emergence of a Tradition. Amityville, NY: Baywood
Publishing Company.

Tidwell, J. (2010). Designing interfaces: O'Reilly Media, Inc.

Todd, E., Kemp, E., & Phillips, C. (2004). What makes a good User Interface pattern
language? Paper presented at the Fifth conference on Australasian user
interface.

Tsai, W.-C., Rogers, W. A., & Lee, C.-F. (2012). Older Adults’ Motivations, Patterns,
and Improvised Strategies of Using Product Manuals.

Ummelen, N. (1994). Procedural and declarative information: a closer look into the
distinction. In M. F. Steehouder, C. Jansen, P. van der Poort, & R. Verheijen
(Eds.), Quality of technical documentation (pp. 115-130). Amsterdam:
Editions Rodopi.

Vakkari, P. (1999). Task complexity, problem structure and information actions::
Integrating studies on information seeking and retrieval. Information
Processing & Management, 35(6), 819-837.

Vallacher, R. R., & Wegner, D. M. (1987). What Do People Think They're Doing?
Action Identification and Human Behavior. Psychological Review, 94(1), 3-
15.

van der Meij, H. (1997). The ISTE Approach to Usability Testing. IEEE Transactions
on Professional Communication, 40(3), 209-223.

van der Meij, H. (2003). Minimalism revisited. Document Design, 4(3), 212-233.

van der Meij, H., Blijleven, P., & Jansen, L. (2003). What makes up a procedure? In
M. J. Albers & B. Mazur (Eds.), Content & Complexity. Information design in
software development and documentation (pp. 129-186). Mahwah NJ:
Erlbaum.

van der Meij, H., & Carroll, J. M. (1998). Principles and Heuristics for Designing
Minimalist Instruction. In J. M. Carroll (Ed.), Minimalism beyond the
Nurnberg Funnel (pp. 19-53). Cambridge, MA: The MIT Press.

van der Meij, H., & Gellevij, M. (1998). Screen captures in software documentation.
Technical communication, 45, 529-543.

van der Meij, H., & Gellevij, M. (2004). The Four Components of a Procedure. IEEE
Transactions On Professional Communication,, 47(1), 5-14.

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
234

van der Meij, H., Karreman, J., & Steehouder, M. F. (2009). Three decades of
research and professional practice on printed software tutorials for
novices. Technical communication, 56(3), 265-292.

van der Veer, G. C., & Felt, M. A. M. (1988). Development of Mental Models of an
Office System. In G. C. Van der Veer & B. Mulder (Eds.), Human computer
interactions—psychonomic aspect (pp. 250-272). Heidelberg: Springer
Verlag.

van der Veer, G. C., Lenting, B. F., & Bergevoet, B. A. J. (1996). GTA: Groupware task
analysis—Modeling complexity. Acta Psychologica(91), 297-322.

van der Veer, G. C., Tauber, M. J., Waern, Y., & van Muylwijk, B. (1985). On the
interaction between system and user characteristics. Behaviour &
Information Technology, 4(4), 289-308.
doi:10.1080/01449298508901809

van der Veer, G. C., & van Vliet, H. (2001). The Human-Computer Interface is the
System: A Plea for a Poor Man's HCI Component in Software Engineering
Curricula. Paper presented at the 14th Conference on Software
Engineering Education and Training.

van Gog, T. (2006). Uncovering the Problem-Solving Process to Design Effective
Worked Examples. (Ph.D.), Open University of The Netherlands, Heerlen.

van Loggem, B. E. (2007). Paper-Based Support for Computer-Mediated Activity: a
Cognitive Task Analysis. (Master's Thesis), Twente University, Enschede.
Retrieved from http://essay.utwente.nl/618/1/scriptie_van_Loggem.pdf

van Loggem, B. E. (2012). Assessing Use Complexity of Software: A Tool for
Documentation Designers. Paper presented at the 4th International
Conference on Human-Centred Software Engineering (HCSE 2012),
Toulouse, France. http://dx.doi.org/10.1007/978-3-642-34347-6_17

van Loggem, B. E. (2013a). Towards a Framework for Documentation Design: an
Abstract Model of Computer-Mediated Activity. Paper presented at the 31st
European Conference on Cognitive Ergonomics (ECCE 2013), Toulouse,
France. http://dx.doi.org/10.1145/2501907.2501953

van Loggem, B. E. (2013b). User Documentation: The Cinderella of Information
Systems. Paper presented at the 2013 World Conference on Information
Systems and Technologies (WorldCIST'13), Olhão, Portugal.
http://dx.doi.org/10.1007/978-3-642-36981-0_16

van Loggem, B. E. (2014a). “Nobody Reads the Documentation"—True or Not?
Paper presented at the Information Behaviour Conference (ISIC 2014),
Leeds, United Kingdom. www.informationr.net/ir/19-4/isic/isic03.html

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
235

van Loggem, B. E. (2014b). Software Documentation: a Standard for the 21st
Century. Paper presented at the International Conference on Information
Systems and Design of Communication (ISDOC '14), Lisboa, Portugal.
http://dx.doi.org/10.1145/2618168.2618192

van Loggem, B. E. (2015). Using the Repertory Grid Technique for mining design
patterns. Paper presented at the Proceedings of the 20th European
Conference on Pattern Languages of Programs, Kaufbeuren, Germany.

van Loggem, B. E. (2016). What Makes a Design Pattern Language?—Value System
and Organizing Principle. Paper presented at the Proceedings of the 21st
European Conference on Pattern Languages of Programs, Kaufbeuren,
Germany.

van Merriënboer, J. J. G. (1997). Training complex cognitive skills: A four-component
instructional design model for technical training. Englewood Cliffs, NJ, USA:
Educational Technology Publications.

van Merriënboer, J. J. G., Kirschner, P. A., & Kester, L. (2003). Taking the Load Off a
Learner's Mind: Instructional Design for Complex Learning. Educational
Psychologist, 38(1), 5-13.

Van Nimwegen, C. (2008). The paradox of the guided user: assistance can be
counter-effective. (PhD), Universiteit Utrecht.

van Welie, M. (2001). Task-based User Interface Design. (PhD), Vrije Universiteit,
Amsterdam.

Vicente, K. J., & Rasmussen, J. (1992). Ecological interface design: theoretical
foundations IEEE Transactions on Systems, Man and Cybernetics, 22(4),
589-606.

von Glasersfeld, E., & Massachusetts Univ, A. S. R. R. I. (1989). An Exposition of
Constructivism: Why Some Like It Radical.

Vromen, N., & Overduin, M. (2000). Handleiding: de Titanic onder de
gebruikersondersteuning. Tekst [blad], 6, 42-46.

Vygotsky, L. (1978). Mind in society: The development of higher psychological
processes. Cambridge, MA, USA: Harvard University Press.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological
processes. Cambridge, MA, USA: Harvard University Press.

Waern, Y. (1993). Varieties of Learning to Use Computer Tools. Computers in
Human Behavior, 9, 323-339.

Wästlund, E., Reinikka, H., Norlander, T., & Archer, T. (2005). Effects of VDT and
paper presentation on consumption and production of information:

References

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
236

Psychological and physiological factors. Computers in Human Behavior,
21(2), 377-394. doi:http://dx.doi.org/10.1016/j.chb.2004.02.007

Wegner, D. M., Vallacher, R. R., Macomber, G., Wood, R., & Arps, K. (1984). The
emergence of action. Journal of Personality and Social Psychology, 46(2),
269.

Wheeler, M. (2015). Martin Heidegger. The Stanford Encyclopedia of Philosophy
(Fall 2015 Edition). Retrieved from
http://plato.stanford.edu/archives/fall2015/entries/heidegger/

White, R. W., & Roth, R. A. (2008). Exploratory Search: Beyond the Query-Response
Paradigm (Vol. 3): Morgan & Claypool Publishers.

Wilson, T. D. (1999). Models in information behaviour research. Journal of
Documentation, 55(3), 249-270.

Winters, N., & Mor, Y. (2009). Dealing with abstraction: Case study generalisation
as a method for eliciting design patterns. Computers in Human Behavior,
25(5), 1079-1088.

Wright, D. (2008). Implicature, Pragmatics, and Documentation: A Comparative
Study. Journal of Technical Writing and Communication, 38(1), 27-51.

Wright, P. (1994). Quality or usability? Quality writing provokes quality reading. In
M. F. Steehouder, C. Jansen, P. Van der Poort, & R. Verheijen (Eds.), Quality
of technical documentation (pp. 7-38). Amsterdam: Rodopi.

Wright, P. (1998). Printed instructions: Can research make a difference? In H. J. G.
Zwaga, T. Boersema, & H. C. M. Hoonhout (Eds.), Visual information for
everyday use: Design and research perspectives (pp. 45-66). London, New
York, Philadelphia: Taylor & Francis.

Wright, P., Creighton, P., & Threlfall, S. (1982). Some factors determining when
instructions will be read. Ergonomics, 25(3), 225-237.

Yeshno, T., & Ben-Ari, M. (2001). Salvation for bricoleurs. Paper presented at the
Proceedings of the Thirteenth Annual Workshop of the Psychology of
Programming Interest Group, Bournemouth, UK.

Samenvatting

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
237

13. Samenvatting
Er bestaat nog geen samenhangend raamwerk waarbinnen discussie kan worden
gevoerd over ontwerp en evaluatie van en onderzoek naar
gebruikersdocumentatie van software. Zowel zij die de documentatie produceren
als zij die hiernaar onderzoek doen hebben behoefte aan inzicht in het proces dat
door documentatie wordt ondersteund, evenals hoe en onder welke voorwaarden
voorgesteld documentatieproducten ingrijpen in dit proces. Dit proefschrift levert
een dergelijk samenhangend kader, in de vorm van een model van computer-
gemedieerde activiteit (in het Engels: Computer-Mediated Activity, afgekort tot
CMA). Vervolgens wordt aangetoond dat het CMA-model een kader biedt
waarbinnen ontwerpbeslissingen voor documentatieproducten zinvol
geformuleerd kunnen worden, door middel van een zogeheten ‘design pattern
language’: de Software Documentation Design Pattern Language of SDDPL.

Het eerste hoofdstuk van dit proefschrift geeft een overzicht van de inhoud.
Vervolgens wordt in hoofdstuk 2 het probleem onderzocht waarvoor alle
disciplines die zich bezig houden met gebruikersondersteuning een oplossing
zoeken, te weten het fenomeen dat mensen er vaak niet in slagen een bepaald stuk
software volledig te leren beheersen. Het ontwerp van gebruikersdocumentatie
wordt neergezet als een relevant aandachtsgebied, zij het een waaraan relatief
weinig aandacht wordt geschonken en waarover weinig academische literatuur
beschikbaar is.

Hoofdstuk 3 bevat een literatuuronderzoek op basis waarvan de ‘secundaire taak’
in het ontwerp van gebruikersdocumentatie wordt beschreven: het refereren aan
documentatie teneinde een bepaald programma te gebruiken om een bepaald doel
te bereiken. In hoofdstuk 4 wordt dan de ‘primaire taak’ in detail beschreven: een
model wordt gepresenteerd van de wijze waarop mensen door herhaald gebruik in
de loop van de tijd leren omgaan (of niet!) met software. Dit model, het CMA-
model, is samengesteld uit een aantal bestaande modellen en theorieën die
menselijk gedrag beschrijven in naturalistische situaties.

De vraag dringt zich op hoe een dergelijk generiek en theoretisch model dat
menselijke interactie met computers beschrijft, kan worden geconcretiseerd voor
toepassing in specifieke, praktische ontwerpsituaties. Waar hoofdstukken 3 en 4
waardevrije beschrijvingen gaven, poogt hoofdstuk 5 deze vraag te beantwoorden
door de aandacht te verschuiven naar het doel dat documentatieproducten beogen
te bereiken. De begrippen ‘expertise’ en ‘beheersing’ worden onderzocht. Niet alle
software is even moeilijk te leren beheersen en termen als ‘eenvoudig’ en
‘complex’ zijn niet exact genoeg voor een bruikbare categorisatie. Een rigide
categorisatie op drie onderscheiden niveaus blijkt het mogelijk te maken de
complexiteit van een bepaald stuk software vast te stellen zodanig dat daaruit
vereisten voor documentatie voortvloeien.

Samenvatting

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
238

In hoofdstuk 6 wordt een mogelijke toepassing van het CMA-model gegeven, ter
validatie van de bruikbaarheid van het model als een kader voor discussie van
ontwerpbeslissingen op het gebied van softwaredocumentatie. Een zogeheten
‘design pattern language’ wordt gepresenteerd, waarin ontwerpen besproken
kunnen worden onder verwijzing naar de onderliggende waarden uit eerdere
hoofdstukken.

In de hoofstukken 7, 8 en 9 wordt deze Software Documentation Design Pattern
Language (SDDPL) in detail uitgewerkt. Design patterns voor
softwaredocumentatie worden gegeven; sommige gebaseerd op voorstellen uit de
bestaande academische literatuur, andere op benaderingen die in de praktijk
worden aangetroffen.

Hoofdstuk 10, ten slotte, bevat een discussie van de voorafgaande hoofdstukken en
trekt conclusies. Tevens wordt een agenda gepresenteerd voor verder onderzoek.

Curriculum Vitae

Towards a Design Rationale for Software Documentation: A Model of Computer-Mediated Activity
239

14. Curriculum Vitae

Brigitte Elisabeth (Brigit) van Loggem

August 11, 1957
Born in Amsterdam, the Netherlands

1979
Candidate’s degree in Law (roughly equivalent to a bachelor’s degree) from the University of
Amsterdam (UvA), the Netherlands

1986
Licentiate’s degree ‘with distinction’ in Technical Translation (roughly equivalent to a master’s
degree) from the University of Antwerp (RUCA/HIVT), Belgium

1986-2013
Independent technical writer, documentation designer, and documentation manager.

1995
Partial KHO in Computer Science (no equivalent; study load 1,000 hrs) from the Open University
(OUNL), the Netherlands

2007
MSc ‘cum laude’ in Communication Studies from the University of Twente, the Netherlands
(thesis titled Paper-Based Support for Computer-Mediated Activity: a Cognitive Task Analysis)

2013-now
Documentation developer at CGG GeoScience.

brigit@byteryte.nl
www.byteryte.nl

www.linkedin.com/in/brigitvanloggem

