Development Environment
for Rule-based Prototyping

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Open Universiteit
op gezag van de rector magnificus
prof. mr. A. Oskamp
ten overstaan van een door het
College voor promoties ingestelde commissie
in het openbaar te verdedigen

op vrijdag 19 juni 2015 te Heerlen
om 16.00 uur precies

door

Gerardus Michels

geboren op 27 februari 1980 te Utrecht

Promotores
Prof. dr. ir. S.M.M. Joosten
Prof. dr. A. Bijlsma

Overige leden beoordelingscommissie
Prof. dr. S. Brinkkemper

Prof. dr. H.A. Proper

Prof. dr. M.C.J.D. van Eekelen

Prof. dr. G. Zwaneveld

Dr. J.C.S.P. van der Woude

Open Universiteit
Open Universiteit

Universiteit Utrecht

Radboud Universiteit

Open Universiteit

Open Universiteit

Technische Universiteit Eindhoven

Printed by GVO drukkers & vormgevers B.V., Ede.

Cover by Floor Geluk.

ISBN: 72-72-72-72-77

Copyright © Gerard Michels, 2015

Contents

1 INTRODUCTION 1
1.1 From didactic problem toresearch 2
1.1.1 Development of RAP with Ampersand 4

1.1.2 Teaching a formal language 5

1.1.3 Automated design tasks for education 5

1.1.4 Didacticresearch withRAP 6

1.2 Contribution 6

1.3 Dissertationoutline 7

1.4 Originofcontent, 8

2 METHOD FOR RULE-BASED PROTOTYPING 9
2.1 Rule-based design for requirements engineers 9
22 Example e 12

2.3 Rule-compliant run-time system 14

24 Conclusion 15

3 RULE-BASED LANGUAGE FOR RAP 17
3.1 Introduction 17

32 Syntax e e e e 19

33 Semantics e e 20

34 TypeSystem 22

3.5 Feedbacksystem 24
3.5.1 Errormessageso oiu e e e e 25

3.5.2 Demonstration 27

3.5.3 Conceptual diagrams 29

3.6 Conclusion 30

ii CONTENTS
4 DESIGN OF RAP 31
4.1 Logicaldesignof RAP 31
4.2 Design of Ampersand-generated prototypes 35
4.3 Rule-based processes 36
4.4 Rule-baseddatabase 37
44.1 Relationaldata 37

442 Integrityrules 39

4.5 Userinterfaces e 40
4.6 Userinterface layout 41
477 Ampersand compiler 43
4.8 Conclusion e 44
5 DETAILED SPECIFICATION OF RAP 45
5.1 Overview e 46
5.2 PATTERN: The repository of files 49
5.2.1 Definedconcepts oL 50

5.2.2 Declaredrelations 53

523 Definedrules 57

5.3 PATTERN: Committed files 57
5.3.1 Definedconcepts 58

5.3.2 Declaredrelations, 60

5.4 PROCESS: Handling scripterrors 62
54.1 Definedrules 63

5.5 PATTERN: Contexts v v i, 64
5.5.1 Definedconcepts 65

5.5.2 Declaredrelations, 66

5.6 PATTERN: Patterns 66
5.6.1 Definedconcepts 67

5.6.2 Declaredrelations, 68

5.7 PATTERN: Generalizationrules 69
5.7.1 Definedconcepts 69

5.7.2 Declaredrelations, 70

5773 Definedrules L. 70

5.8 PATTERN: Concepts v v v v i i, 71
5.8.1 Definedconcepts 73

5.8.2 Declaredrelations, 73

5.83 Definedrules L. 75

5.9 PATTERN: Relation type signatures 76
5.9.1 Definedconcepts 76

5.9.2 Declaredrelations, 77

CONTENTS

6

5.10 PATTERN: Relation declarations
5.10.1 Definedconcepts

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.10.2

Declared relations

5.10.3 Definedrules
PATTERN: Expressions
5.11.1 Definedconcepts
5.11.2 Declared relations
5.11.3 Definedrules
PATTERN:Rules
5.12.1 Definedconcepts
5.12.2 Declared relations
PATTERN: Symbols,
5.13.1 Definedconcepts
PATTERN: Calculated details
5.14.1 Definedconcepts
5.142 Declaredrelations
PROCESS: Testingrules
5.15.1 Definedrules
PROCESS: Editing apopulation
5.16.1 Definedrules,
PATTERN: Metrics v v v v e i e et e e e e e e
5.17.1 Definedconcepts i
5.17.2 Declared relations
Conclusion e

USING RAP FOR EDUCATION

6.1
6.2
6.3

6.4
6.5

Backgroundonthecourse

Research Approach

A first exploration of tracesinRAP

6.3.1
6.3.2
6.3.3
6.3.4
6.3.5

Step 1: harvesting traces
Step 2: defining metrics L
Step 3 and 4: formulating observations and learning lessons .
Step S: refiningRAPo oo
Furthersteps

Observations and Lessons Learned

Conclusion e

iii

78
80
80
82
84
85
86
87
87
88
88
89
89
90
90
92
93
93
96
97
98
98
99
100

iv CONTENTS
7 SPECIFICATION OF RAP EXTENSION FOR METRICS 119
7.1 PATTERN: Ampersand projects 120
7.1.1 Definedconcepts 122

7.1.2 Declared relations 123

7.13 Definedrules 124

7.2 HowtoaddametrictoRAP 125

7.3 Conclusion 125

8 CONCLUSIONS 127
8.1 Answer to research question 127
8.1.1 Requirements to develop RAP withRAP 127

8.1.2 Requirements to teach the Ampersand language 128

8.1.3 Requirements to automate tasks for design exercises 129

8.1.4 Requirements to analyse learning behaviour 129

8.2 Contributions 130

83 Reflection 132

8.4 Further research and development 132

A The RAP model 135
Al RAP . . . 135
A.2 Userinterfaces forstudents, 148
Bibliography 153
Summary 157
Samenvatting 161
Curriculum Vitae 165

Index

166

Dankwoord

Stef Joosten is veel meer geweest dan dat je wensen mag van een promotor. Ik dank
hem voor zijn geloof en motiverende betogen, zijn geduld en vasthoudendheid, zijn
inspiratie en kritieken, zijn ondersteuning en enthousiasme, want deze invloeden zijn
allen onmisbaar geweest voor het kunnen produceren van dit proefschrift.

Vervolgens dank ik Lex Wedemeijer, Jaap van der Woude en Lex Bijlsma, om-
dat zij altijd tijd hadden om mee te denken en commentaar te geven op dat wat mij
bezighield.

Mijn dank gaat uit naar de mensen van het Centrum voor Software Technologie
van de Universiteit Utrecht en met name Doaitse Swierstra, Sean Leather en Basti-
aan Heeren. Zij hebben mij gastvrij ontvangen en barmhartig geholpen bij mijn on-
derzoek.

Martijn Schrage, Han en Bas Joosten dank ik voor hun ontwikkelwerkzaamheden
aan de Ampersand compiler, waardoor ik de ontwikkelomgeving (RAP) heb kunnen
maken met alle functionaliteiten die het nu heeft.

Bert Zwaneveld, Harrie Swart en Jeroen Merriénboer dank ik voor de gesprekken,
die ik met ze heb gehad.

Tenslotte bedank ik mijn gezin. Mijn vrouw Floor voor het luisterend oor dat ze
me geboden heeft. Mijn dochter Veerle omdat ze zo fijn heeft meegewerkt. Mijn
zoon Ruben voor de zelfreflectie. Mijn pasgeboren zoon Roy, we gaan het beleven!

vi

CONTENTS

Chapter 1

INTRODUCTION

This dissertation provides insight into a didactic problem: How to teach Ampersand,
which is a rule-based approach to design information systems and business processes
(IS&BP). This research addresses difficulties to design IS&BP, which are specific to
a rule-based design approach, namely the difficulty:

e to understand and agree upon requirements, that is, what do the stakehold-
ers want? For which we have found inspiration in the Business Rules Ap-
proach [32].

e to implement requirements, that is, how to develop software from require-
ments? For which we have found inspiration in model-driven software en-
gineering [25].

e to cope with changing requirements, that is, how to maintain requirements and
software? For which we have found inspiration in the work of Date [5].

e to formulate and communicate requirements, which is needed to manage re-
quirements and software in a structural manner. For which we have found
inspiration in the Business Rules Manifesto [31] and relation algebra [20].

This research has been performed in the context of the Ampersand project [17],
which aims at developing a fully automated, requirements-to-software method for
designing IS&BP, called Ampersand. The idea of Ampersand is to make the design
of IS&BP more concrete by letting requirements engineers produce working soft-
ware. This is done by automating the programming and documentation chores in
the software development process. Ampersand produces design artefacts and work-
ing software directly from formal, functional requirements. Data models or process

1

2 CHAPTER 1. INTRODUCTION

models are derived automatically, without human effort. The price is paid by require-
ments engineers, who have to learn how to formalize functional requirements. We
categorize Ampersand as a rule-based design approach, because Ampersand uses a
relational language to express functional requirements as a model of rules.

The development and teaching of Ampersand is being complicated by our target
audience: students interested in requirements engineering. Many of these students are
interested in the business application of information technology. They typically have
little background in the formal thinking needed to specify working software. For that
type of thinking, which is more akin to programmers’, we have found that a minimal
amount of mathematical training is prerequisite. Nevertheless, we could achieve a lot
with tools and acquired didactical insights to accommodate such students.

This dissertation reports on four research activities that were done to contribute
to the Ampersand project:

e The development of tools for Ampersand with Ampersand [section 1.1.1];
e Finding ways of tool support to teach a formal language [section 1.1.2];

e Finding ways to automate design tasks for education [section 1.1.3];

e An exploration of didactic research with the developed tools [section 1.1.4].

The following section 1.1 explains how our interest in teaching IS&BP design has
led to the above research activities centred around the development of tools to teach
Ampersand.

1.1 From didactic problem to research

An information system can be defined as interrelated, IT-based components to col-
lect, process, store and disseminate information for business process support [19].
Designing information systems requires both IT and organizational skills. Learning
design skills is a complex learning task [21], which can be addressed by means of
practical exercises and experiments [28]. An obvious approach is therefore to make
an educational design exercise environment for students to practice IT and organiza-
tional skills. That is precisely what has been chosen to do in our research plan.
Merrienboer [21] argues that a learning environment should let students focus on
essential tasks by taking away secondary tasks. In the IS&BP research group at the
computer science department of the Open University of the Netherlands, we believe
that business rules capture the essence of a business process. Consequently, the es-
sential learning task is how to model a business process in terms of business rules.
The learning environment used in this dissertation is a development environment for
rule-based prototyping called the Repository of Ampersand Projects, abbreviated

1.1. FROM DIDACTIC PROBLEM TO RESEARCH 3

to RAP. RAP automates the design of an information system by producing two arte-
facts: design documentation and working business process software (prototypes).
The design automation comes for free, because RAP supports the Ampersand [39]
method, which generates documentation and software on the basis of business rules
alone. The underlying assumption is that students will focus on their essential task
of business rule elicitation, because RAP automates a number of secondary design
tasks, such as computer programming and data modelling. This motivates our choice
to use RAP as a learning platform.

RAP is an evolutionary product of which the first developments at the OUNL star-
ted in 2002, which has been given the name RAP in 2010. This initiative from 2002
originates from the Calculating with Concepts (CC) method [8], which was conceived
in 1996 as a formal approach to reason about business processes and software applic-
ations. The CC-method and related knowledge grew through practical uses of the
method in industry, e.g. [15, 1, 16]. The potential of rule violations to drive business
processes, an important concept of Ampersand today, became apparent in 1998. The
first violation detector was written in 2000 for a project of the ING Bank. In 2002
research at the OUNL was launched to further the works on the CC-method into the
direction of an educative tool, that is, RAP. The research group at the OUNL first in-
troduced the Ampersand language and later in 2006 they refined the CC-method into
the Ampersand approach. The toolset for Ampersand in 2008 included a compiler for
the Ampersand language, called the Ampersand compiler, and a web application
for education at the OUNL [section 6.1], called the Atlas. The Ampersand compiler
of 2008 could already generate functional specifications and prototype software from
a set of rules expressed in the Ampersand language, a so-called Ampersand-model.
The Atlas of 2008 was a web interface to examine rule violations of a single data pop-
ulation for an Ampersand-model. In 2010, the Ampersand compiler and Atlas were
combined and centred around a repository for populated Ampersand-models, which
became the first version of RAP. The second version of RAP appeared in 2012, which
is a product of this dissertation fully described in chapter 5. In the meantime, the
design of the Ampersand compiler has been revised and its Ampersand-model pro-
cessing functions have been extended and improved. By being the Ampersand-model
processor of RAP, the capabilities of the Ampersand compiler have a direct, positive
influence on the capabilities of RAP.

In 2009, we acknowledged the need to learn more about the didactics of Am-
persand, based on early experiences with our course on Ampersand [section 6.1]. For
example, a significant number of our students have issues with learning the formal
language of Ampersand, which distracts them from learning design skills. Therefore,
we envision didactic research based on student behaviour in RAP. We have investig-
ated whether student behaviour can be analysed based on student activity logs from
RAP.

CHAPTER 1. INTRODUCTION

From a practical perspective, the research behind this dissertation seeks for an-
swers to one central question: What are requirements for RAP to teach Ampersand?
The requirements for RAP yield what RAP is (1), how RAP is developed and main-
tained (2) and how RAP is used (3):

ey

(@)

3)

RAP is a development environment for Ampersand, which targets students who
are learning Ampersand to improve their skills with respect to IS&BP design.
An educational challenge of Ampersand is its use of a formal language [sec-
tion 1.1.2]. Automated design tasks in Ampersand may serve education as well
as designing [section 1.1.3].

RAP has been developed with Ampersand, which makes it an interesting case
to validate and refine the process of tool development with Ampersand [sec-
tion 1.1.1]. A reason to use Ampersand is that Ampersand requires little de-
velopment capacities to respond to changing requirements of RAP in a timely
fashion.

Student usage of RAP in combination with being responsive to changing re-
quirements of RAP allows us to repeatedly: harvest data about students, define
metrics on that data, formulate observations, learn lessons and refine RAP [sec-
tion 1.1.4].

1.1.1 Development of RAP with Ampersand

Ampersand is not only the subject of RAP, but also an essential asset for the develop-
ment of RAP. Because RAP has been developed with Ampersand, we:

have formal - unambiguous - requirements

could manage and investigate requirements with tools
could manage and compare different versions of RAP
could (re)process requirements with tools

could (re)generate working software instantly

How has Ampersand given us these possibilities? To develop RAP with Am-
persand, the functional requirements of RAP need to be captured in an Ampersand-
model, which we call the RAP model. Requirements in the RAP model are expressed
in the Ampersand language. Any requirement that is in the RAP model is instantly
realized in the software of RAP, because that software is generated from the RAP
model with the Ampersand compiler. The Ampersand compiler has more options
to process Ampersand-models, like analysing requirements or generating software

1.1. FROM DIDACTIC PROBLEM TO RESEARCH 5

models and requirements documentation. For example, chapter 5 is the generated re-
quirements documentation of the latest RAP. The Ampersand compiler is our primary
medium to implement automated (design) tasks [section 1.1.3]. Thus, Ampersand
has given me the possibilities mentioned above by given me a formal language to
express requirements and tools to process the requirements in that language.

1.1.2 Teaching a formal language

The Ampersand language is based on relation algebra [20]. With relation algebra, a
student needs to learn only a few, but powerful relational operators to express busi-
ness rules. However, a small, powerful language is still a formal language, which
requires mathematical skills of students. Our personal experience with teaching Am-
persand shows that students have difficulties with learning and using the Ampersand
language, which they blame on the mathematical aspect of Ampersand. Possibly
RAP can support students with the mathematical aspects in learning and using the
Ampersand language. With respect to our central question, this dissertation explicitly
addresses requirements for RAP to support students in learning and using the Am-
persand language. For example, a feedback system has been added to RAP, which
gives correct and to-the-point feedback on type errors in relation algebraic expres-
sions from students [section 3.5].

1.1.3 Automated design tasks for education

The possibility to automate design tasks with the Ampersand compiler is an oppor-
tunity to support the learning and teaching process. Therefore we have designed RAP
to be a development environment in which automated design tasks for education can
be implemented. With respect to our central question: What are requirements for
RAP to implement automated design tasks for education?

RAP targets the following uses of automated tasks for education:

e A course developer may delegate secondary learning tasks to automated tasks
such that a student can focus on their primary tasks. Prominent features of RAP
for students are visualizing and editing Ampersand-models in RAP.

e Give intelligent feedback by means of an automated process to diagnose or
give educational feedback on the design efforts of a student. As a rule-based
method, Ampersand supports constraint-based feedback in RAP [24] out-of-
the-box. That is, constraints and related feedback can be expressed in the Am-
persand language.

e Provide information, like learning analytics [36], for researchers, teachers and
students by means of an automated task to measure, analyse or visualize the

6 CHAPTER 1. INTRODUCTION

learning behaviour of an individual or group of students. The source of these
analytics can be any data stored in RAP like Ampersand-models or user activ-
ities in RAP.

1.1.4 Didactic research with RAP

We have explored whether analytics in RAP can improve our knowledge about stu-
dent behaviour related to learning and using Ampersand with RAP [section 6.5]. In
other words, we have explored the possibilities of research with RAP to develop tool-
based didactics for Ampersand. Research in RAP has been combined with rapid
development of RAP with Ampersand, which has resulted in a cyclic research-driven
development approach for RAP and didactics of Ampersand. Cycles are formed
through gaining new insights from the usage of improved development tools and im-
provement of development tools is based on new insights. This research approach
might be used for certain other subjects of computer science, but it requires develop-
ing a development environment like RAP with a method like Ampersand. We have
verified the viability of the research approach on RAP through an experimental study
with analytics from RAP and the development of a next version of RAP [chapter 6].
With respect to our central question, we ask ourselves: What are requirements for
RAP to analyse learning behaviour?

1.2 Contribution

The primary contribution of this dissertation is RAP, a development environment for
rule-based prototyping. This environment is currently being used in computer science
education at the Open University of the Netherlands.

A contribution of this dissertation is that RAP has been generated as a prototype
with RAP itself. The requirements, from which RAP has been generated, are given in
chapter 5. This achievement validates the theory that functional requirements can be
defined by means of rules as explained in chapters 2 and 4. The lessons learned from
developing RAP have contributed to a major revision in progress of the type system
and a refactoring of the Ampersand compiler.

The contribution of RAP to the problem of teaching rule-based design is threefold.

Firstly, RAP offers a development environment for students that allows them to
do exercises with formal specifications written in Ampersand. The environment sup-
ports the automation of secondary learning tasks within such exercises, which is the
responsibility of a course developer. Design exercises may target the learning of
IS&BP design tasks ranging from requirements elicitation up to programming, which
is a step towards a broader applicability of formal specification.

1.3. DISSERTATION OUTLINE 7

Secondly, RAP offers a platform for researchers to study the way students are
learning this specific topic. The platform supports the automation of the collection
and analysis of semantic data produced by students doing their exercises. A meas-
urement framework in RAP [chapter 7] lets a researcher add metrics to RAP with an
unambiguous meaning. Analysis functions, e.g. measurements and visualizations,
may be implemented in RAP by means of functions in the Ampersand compiler or
outside of RAP, e.g. in a spreadsheet.

Thirdly, a first study with RAP has been conducted [section 6.3], which has resul-
ted in the formulation of observations based on measurements in RAP [section 6.4].
This study demonstrates our envisioned cyclic research and development approach
and yields empirical validation of possibilities and limitations of that method [sec-
tion 6.5].

1.3 Dissertation outline

This dissertation reports on the development of RAP and how RAP can and has been
used for education.

Chapter 2 introduces Ampersand, which is the method for rule-based prototyping
that RAP supports. Chapter 3 defines the rule-based language of Ampersand that
RAP supports. This contains material published in [22, 38].

In chapter 4 we present the design and development of RAP. RAP has been de-
veloped with Ampersand, which means that there is a specification of RAP in the
Ampersand language from which RAP has been generated as a prototype, namely
the RAP model. Chapter 4 first presents the logical design of RAP and an impres-
sion based on screen shots. After that, RAP is presented as an Ampersand-generated
prototype. The chapter elaborates on the required functions to generate RAP with
RAP, which was published before [18]. Chapter 5 gives the detailed requirements
specification of the second version of RAP. This chapter has been generated from the
RAP model like RAP itself. The requirements in the specification are examples of
what can be defined in Ampersand. Appendix A contains the script of the RAP model
including user interface definitions.

RAP has been released to students as a tool for rule-based design exercises in a
course we teach at the Open University of the Netherlands. Chapter 6 presents the
work we have done to show that RAP is suitable as a platform to study the learning
behaviour of students. It shows that a variety of lessons could have been learned by
analysing student usage data in RAP, which was published before [23]. Chapter 7
gives a specification for an extension on RAP to implement metrics on usage data in
RAP. Such metrics have been used to study learning behaviour.

8 CHAPTER 1. INTRODUCTION

1.4 Origin of content

This dissertation has been constructed from subproducts of my research including the
RAP model and the following peer-reviewed and published papers.

(D Gerard Michels, Sebastiaan Joosten, Jaap van der Woude, and Stef Joosten.
Ampersand: Applying relation algebra in practice. In Proceedings of the 12th
conference on Relational and Algebraic Methods in Computer Science, Lec-
ture Notes in Computer Science 6663, pages 280-293, Berlin, 2011. Springer-
Verlag

(II) Gerard Michels and Stef Joosten. Progressive development and teaching with
RAP. In Proceedings of the Computer Science Education Research Conference
2013, pages 33—43, Heerlen, 2013. Open Universiteit

(IIT) Stef Joosten and Gerard Michels. Generating a tool for teaching rule-based
design. In Proceedings of the Third International Symposium on Business Mod-
eling and Software Design, pages 230-236. SCITEPRESS, 2013

Stef Joosten, the supervisor of this research, has helped me to rephrase sentences
and outline the content of this dissertation and the three papers.

Chapter 2 has been constructed from material related to paper III. Sections 2.1
and 2.3 contain revised text from that paper. The example in section 2.2 has been
used in the presentation of that paper at the BMSD conference 2013.

Chapter 3 has been constructed from the contents of paper I. Paper I presents a
formal definition of the syntax, semantics and type system of the Ampersand lan-
guage, which has been defined together with the co-authors of that paper. The in-
troduction to the Ampersand language [section 3.1] originates from paper II. Sec-
tion 3.5.3 introduces the type of conceptual diagrams used in the Ampersand ap-
proach, which is content that has already been covered by the book on Ampersand [39].

Chapter 4 restructures and extends contents of paper III with more detailed in-
formation on the design of RAP and prototype generation functions of Ampersand
used to generate RAP.

Chapter 5 has been generated from the RAP model with the Ampersand compiler.
The development of RAP is the key contribution of this dissertation.

Chapter 6 has been constructed from the contents of paper II. Sentences and terms
have been rephrased to fit the terminology and other statements in this dissertation.

Chapter 7 has been generated with the Ampersand compiler from the Ampersand-
model of the measurement framework. The model of the measurement framework is
an extension of the RAP model, which contributes to the evidence of the claim that
RAP is useful as a platform to validate didactical insights. Section 7.2 is new content
added to this dissertation.

Chapter 2

METHOD FOR RULE-BASED
PROTOTYPING

Basic knowledge of Ampersand is required to understand the user functions, design
and development process of RAP. This chapter gives an introduction to Ampersand.
Section 2.1 describes the Ampersand method for requirements engineers to define a
system of rules to process information. Students use RAP to practice the Ampersand
method. Also, RAP has been developed with the Ampersand method. Section 2.2
gives a schoolbook example for the Ampersand method. Section 2.3 describes the
rule-compliant run-time system, which can be generated with the Ampersand com-
piler from an Ampersand-model. RAP is an example of such a rule-compliant run-
time system, which has been generated from the RAP model.

2.1 Rule-based design for requirements engineers

Ampersand is a rule-based design approach on concepts known from the Business
Rules Community [32] and Date [5]. The Business Rules Community has argued
since a long time that natural language provides a better means for discussing re-
quirements than graphical models (e.g. UML [33]). This vision is the foundation
of profound assets like the Business Rules Manifesto [31], the Business Rules Ap-
proach [32], the SBVR standard [26] and RuleSpeak [4]. Ampersand goes beyond
requirements by formalizing business rules and using them as requirements to par-
tially automate information system development. There is no well-rooted research
community that targets rule-based design approaches for requirements engineers as
a whole. We find inspiration in the work of Date, which covers ways to develop

9

10 CHAPTER 2. METHOD FOR RULE-BASED PROTOTYPING

information systems by compiling declarative rules for the presentation, application
and database logic.

Ampersand shares various concepts with a variety of other approaches. Therefore,
research on Ampersand relates to and may find inspiration in many other fields of
research. We distinguish the following approaches, which we take into account in
our research:

o the rule-based approach to model organizations e.g. rule complexes [3].

o the relational approach to model data structures e.g. Object Role Modelling [12],
Alloy [14].

e the declarative approach to model data processes e.g. [11].
o the ontological approach to store information e.g. Semantic Web [2].

o the enterprise modelling approach to integrate process and information design
e.g. Demo [7].

o the rule-based approach to separate business logic from code e.g. Object Con-
straint Language [27], active databases [6, 29, 40].

o the model-driven approach to generate code from models e.g. Model Driven
Approach [25].

Ampersand uses the word business rule to denote a formal representation of a
business requirement. An Ampersand design holds definitions of business rules in
a relation algebra [20]. Rules are defined as expressions on declared binary relations
between two concepts. There is an analogy between rules, relations, and concepts in
Ampersand and rules, facts and terms from the Business Rules Manifesto.

We believe, supported by Date [5], that rules are sufficient to generate a func-
tional prototype of an information system. Evidence of that claim is given by the
Ampersand software generator, which compiles a set of rules (in the form of an
Ampersand-model) into working software. The Ampersand generator also produces
design artefacts, such as data models. As a consequence, data models need no longer
be an input of the design process, but they are design artefacts that can be generated
from an Ampersand analysis of the business rules. Having a computer generate data
models makes validation of data models by of the business representatives redundant.
Instead, discussions with representatives of the business can focus on the intended
interpretation of business rules. In this way, Ampersand shifts the focus of the design
process to requirements engineering, which we see as a result of automating an im-
portant part of the design process.

Controlling design processes directly by means of business rules has consequences
for requirements engineers, who will encounter a simplified design process. From

2.1. RULE-BASED DESIGN FOR REQUIREMENTS ENGINEERS 11

Procedures

Conceptual.
analysis

L

v

— A/
—» Data model i——— ¥ G —» Software I

a

(Requirements | (

| engineering

\ / \

N\ AL N

~—"\ A
business
rules

Service
definitions

’: RAP

Interface
definitions

IR

Figure 2.1: Rule-based design process (engineer).

their perspective, the design process is depicted in figure 2.1. The main task of a
requirements engineer is to collect rules to be maintained. These rules are to be man-
aged in a repository (RAP). From that point onwards, a first generator (G) produces
various design artefacts, such as data models, process models, etc. These design arte-
facts can then be fed into a second generator that produces a rule-compliant software
system. That second generator is typically a software development environment, of
which many exist and are heavily used in the industry. Alternatively, the design can
be built in the conventional way as a database application. A graphical user interface
on the repository and generator functions will help the requirements engineer by stor-
ing, managing and checking rules, to generate specifications, analyse rule violations,
and validate the design.

From the perspective of an organization, the design process looks like figure 2.2.
At the focus of attention is the dialogue between a problem owner and a requirements
engineer. The former decides which requirements he wants and the latter makes sure
they are captured accurately and completely. The requirements engineer helps the
problem owner to make requirements explicit. Ownership of the requirements re-
mains in the business. The requirements engineer can tell with the help of his tools
whether the requirements are sufficiently complete and concrete to make a build-
able specification. The requirements engineer maintains a clear mapping between the
formal requirements specification and the informal business requirements. This map-
ping is needed to explain the correspondence of the specification to the business for
necessities like traceability and validation.

12 CHAPTER 2. METHOD FOR RULE-BASED PROTOTYPING

y
Purpose .
problem Requirement

Qner
Req.
dialogue@ be Eﬁg

Check designer Rule

_____,/__ _/
Design
[R
Design
Spec (comp. rules)
'~ Build
Software Softwaregl
Generator

—

Figure 2.2: Rule-based design process (organization).

2.2 Example

To illustrate how a requirements engineer may use Ampersand, let us produce an
Ampersand design by the process in figure 2.2.

In a dialogue between a problem owner and the requirements engineer, the prob-
lem owner pronounces a business requirement: “We use a card for accounts.” The
engineer asks: "Why do you use cards for accounts?”” The problem owner answers:
”To identify accounts.”

The requirements engineer needs to capture this requirement in a formal language
like Ampersand. In the Ampersand language, which will be introduced in chapter 3,
the requirements engineer codes an Ampersand-model in a script, an Ampersand-
script. This script is a closed context - a relation algebra - of populated binary rela-
tions on concepts and declarative rules. A rule is expressed in relation algebra and
enforced in a way, e.g. as a constraint on the population of the relations.

To continue the example, the requirements engineer creates a first attempt to form-
alize the business requirement in Ampersand. For example, the engineer defines a
context with one relation identifies :: Card * Account and one rule
RULE I |- identifies;identifies”.

The engineer attaches the intended meaning to the relation: a card identifies an
account. Pragmatically this means that an instance of identifies e.g.

2.2. EXAMPLE 13

("card #1", "5115") isinterpreted as the administrative fact that card #1 identifies
account 5115. By the meaning given to identifies, the rule means that each card
identifies at least one account.

In an ASCII-encoded Ampersand-script the above formalization looks like:

CONTEXT Example

identifies :: Card * Account
MEANING IN ENGLISH
"A card identifies an account."

POPULATION identifies CONTAINS
[("card #1","5115")
; ("card #2","777")
; ("card #3","7081")]

RULE I |- identifies;identifies”
MEANING IN ENGLISH
"Each card identifies at least one Account."

ENDCONTEXT

The engineer commiits this script to the rules repository, RAP. Now, the engineer
can use the generator functions as depicted in figure 2.1.

First, the engineer needs to check in a dialogue with the problem owner whether
the declarative statements in the script are true and sufficiently complete with respect
to the purpose of the requirement. Generator functions can be implemented to present
the script in a way that supports the dialogue. For example, the engineer may benefit
from support which translates the formalism back to a business language, or support
which manages the rules to discuss.

The engineer has designed the requirement "We use a card for accounts” as “Each
card identifies at least one Account”. The engineer asks: ”Is it true that each card
identifies at least one account?”” The problem owner says: ”Partially, each card iden-
tifies exactly one account.” The engineer instantly adds a rule to the script that means
“Each card identifies at most one Account”. The new version of the script is commit-
ted to RAP.

Now, the engineer is confident about the correctness and completeness of the
design. The engineer hits a button to fire the generator function that generates a
prototype with default user forms to view and change cards linked to accounts. The
problem owner and engineer play with the prototype to test its functionality. They try
to add a new card linked to a new account, which succeeds. They try to add another

14 CHAPTER 2. METHOD FOR RULE-BASED PROTOTYPING

account to the same card, which fails. They try to add another card to the account
that already has a card, which succeeds. The problem owner says: “Perfect, you may
indeed have two cards for the same account.”

2.3 Rule-compliant run-time system

Whenever and wherever people work together, they connect to one another by making
agreements and commitments. These agreements and commitments constitute the
rules of the business. A logical consequence is that the business rules must be known
and understood by all who have to live by them. From this perspective business rules
are the cement that ties a group of individuals together to form a genuine organization.
In practice, many rules are documented, especially in larger organizations.

The role of information technology is to help maintain business rules. This is
what compliance means. If any rule is violated, a computer can signal the violation
and prompt people or trigger a computer to resolve the issue. This can be used as
a principle for controlling business processes. For that purpose two kinds of rules
are distinguished: rules that are maintained by people and rules that are maintained
by computers. Rules maintained by people are called process rules, because they
produce signals for people to act. Rules maintained by computers are called integrity
rules, because the computer maintains them as invariants of data and processes.

Since all formalized rules (both the ones maintained by people and the ones main-
tained by computers) are monitored, computers and persons together form a system
that lives by those rules. This establishes compliance. Business process management
(BPM) is also included, based on the assumption that BPM is all about handling
cases. Each case (for instance a credit approval) is governed by a set of rules. This
set is called the procedure by which the case is handled (e.g. the credit approval pro-
cedure). Actions on that case are triggered by signals, which inform users that one
of these rules is (temporarily) violated. When all rules are satisfied (i.e. no viola-
tions with respect to that case remain), the case is closed. This yields the controlling
principle of BPM, which implements Shewhart’s Plan-Do-Check-Act cycle (often at-
tributed to Deming) [35]. Figure 2.3 illustrates the principle. Assume the existence
of an electronic infrastructure that contains data collections, functional components,
user interface components and whatever is necessary to support the work. An adapter
observes the business by drawing digital information from any available source (e.g.
a data warehouse, interaction with users, or interaction with information systems).
The observations are fed to a rule engine, which checks them against business rules
in a repository. If rules are found to be violated, the rule engine signals a process
engine. The process engine distributes work to people and computers, who take ap-
propriate actions. These actions can cause new signals, causing subsequent actions,
and so on until the process is completed. This principle rests solely on rules, yielding

2.4. CONCLUSION 15

Detect

-

@@7 Violations

Processes

&
1

T

Systems

Business Operations.

Figure 2.3: Principle of rule-based process management

implicit business processes which directly follow from the rules of the business. In
comparison: workflow management derives actions from a workflow model, which
models the procedure in terms of actions. Workflow models are built by modellers,
who transform the rules of the business into actions and place these actions in the
appropriate order to establish the desired result.

2.4 Conclusion

This chapter has introduced the idea that information system software can be derived
from functional requirements alone. This idea has been implemented by the method
Ampersand. Ampersand has been described from the perspective of a requirements
engineer. A requirements engineer uses Ampersand to elicit business rules, formalize

16 CHAPTER 2. METHOD FOR RULE-BASED PROTOTYPING

those rules and maintain them in a rule repository, RAP. The Ampersand language to
define systems of rules has been built on relation algebra and the Business Rules Ap-
proach. A requirements engineer processes rules in RAP to develop rule-compliant
run-time systems. In such a run-time system, rules can be guards of the integrity
of business data and processes (integrity rules), or drivers of business processes and
workflows (process rules). An engineer may use the Ampersand compiler to generate
rule-compliant run-time systems, validate rules, visualize a system’s design, produce
functional specifications, and more.

Ampersand plays two roles in this dissertation in which RAP is the central sub-
ject. One, RAP is a development tool for Ampersand, which includes the Ampersand
compiler and a rule repository as described. Two, RAP has been developed with
Ampersand and is a generated rule-compliant run-time system. Thus, RAP could be
used to develop RAP. Moreover, the RAP model is being maintained in RAP and
committing changes to the rules in the RAP model causes an instant update of RAP
itself.

Chapter 3

RULE-BASED LANGUAGE
FOR RAP

This chapter describes the Ampersand language, which relates to this dissertation in
three ways. One, RAP supports viewing and editing models in the Ampersand lan-
guage, which yields requirements for RAP. Two, the Ampersand language is used to
define the RAP model and the model for RAP’s measurement framework. The func-
tional specifications of RAP [chapter 5] and the measurement framework [chapter 7]
have been generated from these two models. Three, students of the RBD course need
to learn and use the Ampersand language, which characterizes the didactics of Am-
persand we study. For example, we have identified the need for proper student feed-
back on type errors, which has resulted in a feedback system on type errors described
in section 3.5.

3.1 Introduction

The Ampersand language is a computer language, that can be compiled into a work-
ing information system. It uses a relation algebra [20] as a language in which to
express business rules. A tiny example of an Ampersand-script is given here, merely
to communicate the flavour of the language. A formal definition is provided in the
sequel.

17

18 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

PATTERN Hello
identifies :: Card * Account

RULE I |- identifies;identifies”

MEANING IN ENGLISH

"Each card identifies at least one Account."
ENDPATTERN

Students specify a domain language in terms of binary relations (e.g. “identifies”).
Students also provide rules. Rules consist of relations that are combined by means
of relational algebra operators, such as “|-", “;” , and “””. The example shows
one rule only. It describes a property of a single relation c.q. a multiplicity rule of
“identifies”. Similarly, other rules can be defined to restrict the contents of different
relations further. Relation algebras have been studied extensively and are well known
for over a century [34]. The use of existing and well described theory brings the
benefit of a well conceived set of operators with well known properties.

Students can specify a rule in natural language as well as in formal language. This
allows peers to review and scrutinize their work.

Ampersand is a typed formalism. Every relation has a type. For example, the
relation identifies in the example is given type Card*Account. This means that the
every tuple (i,b) contained in relation identifier is a Card-Account pair, meaning
that i is a Card and b an Account. The interpretation of relations in terms of sets
of tuples lies at the heart of Ampersand. Experience so far strongly suggests that
this interpretation makes the language concrete in the eyes of students, and therefore
understandable.

A type system also means that Ampersand gives feedback to students with respect
to type errors. Each expression that is accepted by the type checker makes sense
in that it can be used to define the semantics specified in the student’s script. A
statement that makes no sense is rejected by the type checker, allowing tutors to
focus on meaning and helping students to understand it. In a way, the type checker
takes over the task of uncovering the “nitty-gritty”” mistakes, freeing the tutors to do
more intelligent work.

Van der Woude and Joosten [38] have enhanced the type system with subtyp-
ing of concepts. Subtyping is useful to confront two different, but comparable con-
cepts without being rejected as a type error. For example, a requirements engineer
can model the concept Client and Provider to be comparable over a more general
concept. This might make sense when a client can be a provider as well. A course
book on Ampersand [39] also discusses alternative patterns in Ampersand to model
apparent subtypes of concepts.

3.2. SYNTAX 19

3.2 Syntax

The Ampersand syntax consists of constant symbols for (business) concepts, (busi-
ness) elements, relations and relation operators. Relation terms can be constructed
with relations and relation operators.

Let C be a set of concept symbols. A concept is represented syntactically by an
alphanumeric character string starting with an upper case character. In this paper, we
use A, B, and C as concept variables.

Let U be a set of atom symbols. An atom is represented syntactically by an ASCII
string within single quotes. All atoms are an element of a concept, e.g. ' Peter’ is an
element of Person. We use a, b, and ¢ as atom variables.

Let D be a set of relation symbols. A relation symbol is represented syntactically
by an alphanumeric character string starting with a lower case character. For every
A, B € C, there are special relation symbols, 14 and V4 p. For every a € U, there is a
special relation symbol, a4 which implies that a is an element of A. We use r, s, and
t as relation variables to denote elements of D.

Let ~, —, U, and ; be relation operators of arity 1, 2, 2, and 2 respectively. The
unary relation operator — and binary relation operators N, C and = are cosmetic and
only defined on the interpretation function (see definition 3).

Definition 1 (relation terms).
LetR,SeR,reD, A,Be Canda € U. Then R is the set of relation terms, which is
defined recursively by

r?HAavAXBaaA7RA~B7RV7R_SvRUS7R;S S R

We use R, S, and T as variables to denote relation terms.

Ampersand uses the notion of context to allow a user to distinguish true state-
ments from other statements. Truth is consequently treated within a particular con-
text, which means we have to define the notion of context.

Definition 2 (context).

A context € consists of three sets: RUL, REL, and POP, where
e RUL C R is a collection of relation terms called rule statements.

e REL is a collection of triples r : A ~ B in which r € D and A,B € C. Each
instance of REL is called a relation declaration.

e POP is a collection of triples a r b in whicha € A,b € Band (r : A ~ B) € REL.
Each instance of POP is called a relation element.

20 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

The relation declarations define the conceptual structure and scope of €. Each
relation element holds in € by definition. POP is called the population of € and
represents administrative facts. A rule statement is a relation term R4 that must be
read as [Ra~p]. [Ra~p] holds within € if and only if R4 = Vaxp. By defining a rule
statement that must hold at all times, an integrity rule [section 2.3], the requirements
engineer puts a constraint on POP. By defining a rule statement that may not hold, a
process rule [section 2.3], the requirements engineer sets a directive to change POP.

An Ampersand-script is a user-defined collection of relation declarations, relation
elements and rule statements. It describes a (business) context €. The Ampersand
compiler contains a parser, which extracts RUL, REL, and POP from an Ampersand-
script that defines €.

This dissertation includes Ampersand-scripts written in Ampersand’s ASCII-syntax,
which is equivalent to but differs from the Ampersand syntax described above. For
example, the symbol for U is \/ in the ASCII-syntax. Scripts in the ASCII-syntax are
printed verbatim. We use the ASCII-syntax in section 2.2 and 3.1 and in chapter 4,
which contains snippets copied from appendix A. For a full description of the ASCII-
syntax we refer to the course book [39], which is available online.

3.3 Semantics

The previous section defines the syntactic structure of Ampersand and the interpreta-
tion of relation elements and rule statements. This section introduces an interpretation
J(R) and a type T(R), that define the semantics of relation term R. The interpretation
function J() interprets relation terms based on POP. It is a commonly known inter-
pretation of representable heterogeneous relation algebras [20]. The relation symbols
used in a relation term are either I4 or V4, p or declared by the user in REL. So, the
relation algebra on R can be configured by the user through REL. The interpretation
of all relation symbols in D is completely user-defined through POP. Thus, given
some REL and some POP, J(R) determines whether some relation holds between
two elements.

3.3. SEMANTICS 21

Definition 3 (interpretation function).

Given some €, the interpretation function of relation terms is defined by

relation 3(r) ={{a,b) | ar b € POP} 3.1
identity J(I4) ={(a,a) |ac A} (3.2)
universal I(Vaxp) = {(a,b) |a €A, b€ B} (3.3)
atom J(ap) = {{a,a)} 34
disambiguate JI(Ra~p) = {(a,b) | (a,b) € I(R), a € A, b € B} (3.5)
converse J(R™)={(b,a) | {a,b) € T(R)} (3.6)
union J(RUS) = {(a,b) | {a,b) € I(R) or {a,b) € I(S)} 3.7
difference I(R—S) = {{a,b) | (a,b) € I(R) and {(a,b) ¢ I(S)} (3.8)
composition I(R;S) = {{a,c) | 3b such that {a,b) € I(R) and {b,c) € 3(S)}

(3.9

Section 3.1 informally described that relations need to have a type. The user must
declare the existence of a relation by stating r : A ~ B. This declaration means that
there is a relation » with type A ~ B. The supertype relation < between concepts
is introduced later in section 3.4. Definition 4 defines the type of relation terms by
means of a type function. T(R) is inspired on Hattensperger’s typing function for
heterogeneous relation algebra [13].

Definition 4 (typing function).
Given some €, the partial typing function of relation terms is defined by

T(r)=A~B ,ifr:A~B€EREL (3.10)
TM)=A~A ,ifAcC (3.11)
T(Vaxg) =A~B ,ifA,B€C (3.12)
T(ap) =A~A ,ifacA AcC (3.13)
T(Ra~B) =A~B ,ifT(R)=1' NB’,A <A'orA' <A,B<B'orB'<B (3.14)
TR)=B~A ,ifT(R)=A~ (3.15)
T(RUS) =Z(R) ﬂ(R):T(S) (3.16)
TR-S)=%(R) , fT(R)=5(5) (3.17)
T(R;S)=A~C ,ifT(R)=A~B,T(S)=B~C (3.18)

For any relation term R with a defined type, it can be proven that

T(R)=A~B = J(R) CI(Vaxp)

22 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

As a consequence, a relation declared as r : A ~ B can only contain elements a r b for
which a € A and b € B. If a relation term has no type, it is said to have a type error.
Any script that contains relation terms with a type error is rejected by the Ampersand
compiler, accompanied by appropriate error messages as feedback to the user.

From the operators defined in Ampersand, some others can be derived. They are
called cosmetic, because they have been included in the language for user conveni-
ence only.

Definition 5 (cosmetic operators).

complement —R=Vjxp—R, defined if ¥(R)=A ~B (3.19)
intersection RNS=—=(-RU=S) (3.20)
implication RCS=-RUS (3.2
equivalence R=S=(RCS)N(SCR) (3.22)

3.4 Type System

Only type correct expressions are allowed in Ampersand-scripts. Ampersand allows
overloading of relation symbols. This means that relation term names need not be
unique. Overloading is necessary for practical reasons only, in order to give users
more freedom to choose names. In particular, requirements engineers may choose
short uniform names, such as aggr, has, in, to represent different relations for dif-
ferent types. The type system deduces all possible types for any given relation term
name. If there are multiple possibilities, a type error is given. The script writer can
disambiguate any relation term name by adding type information explicitly.

Ampersand also allows that two different concepts overload an atom symbol, i.e.,
an a € A has an interpretation different from a € B. Atoms are only interpreted in
the context of typed relation terms, preventing an ambiguous identity of atoms. In
practice, business concepts may be overlapping, e.g., ' Peter’ the Person has the
same practical identity as 'Peter’ the Auctioneer. Details are provided in [38],
a conference paper in which van der Woude and Joosten embed generalization of
concepts in Ampersand. They introduce supertype relations (<), called embeddings,
to define total extensions of the partial (heterogeneous) relational operators except
for the complement. These extensions give a requirements engineer the possibility to
express sub- and superconcepts. The supertype relation between subconcept A and
superconcept B is expressed as < : A ~ B € REL.

The use of negation, which is problematic in heterogeneous relation algebra [38],
is allowed in Ampersand as syntactic sugar for the difference from the total relation.
If Ampersand can derive from the script that ¥(R) = A ~ B, the unary operator =R
may be used as an abbreviation of Vy«p — R.

3.4. TYPE SYSTEM 23

Altogether, the problem that the type system must solve is twofold. The type
system must deduce one relation term from a relation term name, and check the type
of relation terms simultaneously. We use R, S, T’ as variables to denote relation term
names.

The type function T'(R’) is based on the partial typing function T(R). The type
system examines ¥’ (R’) to mark the name R’ as bound to a relation, ambiguous,
undeclared or undefined.

e If some r is not declared with a type in REL, then r is said to be undeclared.

e If some R’ can only refer to one type correct relation term R, then R’ is said to
bind to R.

o If some R’ does not refer to any type correct relation term, then R’ is said to be
undefined.

e If some R’ can refer to more than one type correct relation term, i.e., an altern-
ative, then R’ is said to be ambiguous.

Definition 6 (type function).

Given some €, the type function of relation term names is defined by

T(r)={A~B|(r:A~B)cREL} (3.23)
T(I4) = {A ~A} (3.24)
T'(Vaxp) = {A ~ B} (3.25)
T(aa) = {A~A} (3.26)

T (R s4p) =T (R)N{A~B} (3.27)
T(-R) =T (R) (3.28)
TR)={B~AA~BcT'(R)} (3.29)
T(RUS) =T (R)NT(S) (3.30)
T[R;S)={A~C|#{B|A~BeT'(R),B~CecT ()} =1} (3.31)

Rule 3.27 enables the requirements engineer to disambiguate an ambiguous re-
lation term name with type information. Rule 3.31 ensures that if R';S’ yields more
than one alternative with type A ~ C, then A ~ C ¢ T'(R’;S').

This type system is not monotone, i.e., a well typed program can become ill-
typed by adding rules for different, independent relations. When this happens to a
requirements engineer, he will notice that the introduction of a new relation forces
him to add more type information to other parts in his script.

24 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

3.5 Feedback system

The quality of feedback on type errors deserves attention, because it lets students
focus on learning rule-based design. The type system is embedded in the feedback
system of the Ampersand compiler. The feedback system must give an error message
if and only if a relation term name cannot be bound to a relation term. The error
messages of the compiler must be concise, i.e., correct and kept short, precise and
relevant. Conceptual diagrams are introduced in subsection 3.5.3, which are a visual
aid to read and analyse error messages.

The feedback system is implemented in Haskell [30] based on an attribute gram-
mar [9] Haskell library developed at Utrecht University [37]. The feedback system
checks all relation term names R’ used in any statement in RUL or POP, given the
conceptual structure of € represented by REL. REL is an inherited attribute called
context structure. Within the scope of a statement, given the context structure, R’ is
bound, ambiguous, undeclared or undefined.

A bound R’ implies the existence of one suitable alternative for any subname S’
of R'. The reader may verify this surjective function from subname S’ to bound R’ in
rule 3.23-3.31. However, ¥'(S’) may yield more than one alternative. The feedback
system uses two attributes to determine the type of any §' within the scope of R'.
%'(8') is a synthesized attribute called pre-rype. Some X € T'(S') is an inherited
attribute called automatic type directive. The automatic type directive is based on
Definition 6.

For example, consider two statements a rule and a relation element, both yielding
relation rell:

rell Urel2 € RUL
"atoml’ rell "atom2’ € POP

where
REL = {rell : Cpt1 ~ Cpt2,rell : Cpt1l ~ Cpt3,rel2 : Cptl ~ Cpt2}

The rule binds to a typed relation term, although ’(rel1) yields more than one al-
ternative:

3.5. FEEDBACK SYSTEM 25

T'(rell) = {Cpt1 ~ Cpt2, Cptl ~ Cpt3} (rule 3.23, ambiguous)

T/ (rel2) = {Cpt1 ~ Cpt2} (rule 3.23, bound)

T (rell Urel2) = T (rell) NT' (rel2) (rule 3.30)
={Cptl ~Cpt2, Cptl ~Cpt3}N{Cptl ~Cpt2}

= {Cptl ~Cpt2} (bound)

=T ((rell Urel2) ey 1 cpr,) (auto)

= T ((rellcor1~cor2 Urel2cpt 1ncpt2) cpr1mcpta) (auto)

T (rellcprimcprz) = {Cptl ~ Cpt2} (rule 3.23, bound)

T/ (rel2cpricpr2) = {Cptl ~ Cpt2} (rule 3.23, bound)

(done)

The relation element is ambiguous, because T’ (rel1) yields more than one alternative:

T/ (rell) = {Cpt1 ~ Cpt2, Cpt1 ~ Cpt3} (rule 3.23, ambiguous)

(done)

The requirements engineer should have specified a type directive
"atoml’ rellcpri~cprr 'atom2’ € POP

or
"atoml’ rellcpri~cprs 'atom2’ € POP

Detailed information can be obtained through synthesized attributes of the attrib-
ute grammar. Three synthesized attributes are defined in our implementation. One
attribute holds either T(R) if R’ is bound to R and T(R) is defined, or an error message
as described in Section 3.5.1 otherwise. Another attribute holds a fully typed relation
term name R g) if the previous attribute holds T(R), and is undefined otherwise. The
third attribute holds an extensive IATEX report for complete detail on type errors or
binding relation term names. Such a report contains equational traces like presented
for the examples in this section. This report is generated by the Ampersand compiler.

3.5.1 Error messages

If a relation term has an error, then an error message must be composed. We have
designed templates for error messages which relate to the type system rule at which
an error first occurs. The error messages are defined short but complete and specific.
The templates are presented in the same order of precedence as the operators they
relate to. If subterms of a relation term have error messages, then the error message
of the relation term is the union of all the error messages of subterms.

26 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

relation undeclared If ¥'(r) yields no types, then there is no relation declaration
for r.

relation undeclared: r
relation undefined Requirements engineers may use the unique name of some R
e.g. R'x. This may cause different kinds of errors which are checked in the same
chronological order as described here.

If X =A ~ B and A or B does not occur in the type signature of any relation
declaration, then there is probably a typo in the concept name.

unknown concept: A, or
unknown concept: B, or
unknown concepts: A and B
If X ¢ T'(R'), then there is no R such that T(R) = X. If R" = r then ry is undeclared.
relation undeclared: rx
In all other cases:

relation undefined: rx

possible types are: T'(R)

incompatible/ambiguous composition Let ¥'(R’) and T'(S’) yield alternatives. If
T'(R';S') yields no types, then there is no alternative for R';S’. In case {B | A ~ B €
T'(R),B~CeT'(§)} =0, then R" and S’ are incompatible for composition.

incompatible composition: R';S'
possible types of R': T (R')
possible types of S': T'(S')

Incase f{B|A~Be€T'(R),B~CeT'(5)} > 1, then the composition of R" and §’
is ambiguous.

ambiguous composition: R';S'
possible types of R': {A~B|A~Be%T(R),B~CeT(S)}

possible types of S': {B~C|A~Be T (R),B~Ce%(5)}

3.5. FEEDBACK SYSTEM 27

incompatible comparison Let T'(R) and T'(5') yield alternatives. If T (R'US’)
yields no types, then R’ and S’ are incompatible for comparison.

incompatible comparison: R' U S’

possible types of R': T'(R)

possible types of §': T'(S')

ambiguous type If R’ is ambiguous within the scope of a statement, then the ambi-
guity is reported as an error.

ambiguous relation: R’

possible types: T (R)

3.5.2 Demonstration

Let us demonstrate a typical constraint that some relation is contained within another
relation.

(rell Nrel2 C rel0) € RUL

where

REL = {rell : Cpt1 ~ Cpt2,rel2 : Cpt3 ~ Cptd}
RNS =—=(-RU=S)
RCS=-RUS

The rule contains two errors. Both will be mentioned in the error message as
depicted in Figure 3.1.

These messages provide the requirements engineer with relevant and sufficient
information which they understand. For complete detail, the requirements engineer
requests a I&TgXreport containing a trace like:

28

CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

T'(rell) = {Cpt1 ~ Cpt2} (rule 3.23, bound)

T (—rell) =T (rell) (rule 3.28)

= {Cptl ~ Cpt2} (bound)

T (rel2) = {Cpt3 ~ Cpt4} (rule 3.23, bound)

T (—rel2) = T'(rel2) (rule 3.28)

= {Cpt3 ~ Cptd} (bound)

T (—rell U=rel2) = T (—rell)N T (—rel2) (rule 3.30)
={} (undefined)

T (rel0) = {} (rule 3.23, undeclared)

(done)

* Test:
errorl at line 5:
incompatible comparison: rell /\ rel2
possible types of rell: [(Cptl,Cpt2)]
possible types of rel2: [(Cpt3,Cpt4)]
error2 at line 5:
relation undeclared: rel0

+ Atlas: Uitvoeren

* Prototype: Uitvoeren

* FSpec(pdf): Uitvoeren

* Typing report(pdf): Uitvoeren

-1-}YCONTEXT Example

-2-YFATTEREN Example

-3-}rell: Cptl*Cpt2.

4

5

-4-trel2 i Cpt3*Cptd,
-5-}RULE rell /7% rel2 |- rel@

e e T e T s T s

Figure 3.1: compiler screen snippet with type error (Dutch)

3.5. FEEDBACK SYSTEM 29

3.5.3 Conceptual diagrams

Ampersand makes use of conceptual diagrams, which the Ampersand compiler con-
structs from a context using the program neato of Graphviz'. A conceptual diagram
in Ampersand is a simple visualization of typed relations defined in a context. The re-
quirements engineer can see in the diagram which relations are defined and how they
connect over their types. This kind of easy-to-access information makes a conceptual
diagram useful for the engineer to read and write type-correct relation expressions.
Or, in case the type error has already been made, to understand the error message and
solve the mistake.

hag

Address
senl
Person
[rvoice
Client

Figure 3.2: Example of conceptual diagram.

A conceptual diagram is constructed as follows. Take a subset of REL, for ex-
ample REL itself. For each r : A ~ B € REL draw a node for the source A and target
B if has not been drawn yet. And draw a vector r from the source node to the target
node. The vector of a functional relation has a filled arrow head, which is connected
to the target node. The vector of a supertype relation has an open arrow head, which
is connected to the target node. The vector of any other relation has a filled arrow
head, which is placed in the middle of the vector and points to the target node.

For example, figure 3.2 is the conceptual diagram of a context where REL = {has :
Person ~ Address,for : Invoice—Client,sentto : Invoice ~ Address,
<:Client ~ Person}. Itis likely that a requirements engineer prefers the diagram
over the above definition of REL to determine that the following rule is type-correct:
sentto C for;has.

"nttp://www.graphviz.org/

30 CHAPTER 3. RULE-BASED LANGUAGE FOR RAP

3.6 Conclusion

In order to make things work, it is imperative that the Ampersand language is well-
defined. The main requirement for the Ampersand language is that it is easy to learn
by requirements engineers, but sufficiently expressive to define real-life information
systems.

To meet this requirement, the Ampersand language adopts relation algebra and
respects the statements in the Business Rules Manifesto of the Business Rules Ap-
proach. A requirements engineer needs to learn a handful of relational operators and
syntactic elements to define an Ampersand-model. The learning challenge that re-
mains is how to define a meaningful Ampersand-model, one that formalizes the busi-
ness rules of a business context. For that challenge, a requirements engineer needs
to learn how to translate an Ampersand-model of concepts, relations and rules to a
business language of terms, facts and business rules.

The learning challenge turns out to be significant, which we have concluded from
unpublished student evaluations and a study on student behaviour in RAP [23].

The formal character of the Ampersand language allows us to address the learning
challenge by means of feedback to the requirements engineer. The kinds of feedback
presented in this chapter are conceptual diagrams and feedback on type errors. A con-
ceptual diagram gives the requirements engineer a visual overview over the relations
he has declared. A conceptual diagram uses the types of the relations to relate them
to each other. An Ampersand-model must be free of type errors to be meaningful.
We can guarantee that a requirements engineer gets feedback on each type error.

In the end of this dissertation, we will have proven that the Ampersand language
is sufficiently expressive to define real-life information systems, namely by the case
of RAP.

Chapter 4

DESIGN OF RAP

This chapter presents the design of our development environment for Ampersand that
targets students doing design exercises. The design of RAP is not only a product of
what it should be, namely a development environment for Ampersand, but also how it
should be realized, namely being generated with the Ampersand prototype generation
function from the Ampersand-model for RAP. Recall that we refer to this model as the
RAP model. The requirement on how to realize RAP means that what-requirements
must find their implementation in a combination of prototype generation function and
rules in the RAP model.

This chapter first presents the logical design of RAP. Next, we present how RAP
has been built on Ampersand generated software components. The Ampersand pro-
totype generation function subject to this chapter has been implemented in version
711-2191 of the Ampersand compiler and the RAP model of the second student re-
lease of RAP (RAPv2). After that, we elaborate on different parts of the generation
function to describe how RAP has been generated from its specification in the Am-
persand language. Examples of the RAP specification have been used. The entire
RAP specification can be found in the next chapter, chapter 5.

4.1 Logical design of RAP

RAP consists of a repository of Ampersand-scripts on a file system, an Ampersand
compiler to process Ampersand-scripts, a MySql database, PHP web pages with pro-
cess and presentation logic on that database and one PHP web page to get access to
RAP and upload Ampersand-scripts to the repository.

A web user of RAP starts on the above mentioned upload page, see figure 4.1
for a screen shot. The user uses one of the options to select an Ampersand-script to

31

32 CHAPTER 4. DESIGN OF RAP

create in RAP.

After committing the selected script, that script is added to the repository. The
user cannot edit or delete files in the repository, such that RAP keeps track of all
versions of a script that a user commits to RAP.

Load the context into RAP...

.. previously loaded by gmithesis (return/cancel) A
.. from a file on your system (upload) Ack Choose File | No file chosen

.. from the text area below (save) A
Name for versien of CONTEXT in text area RAP v3 adl @

-}CONTEXT RAP
JINCLUDE "student_AST_interfaces.adl”
JINCLUDE "RAP_purpcses.adl"

i

}PATTERN "The repository of files"

JCOMCEPT FileRef "a reference to a file in the repository”

JCOWCEPT FileName "a name of a file"

JCONCEPT FilePath "a location in the repository”

}filename :: FileRef-»FilelName PRAGMA "The file name in " " iz " "

18- }MEANING IN ENGLISH ", which means that a file reference includes a file name.™

11-} = [("comp/gmi/RAP.v2.adl", "RAP.v2.5d1")]

12-}filepath :: FileRef*FilePath[UNI] PRAGMA "The file path in " " is " ™"

-13-}MEANING IM EMGLISH ", which means that a file reference may include a relative or sbsolute file
path."”

{-14-} = [("comp/gmi/RAP.v2.adl", "comp/gmis/")]

{-15-}KEY FileRef: FileRef(PRIMHTML "<a href='../../index.php?file=", filepath, filename,PRIMHTML
"\WW\h&userrole=", uploaded~juserprofile, PRIMHTML "'»", filename, PRIMHTML ""}

[JCIN: O ST)
-

)

{-16-}RULE "unique file location": filename;filename~ /\ filepath;filepath~ |- I
{-17-}MEANING IM EMGLISH "Each file has a unique location on the file system of the repository.”
{-18-}

{-19-}CONCEPT CalendarTime "a time representation, which includes day, weekday, month, year, hour, minute,
second and timezone”

{-20-}filetime :: FileRef*CalendarTime[UNI]

{-21-}MEANING IM ENGLISH ", which means that the time on which & file has been committed to the repository
may be known."

{-22-}

{-23-}CONCEPT User "a name with which & requirements engineer has logged in to RAP™

{-24-}CONCEPT UserProfile "& kind of user”

{-25-}uploaded: :User*FileRef PRAGMA "" " has committed " " to the repository” e
{-26-}MEANING IM ENGLISH ", which means that a user may have committed files to the repository.” i
+ Show extra functions@L

Figure 4.1: Screen shot of upload page

The web pages of RAP let a user browse through the repository - figure 4.3 for a
screen shot - and through the details of a script interpreted as an Ampersand-model,
see for example figure 4.6, which is a screen shot that displays the details of a relation
declaration r : A ~ B from some script. To have data content on the web pages, the
user needs to load a script in the repository into the database of RAP. Loading a
script means that RAP feeds that script to a function of the Ampersand compiler,
which produces all data content for the web pages in the database of RAP. A script
is automatically loaded when added to RAP. Scripts already in the repository can be
reloaded through a so-called operation named loading into Atlas, see figure 4.3.

Likewise, any compiler function can be added to RAP as an operation on Ampersand-

4.1. LOGICAL DESIGN OF RAP 33

S O e
5 ¥

<> <>
<<process>> <> RULE-BASED
WEB INTERFACE
SPREADSHEETS FEEDBACK

<<process>>

<<process>>
AMPERSAND

DATA INTERFACE <<process>>

COMPILER AMPERSAND

RULE ENGINE

<<database>>
RELATIONAL DATA

Figure 4.2: Software design of RAP

scripts in the repository e.g. generate a specification document or generate a proto-
type. Section 4.7 explains how this has been done. To adapt to the experience level
of the user, RAP distinguishes three user roles - beginner, advanced student and pro-
fessional designer - each with access to a certain set of operations.

Summarizing, RAP features the following user functions:

e Upload Ampersand-scripts to the repository

e Run a compiler function on a script in the repository and navigate to the func-
tion result.

e Load a script from the repository as an Ampersand-model in the database

34

Edit the population of an Ampersand-model

CHAPTER 4. DESIGN OF RAP

Get feedback on rule violations in an Ampersand-model

Get feedback on script errors

Browse through data objects in the database

Data objects in the database include:

Most of the objects in an Ampersand-script e.g. relations, the meaning of rela-
tions, rules, the Ampersand expression of rules, etcetera.

The entries in the repository c.q. files with Ampersand-scripts

Data about these entries e.g. script errors, date of creation, version of Am-
persand compiler at date of creation, etcetera.

(Derived) objects of an Ampersand model e.g. the relation type of rules, con-
ceptual diagrams, rule violations, etcetera.

A few metrics on an Ampersand-model, that is, the number of rules, relations
and concepts in a model.

Atlas (Play) CONTEXT files (Design / reload)

CONTEXT files (Design / reload)

loaded into Atlas

overview of files

Diagnosis Extra functions

RAP_purposes.adl
operations (click to perform)

load into Atlas

generate func.spec.(pdf)

t

14 20:49:56 CET 201

operations (click to perform
load into Atlas

generate func.spec.(pdf)

file name (click to edit)
RAP_purposes.ad|
created at
Sat Mar 14 20:49:47 CET 201
operations (click to perform
load into Atlas
generate func.spec.(pdf)

Figure 4.3: Screen shot of view on repository

4.2. DESIGN OF AMPERSAND-GENERATED PROTOTYPES 35

4.2 Design of Ampersand-generated prototypes

The previous section presented the logical design of RAP. Each one of the remaining
sections in this chapter describes an aspect of how the Ampersand prototype gener-
ation function has been used to implement that design. This section 4.2 describes
RAP as a system built on an Ampersand-generated prototype. Section 4.3 describes
how some of the user functions have been implemented by means of process rules
defined in the RAP model. Section 4.4 describes how data content on the web pages
is implemented in the database of RAP; and how integrity rules defined in the RAP
model are enforced upon that database. Section 4.5 describes how the presentation
and process logic in the web pages is generated from so-called interfaces that have
been defined in the RAP model. Section 4.6 describes how the layout of the web
pages has been implemented. Section 4.7 describes how the Ampersand compiler has
been integrated in the interfaces of RAP.

Figure 4.2 represents RAP as a system on an Ampersand-generated prototype. An
Ampersand-generated prototype - or just prototype - consists of three components: a
relational database, so-called interfaces and the Ampersand rule engine.

Each interface is a web page that consists of a presentation layer, called the web
interface, and a process layer, called the data interface. The presentation of rule-
based feedback is accessible on all web pages by means of two text boxes: one
grey/red box for feedback on integrity rules (violations) - see figure 4.5 for screen
shot, one yellow/black box for feedback on process rules (signals) - see figure 4.4 for
screen shot. The Ampersand rule engine detects all violations and signals for all the
rules defined in the RAP model.

Interfaces and process rules are defined for one or more types of users in RAP.
Integrity rules apply to all types of users in RAP. RAP distinguishes one type of user,
namely requirements engineers in Ampersand e.g. students. We could have defined
interfaces and process rules for other types of users like teachers who need to examine
the designs made by students. Another type of user could have been the analyst of
data in RAP.

The execution of metrics on data in RAP to obtain the measurement results used
for the research described in chapter 6 has still been implemented in external tools
connected to RAP, namely a combination of visualisation functions in spreadsheets
and calculation functions in the Ampersand compiler.

The Ampersand compiler has been connected to RAP to support Ampersand as
illustrated in figure 2.1. In that figure RAP is a repository of rules on which genera-
tion functions are executed to produce design artefacts and prototype software. The
Ampersand compiler implements such functions.

One of the compiler functions is the function to load an Ampersand-script from
the repository into the RAP database. This function takes the RAP model and the

36 CHAPTER 4. DESIGN OF RAP

selected Ampersand-script to regenerate the RAP prototype - database, interfaces and
rule engine - with a new data population that includes information about the loaded
Ampersand-script.

In a next version of RAP, metrics can be defined in the RAP model using the RAP
extension presented in chapter 7. Each metric can be executed on and implemented
as a function in the Ampersand compiler

4.3 Rule-based processes

RAP implements some of the user functions by means of process rules defined in the
RAP model. We say that such a user function is a rule-based process or activity in
RAP.

A rule-based process is built on rule-based feedback or signals, which guides a
user through that process or activity. Figure 4.4 shows how RAP gives signals to a
user, that is, in a yellow/black box which appears on all user interfaces. Each signal is
constructed from one violation of a process rule. The Ampersand rule engine detects
all violations of all process rules. The signal is visible for as long as the violation
exists. A signal contains a message, prompting the user to act.

For example, a process rule is that a script error may not exist. If a script error
exists then that is a violation of the rule. The corresponding signal contains the error
message and prompts the user to solve the error. Figure 4.4 shows a signal for a script
erTor.

The following rule-based processes exist in RAP:

e Solving script errors [section 5.4]. A script may contain syntax or type errors,
which need to be solved. RAP gives rule-based feedback to help a user to solve
script errors.

o Testing the rules in an Ampersand-model [section 5.15]. Rules are tested
against a population. The violations resulting from that test are reported to
the user. Such a violation report serves various activities of a requirements
engineer e.g. validate rules or simulate a business scenario.

e Committing the changes made through the interfaces of RAP [section 5.16]. A
user can use the interfaces to make certain changes to the data in the database.
The user must decide when to commit these changes to a new entry in the RAP
repository. RAP reports on the changes made by a user and gives directions to
commit or cancel those changes.

4.4. RULE-BASED DATABASE 37

Atlas (Play) CONTEXT files (Design / reload) Diagnosis Extra functions

Atlas (Play)

CONTEXT PATITERK: concante 1S4 ralatinneg ralatinne RlIlEc

Signals for Student v

Mo CONTEXT screen could be generated
- Click here for emor details] Open example vi.adl to fix error,

Figure 4.4: Screen shot of signal

4.4 Rule-based database

The RAP model defines the database of RAP by means of relations and integrity rules
in the RAP model. The data in that database is the population of the RAP model. Like
all Ampersand-models, the integrity rules in the RAP model are enforced upon that
population.

Integrity rules are like process rules, but enforced more strictly. That is, if a user
tries to commit data to the database, which results in any violation of any integrity
rule, then that transaction will be blocked. The Ampersand rule engine detects all
violations of all integrity rules. The user receives a signal when a transaction has
been blocked. Figure 4.5 shows how RAP sends such a signal to a user, that is, in
a grey/red box which appears on all user interfaces. The user can either cancel the
transaction or try to make another change.

4.4.1 Relational data

The database holds relational data, that is, the population of relations in a script.
Earlier versions of the Ampersand compiler derived a simple database model, where
each relation links to a table with two columns and each record is an element of the
population of that relation. The current compiler takes integrity rules into account
to derive a more complex database model, a rule-based structure. A population in
a script serves as an initial population of a generated database, provided that that
population violates none of the integrity rules.

RAP needs to administer data for the sake of user activities in RAP. To summarize
these activities, RAP is used by:

e (student) requirements engineers as a design exercise tool. The user has an
interface to upload an Ampersand-script to RAP, user interfaces to work on a
script in the RAP repository, and access to Ampersand compiler functions to

38 CHAPTER 4. DESIGN OF RAP

Atlas (Play) CONTEXT files (Design / reload) Diagnosis Extra functions

Save Cancel ta‘raget

properties from PATTERN POPULATION

UNI E |

TOT rampe 0| WA | 1:B |
0| XA | 1B |
-

Errors v
very tuple in a relation is unigue, or, no two tuples in the population of a relation may have the same source
et atoms. Addition of a duplicate tuple is not permitted. It is a violation of the Entity integrity rule for this

vith the same source and target atoms x * 1 aln
e with the same source and target atoms x * 1 alre

Figure 4.5: Screen shot of blocked transaction

run on a script. A user profile gives access to certain compiler functions. Three
user profiles have been configured in RAP: a student, an advanced student and
a regular requirements engineer. The user can only edit the population of an
Ampersand-model through user interfaces;

e researchers as a data source for measurements to study student behaviour like
the study published [23] and described in chapter 6.

The following sets of data are administered in RAP:

Details of Ampersand-model RAP analyses the text of an Ampersand-script, and
stores the individual elements (such as relations, concepts, rules, etc.) and the rela-
tions between them into the database. Thus, the data dictionary of the RAP database
contains a metamodel of an Ampersand-model that originates from an Ampersand-
script. User interfaces have been defined to give the user a structured view on an
Ampersand-model. The relational structure of an Ampersand-model has been de-
rived from the Ampersand compiler code. This compiler, being coded in Haskell,
has a transparent structure which was easy to map to the relations in the RAP-model.
For example, the data structure Concept in Haskell has an attribute cptos of type
[String], which has been mapped to a relation cptos : Concept ~ AtomID in the
RAP-model.

4.4. RULE-BASED DATABASE 39

Relations for process rules Relations have been declared to define the process
rules and signal messages for those rules [section 4.3]. For example, a relation from
a script to a parse error (parseerror : FileRef ~ ParseError) is needed to express
the process rule that parse errors need to be solved by the user (—parseerror). The
signal message for this rule requires relations that hold the details of an error e.g.
the file position of the error (pe_position : ParseError—String). In this example,
error details are shown on a user interface after clicking the link ”’Click here for error
details” in the signal message, see figure 4.4.

Design of RAP repository Ampersand-script files in the RAP repository are the
source of data and the subject of activities. Relations exist in the RAP-model to
define that, a file contains an Ampersand-model (sourcefile : Context—AdlFile); a
compiler function runs on a file (applyto : CCommand—AdlFile); a user commits a
file to the RAP repository (uploaded : User ~ FileRef); etcetera. These relations
constitute the foundation of RAP, which is a repository of files with compiler func-
tions on those files.

Metrics There is a measurement framework for RAP, which can be used to define
metrics and store measurement results in RAP. Section 7.2 describes a design pattern
on the measurement framework [chapter 7] to define a metric and store the results
in RAP. Three metrics, which count concepts, relations and rules, have been defined
in the RAP model using this design pattern. Through user interfaces, a student gets
access to those counts, which helps the student with an activity called cycle-chasing.
The other metrics we used for our study [section 6] could be, but are not, included
in the RAP-model. The researcher used spreadsheets instead of user interfaces to get
metric-based measurement results.

4.4.2 Integrity rules

In this subsection we refer to relations and rules defined in chapter 5.

Integrity rules are required for those relations that a user can edit through the
user interfaces, because those rules can be violated by the user. Other integrity rules
can only be violated through mistakes in the software. The RAP model does define
rules that can only be violated by software, which are strictly speaking not required,
namely: rule 5.19, 5.47, 5.55,5.73, 5.74 and 5.83.

A user can edit three sets of relations through user interfaces, which requires
integrity rules:

e the population of an Ampersand-model by editing the following relations: re-
lation 5.49, 5.54, 5.60, 5.61 and 5.72. The following rules are required to let a
user edit the population: rule 5.56, 5.57, 5.75, 5.76 and 5.77.

40 CHAPTER 4. DESIGN OF RAP

o the user profile to use by editing relation 5.9, which is an attribute of a user,
that is, a univalent relation from user to user profile that requires no extra rules.

o a file name to save to. Users may export the population to a separate file. They
can choose a file name before starting the export. Rule 5.18 has been defined
to enforce a new, unique file name before the user starts an export. Strictly
speaking, the definition of this rule in the RAP model is not required, because
the file system enforces the same rule.

4.5 User interfaces

Ampersand allows its users to construct user interfaces, giving access to data. The
following example shows an interface definition from RAP’s Ampersand-script. A
listing of all interface definitions of RAP is given in appendix A.2. This example
generates a user interface for students to view or edit a relation. Figure 4.6 is a screen
shot of this user interface, which displays an example relation, namely r: A ~ B.

-116- INTERFACE Relation(decpopu,left,right) FOR Student:I[Declaration]
-117- BOX ["PURPOSEs":decpurpose

-118- , "MEANING" :decmean

-119- , "example of basic sentence":decexample

-120- , "name" :decnm

-121- , "type":decsgn

-122- BOX ["source":src

-123- ,"target":trg

-124-]

-125- , "properties":decprps;declaredthrough

-126- ,"from PATTERN":ptdcs”

-127- , "POPULATION" :decpopu

-128- BOX ["source":left

-129- ,"target":right

-130-]

-131- ,"used in RULEs": (rrexp;rels;reldcl)”;
(I[Rule] /\ -I[PropertyRule])

-132-]

An interface definition is a tree of label-relation pairs, which maps to a web in-
terface. A branch is called a BOX by its appearance as a box on the web interface.
Each node has a full relation expression, which is the composition of the full expres-
sion of the parent node and the expression defined on the node. For example, the
expression defined on the node labelled "source" is decsgn. The (full) expression of
its parent - the root node - is Ipec1aration. Thus ,the full expression of "source" is

4.6. USER INTERFACE LAYOUT 41

Ipeciaration;decsgn. A web interface is a tree of label-atoms pairs as defined by the
interface definition, where each full expression has been evaluated resulting in a set
of atoms.

The evaluation function eval(a) of a full expression R is eval (a) = codomain(a;R),
where atom a € source(R). All full expressions in an interface have the same source
concept. One could say that an interface gives a view on the atoms of that source
concept e.g. the example gives a view on relation declarations. A special concept,
ONE = {1}, exists to define an interface on no particular concept, that is, the para-
meter is always set to a = 1. The source of such an interface definition is ONE e.g. the
expression of the root node is Toyz.

A user navigates through web interfaces by clicking a hyperlink on the menu-bar
or an atom printed as a hyperlink. An atom is printed as a hyperlink, if there is a web
interface to view that atom. Such a hyperlink points to that web interface with the
parameter set to the atom that has been clicked. For example, to get to the exact page
of the screen shot, the user has clicked the atom ' r: :A*B’ on one of the web inter-
faces. On the screen shot, the user can click the ' example rule using relation r’
to get a view on that rule, or A’ to get a view on that concept. A hyperlink to an
interface on ONE can be printed on the menu-bar, which is available on any web in-
terface. For example, the menu-bar of RAP is printed at the top of the screen shot
and contains hyperlinks to four interfaces, namely “Atlas (Play)”, “CONTEXT files
(Design / reload)”, “Diagnosis” and “Extra functions”.

A web interface can be configured to have a create- or edit-mode. Most inter-
faces of RAP only have a view-mode. In edit-mode, the user can change certain
sets of atoms as configured on the interface. In the example interface, a user may
edit three relations, namely (decpopu, left, right) Three interfaces have an edit-
mode, that is, interface Relation from the example, interface Concept and interface
Extra functions. The create-mode is like the edit-mode, only with a new, created
atom a, which is set to the parameter. A user may get access to the create-mode of
an interface by means of an option on the menu-bar. The users of RAP are not given
this option to the create-mode of interfaces.

RAP uses one more attribute to configure the interface, the FOR-attribute. The
example sets the FOR-attribute to “Student”, which means that users in the role of
“Student” have access to the interface.

4.6 User interface layout

The web layout of a user interface is configured in Cascading Style Sheets (CSS).
The main content on a web interface is the tree of labels and sets of atoms, which
are textual elements. Javascript code embeds the sets of atoms in HTML-elements
to obtain the required functionality. For example, an atom is a HTML-link in view-

42 CHAPTER 4. DESIGN OF RAP

Atlas (Play) CONTEXT files (Design / reload) Diagnosis Extra functions
Edit
Relation
r:ATB

PURPOSEs
The relation is used as an example in my thesis to describe how user interfaces are configured

MEANING example of basic sentence name
A functional relation from A to B x relates to 1 r
properties from PATTERN POPULATION used in RULEs
UNI Example example rule using relation r
Tor x-AR1:B
yoA%1:B
z-A%RZ2:B

Figure 4.6: Screen shot of user interface

mode and an HTML-textbox in edit-mode; a set of atoms in edit-mode has a handler
to add a new atom to the set.

The Ampersand compiler ships with a set of CSS-files for a default layout of user
interfaces. Little efforts were needed to customize these files to obtain the layout of
RAP. We have experienced that concessions have to be made at the expense of user
experience, because user interfaces are generated instead of hand-coded. Most no-
ticeable is the positioning of labels and the sets of atoms, which cannot be configured
optimally. Further research is needed to solve the problem of positioning this kind of
dynamic content.

The RAP model contains key definitions to define how atoms are printed on a
web interface. A key definition is a language construct on a concept that defines a
HTML template by which atoms of that concept are printed. For example, the RAP-
model has a concept Image, which represents images. An image has a relation to
its location on the web, namely imageurl : Image ~ URL. We want a web interface
to print atom a € Image as an HTML-img element of which the src-attribute is the
location of that image, such that the web interface shows the actual image. For that
we have defined the following key on Image [appendix A]:

-390~ KEY Image: Image (PRIMHTML "<img src='", imageurl
, PRIMHTML "'>")

4.7. AMPERSAND COMPILER 43

The keyword KEY indicates that this is a key, followed by a name for the key, namely
Image, and a colon. The Image after the colon is the concept to which this key
applies, followed by a list of textual elements to print sequentially. The keyword
PRIMHTML on an element indicates html code. The keyword TXT indicates text that is
not html code. Elements without a keyword are relation expressions such as imageurl,
which means take an atom from the codomain of a;imageurl, where a € ITmage is the
atom to print.
To demonstrate the key-mechanism by the example of images, assume

"diagraml’ imageurl 'http:://is.cs.ou.nl/image/diagraml. jpg’

When a web interface needs to print ' diagraml’ € Image, it will print the following
html code:

Without a key definition it would have printed diagraml.

4.7 Ampersand compiler

Key definitions are also used to trigger functions, for example, an Ampersand com-

piler command. All Ampersand compiler commands are run by a special manually

coded web page (index.php). A key has been defined on a concept CCommand to print

its atoms as links to that special page, such that clicking an atom triggers a command.
This is the key definition on CCommand.

-54- KEY CompilerCommand:

CCommand
(PRIMHTML "<a href='../../index.php?operation="
,operation
-55- ,PRIMHTML "&file="
,applyto; filepath ,applyto; filename
-56- , PRIMHTML "&userrole="
,applyto;uploaded[User*AdlFile];userrole
-57- , PRIMHTML "' >"
, functionname

,PRIMHTML ""
)

Figure 4.7 shows a screen shot of a user interface that prints atoms of CCommand
under the label “operations (click to perform)”. The screen shot is taken when hoover-
ing the HTML-link “generate func.spec.(pdf)”, which shows the value of the href-
attribute of that link at the bottom.

44 CHAPTER 4. DESIGN OF RAP

file name (click to edit)
example.v2 adl
created at
Fri May 23 11:23:10 CEST 2014
operations (click to perform)
load into Atlas
generate func spec (pdf)

file name (click to edit)
example.v1.adl

rraated at

is.cs.ou.nlfrap2findex. php?operation =5&file =comp/gmijuploads/example. v 2. adl&userrole=Student

Figure 4.7: Screen shot with compiler commands

4.8 Conclusion

This chapter describes the logical design of RAP and how RAP has been generated
from the RAP model. We have demonstrated how a model in Ampersand presents
itself as a working application to users. Although a fair number of working applic-
ations have been made, we cannot claim that Ampersand produces industry strength
applications. For that, further engineering on the Ampersand compiler is required.
This explains why the Ampersand toolset is currently being used in the design phase,
for the purpose of prototyping and generating documentation.

Chapter 5

DETAILED SPECIFICATION
OF RAP

The central contribution of this thesis is RAP, a development environment for rule-
based prototyping. This chapter specifies RAP in its entirety, complete and in detail,
which serves several purposes. One, the reader can validate all formalized require-
ments of RAP. Two, each requirement yields an example of what can be implemen-
ted with Ampersand. Three, the chapter is an example of a requirements specifica-
tion generated from an Ampersand-model, which illustrates that generation function
of Ampersand. Four, a subset of the requirements formally define aspects of Am-
persand, because the RAP model includes those requirements to support Ampersand.
Five, the chapter is documentation of RAP.

This chapter is not intended to be read from beginning to end. To guide the reader
to potential points of interest:

The rule-based design process of Ampersand in figure 2.1 has been formalized
in section 5.2. This topic relates to section 4.7 and the definitions of relations
5.12 and 5.13.

The data structure of type error messages discussed in chapter 3 has been form-
alized in section 5.3.

How parse and type error messages are presented to the user has been formal-
ized in section 5.4. This section relates to 4.3.

Violations in the user-defined Ampersand-model are presented to the user no
differently than parse and type error messages, which can be validated in sec-
tion 5.15. This section relates to 4.3.

45

46 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Most sections define Ampersand language concepts, relations and rules, namely
sections 5.5 to 5.13. These requirements definitions correspond with the lan-
guage definitions in chapter 3. These sections relate to 4.4.

Section 5.14 and 5.17 show how data derived from an Ampersand-model like
conceptual diagrams or measurements are stored in the repository of RAP.
These sections relate to 4.4.

Section 5.16 shows how rules can be defined to support a process of the user
like editing the population of an Ampersand-model. This section relates to 4.3.

5.1 Overview

RAP is meant to support students who are doing Ampersand exercises as a means to
become better requirement engineers. In Ampersand, we would say that RAP sup-
ports the business process of learning Ampersand in the course “Rule-Based Design”
[section 6.1]. Hence RAP itself is a fine example of something Ampersand aims to
design. So besides being a research product, RAP can be perceived as an example of
the use of Ampersand as well.

The source code of RAP is an Ampersand-script. We call this script the RAP
model. It contains the meta model of Ampersand and user interface specifications to
practice and learn Ampersand. The RAP model is printed verbatim in appendix A.
RAP has been built by compiling the RAP model into a working PHP-MySQL-
application. This (generated) application is the very tool that students of course
[section 6.1] use on the web. That same RAP model has been compiled to gener-
ate the documentation of RAP, as illustrated by figure 2.2. In fact, the generated
documentation for RAP is this very chapter, which you are reading right now.

This chapter is organized in sections by the themes that occur as patterns and
processes in the RAP model. Thus, within this chapter the terms section and theme
are equivalent. And there are two kinds of themes, namely patterns and processes.
Each theme starts with a description and purpose of that theme. Next, the theme is
illustrated by a conceptual diagram [section 3.5.3], which provides a visual cue to
the topic of that theme and its dependency on other themes. Short statistics are given,
providing the number of concepts, relations and rules defined in that particular theme.
Cross-reference information is provided wherever appropriate.

Model elements of an Ampersand-model, such as rules, relations, patterns, in-
terfaces, concepts, roles, etcetera, are concepts in the RAP model. These concepts,
the relations between them and the rules they satisfy are specified in themes, each of
which is documented in a separate section of this chapter. The following themes con-
stitute an Ampersand-model: Contexts, Patterns, Generalization rules, Concepts, Re-

5.1. OVERVIEW 47

lation type signatures, Relation declarations, Expressions, Rules, Symbols and Cal-
culated details. The first three themes discussed in this chapter specify fundamental
functionality of RAP, that is, the repository. The last three themes specify specific
user functions for student requirements engineers.

1. Repository

(a)

(b)

©

The repository of files pattern

RAP is a file repository. A user can commit text files containing Amper-
sand-scripts to the repository. After committing, he can run the Am-
persand compiler, which provides various functions to study, manipulate,
and verify that script. One of these functions is opening a script to view
and edit the Ampersand-model. Committed files cannot be changed or
deleted. In this way, all previous submissions by users are being retained.
They constitute traces of student actions, which have been used in our
research.

Committed files pattern

A committed Ampersand-script may or may not contain script errors, that
is, parse or type errors. Only a script free of script errors is meaningful
and yields an Ampersand-model. This theme specifies the data that is
used in the report on script errors. This theme also specifies a cache for
the changes made by a user, who is editing an Ampersand-model through
the user interfaces.

Handling script errors process
A user gets a browsable report on script errors.

2. Ampersand-models

(a)

(b)

©

(d)

Contexts pattern
A context is the root model element, which sets the name and scope of an
Ampersand-model.

Patterns pattern
A requirement engineer specifies rules and relations in patterns and pro-
cesses.

Generalization rules pattern
A requirement engineer defines a generalization rule to specify a super-
type relation between a specific and general concept.

Concepts pattern

A requirement engineer specifies concepts of which the population is a
set of atoms. RAP assigns a concept to the right partial order of concepts,
based on the generalization rules in a script.

48

(e)

®

(€]

(h)

®

@

CHAPTER 5. DETAILED SPECIFICATION OF RAP

Relation type signatures pattern

Pairs of concepts are used as types for declared relations and relation
expressions, the logic of which is supported in RAP. Pairs of atoms are
used as instances in the population of a declared relation or as violations
of a rule.

Relation declarations pattern
A requirement engineer declares relations and defines their population.

Expressions pattern

Complex relations can be expressed on declared relations and relational
operators. These relation expressions are used in, for example, rule defin-
itions and user interface specifications.

Rules pattern

A requirement engineer defines a rule in a pattern to specify the desired
semantics of relations. A requirement engineer defines a rule in a process
to specify a business processes.

Symbols pattern

A requirement engineer may choose the name of user-defined model ele-
ments like concepts, relations and rules. Those names appear in the
Amper-sand-script and need to follow the syntactic rules. For example,
the name of a concept is of type Conid, which is a string symbol that
starts with an uppercase. This theme introduces just five concepts for the
five different syntactic domains for user-defined names.

Calculated details pattern
This theme introduces calculated elements of an Ampersand-model: rule
violations, conceptual diagrams and pragma-sentences.

3. User functions

(@)

(b)

Testing rules process

RAP checks the rules in an Ampersand-model and reports rule violations.
From the perspective of a requirements engineer, he tests the rules that he
has defined in his model. RAP supports testing rules in an educational
setting by means of violation reports that target students.

Editing a population process

A user may test an Ampersand-model by repeatedly editing the popula-
tion and testing the rules. A user can edit the population of an Ampersand
model either through committing a new script or through the user inter-
faces. The advantage of using the interfaces to edit is that they give sup-
port while editing. For example, the interfaces prevent script errors from

5.2. PATTERN: THE REPOSITORY OF FILES 49

occurring and give feedback and directions to students while editing a
population.

(c) Metrics pattern
We use a framework for metrics [chapter 7] to add metrics to RAP. Such
metrics are primarily used to produce information for research as de-
scribed in chapter 6. RAP can be configured to give a user access to this
kind of - or exact same - metric-based information. This theme adds met-
rics to RAP for students, which gives a student the required information
for an activity called cycle chasing.

5.2 PATTERN: The repository of files

This theme defines RAP as a rule repository for requirements engineers - students in
particular - to produce and process rules as illustrated by figures 2.1 and 2.2.

The rule repository stores rules in adl-files. An adl-file! is the file format of an
Ampersand-script. The rules are defined in a model element called a context [sec-
tion 5.5], which sets the name and scope of an Ampersand-model. Thus, the terms
adl-file, Ampersand-script and context are different forms to refer to an Ampersand
model, which may all be used as such.

Users have their own isolated workspace - a personalized copy of RAP - with
their own adl-files. A requirements engineer creates a workspace with a user name to
login to that workspace. A user configures the workspace by selecting a user profile
to have access to the set of functionality configured for that kind of user. Three user
profiles are available in RAP: a student - the default -, an advanced student, and a
requirements engineer.

A user uploads Ampersand-scripts to the repository using a special web page,
which called the upload page. On the upload page, a user can browse and upload an
adl-file from his computer or the user can write down and upload a script using the in-
tegrated ’script editor’. RAP has been configured - using key definitions [section 4.6]
to display an adl-file as a hyperlink - such that, when clicked, the script opens in the
script editor on the upload page [section 4.7]. Committing a script from the script
editor results in a new adl-file in the repository, because adl-files in the repository
cannot be deleted or changed.

RAP supports two kinds of processing of adl-files in the repository: run com-
mands on the Ampersand compiler or view and edit a script through the user inter-
faces.

'ADL is an abbreviation of A Description Language, which is a deprecated name for the Ampersand
language.

50 CHAPTER 5. DETAILED SPECIFICATION OF RAP

A user can open an adl-file to view and edit its contents through the user interfaces
[section 4.5]. To opening an adl-file, RAP runs a certain command on the Ampersand
compiler. Changes made through the interfaces are cached until the user commits the
changes to the repository, or opens an adl-file, which clears the cache. Changes are
committed to a new adl-file, because, as mentioned before, adl-files in the repository
cannot be deleted or changed. In this version of RAP, the interfaces have been defined
such that a user can only edit the population of a context through the interfaces.

Recall from chapter 2 that an Ampersand-script includes a population. A user
can put the population in a separate file in the repository, a pop-file. A user may, for
example, use pop-files to switch easily between different populations by changing a
single include-statement in the master script.

This theme introduces 11 concepts, 4 generalization rules, 13 relations with prop-
erties and 2 rules related to the repository of files in RAP. Figure 5.1 shows a con-
ceptual diagram, which includes the elements introduced in this section; a concept
Context [section 5.5]; a concept String [section 5.13]; a concept Int [section 5.17].

5.2.1 Defined concepts

This subsection defines 11 concepts and 4 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept. This
display value of a is based on a key definition [section 4.6]. The key is defined on the
concept and may be parametrized with a relation expression on a. Relation expres-
sions are shaded. A key may be defined such that a is printed as an HTML-element
or as regular text. If a prints as regular text, then it will be embedded in a hyperlink
in case a user interface exists to view a [section 4.5].

Definition: A FileRef is a reference to a file in the repository. Atom a € FileRef
is displayed - using relations 5.6, 5.5, 5.9, 5.8 - as:

<a href="../../index.php?file= a;filepath a;filename

&userrole= a;uploaded ™ ;userprofile > a;filename
Definition: A FileName is a name of a file. Atom a € FileNane is displayed as is.

Definition: A FilePath is a location in the repository. Atom a € FilePath is dis-
played as is.

Definition: A CalendarTime is atime representation, which includes day, weekday,
month, year, hour, minute, second and timezone. Atom a € CalendarTime is
displayed as is.

5.2. PATTERN: THE REPOSITORY OF FILES 51

FileName AR

filepatly
filenam o
SavePopFile
UserProfile / savepopulation

useqn‘oﬁle\\ /.mrﬁl FileRef _
- includes
User
filetime Context

CalendarTime
sourcefile
savecont

We AdlFile

MewAdIFile saveAdlFile

applyto|

CCommand

functionname

operatio
String

Int

Figure 5.1: Concept diagram of The repository of files

Definition: A User is a name with which a requirements engineer has logged in to
RAP. Atom a € User is displayed as is.

Definition: A UserProfile is a kind of user. Atom a € UserProfile is displayed
as is.

Definition: A Ad1Fileis a file of the adl-format, which is the format for Ampersand-
scripts. Atom a € Ad1File is displayed as a FileRef.

Rule: AdlFile is a kind of FileRef, which is formalized by the following general-
ization rule:
AdlFile <FileRef 5.1

52

CHAPTER 5. DETAILED SPECIFICATION OF RAP

Compiler commands to run functions of the Ampersand compiler are con-
figured in RAP as atoms of concept CCommand. A typical function of the Am-
persand compiler is a composition of the functions parse, typecheck, and in-
terpret a script as an Ampersand model, followed by some specific processing
function on that model e.g. generate software. A key has been defined on
CCommand such that a command executes when a user clicks on that command
in the user interfaces.

Definition: A CCommand is a command for the Ampersand compiler. Atom

a € CCommand is displayed - using relations 5.14, 5.6, 5.12, 5.5, 5.9, 5.8, 5.13 -
as:

<a href="../../index.php?operation= a; operation

&file= a;applyto;filepath a;applyto;filename

&userrole= a;applyto;uploaded,., .. pq1ri10 ;userprofile ’
> a;functionname

A user can open a new context in the script editor on the upload page. If a
user clicks on an atom a € NewAd1File, then the script in the predefined file
to which a refers opens in the script editor. One such file has been defined in
RAP, which contains an empty context.

Definition: A NewAdlFile is a predefined adl-file, which opens as a new script in

the script editor on the upload page. Atom a € NewAd1File is displayed - using
relation 5.5 - as:

 a;filenamey ,aq1711e~rilename </2>

Rule: NewAdlFile is akind of Ad1File, which is formalized by the following gen-

eralization rule:
NewAdlFile < AdlFile (5.2)

A user can save the population of a context. If a user clicks on the link to the
pop-file to save to, then RAP creates that file in the repository and saves the
population to that file.

5.2. PATTERN: THE REPOSITORY OF FILES 53

Definition: A SavePopFile is a file to which a user can save the population of a

Rule:

context. Atom a € SavePopFile is displayed - using relations 5.6, 5.5 - as:

<a href="../../index.php?operation=4
&file= a;ﬁlepathSavePopFileNFilePath a;ﬁlenameSavePopFileNFileName

> a;ﬁlenameSavePopFi le~FileName

s

SavePopFile is a kind of FileRef, which is formalized by the following
generalization rule:
SavePopFile < FileRef 5.3)

A user can commit changes made to a context. If a user clicks on the link to
the adl-file to save to, then RAP creates that file in the repository and saves the
context to that file.

Definition: A SaveAdlFile is a file to which a user can save the changes made to

Rule:

a context. Atom a € SaveAdlFile is displayed - using relations 5.6, 5.5, 5.9,
5.8,5.10,5.17 - as:

<a href="../../index.php?operation=2

&file= a;filepaths, epairite~rilepatn @ filenames, epqiriic rilenane
&userrole= a;savecontext™ ;sourcefile;uploaded ;... pq17i10 s userprofile’

> asfilenames,,epairitenrilenane

SaveAdlFile is a kind of AdlFile, which is formalized by the following

generalization rule:
SaveAdlFile < AdlFile 5.4)

5.2.2 Declared relations

This subsection introduces 13 declared relations with properties and a meaning.

The following univalent, total relation has been declared

filename : FileRef—FileName (5.5)

, which means that a file reference includes a file name.
For example, ' comp/gmi/RAP.v2.adl’ filename 'RAP.v2.adl’ means:

The file name in ' comp/gmi/RAP.v2.adl’ is 'RAP.v2.adl’.

54 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following univalent relation has been declared

filepath : FileRef ~FilePath 5.6)

, which means that a file reference may include a relative or absolute file path.
For example, ' comp/gmi/RAP.v2.adl’ filepath ' comp/gmi/’ means:

The file path in ’ comp/gmi/RAP.v2.adl’ is ' comp/gmi/’.

The following univalent relation has been declared

filetime : FileRef ~ CalendarTime 5.7

, which means that the time on which a file has been committed to the repository
may be known.

The following relation has been declared

uploaded : User ~FileRef (5.8)

, which means that a user may have committed files to the repository.
For example, ' gmi’ uploaded ' comp/gmi/RAP.v2.adl’ means:

"gmi’ has committed ' comp/gmi/RAP.v2.adl’ to the repository.

The following univalent relation has been declared

userprofile : User ~ UserProfile 5.9

, which means that a user may have a user profile, which gives him access to
the set of compiler commands for that user profile.

For example, ' gmi’ userprofile ' Student’ means:

"gmi’ has access to the compiler commands for a ’ Student’.

5.2. PATTERN: THE REPOSITORY OF FILES 55

The following univalent, total relation has been declared

sourcefile : Context—AdlFile (5.10)

, which means that a context originates from an adl-file in the repository.
For example, ' RAP’ sourcefile ' comp/gmi/RAP.v2.adl’ means:
Context ' RAP' originates from ’ comp/gmi/RAP.v2.adl’.
An Ampersand-script may include scripts in other files. The context in such a script

originates from the master file [relation 5.10] and included files. For example,
a script may include the population in a previously saved pop-file.

For the above, the following relation has been declared

includes : Context ~FileRef 5.11)

, which means that the adl-file from which a context originates may include
other files.

For example, ' RAP’ includes ' comp/gmi/RAP.v77.pop’ means:

Context ' RAP' partially originates from ' comp/gmi/RAP.v77.pop’.

The following univalent, total relation has been declared

applyto : CCommand—AdlFile (5.12)

, which means that a compiler command applies to an adl-file.

For example, ’ 1 (comp/gmi/RAP.v2.adl)’ applyto ' comp/gmi/RAP.v2.adl’
means:

Command ' 1 (comp/gmi/RAP.v2.adl)’ appliesto ' comp/gmi/RAP.v2.adl’.

56 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following univalent, total relation has been declared

functionname : CCommand—String (5.13)

, which means that a compiler command uses a compiler function that has a
user-friendly name.

For example, ' 1 (comp/gmi/RAP.adl)’ functionname ' load into Atlas’
means:

Command ' 1 (comp/gmi/RAP.adl)’ uses the function ' load into Atlas’.

The following univalent, total relation has been declared

operation : CCommand—Int (5.14)

, which means that a compiler command uses a compiler function that has a
technical identifier.

For example, ’ 1 (comp/gmi/RAP.v2.adl)’ operation ' 1’ means:

Command ' 1 (comp/gmi/RAP.v2.adl)’ uses the function " 1’.

The following univalent, total relation has been declared

newfile : User—NewAdlFile (5.15)

, which means that a user has an option to open a new script.
For example, ' gmi’ newfile ' empty.adl’ means:

"gmi’ has an option to open ' empty.adl’ in the script editor.

The following univalent, total relation has been declared

savepopulation : Context—SavePopFile (5.16)

, which means that there is an option to export the population of a context to a
pop-file.

For example, ' RAP’ savepopulation ' comp/gmi/RAP.v78.pop’ means:

If the user exports the population of ' RAP’ then that population will be saved
to a new pop-file ' comp/gmi/RAP.v78.pop’ in the repository.

5.3. PATTERN: COMMITTED FILES 57

The following univalent, total relation has been declared

savecontext : Context—SaveAdlFile 5.17)

, which means that there is an option to commit changes on a context to an
adl-file.

For example, ' RAP’ savecontext ' comp/gmi/RAP.v3.adl’ means:

If the user commits the changes made to ' RAP’ then that context including
the changes will be saved to a new adl-file ’ comp/gmi/RAP.v3.adl’ in the
repository.

5.2.3 Defined rules

This subsection defines 2 formal rules.

unique file location - The following requirement has been defined:
Each file has a unique location on the file system of the repository.
This is formalized - using the declared relations 5.6, 5.5 - as

filename; filename™ N filepath; filepath™ C 1 (5.18)

user profiles - The following requirement has been defined:
There are three user profiles: Student, StudentDesigner and Designer.
This is formalized - using the declared relations - as

"Student’ U’ StudentDesigner’ U’Designer’ C lyserprorite (5.19)

5.3 PATTERN: Committed files

A user has two ways to commit an adl-file: upload a script or commit changes made
to a context.

On a commit, a new file in the repository is created with a property that holds the
current version of the Ampersand compiler at the time of the commit. This property
documents how to interpret an adl-file in the repository, that is, parse, typecheck and
interpret the file like that version of the compiler did. This property can, for example,
be used to determine compatibility with other versions of the Ampersand compiler.

A script may contain script errors, which makes those scripts uninterpretable.
Uninterpretable scripts are accepted in the repository so that RAP can provide support
to analyse the script error.

58 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Changes made on a context through the user interfaces are cached before the user
commits them. The changes made are the difference between the current context and
the initial context in the repository. Changes can only be made to those relations
of RAP that are editable through user interfaces. This theme introduces uneditable
copies of editable relations. These copies hold the initial population of their editable
counterpart. The copies are used to express “the changes made” in Ampersand, which
is needed to define the process rules for editing [section 5.16]. In this version of RAP,
a user can only edit the population of a context.

This theme introduces 8 concepts, O generalization rules, 15 relations with prop-
erties and O rules related to committed files in RAP. Figure 5.2 shows a conceptual
diagram, which includes the elements introduced in this section; 2 concepts FileRef,
AdlFile [section 5.2]; 3 concepts Concept, AtomID, Atom [section 5.8]; a concept
PairID [section 5.9]; a concept Declaration [section 5.10].

5.3.1 Defined concepts

This subsection defines 8 concepts and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A AdlVersion is a version of the Ampersand compiler. Atom
a € AdlVersion is displayed as is.

Definition: A ParseError isan error in the syntax of a script. Atoma € ParseError
is displayed as:

Click here for error details

Definition: A TypeError is an error concerning the type of a relation declaration
or relation expression in the script. Atom a € TypeError is displayed - using
relation 5.32 - as:

Click here for details of error at a;te_position

Definition: A ErrorMessage is a description of an error. Atom a € ErrorMessage
is displayed as is.

Definition: A FilePos is a position in a file. Atom a € FilePos is displayed as is.

5.3. PATTERN: COMMITTED FILES 59

Meclaration

Hint ﬂ;k
PairlD
pe_actior —
AtomID
mios, miles
inirightatom

ot ParseError

Pparseerror

e position
pe_expecting
FilePos
ErroriMessage
) i
AdVersion __firgloadedvwiip e —— FilERel fe message/ fe_position

typeerror

TypeErrar

te\parent

te_omigtyp te_origname

ModElem Type ModElemame

Figure 5.2: Concept diagram of Committed files

Definition: A Hint is a description of possible actions which may resolve an error.
Atom a € Hint is displayed as is.

Definition: A ModElemType is a type of model element e.g. rule definition, user
interface definition, key definition. Atom a € ModElemType is displayed as is.

Definition: A ModElemName is the name of a model element. Atom a € ModElemName
is displayed as is.

60 CHAPTER 5. DETAILED SPECIFICATION OF RAP

5.3.2 Declared relations

This subsection introduces 15 declared relations with properties and a meaning.

The following univalent relation has been declared

firstloadedwith : AdlFile ~ AdlVersion (5.20)

, which means that the version of the Ampersand compiler at the time that an
adl-file was committed to the repository may be known.
For example, ' comp/gmi/RAP.v2.adl’ firstloadedwith 'v2.2.711-2191'
means:
At the time that ’ comp/gmi/RAP.v2.adl’ was committed, RAP used compiler
version 'v2.2.711-2191".

The following relation has been declared

inios : Concept ~ AtomID (5.21)

, which means that the initial population of a concept may contain atoms.

For example, ' Ad1File’ inios ' comp/gmi/RAP.v2.adl’ means:

Initially, concept ' Ad1File’ contained an atom ’ comp/gmi/RAP.v2.adl’.
The following relation has been declared

inipopu : Declaration~PairID (5.22)

, which means that the initial population of a relation may contain pairs of

atoms.

For example, 'userprofile: :User*UserProfile’ inipopu ' 523422885’
means:

Initially, ' userprofile: :User*UserProfile’ contained a pair with id
"'523422885".

The following relation has been declared

inileft : PairID ~ Atom (5.23)

, which means that a pair of atoms in the initial population of relations had an
initial left atom.

For example, ' 523422885" inileft ' gmi’ means:

Initially, the pair with id ' 523422885’ had a left atom ' gmi’.

5.3. PATTERN: COMMITTED FILES 61

The following relation has been declared

iniright : PairID ~ Atom (5.24)
, which means that a pair of atoms in the initial population of relations had an
initial right atom.
For example, ' 523422885’ iniright ' Student’ means:

Initially, the pair with id ' 523422885’ had a right atom ’ Student’.
The following univalent relation has been declared

parseerror . FileRef ~ ParseError (5.25)

, which means that the Ampersand-script in a file may have a parse error.
The following univalent, total relation has been declared

pe_action : ParseError—Hint (5.26)

, which means that a parse error describes possible actions which may resolve
the error.

The following univalent, total relation has been declared

pe_position : ParseError—FilePos (5.27)

, which means that a parse error has occurred on a file position.
The following univalent, total relation has been declared

pe_expecting : ParseError—ErrorMessage (5.28)

, which means that a parse error has a message, which describes what was
expected by the parser.
The following relation has been declared

typeerror : FileRef ~ TypeError (5.29)

, which means that the Ampersand-script in a file may have type errors.

62 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following univalent relation has been declared

te_message : TypeError ~ ErrorMessage (5.30)

, which means that a type error may have a message that gives a complete
description of the error.
The following univalent relation has been declared

te_parent . TypeError ~ TypeError (5.31)

, which means that a type error may be nested in another type error that de-
scribes the same mistake on a higher level.
The following univalent relation has been declared

te_position : TypeError ~FilePos (5.32)

, which means that a type error may have occurred on a file position.
The following univalent relation has been declared

te_origtype : TypeError ~ ModElemType (5.33)

, which means that a type error may have occurred in a certain type of model
element.
The following univalent relation has been declared

te_origname : TypeError ~ ModElemName (5.34)

, which means that a type error may have occurred in a model element that has
a certain name.

5.4 PROCESS: Handling script errors

The user needs to solve script errors. RAP provides the user with error information
to do so. User interfaces have been defined for parse and type errors so that the user
can browse through error details as desired.

To illustrate by example how RAP handles script errors. Figure 4.4 shows how a
parse error a € ParseError is presented to the user based on the report for violations

5.4. PROCESS: HANDLING SCRIPT ERRORS 63

of process rule 5.35. a displays as “Click here for error details” as defined by the key
on ParseError. “Click here for error details” is a hyperlink to the user interface that
shows the details of a, namely the interface defined on line 43 to 47 in appendix A.2.
"comp/gmi/uploads/example.vl.adl’ € FileRef is the file in which the error
occurred. This file is printed as a hyperlink “example.v1.adl” as defined by the key
on FileRef. The user may click that hyperlink to open the script in that file in the
script editor on the upload page.

This section gives a purpose to introduce 2 rules related to handling script errors
in RAP. Figure 5.3 shows a conceptual diagram, which includes the declared relations
used to define the 2 process rules.

ParseFrror

pars Bel‘lh

FileRef

typeerror

TypeErrar

Figure 5.3: Concept diagram of Handling script errors

5.4.1 Defined rules

This subsection defines 2 formal process rules for the user.

noparseerror - The following requirement has been defined:
The requirements engineer needs to solve all parse errors.
This is formalized - using the declared relation 5.25 - as

—parseerror (5.35)

RAP reports all rule violations (a,b) € —(noparseerror) to the user. This re-
port? starts with the following message

2This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

64 CHAPTER 5. DETAILED SPECIFICATION OF RAP

A syntax error was encountered in your script. No CONTEXT screen
could be generated.

, followed by the following message for each (a, b).

b Open a to fix error.

notypeerror - The following requirement has been defined:
The requirements engineer needs to solve all type errors.
This is formalized - using the declared relation 5.29 - as

—typeerror (5.36)

RAP reports all rule violations (a,b) € =(notypeerror) to the user. This report?
starts with the following message

Type error(s) were encountered in your script. A CONTEXT screen
was generated with concepts and relation declarations only, which may be
useful to understand and fix the errors.

, followed by the following message for each (a, b).

b. Open a to fix error.

5.5 PATTERN: Contexts

A context is the root element of an Ampersand model. A context directly links to the
model elements of the types pattern [section 5.6] and concept [section 5.8]. A context
indirectly links to other model elements through patterns and concepts. For example,
a pattern P’ in context ¢ contains a relation declaration r : A ~ B, which implies
that r : A ~ B is an element of €. Another example, r : A ~ B in € contains a relation
element a r b, which implies that a r b is an element of €.

A context has a user-defined name, which may be used to refer to a context.
However the name of a context does not necessarily identify a context; an adl-file

3This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

5.5. PATTERN: CONTEXTS 65

does identify a context. For analytics with RAP we have more purposes for the name
of a context e.g. we assume that two contexts with identical names of the same user
are different - versions of - scripts for the same business context.

This theme introduces 1 concept, 0 generalization rules, 3 relations with prop-
erties and O rules related to contexts in RAP. Figure 5.4 shows a conceptual dia-
gram, which includes the elements introduced in this section; a concept Pattern
[section 5.6]; a concept Concept [section 5.8]; a concept Conid [section 5.13].

Conicd

X
\

Context _.__bLtXCE ——

ctxpa

Pattern

Figure 5.4: Concept diagram of Contexts

5.5.1 Defined concepts

This subsection defines 1 concept and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Context is a model element, which defines the name and scope of an
Ampersand model. Atom a € Context is displayed - using relation 5.37 - as:

a;ctxnm

66 CHAPTER 5. DETAILED SPECIFICATION OF RAP

5.5.2 Declared relations

This subsection introduces 3 declared relations with properties and a meaning.

The following univalent, total relation has been declared

ctxnm : Context—Conid (5.37)

, which means that a context has a user-defined name.

For example, ' comp/gmi/RAP.v2.adl’ ctxnm 'RAP’' means:

The context in ’ comp/gmi/RAP.v2.adl’ is called ' RAP’.
The following relation has been declared

ctxpats : Context ~ Pattern (5.38)

, which means that a context may contain patterns.

For example, ' RAP’ ctxpats ' Committed files’ means:

Context ' RAP’ contains a pattern ' Committed files’.
The following relation has been declared

ctxcs : Context ~ Concept (5.39)

, which means that a context may contain concepts.
For example, ' RAP’ ctxcs ' UserProfile’ means:
Context ' RAP' contains a concept ' UserProfile’.

5.6 PATTERN: Patterns

A requirements engineer uses pattern and process elements to group certain elements,
e.g. rules and relations, in a logical manner. For example, the elements in a group
may all relate to a single theme. Typically, patterns contain invariant rules to specify
the semantics of information. Processes contain process rules to specify the semantics
of processes. Process rules are defined like invariant rules, but then assigned to a role.

This version of the RAP model does not define the process element. Process
elements have not been released to students as course material yet. RAP treats process
elements as if they were patterns.*

4Note that RAP interprets scripts, it does not silently alter scripts e.g. change a process element in a
script into a pattern.

5.6. PATTERN: PATTERNS 67

A pattern relates to the following model elements: user-defined rules [section 5.12],
user-defined generalization rules [section 5.7], relation declarations [section 5.10] and
purposes of the pattern. Other kinds of elements may exist in a pattern or process in
an Ampersand-script, but they are ignored or modelled elsewhere in this RAP model.
For example, patterns and processes may contain a definition of a concept, which has
been directly linked to the concept Concept by means of cptdf : Concept ~ Blob
[relation declaration 5.50]. And for example, a process may assign rules to a role,
role elements are completely ignored in this RAP model.

This theme introduces 1 concept, O generalization rules, 5 relations with proper-
ties and O rules related to patterns in RAP. Figure 5.5 shows a conceptual diagram,
which includes the elements introduced in this section; a concept Gen [section 5.7];
a concept Declaration [section 5.10]; a concept Rule [section 5.12]; 2 concepts
Conid, Blob [section 5.13].

Conid
Blob

1)1:1\ 7

Pattern

pens _a—"
Gen ptdes

Declaration

plrl:

Rule

Figure 5.5: Concept diagram of Patterns

5.6.1 Defined concepts

This subsection defines 1 concept and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-

68 CHAPTER 5. DETAILED SPECIFICATION OF RAP
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Pattern isamodel element, in which a requirements engineer groups
certain model elements in a logical manner. Atom a € Pattern is displayed -
using relation 5.40 - as:

a;ptnm

5.6.2 Declared relations

This subsection introduces 5 declared relations with properties and a meaning.

The following univalent, total relation has been declared

ptnm : Pattern—Conid (5.40)

, which means that a pattern has a name.
The following relation has been declared

ptrls . Pattern~Rule (5.41)

, which means that a pattern may contain rule definitions.
The following relation has been declared

ptgns : Pattern~ Gen (5.42)

, which means that a pattern may contain generalization rule definitions.
The following relation has been declared

ptdcs . Pattern~Declaration (5.43)

, which means that a pattern may contain relation declarations.
The following relation has been declared

ptxps : Pattern~ Blob (5.44)

, which means that a pattern may have purpose descriptions in a natural lan-
guage.

5.7. PATTERN: GENERALIZATION RULES 69

5.7 PATTERN: Generalization rules

A requirements engineers specifies a partial order of concepts [section 5.8]. They do
so by defining is-a-relationships between two concepts. The transitive reflexive clos-
ure of these user-defined is-a-relationships results in a set of total orders of concepts.
Two concepts in different total orders are disjoint. The model element to define an
is-a-relationship between two concepts is called a generalization rule or just gen.

This theme introduces 1 concept, 0 generalization rules, 2 relations with proper-
ties and 1 rule related to generalization rules in RAP. Figure 5.6 shows a conceptual
diagram, which includes the elements introduced in this section; a concept Concept
and a relation cptnm [section 5.8]; a concept Conid [section 5.13].

genss/\
cptim

Conid " a——— Concept Gen

geng’iu\/

Figure 5.6: Concept diagram of Generalization rules

5.7.1 Defined concepts

This subsection defines 1 concept and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Gen, or generalization rule, is a model element to define the is-a-
relation-ship between a more specific and a more generic concept. Atom a €
Gen is displayed - using relations 5.48, 5.46, 5.45 - as:

SPEC a;genspc;cptnm 1SA a;gengen;cptnm

70 CHAPTER 5. DETAILED SPECIFICATION OF RAP

5.7.2 Declared relations

This subsection introduces 2 declared relations with properties and a meaning.

The following univalent, total relation has been declared

gengen : Gen—Concept (5.45)

, which means that a generalization rule has a generic concept.

For example, ' SPEC Horse ISA Animal’ gengen 'Animal’ means:

In ' SPEC Horse ISA Animal’ ,’Animal’ isthe generic concept.
The following univalent, total relation has been declared

genspc : Gen—Concept (5.46)

, which means that a generalization rule has a specific concept.
For example, ' SPEC Horse ISA Animal’ genspc 'Horse' means:
In ' SPEC Horse ISA Animal’ ,'Horse’ is the specific concept.

5.7.3 Defined rules

This subsection defines 1 formal rule.

eq gen - Identical user-defined generalization rules are not allowed, because it may
confuse a requirements engineer without a valid reason. For example, a re-
quirements engineer removes one of the identical gens under the assumption
that the gen is actually removed, which is not the case. The engineer may ex-
perience unexpected behaviour and has to spend time to identify and correct
the problem.

For the above, the following requirement has been defined:

There is only one generalization rule between a certain specific concept and a
certain generic concept.

This is formalized - using the declared relations 5.46, 5.45 - as

gengen;gengen (N genspc;genspc C 1 (5.47)

5.8. PATTERN: CONCEPTS 71

5.8 PATTERN: Concepts

Concepts are essential elements of declared relations [section 5.10] and relation ex-
pressions [section 5.11]. A concept is an abstract business term of which the popula-
tion represents a certain set of business objects. Whether to model a concept or not
is up to the requirements engineer. A requirements engineer may annotate a concept
with a business definition or purposes.

The population of a concept is a set of atomic terms, also called atoms. An atom
represents a business object. An atom of a concept is said to be of that kind in the
business context. An atom that is not in a concept is said to be not of that kind
of concept, because Ampersand assumes a closed world. For example, ' horse’ €
Animal means that there are animals in the business context and there is a horse,
which is a kind of animal.

)

In this example, “horse’ is an atom. The requirements engineer may also use
the same term “Horse” as a concept, an abstract term, in order to talk about specific
horses like / Jol1ly Jumper’ € Horse. This kind of congruence between an atom and
a concept cannot be expressed in Ampersand e.g. 'horse’ = Horse. What can be
expressed are generalization rules [section 5.7] like Horse < Animal. Which means
that, in that case, a € Horse implies a € Animal.

The structure and properties of Ampersand’s order of concepts do not have to be
fully specified in the RAP model. RAP must only be able to determine whether a
concept belongs to some order or not. e.g. Horse belongs to the order of animals.
To determine that, we have specified the relation order : Concept ~ Order, which is
basically an element-of-relation. RAP names an order after the most generic concept
in that order.

Let me give some remarks to avoid confusion with respect to the concepts At omID
and Atom and the abstract term “atom”. The abstract term “atom” applies to both
concepts, the suffix “ID”’in “AtomID” exists just to make a distinction. RAP specifies
an atom as a key-value pair. AtomID is the term for the keys, which represents the
actual atoms c.q. the business object is an atom element. Atom is the term for the
values, which represents the value of an atom element in an Ampersand-model c.q.
the business object is a string recognized as the value of an atom. For example, a
context has an atom ’ Jol1ly Jumper’, which represents a horse named Jolly Jumper.
When that context has been opened in RAP, then ’ Jolly Jumper’ € AtomID, which
represents the atom element that represents the horse named Jolly Jumper in that
context. And, 'Jolly Jumper’ € Atom, which represents the string “Jolly Jumper”
recognized as the value of an atom. The key of an atom is unique in RAP, the value
of an atom is unique within the unified population of all concepts in an order.

A user can edit the population of an Ampersand-script through the user interfaces
[section 5.16]. Those who edit a population through the interfaces get feedback based

72 CHAPTER 5. DETAILED SPECIFICATION OF RAP

on rule violations. Some of that feedback follows from rules defined in this pattern.

This theme introduces 4 concepts, 0 generalization rules, 7 relations with proper-
ties and 3 rules related to concepts in RAP. Figure 5.7 shows a conceptual diagram,
which includes the elements introduced in this section; a concept Gen and 2 relations
gengen, genspc [section 5.7]; 2 concepts PairID, Sign and 4 relations src, trg, left,
right [section 5.9]; a concept Declaration and 2 relations decsgn, decpopu [sec-
tion 5.10]; 3 concepts String, Conid, Blob [section 5.13].

String

orcernam,

Crder

order

2ENZL Concept

aenspe
=

trg/ sre|

Atom
atomvalue
cptos

AtomIC
igh lel

Sign

decsgl]

PairlD

decpopu
Declaration

Figure 5.7: Concept diagram of Concepts

5.8. PATTERN: CONCEPTS 73

5.8.1 Defined concepts

This subsection defines 4 concepts and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Concept is a model element for an abstract business term of which
the population represents a certain set of business objects. Atom a € Concept
is displayed - using relation 5.48 - as:

a;cptnm

Definition: A Order is a structure for a group of is-a-related concepts. Atom a €
Order is displayed - using relation 5.52 - as:

a;ordername

Definition: A AtomID isa model element for an atom. Atom a € AtomID is displayed
- using relations 5.54, 5.52, 5.53, 5.49 - as:

a;atomvalue :: a;cptos™ ;order;ordername

Definition: A Atom is the value of an atom and an identifier of an atom within an
order. Atom a € Atom is displayed as is.

5.8.2 Declared relations

This subsection introduces 7 declared relations with properties and a meaning.

The following univalent, total relation has been declared

cptnm : Concept—Conid (5.48)

, which means that a concept has a name.

74 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following relation has been declared
cptos : Concept ~ AtomID (5.49)

, which means that the population of a concept may contain atom elements.
For example, ' Horse’ cptos ' 443859690’ means:
The population of ' Horse’ contains an atom element identified by
"443859690".

The following relation has been declared

cptdf : Concept ~ Blob (5.50)

, which means that a concept may have definitions in a natural language.
The following relation has been declared

cptpurpose : Concept ~ Blob (5.51)

, which means that a concept may have purpose descriptions in a natural lan-
guage.
The following univalent, total relation has been declared

ordername : Order—String (5.52)

, which means that an order has a name.
The following univalent, total relation has been declared

order : Concept—Order (5.53)

, which means that a concept belongs to an order.

For example, ' Horse’ order ' order of animals’ means:

Concept ' Horse’ belongs to the ' order of animals’.
The following univalent, total relation has been declared

atomvalue : AtomID—Atom (5.54)

, which means that an atom element has a value.
For example, ' 443859690 atomvalue ' Jolly Jumper’ means:
The value of atom ’ 443859690 is ' Jolly Jumper’.

5.8. PATTERN: CONCEPTS 75

5.8.3 Defined rules

This subsection defines 3 formal rules.

order - The following requirement has been defined:
Is-a-related concepts belong to the same order.
This is formalized - using the declared relations 5.53, 5.45, 5.46 - as

order™ ;genspc™ ; gengen;order C 1 (5.55)

referential integrity - The following requirement has been defined:
An atom in the domain or codomain of a relation is an instance of a concept
from the same order as the source respectively the target of that relation.
This is formalized - using the declared relations 5.49, 5.53, 5.61, 5.72, 5.64,
5.59,5.60,5.58 - as

src” ;decsgn™ ;decpopusleft Utrg ™ ;decsgn™ ;decpopu; right (5.56)
C order;order™ ;cptos '

RAP reports all rule violations (a,b) € =(referentialintegrity) to the user. This
report? starts with the following message

If an atom is in some tuple of a relation, then that atom must exist in the
concept that is the source respectively target of that relation. Deletion of
an atom from a concept is not permitted if that atom is still present in some
tuple of some relation. Nor is addition of a tuple permitted if the source
or target atom is not present in the related concept. It is a violation of
Referential integrity rule for a relation.

, followed by the following message for each (a, b).

The tuple a refers to a source or target atom that does not exist.

entity integrity concept - The following requirement has been defined:
An atom of a concept is unique within the order of that concept.
This is formalized - using the declared relations 5.49, 5.53, 5.54 - as

atomvalue;atomvalue™ N cptos™ ;order;order™ ;cptos C 1 5.57)

SThis report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

76 CHAPTER 5. DETAILED SPECIFICATION OF RAP

RAP reports all rule violations {(a,b) € —(entityintegrityconcept) to the user.
This report® starts with the following message

Every atom of a concept is unique, or, no two atoms in the population of a
concept have the same name. Addition of a duplicate atom is not permitted.
It is a violation of the Entity integrity rule for this concept. Please refer to
book Rule Based Design, page 43 and 52, entity integrity.

, followed by the following message for each (a,).

An atom with name a already exists.

5.9 PATTERN: Relation type signatures

Each declared relation [section 5.10] or relation expression [section 5.11] has a source
concept and a target concept. A pair of a source and target concept is called a relation
type signature, or just a sign.

The population of a relation is a typed collection of pairs of atoms. Each pair of
atoms has a left atom of the relation’s source and a right atom of the the relation’s
target. A pair only has meaning as an element in the population of a relation. So, to
be meaningful, a pair must reflect to which relation it belongs in order to determine
the meaning of a pair from a pair alone. For that reason, RAP specifies a pair in a
similar way as an atom, that is, as a key-value pair. The key of a pair identifies a pair
element in the population of a certain relation. The value of a pair is a pair of atoms.

This theme introduces 2 concepts, 0 generalization rules, 4 relations with prop-
erties and O rules related to relation type signatures in RAP. Figure 5.8 shows a con-
ceptual diagram, which includes the elements introduced in this section; 3 concepts
Concept, AtomID, Atom and 2 relations cptnm, atomvalue [section 5.8]; a concept
Conid [section 5.13].

5.9.1 Defined concepts

This subsection defines 2 concepts and O generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation

OThis report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

5.9. PATTERN: RELATION TYPE SIGNATURES 77

Conid
a /ﬁﬁnn
Concept
sign sre
right Atom
4 /aﬁﬁahle
AtomID
PairlD left

Figure 5.8: Concept diagram of Relation type signatures

expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Sign, or a relation type signature, is a model element for relation
types.. Atom a € Sign is displayed - using relations 5.48, 5.58, 5.59 - as:

a;src;cptnm ¥ a;trg;cptnm

Definition: A PairID is a model element for a pair of atoms. Atom a € PairID is
displayed - using relations 5.54, 5.60, 5.61 - as:

a;left;atomvalue * a;right;atomvalue
5.9.2 Declared relations

This subsection introduces 4 declared relations with properties and a meaning.

The following univalent, total relation has been declared

src : Sign—Concept (5.58)

, which means that a sign has a source concept.

78 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following univalent, total relation has been declared

trg : Sign—Concept (5.59)

, which means that a sign has a target concept.
The following univalent, total relation has been declared

left : PairID—AtomID (5.60)

, which means that a pair of atoms has a left atom.
The following univalent, total relation has been declared

right : PairID—AtomID (5.61)

, which means that a pair of atoms has a right atom.

5.10 PATTERN: Relation declarations

The requirement engineer creates relation terms to use them in relation expressions
[section 5.11], for example, to define rules [section 5.12]. A relation term is created
by means of a relation declaration.

The requirements engineer may define certain properties of a relation as rules on
its declaration e.g. the totality of a relation. The Ampersand language has predefined
symbols for relation properties e.g. ' TOT’ for totality.

A requirements engineer may annotate a relation declaration with a template
for example sentences, meaning and purpose. The template for example sentences
defines a prefix text, infix text and suffix text, which are called a pragma. An ex-
ample sentence is constructed from a pair a r b by concatenating the pragma prefix,
a, pragma infix, b and pragma suffix.

A requirement engineer defines and alters the population of declared relations for
purposes like model validation and simulation. Because that is how business users
would run a data administration and business processes on an Ampersand model,
by maintaining the population of declared relations. A user can edit the population
of declared relations through the user interfaces [section 5.16]. Those who edit a
population through the interfaces get feedback based on rule violations. Some of that
feedback is configured by means of rules defined in this pattern.

This theme introduces 3 concepts, 1 generalization rule, 10 relations with proper-
ties and 5 rules related to relation declarations in RAP. Figure 5.9 shows a conceptual

5.10. PATTERN: RELATION DECLARATIONS 79

diagram, which includes the elements introduced in this section; 3 concepts Concept,
AtomID, Order and 3 relations cptnm, cptos, order [section 5.8]; 2 concepts PairID,
Sign and 4 relations src, trg, left, right [section 5.9]; a concept Rule [section 5.12];
4 concepts String, Conid, Blob, Varid [section 5.13].

Property

declaredthroug]

Varid

decnm,

RUle <—— PropertyRule
decpipg
String
decpi]
decpfrM
decpiR.
(lecmeau Declaration

decpopu’

decsen,

Sign \

AtomID

PairlD

trd

J
Corcept

cpty
ords
Conid

Order

Figure 5.9: Concept diagram of Relation declarations

80 CHAPTER 5. DETAILED SPECIFICATION OF RAP

5.10.1 Defined concepts

This subsection defines 3 concepts and 1 generalization rule. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Declaration, or arelation declaration, is a model element to declare
a relation. Atom a € Declaration is displayed - using relations 5.63, 5.48,
5.58, 5.64,5.59 - as:

a;decnm :: a;decsgn;src;cptnm * a;decsgn;trg;cptnm

Definition: A Property is a predefined symbol to define property rules. Atom a €
Property is displayed as is.

Definition: A PropertyRule is a rule, that has been defined as a property. Atom
a € PropertyRule is displayed as a Rule.

Rule: PropertyRule is akind of Rule, which is formalized by the following gener-
alization rule:
PropertyRule < Rule (5.62)

5.10.2 Declared relations

This subsection introduces 10 declared relations with properties and a meaning.

The following univalent, total relation has been declared

decnm : Declaration—Varid (5.63)

, which means that a relation is declared with a name.
For example, ' r: :A*B’ decnm ' r’ means:
The name of " r::A*B’ is 'r’.

The following univalent, total relation has been declared

decsgn : Declaration—Sign (5.64)

, which means that a relation is declared with a sign.

5.10. PATTERN: RELATION DECLARATIONS 81

For example, ' r: :A*B’ decsgn ' A*B’ means:
The sign of " r: :A*B’ is ' A*B’.
The following injective relation has been declared

decprps : Declaration ~ PropertyRule (5.65)

, which means that a relation may be declared with property rules.
For example, ' r: :A*B’ decprps ' TOT r::A*B’ means:
"r::A*B’ has a property ' TOT r::A*B’ .

The following total relation has been declared

declaredthrough : PropertyRule ~ Property (5.66)

, which means that a property rule is defined by means of predefined symbols.
For example, ' TOT r::A*B’ declaredthrough ' TOT' means:
Rule ' TOT r::A*B’ is defined by means of property symbol ' TOT’ .

The following univalent relation has been declared

decprL : Declaration~ String (5.67)

, which means that the meaning of a relation may be clarified with an example
sentence that has a prefix text.
The following univalent relation has been declared

decprM : Declaration ~ String (5.68)

, which means that the meaning of a relation may be clarified with an example
sentence that has an infix text.

The following univalent relation has been declared

decprR : Declaration ~ String (5.69)

, which means that the meaning of a relation may be clarified with an example
sentence that has a suffix text.
The following relation has been declared

decmean : Declaration ~ Blob (5.70)

, which means that a relation may have descriptions of its meaning in a natural
language.

82 CHAPTER 5. DETAILED SPECIFICATION OF RAP

The following relation has been declared

decpurpose : Declaration ~ Blob (5.71)

, which means that a relation may have purpose descriptions in a natural lan-
guage.
The following relation has been declared

decpopu : Declaration~ PairID (5.72)

, which means that the population of a relation may contain pairs of atoms.

5.10.3 Defined rules

This subsection defines 5 formal rules.

eq declaration - The following requirement has been defined:
A declared relation can be identified by a name, a source concept, and a target
concept.
This is formalized - using the declared relations 5.59, 5.64, 5.58, 5.63 - as

decnm;decnm™ Ndecsgn; src; (decsgn; sre)™ Ndecsgn; trg; (decsgn;trg)™ C 1

(5.73)
property enum - The following requirement has been defined:

There are eleven predefined symbols to define property rules: -> means uni-

valent and total; UNI means univalent; TOT means total; INJ means inject-

ive; SUR means surjective; RFX means reflexive; IRF means irreflexive; SYM

means symmetric; ASY means antisymmetric, TRN means transitive; and

PROP means symmetric and antisymmetric.

This is formalized - using the declared relations - as

Ipropersy €/ =>’ U/ UNI’ U’ TOT’ U’ INJ’ U’ SUR’
U'RFX" U’ IRF" U'SYM' U’ASY" U'TRN’ U’ PROP’
(5.74)
entity integrity of relation - The following requirement has been defined:

There cannot be two pairs in a declared relation with the same left and same
right.

5.10. PATTERN: RELATION DECLARATIONS 83

This is formalized - using the declared relations 5.72, 5.61, 5.60 - as

left;left ™ Nright;right™ Ndecpopu™ ;decpopu C 1 (5.75)

RAP reports all rule violations (a,b) € —(entityintegrityo frelation) to the user.
This report’ starts with the following message

Every tuple in a relation is unique, or, no two tuples in the population of a
relation may have the same source and target atoms. Addition of a duplic-
ate tuple is not permitted. It is a violation of the Entity integrity rule for this
relation.

, followed by the following message for each (a, b).

A tuple with the same source and target atoms a already exists.

typed domain - The following requirement has been defined:
The left atoms of pairs in a declared relation belong to the same order as the

source of that relation.
This is formalized - using the declared relations 5.53, 5.58, 5.64, 5.49, 5.60,
5.72 - as

decpopu; left;cptos™ ;order C decsgn; src;order (5.76)

RAP reports all rule violations (a,b) € —(typeddomain) to the user. This re-
port® starts with the following message

You try to add a tuple with a source atom, that is not in the population of the
source of the relation. This is a violation of the type of the tuple. TIP: enter
text in the left input field to get a shorter pick list. Note on ISA-relations:
You can make an atom more specific by moving it to the population of a
more specific concept.

, followed by the following message for each (a, b).

This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.
8This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

84 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Source atom b is not in the population of a; decsgn; src

typed codomain - The following requirement has been defined:
The right atoms of pairs in a declared relation belong to the same order as the
target of that relation.
This is formalized - using the declared relations 5.53, 5.59, 5.64, 5.49, 5.61,
5.72 - as

decpopu; right; cptos™ ;order C decsgn;trg; order 5.77)

RAP reports all rule violations {(a,b) € —(typedcodomain) to the user. This
report’ starts with the following message

You try to add a tuple with a target atom, that is not in the population of the
target of the relation. This is a violation of the type of the tuple. TIP: enter
text in the right input field to get a shorter pick list. Note on ISA-relations:
You can make an atom more specific by moving it to the population of a
more specific concept.

, followed by the following message for each (a,b).

Target atom b is not in the population of a; decsgn; trg

5.11 PATTERN: Expressions

The declared relations are used in relation expressions e.g. to define rules [sec-
tion 5.12]. The relation term to refer to a declared relation is the name of that relation.
An explicit relation type signature might be needed to determine the intended type of
a relation. The sign of a relation in an expression might differ from its declaration
when is-a-relations are involved. For example, a relation name : Animal ~ Name can
be used to express the more specific relation nameyoyse xyame in case Horse < Animal.
An expression has not been modelled in full detail yet. RAP only links relation de-
clarations to the expressions in which they are used.

This theme introduces 3 concepts, 0 generalization rules, 5 relations with proper-
ties and 1 rule related to expressions in RAP. Figure 5.10 shows a conceptual diagram,

9This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

5.11. PATTERN: EXPRESSIONS 85

which includes the elements introduced in this section; a concept Concept and a re-
lation cptnm [section 5.8]; a concept Sign and 2 relations src, trg [section 5.9]; a
concept Declaration and a relation decnm [section 5.10]; 2 concepts Conid, Varid

[section 5.13].

Varid
Declaration

1cl(lc\ j

Relation

/ \
relgen

ExpressionlD
Sign

exprvalue /
- sre

Expression

fre Caoncept

Figure 5.10: Concept diagram of Expressions

5.11.1 Defined concepts

This subsection defines 3 concepts and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

86 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Definition: A ExpressionID is a model element for a relation. Atom
a € ExpressionID is displayed - using relation 5.78 - as:

a;exprvalue

Definition: A Expression is the relation expression, which is a relation expression
written in Ampersand ASCII syntax. Atom a € Expression is displayed as is.

Definition: A Relation is a relation term in an expression that has a declaration.
Atom a € Relation is displayed - using relations 5.80, 5.48, 5.58, 5.81, 5.59 -
as:

a;relnm [a;relsgn;src;cptnm * a;relsgn;trg; cptnm |

5.11.2 Declared relations

This subsection introduces 5 declared relations with properties and a meaning.

The following univalent, total relation has been declared

exprvalue : ExpressionID—Expression (5.78)

, which means that an expression element has a value, which is a relation ex-
pression.
For example, 'RULE RFX r::A*A: r |- I’ exprvalue’'r |- I' means:
Relation "RULE RFX r::A*A: r |- I’ isexpressedas’r |- I'.

The following relation has been declared

rels : ExpressionID~ Relation (5.79)

, which means that an expression uses relations that have been declared.
For example, ' RULE RFX r::A*A: r |- I’ rels'r[A*A]’ means:
"RULE RFX r::A*A: r |- I’ uses’r[A*A]’ in itsexpression.

The following univalent, total relation has been declared

relnm : Relation—Varid (5.80)
, which means that a relation has a name.

For example, ' r [A*A]’ relnm ' r' means:
The name of " r[A*A]’ is ' r’.

5.12. PATTERN: RULES 87

The following univalent, total relation has been declared

relsgn : Relation—Sign (5.81)

, which means that a relation has a sign.
For example, ' r [A*A]’ relsgn ' A*A’ means:
The sign of " r [A*A]’ is ' A*A’.
The following univalent, total relation has been declared

reldcl : Relation—Declaration (5.82)

, which means that a relation has a declaration.
For example, ' r [A*A]’ reldcl ' r::A*A’ means:
"r[A*A]’ has been declared by ' r: :A*A’.

5.11.3 Defined rules

This subsection defines 1 formal rule.

rel name is decl name - The following requirement has been defined:
The name of a relation is the same as the name in its declaration.
This is formalized - using the declared relations 5.63, 5.82, 5.80 - as

relnm = reldcl;, decnm (5.83)

5.12 PATTERN: Rules

A requirements engineer defines a rule as a relation expression. A rule definition
R4~ means that, given a population of the context, [R4~p] holds if and only if R =
Vaxp- Given a population of the context, any pair (a,b) € V4xp, but not (a,b) € Rap
is a violation of the rule [section 5.14]. Thus, the violations of a rule can be defined
by the complement of its relation expression ((a,b) € -Rs~p). The requirements
engineer may annotate a rule with a meaning and purpose.

This theme introduces 1 concept, 0 generalization rules, 4 relations with prop-
erties and O rules related to rules in RAP. Figure 5.11 shows a conceptual diagram,
which includes the elements introduced in this section; a concept ExpressionID
[section 5.11]; 2 concepts Blob, ADLid [section 5.13].

88 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Al id

i

Rule
ﬂix/ rrmean

A\

BxpressionlC Blob
Tpupose

Figure 5.11: Concept diagram of Rules

5.12.1 Defined concepts

This subsection defines 1 concept and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Rule is a model element, which defines a rule by means of a relation
expression. Atom a € Rule is displayed - using relation 5.84 - as:

a;rrnm

5.12.2 Declared relations

This subsection introduces 4 declared relations with properties and a meaning.

The following univalent, total relation has been declared

rrnm : Rule—ADLid (5.84)

, which means that a rule has a name.

5.13. PATTERN: SYMBOLS 89

For example, ' RULE RFX r::A*A’ rrnm 'RFX r::A*A’ means:
The name of ' RULE RFX r::A*A’ is'RFX r::A*A’,
The following univalent, total relation has been declared

rrexp : Rule—ExpressionID (5.85)

, which means that a rule has a relation expression to express that rule.

For example, ' RULE RFX r::A*A’ rrexp 'RULE RFX r::A*A: r |- I’ means:

The relation expression of ' RULE RFX r::A*A’ is’RULE RFX r::A*A: r |- I’.
The following relation has been declared

rrmean : Rule ~ Blob (5.86)

, which means that a rule may have descriptions of its meaning in a natural
language.
For example, ' RULE REFX r::A*A’ rrmean’r::A*A is reflexive’ means:
"RULE RFX r::A*A’ means 'r::A*A is reflexive’.

The following relation has been declared

rrpurpose : Rule ~ Blob (5.87)

, which means that a rule may have purpose descriptions in a natural language.

5.13 PATTERN: Symbols

The Ampersand language has five syntactic domains for user-defined model element
names: String, Blob, Conid, Varid and ADLid.

This theme introduces 5 concepts, 0 generalization rules, O relations with proper-
ties and O rules related to symbols in RAP.

5.13.1 Defined concepts

This subsection defines 5 concepts and 0 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

90 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Definition: A String is text restricted to a maximum of 256 characters. Atom a €
String is displayed as is.

Definition: A Blob is text, which may exceed 256 characters. Atom a € Blob is
displayed as is.

Definition: A Conid is a string starting with an uppercase. Atom a € Conid is dis-
played as is.

Definition: A Varid is a string starting with a lowercase. Atom a € Varid is dis-
played as is.

Definition: A ADLid is string, which may be of the kind Varid, Conid, or String.
Atom a € ADLid is displayed as is.

5.14 PATTERN: Calculated details

An Ampersand-model includes calculated model elements like rule violations, con-
ceptual diagrams and example sentences for relations. The Ampersand compiler de-
rives such elements from a script. There is an intuitive distinction between calculated
model elements and other compiler-calculated elements e.g. metrics [section 5.17] or
design artefacts.

Rule violations are the drivers of the generic process of Ampersand-based sys-
tems [section 2.3]. RAP lets a user step through that process [section 5.15], which
requires a concept of rule violations.

The purpose of a conceptual diagram is to give people a visual overview over
relations and concepts. For example, the diagrams used throughout this chapter are
conceptual diagrams, which provide a visual cue to read a section.

An example sentence is a textual aid to understand or memorize the meaning of
a relation. An example sentence is based on the pragma in a relation declaration
[section 5.10].

More kinds of calculated model elements exist, but are not used in RAP.

This theme introduces 4 concepts, 1 generalization rule, 6 relations with proper-
ties and O rules related to calculated details in RAP. Figure 5.12 shows a conceptual
diagram, which includes the elements introduced in this section; a concept Pattern
[section 5.6]; a concept Concept [section 5.8]; a concept PairID [section 5.9]; a
concept Declaration [section 5.10]; a concept Rule [section 5.12].

5.14.1 Defined concepts

This subsection defines 4 concepts and 1 generalization rule. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.

5.14. PATTERN: CALCULATED DETAILS 91

PragmaSentence
decexmu]j
Declaration Pattern
Pptpic Concept:
cpipic _a—"
Image ~
pic
o Rule
nviols
PairiD <t wiolation X e
imageur]
LRL

Figure 5.12: Concept diagram of Calculated details

This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Violation is a pair of atoms of a special kind of relation, that is,
the complement of a rule expression. Such a pair violates the rule. Atom
a €Violation is displayed as a PairID.

Rule: Violation is a kind of PairID, which is formalized by the following gener-
alization rule:

Violation < PairID (5.88)

Definition: A Image is a digital representation of a diagram or figure. Atom a €
Image is displayed - using relation 5.93 - as:

92 CHAPTER 5. DETAILED SPECIFICATION OF RAP

Definition: A URL, or unified resource location, is a web address. Atom a € URL is
displayed as is.

Definition: A PragmaSentence is an example sentence for a relation to clarify its
meaning. Atom a € PragmaSentence is displayed as is.

5.14.2 Declared relations

This subsection introduces 6 declared relations with properties and a meaning.

The following relation has been declared

rrviols : Rule ~Violation (5.89)

, which means that a rule may have violations.
The following univalent relation has been declared

ptpic : Pattern~ Image (5.90)

, which means that a pattern may have a conceptual diagram to visualize that
pattern.
The following univalent relation has been declared

cptpic : Concept ~ Image 5.91)

, which means that a concept may have a conceptual diagram to visualize that
concept.
The following univalent relation has been declared

rrpic : Rule ~ Image (5.92)

, which means that a rule may have a conceptual diagram to visualize that rule.
The following relation has been declared

imageurl : Image ~ URL (5.93)

, which means that an image may be found on web addresses.

5.15. PROCESS: TESTING RULES 93

The following relation has been declared

decexample : Declaration ~ PragmaSentence (5.94)

, which means that a relation may have example sentences to clarify its mean-
ing.

5.15 PROCESS: Testing rules

An Ampersand-model describes a rule-based system, which runs on an iterative pro-
cess of three steps: test rules, distribute rule violations and act upon violations [sec-
tion 2.3]. A user can step through this process as follows. A new process starts
when the user commits an Ampersand-script with a population. RAP tests the rules
in the script against the population. Next, RAP gives the user feedback on rule viol-
ations, which may include directives to distribute and act. The user distributes and
acts upon violations by changing the population or the rules. The population can be
changed through user interfaces [section 5.16] or in a text editor. The user commits
the changes, which starts the next iteration.

This theme defines different process rules to give different kinds of feedback on
different kinds of violations. More intelligent feedback can be defined likewise as we
learn more about the didactics for Ampersand [chapter 6].

This section gives a purpose to introduce 5 rules related to testing rules in RAP.
Figure 5.13 shows a conceptual diagram, which includes the declared relations used
to define the 5 process rules.

5.15.1 Defined rules

This subsection defines 5 formal process rules for the user.

multviolations1 - The following requirement has been defined:
The user gets feedback on the violations of total and surjective property rules.
This is formalized - using the declared relations 5.89, 5.66 - as

“((Ipropertyrule Ndeclaredthrough; (' TOT' U’ SUR') (5.95)
sdeclaredthrough™); rrviols) '

RAP reports all rule violations {(a,b) € —(multviolations1) to the user. This
report'” starts with the following message

10T his report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

94 CHAPTER 5. DETAILED SPECIFICATION OF RAP

PairTry

\

Violation

r1viol?

Rule

N

PropertyRule

cleclared%

Property

Figure 5.13: Concept diagram of Testing rules

A TOTal or SURjective multiplicity rule is violated for some relation(s).
Add tuple(s) in the relation(s) to correct the violation(s).

, followed by the following message for each (a, b).

RULE a is violated by the atom b; left.

multviolations2 - The following requirement has been defined:
The user gets feedback on the violations of univalent and injective property
rules.
This is formalized - using the declared relations 5.89, 5.66 - as

“((Ipropertyrule Ndeclaredthrough; (" UNI' U’ INJ') (5.96)
sdeclaredthrough™); rrviols) '

RAP reports all rule violations (a,b) € —(multviolations2) to the user. This

5.15. PROCESS: TESTING RULES 95

report!! starts with the following message

A UNIlvalent or INJective multiplicity rule is violated for some rela-
tion(s). Delete tuple(s) in the relation(s) to correct the violation(s).

, followed by the following message for each (a,b).

RULE a is violated by the tuple b in combination with some other tuple(s).

multviolations3 - The following requirement has been defined:
The user gets feedback on the violations of functional property rules.
This is formalized - using the declared relations 5.89, 5.66 - as

“((Ipropertyruie Ndeclaredthrough;’ —>' ;declaredthrough™);rrviols) (5.97)

RAP reports all rule violations (a,b) € —=(multviolations3) to the user. This
report'? starts with the following message

A UNlvalent or TOTal multiplicity rule is violated for some relation(s).
Delete tuple(s) in the relation(s) to correct the violation(s).

, followed by the following message for each (a,b).

RULE a is violated by the tuple b in combination with some other tuple(s).

homoviolations - The following requirement has been defined:
The user gets feedback on the violations of homogeneous property rules.
This is formalized - using the declared relations 5.89, 5.66 - as

“((Ipropertyrule Ndeclaredthrough
;("REX’ U’ IRF’ U’ SYM’ U’ASY’ U’ TRN' U’ PROP’) (5.98)

sdeclaredthrough™); rrviols)

"This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.
12This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

96 CHAPTER 5. DETAILED SPECIFICATION OF RAP

RAP reports all rule violations (a,b) € =(homoviolations) to the user. This
report!? starts with the following message

A rule for homogeneous relation(s) is violated. Add or delete tuple(s)
in the relation(s) to correct the violation(s).

, followed by the following message for each (a,b).

RULE a is violated by the tuple b in combination with some other tuple(s).

otherviolations - The following requirement has been defined:
The user gets feedback on the violations of non-property rules.
This is formalized - using the declared relation 5.89 - as

j((ﬁHPropertyRu].e m]IRu].e);rrvj()ls) (5.99)

RAP reports all rule violations (a,b) € —(otherviolations) to the user. This
report'# starts with the following message

A business rule that involves several relations is violated. Add or de-
lete tuple(s) in one or more of the relation(s) to correct the violation(s).

, followed by the following message for each (a,b).

RULE a is violated by the tuple b in combination with some other tuple(s).

5.16 PROCESS: Editing a population

A user may edit the population of a context through the user interfaces or in a text
editor.

In a text editor, a user directly edits the Ampersand-script. Some changes are
better made in a text editor like copy-pasting larger pieces of code into a script.

The advantage of editing through the user interfaces is that these activities are
governed by the rules of RAP. In other words, the user gets rule-based feedback while

13This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.
14This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

5.16. PROCESS: EDITING A POPULATION 97

editing. For that reason, we have the objective to edit and create the entire model
through the user interfaces. The reason that this RAP model only allows for editing of
the population is a matter of practical development capacity and priorities. Especially
the editing of expressions requires significant development efforts like implementing
a (visual) expression editor.

This section gives a purpose to introduce 1 rule related to editing a population in
RAP. Figure 5.14 shows a conceptual diagram, which includes the declared relations
used to define the 1 process rules.

mipopu

PairlD

Declaration

Figure 5.14: Concept diagram of Editing a population

5.16.1 Defined rules
This subsection defines 1 formal process rule for the user.

popchanged - This rule guides a user who has started to make changes to the pop-
ulation through the user interfaces. A user needs to commit those changes
explicitly. Automatically committing each single change to a population is un-
desired, because a single change in a population may cause awkward violations
in a context. For example, a requirements engineer tries to resolve a violation
in a context. The engineer has planned to first add a pair to a relation and next
delete a pair from another relation. If RAP would automatically commit after
each change, then RAP may report all kinds of violations after adding the pair
to a relation, which would make no sense to the requirements engineer. After-
all the requirements engineer has already planned to make more changes. RAP
cannot decide when to commit a set of changes, c.q. the user has to decide.

For the above, the following requirement has been defined:
The user gets feedback on uncommitted changes to a population.

This is formalized - using the declared relations 5.72, 5.22 - as

inipopu = decpopu (5.100)

98 CHAPTER 5. DETAILED SPECIFICATION OF RAP

RAP reports all rule violations (a,b) € —(popchanged) to the user. This re-
port!> starts with the following message

You have made changes to the population. You can:

1) enter more change(s), or;

2) undo your changes by (re)loading any CONTEXT into Atlas, or;

3) Click here to commit the change(s) and update violations on your rules.

, followed by the following message for each (a,b).

added or deleted pair b of b; (inipopuU decpopu)™

5.17 PATTERN: Metrics

We use a framework for metrics [chapter 7] to add metrics to RAP. Such metrics are
primarily used to produce information for research as described in chapter 6. For
example, several counters, change vectors and metrical percepts are products of such
metrics. Such information may be useful for requirements engineers as well. In other
words, it may be useful to report on measurements to requirements engineers. Cur-
rently, RAP gives the requirements engineer information about the number of rules,
concepts and relations in a context [section 5.5]. These metrics support a require-
ments engineer with an activity called cycle chasing [39].

Subsection 7.2 describes how to add a metric to RAP using the framework.

This theme introduces 1 concept, 0 generalization rules, 3 relations with prop-
erties and O rules related to metrics in RAP. Figure 5.15 shows a conceptual dia-
gram, which includes the elements introduced in this section; a concept Context
[section 5.5].

5.17.1 Defined concepts

This subsection defines 1 concept and O generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation

I3This report is the actual feedback to users of RAP and is illustrative to the reader of this thesis.

5.17. PATTERN: METRICS 99

countdecls

Tnt

Figure 5.15: Concept diagram of Metrics

expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Int is a number. Atom a € Int is displayed as is.

5.17.2 Declared relations
This subsection introduces 3 declared relations with properties and a meaning.

The following univalent relation has been declared

countrules . Context ~ Int (5.101)

, which means that the number of rule definitions in a context may have been
calculated.

The following univalent relation has been declared

countdecls : Context ~ Int (5.102)

, which means that the number of relation declarations in a context may have
been calculated.

The following univalent relation has been declared

countcpts . Context ~ Int (5.103)

, which means that the number of concepts in a context may have been calcu-
lated.

100 CHAPTER 5. DETAILED SPECIFICATION OF RAP

5.18 Conclusion

This chapter is the documentation of RAP and has been generated from the RAP
model. For that, we have used the same Ampersand compiler that generates RAP
from the RAP model.

The documentation of RAP yields examples of what can be defined in Ampersand
using the mechanisms presented in chapter 4. We claim that RAP implements Am-
persand, for that reason we conclude that Ampersand can be defined in and docu-
mented by means of an Ampersand-model.

To generate this chapter shows how design automation can help to document the
design. There is a guarantee that the documentation of RAP remains up-to-date with
RAP, because both are generated from the same source. The documentation of RAP
is complete, consistent and faultless e.g. correct cross-references and up-to-date dia-
grams, which can be validated by comparing this chapter to its source, the RAP
model in appendix A. The thematic organization on patterns and processes in an
Ampersand-model shows that complete and consistent documentation can be better
organized for human digestion.

Chapter 6

USING RAP FOR
EDUCATION

In order to validate whether RAP supports learning, measurements have been per-
formed in a course on rule-based design. For this reason, quantitative data was col-
lected during the learning process. The purpose was to find out whether this data
contains meaningful information about the learning process, in order to establish the
usability of RAP as a platform for studying the didactics of Ampersand. Throughout
the operational life of RAP, data has been collected automatically, providing us with
longitudinal data and an objective means to collect these data.

This chapter studies our claim that RAP is useful for studying the learning beha-
viour of students, who are learning to design information systems with Ampersand.
This claim has been studied by observing how students formalize requirements in
design exercises.

6.1 Background on the course

RAP has been in use since 2010 in the master course at the OUNL called “Ontwerpen
met Bedrijfsregels” (“Rule-Based Design™). This course teaches students to design
information systems by means of business rules. They use Ampersand as a vehicle
to model business rules, using RAP as their development platform. While working
on a project, they commit subsequent versions of their Ampersand-model to their
own workspace in RAP. They use it to validate a model, to obtain diagnostic reports,
to generate functional requirements specifications, or to generate a prototype which
exhibits behaviour that Ampersand derives from the rules.

101

102 CHAPTER 6. USING RAP FOR EDUCATION

Differences among the student population of the RBD course complicate the
teaching process. Our students are typically 25 to 40 years of age and work a full time
job. The learning context is individual learning in four different settings: physical
classrooms, virtual classrooms, individual learning, and in-company. Another differ-
ence is the curriculum in which the course is taught. The RBD course is taught in the
Master of Computer Science and in the Master of Business Process Management and
IT, both at the Open University of the Netherlands (OUNL). The in-company courses
have been taught outside a formal curriculum, with at most 12 students per course.
These differences explain why students start with very different levels of knowledge
and interests. Nevertheless, all students must satisfy the same criteria at the end of
the course.

During the course a student learns

o the formal language of Ampersand, which is built on relation algebra;

e to understand the meaning of their Ampersand-model, which is a specific in-
terpretation of the algebra;

e how to design information structures and business processes as a collection of
rules;

e how to express those rules in the Ampersand language.

A student gets instructions through course books and a wiki environment. The course
book on Ampersand [39] is available online for free. A student is taught to produce
a model, which contains rules that represent functional requirements. As the course
progresses, the student works on a single requirements model of a business context
from his own professional environment. 80% of the final grade is based on this design
exercise to which we simply refer as the Design Exercise. Most of the data in RAP
has been identified and related to the Design Exercise of a student. In our study we
have focused on the data set that we could identify and relate to the Design Exercise.

The Design Exercise formulates two deliverables: One, a document with a de-
scription in natural language of a business situation where certain business rules are
relevant The document must describe useful business vocabulary and relevant busi-
ness rules. Two, an Ampersand-model that formalizes that business situation.

The following is a typical example of a business situation for the Design Exercise:
the processing of a Request For Change (RFC). (1) A Requester creates an RFC,
which gets assigned to a Change Manager instantly. (2) The Change Manager rejects
or approves the RFC. (3) The Change Manager assigns the RFC to a Developer. (4)
The Developer processes the request and closes the RFC. (5) The Requester gets
notified about all status changes of the RFC.

A student is instructed to put deliverables on the wiki environment, mentioned
earlier. Deliverables on the wiki are available to other students and the teachers, who

6.2. RESEARCH APPROACH 103

may put comments on the work or learn from what others have created. We have used
the deliverables on the wiki to better identify and relate the data in RAP to the Design
Exercise of a particular student.

6.2 Research Approach

Two challenges complicate studying the learning behaviour of students. The first is
not having a well established didactical structure for rule-based design. The second
is the physical absence of students in a distance learning situation. So, the first ques-
tion to be answered was whether it is possible at all to obtain meaningful information
from the use of RAP. This requires an exploratory approach. Since RAP is a plat-
form intended for non-classroom situations, the obvious choice was to collect data as
students work their way through their assignments. Before asking any other research
question, we first needed to know how meaningful that data is in the first place.

In order to study that question, the approach has been taken to analyse sequences
of Ampersand-models committed to the repository of RAP by students. We have
formed sequences by grouping Ampersand-models by their name and their creator,
the student. Each sequence has been ordered by their creation time in the repository.
As such each sequence represents a history of design activities of a student on an
Ampersand-model with a particular name. That is way we call such a sequence a
trace of the creation of an Ampersand-model and each element in a trace a version
of that Ampersand-model.

In order to analyse traces, we have defined metrics on traces collected between
April 2010 and April 2011. The resulting measurements have been analysed and
observations about learning behaviour were formulated. By discussing these obser-
vations with teachers and practitioners, we have learned lessons about learning be-
haviour. This work involved speculating with experts about the didactics of formal
methods in general, relational algebra and particularly Ampersand.

The observations and lessons learned prove the viability of RAP for studying the
didactics of Ampersand, but says little about the truth of our observations. That is,
the interpretation of our measurements as observations in terms of learning behaviour
is not exact. However, proving the viability of RAP was precisely the purpose of
our research. In order to find a correct interpretation of metrics as an observation
about learning behaviour requires further research, which is beyond the scope of this
dissertation due to time constraints. As the body of data grows, the same data or
newly gathered data (or both) can be used later to conduct quantitative research on
the didactical problems of teaching a formal method such as Ampersand.

To summarize the four steps of our approach described so far. One, we have
formed traces from Ampersand-models committed to RAP. Two, we have defined
metrics on those traces to obtain measurements to analyse. Three, we have analysed

104 CHAPTER 6. USING RAP FOR EDUCATION

the measurements to formulate observations. And four, we have discussed these ob-
servations to learn lessons.

To accommodate these lessons, we have added a fifth step: refine RAP with les-
sons learned. The fifth step leads us back to step one in order to validate the refine-
ments and learn more lessons.

During our research, one cycle by our approach has been completed. We have
named the five steps: harvesting traces, defining metrics, formulating observations,
learning lessons and refining RAP.

Harvesting traces Each time a student commits a change on an Ampersand-model,
that code is stored in RAP as a new version of the model. This results in a construction
trace of the model. Reasons for taking this approach were:

e Tracing is done completely. All students participate.

e This measurement is non-intrusive. Logging actions in RAP does not interfere
with the learning process.

e The measurement is objective. The researcher has no influence on the data that
is collected.

The conceptual design of a construction trace in RAP [chapter 7] is kept as a chrono-
logical sequence of files. Thus, common concepts in revision control systems' like
branches and merges have been omitted. Each successive file in RAP holds the next
version of an Ampersand-script.

Defining metrics In order to analyse traces we have defined metrics. The met-
rics have been implemented by combined functions in the Ampersand compiler and
standard commercial spreadsheet software. The Ampersand compiler produced all
quantitative measurements by executing the metrics on the traces. The spreadsheet
software has been used to produce graphics and pivot tables from these measure-
ments.

In order to get more variety in measurements, three types of metrics have been
used:

e properties of one version of a model,
o differences between two subsequent versions, and

e representations of a sequence of versions.

1 http://en.wikipedia.org/wiki/Revision_control#Common_vocabulary

6.3. A FIRST EXPLORATION OF TRACES IN RAP 105

In a next research cycle, we can define these three types of metrics in the RAP
model and have measurements on traces in RAP itself. For that we have defined a
measurement framework [chapter 7] that extends the RAP model. The definition of
a metric in that framework adds functionality to store and present measurements in
RAP, which are related to traces and Ampersand-models. Functions can be added to
the Ampersand compiler to produce the measurements in RAP, which may include
functions to produce graphics and pivot tables. Section 7.2 explains how to define
and implement a metric in RAP.

Formulating observations and Learning lessons The exploratory measurements
gave rise to various observations. These observations may be studied separately, to
determine whether they can be accepted as lessons learned in the practice of teaching.
In fact, this is the stage where most of the ideas for teaching rule-based design have
been formed. For that reason, the observations made here are an interesting research
result by themselves, which are of course in need of validation.

Refining RAP The observations and lessons learned give input to refine RAP. Such
refinements may be validated in the next cycle of harvesting, defining, formulating,
learning and refining. These refinements require much flexibility to adapt RAP to
progressive insight. That flexibility is obtained by generating RAP from the RAP
model, as described in chapter 4. A significant reduction of development efforts
was gained by generating RAP. It has allowed us to modify RAP frequently without
subjecting the students to error-infested software.

For the future we see potential to extend RAP with constraint-based feedback [24].
Such feedback can be defined in the RAP model by means of process rules [sec-
tion 4.3] and integrity rules [section 4.4.2].

Another opportunity is the implementation of metrics in RAP. Only by adding a
relation expression to an interface for students [section 4.5], students get access to
the measurements in RAP that we are using for research. Sharing statistic data with
students to enhance learning is a form of learning analytics [10].

6.3 A first exploration of traces in RAP

We have conducted an exploratory study following the proposed approach (section 6.2).
This study has two interrelated objectives:

e validate whether RAP facilitates progressive research and development;

e formulate observations about the behaviour of individual students in order to
contribute to teaching rule-based design.

106 CHAPTER 6. USING RAP FOR EDUCATION

To address the first objective, we describe how RAP has facilitated each step taken so
far. Formulated observations and contributions for further research will be presented
as results in the next section.

6.3.1 Step 1: harvesting traces

In order to obtain an empirical basis for this research, the first release of RAP (RAPv1)
has been collecting versions of models since April 2010. After a year, that constituted
a data set, consisting of 6947 versions in 172 traces of 52 identified students of the
course linked to 72 RAP user accounts.

6.3.2 Step 2: defining metrics

Various counters and qualifiers have been defined in the measurement framework of
RAP to explore the data set. For example, there are counters for the core elements of
an Ampersand-model: concepts, relations and rules. The study has focused on design
behaviour of students, coding, and usage of RAP.

To explore design behaviour, we have defined a heuristic visualization of a trace.
It combines a variety of measures, which we call a metrical percept. Figure 6.1 is
an example of a metrical percept, which plots five counters for five kinds of elements
in an Ampersand-model. The x-axis represents a sequence of versions of a model.
The y-axis represents the number of elements in a version. The label on the x-axis de-
scribes the change between two successive models with a change vector. The position
in the vector relates to a collection of elements in the model; the symbol qualifies the
change in that collection as only more elements (+), only less (—), more and less (1),
or no change (0)>. For example, the 23rd label 13hour(+01-0) in figure 6.1 means:
after 13 hours the student committed the next correct model to RAP, which has more
concepts, the same properties on previously existing relations, modified relations, less
rules, and the same relationships on previously existing relations.

With the available research data (6947 student models, organized in 172 traces),
18 metrical percepts could be obtained by filtering traces according to the following
criteria:

e A trace can be related to the design exercise of a student in the course.
e There are more than 10 versions committed to that trace.

o The design exercise of a student has been published on the wiki environment
of the course before we finalized the data set resulting from step 1.

2Equivalence of elements is defined on a semantic level e.g. the name of a concept, the signature of a
relation.

6.3. A FIRST EXPLORATION OF TRACES IN RAP 107

The 18 percepts obtained turned out to be from 18 different students. Six of them were
participants of a business and IT programme for self-tuition. Two were participants
of a business and IT programme in a classroom setting. Ten students participated in a
virtual class room setting. Figure 6.2 provides an overview that shows 18 miniatures
of the percepts. We refer to a particular percept in figure 6.2 by its column-row
position, e.g. Al for the percept in column A on row 1.

6.3.3 Step 3 and 4: formulating observations and learning lessons

What does the evidence tell us? Discussing the metrical percepts with tutors and
students has allowed us to formulate 6 observations. These are based on the counters,
qualifiers, and metrical percepts of step 2.

1. A metrical percept exhibits different types of student behaviour.
2. Students have difficulty to write correct code.
3. The user-friendliness of RAP needs improvement.

4. Change vectors can be used to qualify the changes made by students for meas-
uring the behaviour of students.

5. The start of a trace can predict some type of student behaviour.

6. A high activity level in the first session predicts successful completion of the
course within a limited period of time.

These observations are true in the eyes of the researchers®, which is based on the
evidence and the evaluations with tutors and students. Since the evidence (i.e. 6947
versions of student scripts) was used to formulate these observations, and only 18
metric percepts could be harvested from them, more evidence must be collected to
validate these observations. For this reason, we claim face validity only to the truth
of these observations.

6.3.4 Step 5: refining RAP

The majority of adjustments to RAPv1 concerned including more structure and ac-
tions in the RAP model. This has yielded more information that can be linked to a
trace. It has also reduced the amount of manually coded and maintained software
in RAP. For example, managing model code files has become part of the generated
software of RAPv2. The resulting RAP platform (RAPv2) is in use since May 2012.

3Truth of these observations requires a separate quantitative analysis, based on fresh data. That valida-
tion is beyond our scope and requires further research.

108 CHAPTER 6. USING RAP FOR EDUCATION

[} m

rol
=l
F 0z
=
F OE
FSE

oy

star(+1-+10)
2day(++100] |
Brin(000+0) | Y
22min{00000) |
1rmin(00001) | |
Trmin(00001) | \
3min000+) | |
2min{00001) rules
Trmin(00000] | |
3rnin{D0000)
tminoooon) | |
Amin(000013 |
1day(00011) |
Tday(D011+) |
1rmin(D0000) |
10gec(00000) |
Froin(00010) |
Ssec(00000) |
Bsec(0000d) |
Bsec(00000) |
ZGsec(00000) |
12sec(00000) |

i [
13hour(+01-0) »
ArinE0100) e
thour@i+0y) 7 T

Brnin(0000+) |
Sday(0-000) |
Bsec(DO000)
Bsec(00000) |

I
I
I
1Dsec(00000) |
I
I
I
I
.

concepts frelations properies population

e o o o o #

425ec(00000) |
2min{00000) |
3Emin{D1001)

4rmin{0-000)
3rnin(0000+4) |
17hour(0000-) |
1min{0000+) |
1rmin(00000) |

Figure 6.1: Enlarged metrical percept A5 of figure 6.2 (rotated)

6.3. A FIRST EXPLORATION OF TRACES IN RAP 109

ey
Fiprkiaaiiiuteg<is

Figure 6.2: 18 metrical percepts of completed design exercises

110 CHAPTER 6. USING RAP FOR EDUCATION

In RAPvl1, students must submit a new model if they wish to make changes. A
student edits an Ampersand script in an ASCII text editor and commits that script for
exploration in RAP. RAPv2 features editing of the population of a model through user
interfaces c.q. with feedback. A student may alter the population to validate or play
with a model. Feedback for changing the population has been defined to validate the
concept of constraint based feedback in RAP. Didactically correct feedback needs to
be accounted for.

Some of the observations of step 3 have led to specialistic adjustments, see sec-
tion 6.4.

6.3.5 Further steps

The results so far require a larger empirical base for further investigation. For this
reason, harvesting of new traces is continuing, yielding an increasing body of versions
ready to be analysed. RAPvI is still running in parallel and contains an unused data
set equivalent to the one of from step 1. RAPvV2 has opened possibilities to study
modifications to constraint based feedback and two new design activities, testing and
playing with a model.

6.4 Observations and Lessons Learned

This study has produced two relevant results. The first result is that RAP has been
built, tried, tested and refined. It is in actual use in the course on rule-based design
at the OUNL. It has proven to be usable for studying the learning behaviour in this
course. RAP has also proven flexible enough to adapt to progressive understanding by
the researchers. The traces and the metrical percepts derived from them demonstrate
that meaningful observations can be formulated with RAP.

The second result relates to the observations about the student’s learning beha-
viour. These observations were formulated while changes were being made to the
metrics on traces.

Observation 1: A metrical percept exhibits different types of student behaviour

A metrical percept (i.e. a picture as shown in figure 6.1) is intended to be the initial
input to cognitive processes. It results in a better understanding of student behaviour.

Based on our cognition of the 18 percepts in figure 6.2, we propose three kinds of
behavioural perceptions upon a metrical percept:

e construction
A students starts with a small foundation and expands, which visualizes as
increasing lines e.g. percept A2;

6.4. OBSERVATIONS AND LESSONS LEARNED 111

e jump start
A student defines a comprehensive model and adjusts, which visualizes as ho-
rizontal lines e.g. percept Al;

e various kinds of special behaviour, that emerge as a dip e.g. percept B3.
Inspired by this practical experience, we propose a fourth perception:

e reduction, define an over-specific model and reduce, which visualizes as a
shrinking model.

We have investigated the scripts near dips in order to find causes of such dips.
However, patterns of behaviour seem to be too diverse to draw general conclusions.
Some examples of behaviour that has caused a dip are: remodelling or reconstruction;
temporarily comment elements to isolate a coding or modelling problem; experiment
with an isolated part of a model.

We would expect that metrical percepts show behaviour that complies with the
Ampersand method. For example, Ampersand advocates to gradually extend a model
with more structure and rules. We would expect to see percepts that show construct-
ive behaviour. However the 18 percepts show diverse behaviour. So either students
do not adhere to Ampersand or these percepts do not visualize the desired behaviour.
That question is definitely interesting, but requires a separate experiment to answer.
Our idea is to assess percepts of traces of qualified designers, who have done the
design exercise while adhering to Ampersand. When those percepts do show com-
mon behaviour then a reference percept for Ampersand can be formulated. Such a
reference percept might be a helpful tool for teachers in a distance learning situation.

The metrical percept and its details are modelled as measures in the measurement
framework, which is part of the RAP model. Measurements in the framework can
be stored in RAP. Recall that RAP is an open platform to connect analytic tools to
the RAP database. Such tools may keep a metrical percept and its details up-to-
date with the latest activities of a student. For example, RAPv1 and RAPv2 contain
diagnostic information for students, which are real-time analytics kept up-to-date by
the Ampersand compiler.

Observation 2: Students have difficulty to write correct code

Despite the fact that Ampersand has deliberately few syntactic constructs, only half
of all code files is correct. Table 6.1 shows that 3760 of the 6947 versions in the RAP
repository are correct. 1606 versions are syntactically correct, but not semantically.
1574 versions are not syntactically correct. Is this normal in programming practice?
Do students require more support? Further investigation can answer such questions
and reveal what causes this magnitude of errors.

112 CHAPTER 6. USING RAP FOR EDUCATION

correct code 3760
syntactic error | 1574
semantic error | 1606
compiler fatal | 7

total ‘ 6947

Table 6.1: Correct scripts

Learning how to code in Ampersand is not a learning objective, but a necessity
to design with Ampersand. Therefore students may be given maximal support to
minimize the time to learn Ampersand. Michels et.al. [22] formulated clear, but con-
cise error messages for meaningless code committed to RAPvI. RAPv2 includes a
user interface to display script error messages to mitigate the trade-off that had to be
made between clear and concise. This means that students get a general message from
which they can navigate to more detailed information by their needs. This adjustment
aims at a higher percentage of correct scripts in RAPv2.

Observation 3: The user-friendliness of RAP needs improvement

Table 6.2 shows that at least 987 out of 3760 changes are semantically identical. Two
successive versions are semantically identical if the change vector between them is
(00000), which we qualify as nothing. So what does this say about learning beha-
viour? Why do students submit semantically identical models? In practice, commit-
ting a (00000)-change may make sense incidentally e.g. rename a rule. Over 25%
of the changes cannot be called incidentally any more, which implies malfunctions
of students designing with RAP. This can be blamed on an unnatural user interface
for RAP functions, bad instructions for designing with RAP, insufficient efforts by
students to understand designing with RAP, or any combination of those three. For
any of those causes, a decrease in (00000)-changes would mean an improvement.

Discussions with teachers and students suggest that the number of semantically
identical changes may be a measure of the user-friendliness of Ampersand. The avail-
able evidence cannot corroborate this claim, so further research is needed.

Observation 4: Change vectors can be used to qualify the changes made by stu-
dents for measuring the behaviour of students

An actual change is every change vector that is not (00000). A simple change is
every change vector that contains exactly four zeros. For example, if a student has
only changed the rules, the change vector is (00010). A complex change is every

6.4. OBSERVATIONS AND LESSONS LEARNED 113

nothing 987
population 964
rules 583
relations 425
concepts or properties 364
relations and rules 306
relations, rules and population | 77
relations and population 54
total 3760

Table 6.2: Scope of change

change vector that contains less than four zeros. There are 3760 — 987 = 2773 actual
changes. 1905 of 2773 changes are simple. 868 of 2773 changes are complex.

Table 6.3 shows various kinds of interesting behaviour based on counting change
vectors.

e Over 1350 simple changes concern changing the population, i.e.
(00001) (0000+) (0000-), or rules, i.e. (00010) (000+0). Population is needed
to valuate a rule in a meaningful way. Therefore, a common activity in RAP
appears to be formulating or validating rules.

e The complex changes in the top-12 of changes all concern adding more ele-
ments to a model. Thus, at least 2071 of 2773 changes are either simple or
concern adding elements. This is evidence that students mainly design online
using RAP and not off-line using a local text editor. Because, if a student would
mainly design off-line, one would expect more complex changes.

e Behaviour towards rules is different than behaviour towards properties. A prop-
erty is a simple rule, which is a rule that concerns only one relation e.g. total-
ity. The difference between a property and a simple rule is purely syntactic.
Table 6.3 shows that changing (00010) and adding (000+0) rules is a common
change, but deleting (000-0) them is not in the top-12 at all. Despite that proper-
ties are semantically like rules, they are treated differently. Deleting properties
(0-000) is more common than changing (01000) or adding (0+000) them.

Change vectors can be correlated to a certain kind of impact on the design. For
example, an experimental correlation of change vectors with impact on rule violations
in a model has been realized. Interesting conclusions could not be made yet with the
current number of traces.

114 CHAPTER 6. USING RAP FOR EDUCATION

407
333
277
203
153
136
131
108
103

94

68

58

[2071

(=N el iNe)
SO+ O

SO+ OO+ OO OO
— 4+ + OO+ DO O OO
~— O O O O

e N N N N N N W W N N NI N

S OO+ —m OO
[=NeNeBaoNeNel

Table 6.3: Top-12 changes

Printing the change vectors in the labels of the x-axis of a percept allows for
manual investigation of a sequence of changes. Analytic functions might be imple-
mented to search for patterns in sequences of change vectors.

Observation 5: The start of a trace can predict some type of student behaviour

If a kind of behaviour can be determined from change vectors in an early stage of the
trace, then intelligent feedback in RAP may be tuned to that kind of behaviour. The
first change vector may already hint to a certain kind of behaviour. For example, for
the 18 traces of figure 6.2: 3 of 18 start with nothing; 14 of the remaining 15 start
with a population; 6 of 15 start with rules; and 13 of 15 start with property rules. The
3 students who have started with nothing are candidates for construction behaviour.
The 6 students who have started with rules are candidates for jump start behaviour.
These observations suggest prediction of behaviour by early inspection of change
vectors. That is interesting in a distance learning situation.

Observation 6: A high activity level in the first session predicts successful com-
pletion of the course within a limited period of time

4 of 18 percepts in figure 6.2 show a daily usage of RAP for around one week only. 1
of those 4 percepts shows 12 versions in total, which is significantly less than the other
17 percepts. The median for the other 14 percepts is a month, ranging from several
weeks until almost a year. These 14 percepts can roughly be divided into halves. One

6.5. CONCLUSION 115

half shows a continuous usage of RAP on a less frequent basis than daily. The other
half shows around three series of daily activity with pauses of several days or months.
The 14 percepts show activity on 10 to 20 distinct days.

3 of 4 percepts that show usage of RAP for only one week show over 30 versions
on the first session or two, the other 15 percepts do not. We have counted a new
session when the next version is committed after a period of 5 hours or more. 9 of the
other 15 percepts never show over 30 versions in one session. Therefore, we classify
30 versions in one session as high activity. We expect that a high activity at the start
of a trace can determine whether a student has postponed the design exercise until the
end of the course or not.

A perception of sessions could have been visualized in a metrical percept. For
example, a bar can be drawn between two sessions. This adjustment has not been
made yet.

6.5 Conclusion

This chapter aims at validation of our five step development cycle with RAP. The idea
behind our approach is that usage of tools for design exercises gives rise to measuring
facts about student behaviour. Such facts can be used to study student behaviour and
enhance those tools for better education.

To execute that idea, RAP has been developed and used for a course on rule-
based design. RAP integrates user interfaces for design exercises with analytics upon
a trace of design products. RAP requires to be responsive to the maturing didactics
of rule-based design with limited development capacity. Responsiveness has been
mitigated to the design of a domain-specific ontology to which learning and analytic
components can easily be connected up to semantics of rule-based design exercises.

Four conclusions can be drawn from this study:

Feasibility to study student behaviour In the first three steps of our study, RAP
needed to support our search for initial metrics to obtain measured facts about stu-
dent behaviour. A framework was added to configure metrics upon a trace of design
products. The framework accounts for metrics with three types of input: a version
of a model, two subsequent version, or a sequential trace of versions. We aimed at a
rich visual representation of a trace, which resulted in a metrical percept. On a gen-
eric level, a percept is just a metric in the framework, which combines various other
metrics in the framework e.g. change vectors, number of rules. On a domain-specific
level, metrics need to be interpreted in the context of student behaviour. Student
behaviour may concern coding, designing, learning, or tool handling. Our metrics
are still raw products, which can be interpreted as facts about student behaviour in

116 CHAPTER 6. USING RAP FOR EDUCATION

an informal manner. Metrics with a formal interpretation to student behaviour are
required to discuss and study student behaviour. We envision studies to effects on
student behaviour due to changes in RAP. For example, the effects of changes in con-
straint based feedback might be studied. Or, the counter of correct code can be used
as a performance indicator.

Lessons about teaching Rule-Based Design The real reason for conducting this
research was to learn more about teaching a formal method, Ampersand, to students.
The observations made by analysing traces contain a number of relevant lessons, even
though more validation is desirable:

1. A metrical percept exhibits different types of student behaviour.
To have an instrument by which student behaviour can be observed is highly
relevant in a distance learning environment. Additional observations of that
behaviour is imperative, if this instrument is to be useful. Additional validation
is required. Nevertheless, results so far are promising, and have lead to new
understanding and significant improvements of the course already.

2. Students have difficulty to write correct code.
This observation is not new to the authors. It was the real reason for taking
the effort to do learning analytics in the first place. RAP has shown to provide
more understanding as to where student difficulties lie. Besides, it gives tutors
an instrument to measure all students, rather than paying attention to those who
ask questions.

3. The user-friendliness of RAP needs improvement.
Many improvements with respect to user friendliness have been made already.
RAP will tell us whether these improvements have an effect on learning.

4. Change vectors can be used to qualify the changes made by students for meas-
uring the behaviour of students.
Working with change vectors has proven effective and useful. This aspect is
making it possible to measure behaviour along multiple dimensions.

5. The start of a trace can predict some type of student behaviour.
This observation is likely to enable early intervention by tutors.

6. A high activity level in the first session predicts successful completion of the
course within a limited period of time.
This observation too, is useful to support early impressions by tutors of how a
student is doing.

6.5. CONCLUSION 117

The nature of these observations illustrates the capabilities of RAP to facilitate di-
dactical studies with facts about student behaviour. The authors see potential in met-
rics like the “metrical percept” and the change vector to measure student behaviour.
Eventually, a metrical percept might turn out to be a meaningful instrument for teach-
ers and examiners of this course.

Evaluation of developments to learning environment Most adjustments to RAP
concern enhanced functionality for design exercises. Minor adjustments have been
made to RAP due to the six observations. RAP includes diagnostic feedback upon
design products of a student, which has been configured on metrics in the framework.
Like diagnostic feedback, a percept can be reported to a student via the user inter-
faces of RAP to enhance their learning by the ideas of learning analytics. Educative
feedback can be configured in RAP as constraint based feedback based on knowledge
obtained from studies to student behaviour with RAP. This has convinced the authors
that RAP is responsive enough to support design exercises of the course on rule-based
design, now and in the future.

Assessment of design The ontology of RAP is defined in Ampersand. An Am-
persand compiler is used to generate software components for that ontology. An
external component can be connected to interfaces generated from the ontology of
RAP. We have connected custom programs in Haskell and spreadsheets to RAP. A
component can be designed in Ampersand; included in the design of RAP; and gen-
erated. User interfaces and the framework to configure metrics are included in the
design of RAP. We claim that without software generation, we could not have reached
an acceptable level of responsiveness. Furthermore, the central ontology served as a
backbone that allowed us to stay in control over semantic and software changes.

General conclusion RAP has fulfilled the requirements for progressive develop-
ment in the course on rule-based design. Students of that course have a dedicated
environment for design exercises with the infrastructure in place for constraint based
feedback and learning analytics. The development of RAP with Ampersand is key to
this success. RAP has potential to be used for studies to learning and design beha-
viour. Ampersand might be used to develop design exercise environments like RAP
e.g. an environment to design an UML class diagram. Ampersand is less suitable for
environments that require extensive development efforts to define a domain-specific
ontology, such as an environment for Java programming exercises. Knowledge and
tools of Ampersand are required and freely available via wiki.tarski.nl. The
Ampersand-model and software of RAP is freely available at request.

118 CHAPTER 6. USING RAP FOR EDUCATION

Chapter 7

SPECIFICATION OF RAP
EXTENSION FOR METRICS

Well-documented measurements are needed to study the learning behaviour of stu-
dents as described in chapter 6. This chapter presents a framework for metrics on
Ampersand projects in RAP, called the framework. The framework has been mod-
elled in Ampersand and can be included by the RAP model, so that metrics can be-
come part of the RAP model. The first section of this chapter has been generated
from the Ampersand-model of the framework like the previous chapter has been gen-
erated from the RAP model. As part of the RAP model, the meaning of measurements
and measurement results is documented and their semantics within RAP are formally
defined. Since measurement results in RAP are no different than other data in RAP,
any user of RAP can be given access to measurement results and use it to their benefit.
For example, a student may reflect on its own learning behaviour, a requirements en-
gineer may reflect on its design behaviour, or a teacher may monitor students. These
examples are opportunities of the framework. For now, the framework has primarily
been used to study the behaviour of students.

A researcher defines Ampersand projects on adl-files in RAP and metrics on Am-
persand projects. An Ampersand project is basically a chain of adl-files, which we
call a trace of adl-files. A metric or metric relation is a univalent relation on an
element of an Ampersand project, which represents a measurement function on that
element of a project. An element of a project can be an adl-file, anything in or related
to an adl-file, two subsequent adl-files or a chain of adl-files. For example, the study
described in chapter 6 uses several counters on adl-files, change vectors of subsequent
adl-files and metrical percepts of traces. Also, the relations defined in section 5.17
are metrics. Section 7.2 explains how to add a metric to RAP.

119

120 CHAPTER 7. SPECIFICATION OF RAP EXTENSION FOR METRICS

7.1 PATTERN: Ampersand projects

This pattern defines the entire framework for metrics on Ampersand projects. The
framework introduces concepts that represent elements of Ampersand projects like
chains of adl-files in a project, two subsequent files in a project or two successive
files in a project. These concepts are needed so that metric relations can be defined
upon them, that is, such a concept can become the source of a metric relation.

An Ampersand project is a set of adl-files from a requirements engineer, in which
each file contains an Ampersand-model for the same business context. We may speak
of an adl-file in a project as a version of an Ampersand-model. Versions in RAP
cannot be changed or removed from RAP, only new versions can be added to RAP.
Therefore, RAP has similarities with source code repositories. However, RAP does
not have all the characteristics of a source code repository like the ability to make a
branch or merge.

A researcher can manually define traces, which might be projects. For the study in
chapter 6, we have only defined traces, which we assumed to be Ampersand projects.
For example, a trace of the error-free adl-files of a user with a common context name.
In this example, we assume that the combination of a user and context name of an
adl-file identifies a model, which makes that file a version of that model. The versions
with script errors are simply left out of the trace.

In this section, we use a, b, ¢, d as variables for an adl-file and x as a variable for a
trace.

A trace has been modelled as a set of links. A link is a triple of two adl-files and
a trace, that represents successive versions in a trace. The researcher only needs to
define the set of links to define a trace. For example, ’ (a,b,x)’ € Link represents
two successive versions in trace x, where b is the successor of a. a is called the left
of the link and b the right. All chains and subsequent files in a trace are calculated
from a trace by connecting the left of a link to an equal right of a link, that is, a
reflexive transitive closure on the links of a trace. The reflexive transitive closure
of a relation R is expressed in Ampersand as R*. The longest chain in the reflexive
transitive closure on the links of a trace represents the trace itself. So, a researcher
needs to define a set of three links to define a trace x of four files (a,b,c,d), namely
{"(ab,x), {b,c,x), c,dx)}

Chain represents all chains that can be formed by connecting links of a certain
trace. A chain has been modelled as a pair of adl-files, where the left file is the first file
of the chain and the right file is the last. For example, ' ({ a,b,x),{ ¢, d,x))' €
Chain represents the chain from a to d.

SubsegFiles represents all pairs of two different, subsequent adl-files in a trace.
SubseqFiles has been modelled as being equivalent to Chain. For example,

"({ a,b,x),{ c,d,x))’ € SubseqFiles represents that a preceeds d.

7.1. PATTERN: AMPERSAND PROJECTS 121

A researcher needs to define the links of a trace such that they form one chain
of links. Each chain of links is reflexive, antisymmetric, transitive and lineair. The
following integrity rules have been defined to enforce that the links of a trace form
one chain of files:

Each link has one left file.

Each link has one right file.

Each two links in a trace cannot have the same left file.
Each two links in a trace cannot have the same right file.

The set of all chains is a reflexive transitive closure on the links of each trace,
which connects a left file to a right file if these files are the same.

The set of all chains is lineair. A chain can be formed between each two links
in a trace.

The set of all chains is antisymmetric. If a link a preceeds a link b, then b
cannot preceed a unless a = b.

This theme introduces 5 concepts, 4 generalization rules, 5 relations with proper-
ties and 6 rules related to ampersand projects in the measurement framework. Figure
7.1 shows a conceptual diagram, which includes the elements introduced in this sec-

tion.

AdFile

right/ 1€

Project SubsegFiles

Figure 7.1: Concept diagram of Ampersand projects

122 CHAPTER 7. SPECIFICATION OF RAP EXTENSION FOR METRICS

7.1.1 Defined concepts

This subsection defines 5 concepts and 4 generalization rules. Each definition defines
a concept followed by how the user interfaces display an atom a of that concept.
This display value of a is based on a key definition [section 4.6]. The key is defined
on the concept and may be parametrized with a relation expression on a. Relation
expressions are shaded. A key may be defined such that a is printed as an HTML-
element or as regular text. If a prints as regular text, then it will be embedded in a
hyperlink in case a user interface exists to view a [section 4.5].

Definition: A Trace is a set of adl-files in RAP ordered by creation date. Atom
a € Trace is displayed as is.

Definition: A Project is atrace of versions of an Ampersand-model from a require-
ments engineer.. Atom a € Project is displayed as a Trace.

Rule: Project is akind of Trace, which is formalized by the following generaliza-
tion rule:
Project < Trace (7.1)

Definition: A Link is a successive relation between two adl-files in a trace. Atom
a € Link is displayed - using relations 7.6, 7.7, 7.5 - as:

(a;left , a;right , a;in)

Definition: A Chain is a chain of links in a trace. Atom a € Chain is displayed -
using relations 7.6, 7.8, 7.7,7.9, 7.5 - as:

(asfirst;left , a;last;right , a;first;inNlast;in)

Definition: A SubseqgFiles is a subsequent relation between two different files in a
trace. Atom a € SubseqgFiles is displayed as a Chain.

Rule: SubsegFiles is akind of Chain, which is formalized by the following gener-
alization rule:
SubsegFiles < Chain (7.2)

Rule: Chainisakind of SubseqgFiles, which is formalized by the following gener-
alization rule:
Chain < SubseqgFiles (7.3)

Rule: Link is a kind of Chain, which is formalized by the following generalization
rule:
Link < Chain (7.4)

7.1. PATTERN: AMPERSAND PROJECTS 123

7.1.2 Declared relations

This subsection introduces 5 declared relations with properties and a meaning.

The following univalent, total relation has been declared

in : Link—Trace (7.5)

, which means that a link exists in one trace.
For example, ' (RAPv1,RAPv2,Project RAP)' in'Project RAP’ means:
" (RAPv1,RAPV2,Project RAP)’ isalinkin’Project RAP’.

The following univalent, total relation has been declared

left : Link—AdlFile (7.6)

, which means that a link has a left file.
For example, ' (RAPv1,RAPv2,Project RAP)’ left 'RAPv1’ means:
The left file of ’ (RAPv1, RAPV2, Project RAP)’ is 'RAPv1’.

The following univalent, total relation has been declared

right : Link—AdlFile 7.7)

, which means that a link has a right file.
For example, ' (RAPv1,RAPv2,Project RAP)’ right 'RAPv2’' means:
The right file of ’ (RAPv1, RAPV2,Project RAP)’ is 'RAPv2’.

The following univalent, total relation has been declared

first : Chain—Link (7.8)

, which means that a chain has a first link.
For example, ' ((a,b,x), (c,d,x))" first' (a,b,x)’ means:
The first link of 7 ((a, b, x), (c,d,x))" is’ (a,b, x)".

The following univalent, total relation has been declared

last : Chain—Link (7.9)

, which means that a chain has a last link.
For example, ’ ((a,b,x), (c,d,x))" last ' (c,d, x)’ means:
The last link of ’ ((a,b,x), (c,d,x))"is’ (c,d,x)".

124 CHAPTER 7. SPECIFICATION OF RAP EXTENSION FOR METRICS

7.1.3 Defined rules

This subsection defines 6 formal rules.

injective left - The following requirement has been defined:
Two links in a trace cannot have the same left file.
This is formalized - using the declared relations 7.6, 7.5 - as

inyin~ Nleft;left™ C 1

injective right - The following requirement has been defined:
Two links in a trace cannot have the same right file.
This is formalized - using the declared relations 7.7, 7.5 - as

inyin~ Nright,right” C 1

chain id - The following requirement has been defined:
A chain is identified by the first and last link of the chain.
This is formalized - using the declared relations 7.9, 7.8 - as

first;first™ Nlast;last™ C 1

all chains - The following requirement has been defined:

(7.10)

(7.11)

(7.12)

The set of all chains is a reflexive transitive closure on the links of each trace,

which connects a left file to a right file if these files are the same.

This is formalized - using the declared relations 7.5, 7.6, 7.7,7.9, 7.8 - as

Sirst™;Tenain; last = (right;left™)" Nin;in™

antisymmetric trace - The following requirement has been defined:

The set of all chains is antisymmetric.
This is formalized - using the declared relations 7.9, 7.8 - as

first” ;lenain; lastN (ﬁrstv;Hchain;last)v CI

lineair trace - The following requirement has been defined:
The set of all chains is lineair.

This is formalized - using the declared relations 7.9, 7.8, 7.5 - as

inyin~ C first” ;lenain; last U (ﬁrstv;lcham;last)v

(7.13)

(7.14)

(7.15)

7.2. HOW TO ADD A METRIC TO RAP 125

7.2 How to add a metric to RAP

For the research described in chapter 6, measurements by metrics were done in an
offline batch on a dump of files from RAPv1 using a combination of the Ampersand
compiler version of RAPv1 and spreadsheets. Metrics may be added to the RAP
model for real-time information from measurements like those of section 5.17. Such
real-time information can be used by (student) requirements engineers, researchers,
teachers, or any other user role in RAP.

If you want to add metrics to the RAP model then you need to declare a univalent
relation for each metric and implement a function to measure and update the popu-
lation of the relation for a metric. The univalent relation must have a source concept
that represents the required input for the metric and a target for the measurement
result. As a source, one may use:

e an AdlFile or Context, an AdlFile might contain script errors, a Context
cannot.

e a Successive or Subsequent, Successive is a special kind of Subsequent.
e aTrace.

For example, the three relations declared in section 5.17 each count the number
of some kind of model element in a context. These relations are maintained by a
function of the Ampersand compiler. When the user opens an Ampersand-script
in RAP, the Ampersand compiler interprets the script, counts the numbers of ele-
ments and updates the population of the relations for the counters. For example, the
user opens a context ' X’ € Context. The compiler counts five rules, three concepts
and six relation declarations. The compiler updates the population of RAP such that
"X" countrules ' 5", ' X' countcpts ' 3' and ' X' countdecls ' 6' .

7.3 Conclusion

Metrics in RAP can be modelled like any other concept in RAP. The measurement
framework is an example of how rules of a common concept, like a chain, can be
defined as an extension for domain-specific Ampersand-models, like the RAP model.

The purpose of the measurement framework is to configure metrics in RAP to
study student behaviour, like in chapter 6. By being an Ampersand-model, the frame-
work guarantees the semantic integrity between the different kinds of metrics on
traces of Ampersand-scripts. As a result we could rely on the formal semantics of
our measurements and thereby focus on studying student behaviour.

126 CHAPTER 7. SPECIFICATION OF RAP EXTENSION FOR METRICS

Like the previous chapter, sections of this chapter have been generated from an
Ampersand-model. To generate this chapter shows again how design automation can
help to document the design.

Chapter 8

CONCLUSIONS

The introduction of this dissertation related this research to a central question: What
are requirements for RAP to teach Ampersand? The requirements of RAP we seek
yield what RAP is (1), how RAP is developed and maintained (2) and how RAP is
used (3). Four research activities have been done to find answers, namely:

o The development of RAP with RAP, which relates to (2).

e Finding ways of support in RAP to teach the Ampersand language, which
relates to (1).

e Finding ways to automate tasks in RAP to support the learning process of a
student doing design exercises in RAP, which relates to (1).

e Finding ways to analyse usage data in RAP to get insight in the learning beha-
viour of students, which relates to (3).

8.1 Answer to research question

8.1.1 Requirements to develop RAP with RAP

We have succeeded to produce RAP as a rule-based prototype produced with Am-
persand. To produce a rule-based prototype with Ampersand, one needs to define an
Ampersand-model and apply the prototype generation function of Ampersand to that
model. The evolution of the prototype generation function - which took place parallel
to our research - has contributed to this success.

The only difference - apart from differences in the Ampersand-models - between
RAP and any typical Ampersand-generated prototypes is the inclusion of a function

127

128 CHAPTER 8. CONCLUSIONS

processor in RAP, namely the Ampersand compiler. For any function in the compiler,
we can implement a data item in RAP that applies data items in RAP to that function,
namely as an atom of the concept CCommand [section 5.2]. The atoms of CCommand
can be made available to the user by means of interfaces like any other data in RAP.

The compiler required the implementation of a special function to produce data
in RAP from actions on the file repository of Ampersand-scripts. For example, when
a user opens an Ampersand-script in the repository, then RAP applies the special
function to that script, which produces a new population for the RAP model. Next,
RAP is regenerated with the new population by applying the prototype generation
function to the RAP model with the new population.

Each user has been given his own instance of RAP as a solution to regenerate RAP
for that user without disturbing the other users. This solution on multiple physical
instances of RAP requires a solution to obtain one virtual RAP again. Such a virtual,
single RAP becomes needed when data from different physical instances need to be
combined in RAP.

8.1.2 Requirements to teach the Ampersand language

The learning objective for students is how to define requirements for an informa-
tion system and process those requirements into a design for that system. For that
objective they must use a method for rule-based prototyping, namely Ampersand.
Currently, students must learn the ASCII syntax of the Ampersand language for that
and produce Ampersand-scripts. Creating such scripts looks and feels like program-
ming and mathematics, which happens to distract students from the actual subject,
namely rule-based prototyping.

A requirement for RAP is prevent such distractions.

For that purpose, we have defined a type system with correct and detailed feed-
back on type errors. RAP can give a student all the details he needs to understand an
error, because the details do not have to be printed to the screen at once. That is, the
student can browse through the information using the interfaces of RAP.

RAP can put a level of abstraction on scripts, such that students do not have to deal
with scripts any more. The current interfaces of RAP present an Ampersand-model
to the user instead of a script. However, editing the Ampersand-model is still limited
to the population of the model. In the future, a student should be able to create and
edit Ampersand-models entirely through RAP interfaces. Those Ampersand-models
get stored in the repository as scripts out of sight of the user. In that future, a student
cannot make script errors any more.

A point of discussion is whether RAP should put a level of abstraction on relation
algebraic expressions or not e.g. a visual rule editor. Do we need to learn relation
algebra to understand how to define requirements and process them into prototypes?

8.1. ANSWER TO RESEARCH QUESTION 129

8.1.3 Requirements to automate tasks for design exercises

We have investigated how we could automate tasks for design exercises in RAP. And,
we have automated certain tasks in RAP. However, we have neither identified those
tasks explicitly, nor have we followed a structured approach to determine which tasks
could or should be automated. We do consider our cyclic five-step approach to be a
structured approach for that purpose.

We have demonstrated the following mechanisms to implement automated tasks:

e define process rules in the RAP model to guide a student through a design
exercise by means of hints e.g. [section 5.16].

e define integrity rules in the RAP model to prevent a student from introducing
errors in an Ampersand-model e.g. [section 5.10].

e implement automated tasks as functions of the Ampersand compiler e.g. gen-
erate conceptual diagram or generate a specification document.

e define metrics in the RAP model to have measurements in RAP and imple-
ment functions in the Ampersand compiler to obtain those measurements e.g.
[section 5.17].

e define process rules or interfaces on measurements in RAP to give diagnostic
feedback on the products or behaviour of a student e.g. the interface named
Diagnosis [chapter A.2].

8.1.4 Requirements to analyse learning behaviour

The RAP model has been extended with a measurement framework to define metrics
to analyse learning behaviour [chapter 7]. A metric defined in RAP can be imple-
mented as a function in the Ampersand compiler.

The measurement framework defines the concept of traces in RAP. A researcher
can compose traces from Ampersand-scripts in the repository of RAP. RAP may com-
pose certain traces automatically e.g. a function in the compiler that creates a trace
in RAP for all scripts of a single user without script errors. A trace is defined as a se-
quence of Ampersand-script ordered by creation time. The repository keeps track of
how to parse and interpret each script by documenting the version of the Ampersand
compiler, which yields a certain parse and interpretation function.

The researcher may define three types of metrics on the traces: metrics on each
single Ampersand-script in the trace, metrics on each two subsequent scripts in the
trace, or metrics on the entire trace. For that, the measurement framework defines the
concept of subsequent scripts within a trace. The concept of an Ampersand-script has
already been defined in the RAP model.

130 CHAPTER 8. CONCLUSIONS

8.2 Contributions

The four research activities mentioned earlier have resulted in the following contri-
butions, some of which are strongly related to each other:

A learning platform has been realised that enables research on the didactics
of rule-based design. The feasibility to study student behaviour with the learning
platform has been established by the study in chapter 6, which was published at
CSERCI13 [23]. RAP has the technical ability to analyse the data in RAP and process
the results into feedback for students. That is, RAP has a measurement framework to
add metrics to RAP [chapter 7] and RAP supports constraint-based feedback on data
in RAP, which includes metrics. Note that the data in RAP are the results of all design
actions of students performed in RAP. In chapter 6, metrics have been defined in a
framework of the learning platform. The metrics have been interpreted as observa-
tions about student behaviour in an informal manner. Metrics of three different kinds
were implemented, demonstrating the usability and flexibility of the platform for the
purpose of studying the learning behaviour with respect to rule-based design. Based
upon [23], it is reasonable to expect that many useful observations about improving
the learning of rule-based design can be investigated on our platform.

Students are using RAP as a learning platform. One of the first contributions of
this research was the release of RAP to students of the Open University course on
rule-based design. If anything, the analysis of 6947 traces has shown that students
can learn the Ampersand approach to rule-based design. To use emergent research
results immediately in the course has certainly not harmed our understanding of the
topic.

Lessons about teaching rule-based design have been drawn in [23]. These lessons
vary from usability in a general sense to very specific ones, such as the prediction of
behaviour that may lead to early intervention by tutors [chapter 6]. Each lesson is
a subtle contribution of this research and a concrete direction to refine the learning
platform or the didactics of rule-based design.

RAP as a learning platform is responsive enough to support design exercises of
the course with small development capacities. Evidence is the evolution of the learn-
ing platform from 2010 until 2012. The first Ampersand-generated version of the
learning platform was developed and released in 2010. That first version harvested
student data for one year. In the meantime, the run-time system generation function
of the Ampersand compiler has been improved. Analysis of the harvested data and
the revised compiler resulted in new requirements for a second version of the learning
platform. The second version of the learning platform was developed and released in
2012. A higher level of responsiveness can be reached by a continuous execution of

8.2. CONTRIBUTIONS 131

each of the five steps of our development approach - harvesting traces, defining met-
rics, formulating observations, learning lessons and refining RAP. For the future, we
expect this to be done in a repetitive cycle, consisting of harvest, define, formulate,
learn and refine.

Ampersand’s rule repository has been generated with Ampersand. All database
software, required for the RAP repository, has been generated with Ampersand rather
than written by hand. This includes web-based user interfaces, transactional func-
tionality, and software to safeguard the semantic integrity. To generate a rule repos-
itory from an Ampersand-model [chapter 4] proves that the model contains sufficient
knowledge about the rule repository; and proves that substantial knowledge about
rule-based design is embedded in the code of the Ampersand compiler. Chapter 5
and 7, which have been generated by the compiler as well, show how design automa-
tion can help to document the design.

Ampersand fulfils its purpose to automate designing of systems. This disserta-
tion presents the learning platform itself as evidence, because it has been designed
and generated almost entirely with Ampersand. But the work performed by our stu-
dents in the Rule-Based Design course is also evidence that Ampersand is up to its
task. During our research, but outside the scope of this dissertation, Ampersand has
also been used in industry, e.g. in projects for the judiciary, education inspection, im-
migration and university administration. That experience too shows how Ampersand
helps to automate the design of information systems, and corroborates our knowledge
of its limitations.

The consistency of the Ampersand language has been documented and exploited.
In order to make things work, it is imperative that the Ampersand language is well-
defined. Due to initial flaws in the language, substantial parts of the language had to
be redefined. The formal language definition, especially the type system, has under-
gone thorough revision, which has led to [22, 38]. As a result, at the start of 2012 the
Ampersand compiler was robust enough to meet its first real industrial challenge in
the Dutch judiciary system.

132 CHAPTER 8. CONCLUSIONS

8.3 Reflection

The contributions of this dissertation are focused on Ampersand. There are still only
a few researchers on Ampersand, which makes the direct scientific target audience
small. Indirectly, a much larger audience might be attracted, because Ampersand
has a common base with hot topics like business rules, model-driven software devel-
opment, constraint-based tutors, learning analytics, semantic web, relational models
and enterprise modelling. But, further research on RAP is still needed before we can
communicate our contributions to that larger audience in a natural manner.

Our research approach has been heavily based on practical experience, namely
experience from the development and usage of RAP. This approach has pros and cons.
The advantage is in my opinion that all kinds of new insights arise spontaneously,
which can be validated instantly and simultaneously by means of concrete examples.
The disadvantage is in my opinion the complexity of how all these new insights relate
to the current research communities. So, with the approach we could learn those
lessons we needed the most, but we did not have capacity left to reflect on all those
lessons in a scientific manner and share them with the right research community.
Our approach has resulted in an answer to our research question, namely validated
requirements for the research and development infrastructure of Ampersand. And, as
a bonus, we have learned valuable lessons for our practice of teaching Ampersand.

8.4 Further research and development

Our idea is that our research and development continues by repetition of the five steps:
harvest traces, define metrics, formulate observations, learn lessons and refine RAP.

In a next cycle, we can define the metrics in the RAP model and have meas-
urements on traces in RAP itself. Visualization functions, e.g. to produce metrical
percepts and pivot tables, can be moved to the Ampersand compiler.

Having metrics defined in RAP for research comes with an opportunity for stu-
dents. Only by adding a relation expression to an interface for students [section 4.5],
students get access to the measurements in RAP that we are using for research. Shar-
ing statistic data with students to enhance learning is a form of learning analytics [10].

The rule-based nature of RAP comes with an opportunity to extend RAP with
constraint-based feedback [24]. Such feedback can be defined in the RAP model
by means of process rules [section 4.3] and integrity rules [section 4.4.2]. However,
further research will be needed to find an interpretation of rule violations such that it
becomes useful feedback for students doing design exercises.

A development environment for other purposes than rule-based prototyping might
be defined in an Ampersand-model. We have experimented shortly with a rough
definition of a development environment for UML class diagrams, which has partly

8.4. FURTHER RESEARCH AND DEVELOPMENT 133

demonstrated that other development environments can be implemented like RAP.
Our research group has no plans to implement other kinds of development environ-
ments.

The main focus of further development on RAP is on editing the entire Ampersand-
model in RAP. This targets the concept in Ampersand of RAP being one big reposit-
ory of rules. From a users perspective, this targets the completion of a development
environment to work on Ampersand-models, professionally as well as in education.

134 CHAPTER 8. CONCLUSIONS

Appendix A

The RAP model

A.l1 RAP

CONTEXT RAP
INCLUDE ”student_-AST_interfaces.adl”

3 INCLUDE ”RAP_purposes.adl”

PATTERN ”The repository of files”

s CONCEPT FileRef ”a reference to a file in the repository”

CONCEPT FileName “a name of a file”

CONCEPT FilePath ”a location in the repository”

filename :: FileRef—>FileName PRAGMA "The file name in ~ ” is 7 77

MEANING IN ENGLISH ”, which means that a file reference includes a
file name.”

= [(”comp/gmi/RAP.v2.adl” ,”RAP.v2.adl”)]

filepath :: FileRefxFilePath [UNI] PRAGMA ”The file path in ” ” is ” 77

MEANING IN ENGLISH 7, which means that a file reference may include a
relative or absolute file path.”

= [(”comp/gmi/RAP.v2.adl”,”comp/gmi/”)]

KEY FileRef: FileRef (PRIMHTML "<a href="../../index.php?file=",
filepath , filename ,PRIMHTML ”\\\\&userrole=", uploaded";
userprofile , PRIMHTML ”’>”, filename , PRIMHTML ”")

RULE “unique file location”: filename;filename~ /\ filepath;filepath~
|— I

MEANING IN ENGLISH ”Each file has a unique location on the file system

of the repository.”

CONCEPT CalendarTime “a time representation , which includes day,
weekday , month, year, hour, minute, second and timezone”

filetime :: FileRefxCalendarTime [UNI]

MEANING IN ENGLISH ”, which means that the time on which a file has
been committed to the repository may be known.”

135

26

)
N

3

29

41

136 APPENDIX A. THE RAP MODEL

CONCEPT User ”a name with which a requirements engineer has logged in
to RAP”

CONCEPT UserProfile ”a kind of user”

uploaded: :User«FileRef PRAGMA ”” ” has committed ” ” to the repository

MEANING IN ENGLISH 7, which means that a user may have committed files
to the repository.”

= [(7gmi”,”comp/gmi/RAP.v2.adl”)]

userprofile::UserxUserProfile [UNI] PRAGMA ”” ” has access to the
compiler commands for a ” 77

MEANING IN ENGLISH 7, which means that a user may have a user profile ,
which gives him access to the set of compiler commands for that
user profile.”

= [(”gmi”,”Student”)]

RULE "user profiles”: ’Student’ \/ ’StudentDesigner’ \/ ’Designer’ |—
I[UserProfile]

MEANING IN ENGLISH ”There are three user profiles: Student,
StudentDesigner and Designer.”

CONCEPT AdIFile ”a file of the adl—format, which is the format for
Ampersand—scripts”

SPEC AdlFile ISA FileRef

—KEY AdIFile: inherit from File

sourcefile : : Context—>AdlFile PRAGMA ”Context ” ” originates from ~ 7”7

MEANING IN ENGLISH 7, which means that a context originates from an
adl—file in the repository.”

= [(”RAP” ,”comp/gmi/RAP.v2.adl”)]

includes ::ContextxFileRef PRAGMA ”Context ~” 7 partially originates
from ” 77

MEANING IN ENGLISH ”, which means that the adl—file from which a
context originates may include other files.”

= [(”RAP”,”comp/gmi/RAP.v77.pop”)]

CONCEPT CCommand ”"a command for the Ampersand compiler”

applyto : :CCommand—>AdlFile PRAGMA “Command ” ” applies to 7 77

MEANING IN ENGLISH 7, which means that a compiler command applies to
an adl—file.”

= [(”1(comp/gmi/RAP.v2.adl)”,”comp/gmi/RAP.v2.adl”)]

functionname :: CCommand—>String PRAGMA “"Command ” ~ uses the function

MEANING IN ENGLISH 7, which means that a compiler command uses a
compiler function that has a user—friendly name.”

= [(”1(comp/gmi/RAP.adl)”,”load into Atlas”)]

operation :: CCommand—>Int PRAGMA “Command ” ” uses the function

MEANING IN ENGLISH 7, which means that a compiler command uses a
compiler function that has a technical identifier.”

= [(”1(comp/gmi/RAP.v2.adl)”,”1”)]

KEY CCommand: CCommand(PRIMHTML “<a href="../../index.php?operation=",
operation

LPRIMHTML “\\\\& file=", applyto;filepath , applyto;filename

ECRNETRT)

56

64
65

66

68

69

-

80

A.l. RAP 137

LPRIMHTML “\\\\&userrole=", applyto;uploaded[User«AdlFile]~;
userprofile
LPRIMHTML 7\ \\\>", functionname , PRIMHIML ~")

CONCEPT NewAdlFile "a predefined adl—file , which opens as a new script
in the script editor on the upload page”

SPEC NewAdlIFile ISA AdlFile

KEY NewAdlFile: NewAdIFile (PRIMHTML "",
filename [NewAdIFile+FileName] ,PRIMHTML” "")

> newfile:: User—>NewAdlFile PRAGMA ”” ” has an option to open ” ” in the

script editor”
MEANING IN ENGLISH ”, which means that a user has an option to open a
new script.”

»

= [("gmi”,”empty.adl”)]

CONCEPT SavePopFile ”a file to which a user can save the population of
a context”

7 SPEC SavePopFile ISA FileRef

KEY SavePopFile: SavePopFile (PRIMHTML "<a href="../../index.php?
operation=4\\\\&file=", filepath[SavePopFilexFilePath] , filename[
SavePopFilexFileName]

LPRIMHTML ” *\\\\>", filename[SavePopFilex
FileName] ,PRIMHTML ~")

savepopulation:: Context—>SavePopFile PRAGMA " If the user exports the
population of ” ” then that population will be saved to a new pop—
file ” ” in the repository”

MEANING IN ENGLISH ”, which means that there is an option to export
the population of a context to a pop—file.”

= [(”RAP”,”comp/gmi/RAP.v78.pop”)]

CONCEPT SaveAdlFile ”a file to which a user can save the changes made
to a context”
SPEC SaveAdlFile ISA AdIFile
KEY SaveAdlFile: SaveAdlFile (PRIMHTML “"<a href="../../index.php?
operation=2\\\\&file=", filepath[SaveAdlFilexFilePath] , filename
SaveAdlFile«FileName]
LJPRIMHTML ”\\\\& userrole=", savecontext~;
sourcefile ;uploaded[UserxAdlFile]7; userprofile
LPRIMHTML 7\ \\\>", filename[SaveAdlFilex
FileName], PRIMHTML ”")
savecontext:: Context—SaveAdlFile PRAGMA " If the user commits the
changes made to ” ” then that context including the changes will
be saved to a new adl—file ” ” in the repository”
MEANING IN ENGLISH ”, which means that there is an option to commit
changes on a context to an adl—file.”
= [(”RAP”,”comp/gmi/RAP.v3.adl”)]
ENDPATTERN

PATTERN ”Committed files”

s CONCEPT AdlVersion ”a version of the Ampersand compiler”

firstloadedwith :: AdIlFile * AdlVersion [UNI] PRAGMA " At the time that

90

91

92

93

94

96

98

99

106

115

116

117

118

138 APPENDIX A. THE RAP MODEL

» [TENETET)

was committed, RAP used compiler version

MEANING IN ENGLISH ”, which means that the version of the Ampersand
compiler at the time that an adl—file was committed to the
repository may be known.”

= [(”comp/gmi/RAP.v2.adl”,”v2.2.711-2191")]

inios ::ConceptxAtomID PRAGMA ”Initially , concept ” ” contained an atom

MEANING IN ENGLISH 7, which means that the initial population of a
concept may contain atoms.”

= [(”AdIFile” ,”comp/gmi/RAP.v2.adl”)]

inipopu::Declaration+PairID PRAGMA “Initially , ” ” contained a pair
with id 7 7”7

MEANING IN ENGLISH ”, which means that the initial population of a
relation may contain pairs of atoms.”

= [("userprofile::UserxUserProfile”,”523422885")]

inileft::PairID«Atom PRAGMA ”Initially , the pair with id ” ” had a
left atom ” 77

MEANING IN ENGLISH 7, which means that a pair of atoms in the initial
population of relations had an initial left atom.”

= [(7523422885”,”7gmi”)]

iniright::PairID*Atom PRAGMA " Initially , the pair with id 7 7 had a
right atom 7 7”7

MEANING IN ENGLISH 7, which means that a pair of atoms in the initial
population of relations had an initial right atom.”

= [(7523422885”,”Student”)]

CONCEPT ParseError “an error in the syntax of a script”

CONCEPT TypeError ”an error concerning the type of a relation
declaration or relation expression in the script”

CONCEPT ErrorMessage “a description of an error” TYPE ”"Blob”

CONCEPT FilePos ”a position in a file”

CONCEPT Hint ”"a description of possible actions which may resolve an
error”

CONCEPT ModElemType “a type of model element e.g. rule definition ,
user interface definition, key definition”

CONCEPT ModElemName ~the name of a model element”

KEY ParseError: ParseError (TXT ”Click here for error details”)

parseerror :: FileRef * ParseError [UNI]

MEANING IN ENGLISH 7, which means that the Ampersand—script in a file
may have a parse error.”

pe-action :: ParseError — Hint

MEANING IN ENGLISH ”, which means that a parse error describes
possible actions which may resolve the error.”

pe_position :: ParseError — FilePos

MEANING IN ENGLISH 7, which means that a parse error has occurred on a
file position.”

pe-expecting :: ParseError —> ErrorMessage

MEANING IN ENGLISH ”, which means that a parse error has a message,
which describes what was expected by the parser.”

KEY TypeError: TypeError (TXT ”Click here for details of error at 7,
te_position)

typeerror :: FileRef x TypeError

119

124

125

126

127

129

138
139
140
141

144
145
146
147
148

149

A.l. RAP 139

MEANING IN ENGLISH ”, which means that the Ampersand—script in a file
may have type errors.”

te_message :: TypeError * ErrorMessage [UNI]

MEANING IN ENGLISH ”, which means that a type error may have a message
that gives a complete description of the error.”

te_parent :: TypeError * TypeError [UNI]

; MEANING IN ENGLISH ”, which means that a type error may be nested in

another type error that describes the same mistake on a higher
level .”

te_position :: TypeError * FilePos [UNI]

MEANING IN ENGLISH ”, which means that a type error may have occurred
on a file position.”

te_origtype :: TypeError * ModElemType [UNI]

27 MEANING IN ENGLISH 7, which means that a type error may have occurred

in a certain type of model element.”

te_origname :: TypeError * ModElemName [UNI]

MEANING IN ENGLISH 7, which means that a type error may have occurred
in a model element that has a certain name.”

ENDPATTERN

PROCESS ”Handling script errors”

3 ROLE Student MAINTAINS noparseerror ,notypeerror

RULE "noparseerror”: —parseerror
MEANING IN ENGLISH ”The requirements engineer needs to solve all parse
errors.”

MESSAGE IN ENGLISH LATEX "\\textbf{A syntax error was encountered in
your script.} No CONTEXT screen could be generated.”
VIOLATION (TGT I, TXT ” Open ”, SRC I, TXT ” to fix error.”)

RULE "notypeerror”: —typeerror
MEANING IN ENGLISH ”The requirements engineer needs to solve all type
errors.”

MESSAGE IN ENGLISH LATEX "\\textbf{Type error(s) were encountered in
your script.} A CONTEXT screen was generated with concepts and
relation declarations only, which may be useful to understand and
fix the errors.”

VIOLATION (TGT I, TXT ”. Open ”, SRC I,TXT ” to fix error.”)

ENDPROCESS

PATTERN Contexts
CONCEPT Context "a model element, which defines the name and scope of
an Ampersand model”
”DatabaseDesign . Ampersand. Core. AbstractSyntaxTree .
A_Context(ctxnm, ctxpats ,ctxcs):svn568”
KEY Context: Context(ctxnm)

> ctxnm ::Context—>Conid PRAGMA "The context in 7 7 is called 7 77
3 MEANING IN ENGLISH ”, which means that a context has a user—defined

name.”

154
155

156

157
158

159

160
161

162

164

165

166
167
168
169
170

172

173

174

175

176

178

179

180

=

182

183

184

186

187

188

189

190

191

140 APPENDIX A. THE RAP MODEL

= [(”comp/gmi/RAP.v2.adl”,”RAP”)]
ctxpats::Context+Pattern PRAGMA ”Context ” ” contains a pattern
MEANING IN ENGLISH 7, which means that a context may contain patterns.

2

» 93

= [(”RAP”,”Committed files”)]
ctxcs ::ContextxConcept PRAGMA ”Context ” ” contains a concept
MEANING IN ENGLISH 7, which means that a context may contain concepts.

)

ECRETRT)

= [("RAP”,”UserProfile”)]
ENDPATTERN

3 PATTERN Patterns

CONCEPT Pattern “a model element, in which a requirements engineer
groups certain model elements in a logical manner”
”DatabaseDesign . Ampersand. Core. AbstractSyntaxTree .
Pattern (ptnm, ptdcs , ptgns , ptrls):svn568”
KEY Pattern: Pattern (ptnm)

ptnm :: Pattern —Conid
MEANING IN ENGLISH ”, which means that a pattern has a name.”
ptrls :: PatternxRule

MEANING IN ENGLISH 7, which means that a pattern may contain rule
definitions .”

ptgns :: Patternx=Gen

MEANING IN ENGLISH ”, which means that a pattern may contain
generalization rule definitions.”

ptdcs :: PatternxDeclaration

MEANING IN ENGLISH 7, which means that a pattern may contain relation
declarations .”

ptxps :: PatternxBlob

MEANING IN ENGLISH ”, which means that a pattern may have purpose
descriptions in a natural language.

ENDPATTERN

PATTERN ”Generalization rules”

CONCEPT Gen ”, or generalization rule, is a model element to define
the is—a—relationship between a more specific and a more generic
concept”

”DatabaseDesign . Ampersand. Core. AbstractSyntaxTree . A_Gen (
genspc , gengen) :svn568”
KEY Gen: Gen(TXT ”SPEC ”, genspc;cptnm , TXT ” ISA ” , gengen;cptnm)

s RULE “eq gen”: gengen;gengen~ /\ genspc;genspc” |— I

MEANING IN ENGLISH ”There is only one generalization rule between a
certain specific concept and a certain generic concept.”

gengen :: Gen—Concept PRAGMA “In ” ”, ” ” is the generic concept”

MEANING IN ENGLISH ”, which means that a generalization rule has a
generic concept.”

= [(”SPEC Horse ISA Animal”,” Animal”)]

genspc :: Gen—Concept PRAGMA “In ” 7, 7 ” is the specific concept”

192

193
194
195
196
197

198

199

200

201

202

203

204

205

206

207

208

223

224

N}

A.l. RAP 141

MEANING IN ENGLISH 7, which means that a generalization rule has a
specific concept.”
= [(”SPEC Horse ISA Animal”,”Horse”)]

ENDPATTERN

PATTERN Concepts
CONCEPT Concept "a model element for an abstract business term of
which the population represents a certain set of business objects’
”DatabaseDesign . Ampersand. Core. AbstractSyntaxTree .
A_Concept (cptnm , cptdf ,cptos):svn568”
KEY Concept: Concept(cptnm)

>

cptnm :: Concept—>Conid
MEANING IN ENGLISH ”, which means that a concept has a name.”
cptos :: ConceptsAtomID PRAGMA “The population of ” ” contains an atom

element identified by ” 77

MEANING IN ENGLISH ”, which means that the population of a concept may
contain atom elements.”

= [(”Horse”,”443859690”)]

cptdf :: ConceptxBlob

MEANING IN ENGLISH ”, which means that a concept may have definitions
in a natural language.”

cptpurpose :: ConceptxBlob

MEANING IN ENGLISH ”, which means that a concept may have purpose
descriptions in a natural language.”

CONCEPT Order ”a structure for a group of is—a—related concepts”

3 KEY Order: Order(ordername)

ordername :: Order —> String

MEANING IN ENGLISH ”, which means that an order has a name.”

order :: Concept —> Order PRAGMA ”Concept ” ” belongs to the ” 77
MEANING IN ENGLISH ”, which means that a concept belongs to an order.”
= [(”Horse”,”order of animals”)]

RULE “order”: order ~; genspc ~; gengen;order |— I

MEANING IN ENGLISH “Is—a—related concepts belong to the same order.”

> RULE “referential integrity”™: src™;decsgn™;decpopu;left \/ trg™;decsgn

“;decpopu;right |— order;order™;cptos

MEANING IN ENGLISH "An atom in the domain or codomain of a relation is
an instance of a concept from the same order as the source
respectively the target of that relation.”

MESSAGE IN ENGLISH LATEX ”If an atom is in some tuple of a relation ,
then that atom must exist in the concept that is the source
respectively target of that relation. Deletion of an atom from a
concept is not permitted if that atom is still present in some
tuple of some relation. Nor is addition of a tuple permitted if
the source or target atom is not present in the related concept.
It is a violation of \\textbf{Referential integrity} rule for a
relation.”

VIOLATION (TXT "The tuple 7, SRC I, TXT ” refers to a source or target

226
227
228

229

230

239
240
241
242
243

244

245

246
247
248
249
250
251
252
253
254
255

256

259
260
261

262

142 APPENDIX A. THE RAP MODEL

atom that does not exist.”)

CONCEPT AtomID ” a model element for an atom”
CONCEPT Atom “the value of an atom and an identifier of an atom within
an order” TYPE ”Blob”
”DatabaseDesign. Ampersand . Input .ADL]1. UU_Scanner . pAtom:

svn568”
KEY AtomID: AtomID(atomvalue , TXT ” :: ”, cptos~;order;ordername)
atomvalue : : AtomID—>Atom PRAGMA ”The value of atom ” ” is 7 77

MEANING IN ENGLISH ”, which means that an atom element has a value.”

= [(7443859690”,”Jolly Jumper”)]

RULE “entity integrity concept”: atomvalue;atomvalue™ /\ cptos ™~ ;order;
order “;cptos |— I

MEANING IN ENGLISH ”An atom of a concept is unique within the order of
that concept.”

;. MESSAGE IN ENGLISH LATEX ”Every atom of a concept is unique, or, no

two atoms in the population of a concept have the same name.
Addition of a duplicate atom is not permitted. It is a violation
of the \\textbf{Entity integrity} rule for this concept. Please
refer to book \\emph{Rule Based Design}, page 43 and 52, \\emph{
entity integrity }. 7

VIOLATION (TXT ”An atom with name 7, SRC I, TXT ” already exists.”)

ENDPATTERN

PATTERN ”Relation type signatures”
CONCEPT Sign ”, or a relation type signature, is a model element for
relation types.”
”DatabaseDesign . Ampersand . Core. AbstractSyntaxTree . Sign:
svn568”7
KEY Sign: Sign(src;cptnm , TXT ” % ” , trg;cptnm)

src::Sign—Concept
MEANING IN ENGLISH 7, which means that a sign has a source concept.”
trg::Sign—Concept
MEANING IN ENGLISH ”, which means that a sign has a target concept.”

CONCEPT PairID ”a model element for a pair of atoms”

KEY PairID: PairID(left;atomvalue , TXT ” % ” , right;atomvalue)
left ::PairID—AtomID

MEANING IN ENGLISH ”, which means that a pair of atoms has a left atom

»

right:: PairID —AtomID

255 MEANING IN ENGLISH ”, which means that a pair of atoms has a right

atom.”
ENDPATTERN

PATTERN ”Relation declarations”
CONCEPT Declaration 7, or a relation declaration, is a model element

A.l. RAP 143

to declare a relation”

263 ”DatabaseDesign. Ampersand . Core. AbstractSyntaxTree .
Declaration (decnm,decsgn ,decprps):svn568”~
2%+ KEY Declaration: Declaration(decnm , TXT ” :: 7, decsgn;src;cptnm |,

TXT ” * 7, decsgn;trg;cptnm)

25 RULE 7eq declaration”: decnm;decnm”™ /\ decsgn;src;(decsgn;src)” /\
decsgn;trg ;(decsgn;trg)” |- 1

266 MEANING IN ENGLISH ”A declared relation can be identified by a name, a
source concept, and a target concept.”

267

268 decnm ::Declaration —>Varid PRAGMA ”The name of ” ” is 7 77

200 MEANING IN ENGLISH ”, which means that a relation is declared with a
name . ”

w0 = [("r::AsB”,”r”)]

[TENETET)

271 decsgn ::Declaration —>Sign PRAGMA “The sign of ” 7 is

27> MEANING IN ENGLISH ”, which means that a relation is declared with a
sign.”

3 = [("r::AxB” ,”7AxB”)]

274 decprps:: Declaration«PropertyRule [INJ] PRAGMA ”” ” has a property 7 7

275 MEANING IN ENGLISH ”, which means that a relation may be declared with
property rules.”

276 = [("r::AxB” ,”TOT r::AxB”)]

277

273 CONCEPT Property “a predefined symbol to define property rules”

279 ”DatabaseDesign . Ampersand .ADLI1. Prop . Prop (..) :svn568”

230 CONCEPT PropertyRule ”a rule, that has been defined as a property”

281 ”DatabaseDesign . Ampersand . ADL1. Rule . rulefromProp :
svn568”

222 SPEC PropertyRule ISA Rule

233 RULE "property enum”: I[Property] |- *—>" \/ *UNI" \/ °TOT’ \/ ’INJ’

\/ ’SUR’ \/ 'REX’ \/ ’IRF’ \/ °SYM’ \/ ’ASY’ \/ 'TRN’ \/ ’PROP’

284+ MEANING IN ENGLISH ”There are eleven predefined symbols to define
property rules: —> means univalent and total; UNI means univalent;
TOT means total; INJ means injective; SUR means surjective; RFX
means reflexive; IRF means irreflexive; SYM means symmetric; ASY
means antisymmetric; TRN means transitive; and PROP means
symmetric and antisymmetric.”

25 declaredthrough::PropertyRulexProperty [TOT] PRAGMA “Rule ” 7 is
defined by means of property symbol 7 77

236 MEANING IN ENGLISH ”, which means that a property rule is defined by
means of predefined symbols.”

%7 = [("TOT r::AxB”,”TOT”)]

20 decprL ::Declaration*String [UNI]

200 MEANING IN ENGLISH ”, which means that the meaning of a relation may
be clarified with an example sentence that has a prefix text.

201 decprM ::Declaration*String [UNI]

200 MEANING IN ENGLISH ”, which means that the meaning of a relation may
be clarified with an example sentence that has an infix text.”

203 decprR ::Declaration*String [UNI]

294

310

311

312

314

5

316

317
3

8

319

144 APPENDIX A. THE RAP MODEL

MEANING IN ENGLISH 7, which means that the meaning of a relation may
be clarified with an example sentence that has a suffix text.”

decmean ::Declaration * Blob

MEANING IN ENGLISH 7, which means that a relation may have
descriptions of its meaning in a natural language.”

decpurpose: : Declaration * Blob

MEANING IN ENGLISH 7, which means that a relation may have purpose
descriptions in a natural language.”

decpopu ::Declaration*PairID

MEANING IN ENGLISH ”, which means that the population of a relation
may contain pairs of atoms.”

RULE “entity integrity of relation”: left;left™ /\ right;right™ /\
decpopu~;decpopu |— I

s MEANING IN ENGLISH ”There cannot be two pairs in a declared relation

with the same left and same right.”

MESSAGE IN ENGLISH LATEX ”Every tuple in a relation is unique, or, no
two tuples in the population of a relation may have the same
source and target atoms. Addition of a duplicate tuple is not
permitted. It is a violation of the \\textsf{Entity integrity}
rule for this relation.”

s VIOLATION (TXT A tuple with the same source and target atoms ~, SRC I

, TXT ” already exists.”)

RULE “typed domain”: decpopu;left;cptos™;order |— decsgn;src;order

MEANING IN ENGLISH "The left atoms of pairs in a declared relation
belong to the same order as the source of that relation.”

MESSAGE IN ENGLISH LATEX ”You try to add a tuple with a source atom,
that is not in the population of the source of the relation. This
is a violation of the type of the tuple. TIP: enter text in the
left input field to get a shorter pick list. Note on ISA—relations

You can make an atom more specific by moving it to the

population of a more specific concept.”

VIOLATION (TXT ”Source atom ”, TGT I, TXT ” is not in the population
of 7, SRC decsgn;src)

RULE "typed codomain”: decpopu;right;cptos™;order |— decsgn;trg;order

MEANING IN ENGLISH ”"The right atoms of pairs in a declared relation
belong to the same order as the target of that relation.”

MESSAGE IN ENGLISH LATEX ”You try to add a tuple with a target atom,
that is not in the population of the target of the relation. This
is a violation of the type of the tuple. TIP: enter text in the
right input field to get a shorter pick list. Note on ISA—
relations: You can make an atom more specific by moving it to the
population of a more specific concept.”

VIOLATION (TXT ”Target atom ~, TGT I, TXT ” is not in the population
of 7, SRC decsgn;trg)

ENDPATTERN

PATTERN Expressions
CONCEPT ExpressionID ”a model element for a relation”

326

327

329

346
347

348

349

356

358

A.l. RAP 145

CONCEPT Expression “the relation expression, which is a relation
expression written in Ampersand ASCII syntax”
”DatabaseDesign . Ampersand. Input.ADLI. Parser . pExpr:
svn568”

> KEY ExpressionID : ExpressionID (exprvalue)

exprvalue :: ExpressionID—>Expression PRAGMA ”Relation ” ” is
expressed as 7 77

MEANING IN ENGLISH ”, which means that an expression element has a
value , which is a relation expression.”

= [("RULE RFX r::A*A: r |— I7.,”r |- I7)]

rels :: ExpressionID+Relation PRAGMA ”” ” uses ” 7 in its expression”

MEANING IN ENGLISH ”, which means that an expression uses relations
that have been declared.”

= [("RULE RFX r::A*A: r |— I7,”r[AxA]”)]

CONCEPT Relation “a relation term in an expression that has a
declaration”

> KEY Relation: Relation(relnm , TXT ”[” , relsgn;src;cptnm , TXT "x” |

relsgn;trg;cptnm , TXT ”]”7)

relnm :: Relation —> Varid PRAGMA ”The name of ” ” is 7 77

MEANING IN ENGLISH 7, which means that a relation has a name.”

= [("r[AxA]”,717)]

relsgn:: Relation —> Sign PRAGMA "The sign of ” 7 is ” 77

MEANING IN ENGLISH ”, which means that a relation has a sign.”

= [("r[A%A]” ,”A%A”)]

reldcl:: Relation —> Declaration PRAGMA ”” ” has been declared by 7 77

MEANING IN ENGLISH ”, which means that a relation has a declaration.”

= [("r[A%A]”,71r: :AxA”)]

RULE "rel name is decl name”: relnm = reldcl ;decnm

MEANING IN ENGLISH ”The name of a relation is the same as the name in
its declaration.”

5 ENDPATTERN

PATTERN Rules
CONCEPT Rule ”a model element, which defines a rule by means of a
relation expression”
”DatabaseDesign . Ampersand. Core. AbstractSyntaxTree . Rule(
rrnm , rrexp) :svn568”
KEY Rule: Rule(rrnm)

rrnm - :: Rule —> ADLid PRAGMA ”The name of 7 7 is 7 77

MEANING IN ENGLISH ”, which means that a rule has a name.”

= [(”RULE REX r::A*A” ,”RFX r::AxA”)]

rrexp :: Rule — ExpressionID PRAGMA ”The relation expression of ” 7
is 77”7

MEANING IN ENGLISH ”, which means that a rule has a relation
expression to express that rule.”

= [("RULE RFX r::A*A” ,"RULE RFX r::A*A: r |— [7)]

rrmean:: Rule * Blob PRAGMA ”” 7 means 7 77

359

373

374

389

390

39

392

393

394

146 APPENDIX A. THE RAP MODEL

MEANING IN ENGLISH 7, which means that a rule may have descriptions of
its meaning in a natural language.”

= [(”RULE REX r::AxA” ,”r::AxA is reflexive”)]

rrpurpose : : Rule * Blob

MEANING IN ENGLISH 7, which means that a rule may have purpose
descriptions in a natural language.”

s ENDPATTERN

s PATTERN Symbols

CONCEPT String “text restricted to a maximum of 256 characters”
”DatabaseDesign. Ampersand . Input .ADL1. UU_Scanner. pString
:svn568”~

s CONCEPT Blob "text, which may exceed 256 characters” TYPE “Blob”

”DatabaseDesign . Ampersand. Input.ADLI. UU_Scanner. pString :
svn568”~
CONCEPT Conid “a string starting with an uppercase”
”DatabaseDesign . Ampersand. Input.ADLI.UU_Scanner.pConid:
svn568”

> CONCEPT Varid ”a string starting with a lowercase”

”DatabaseDesign . Ampersand . Input.ADLI. UU_Scanner.pVarid:

svn568”
CONCEPT ADLid ”string , which may be of the kind Varid, Conid, or

String”
”DatabaseDesign . Ampersand. Input.ADLI. Parser . pADLid:

svn568”7

ENDPATTERN

PATTERN ”Calculated details”

CONCEPT Violation ”a pair of atoms of a special kind of relation, that
is, the complement of a rule expression. Such a pair violates the
rule”

SPEC Violation ISA PairlD

rrviols::RulexViolation

MEANING IN ENGLISH ”, which means that a rule may have violations.”

CONCEPT Image “a digital representation of a diagram or figure”

5 ptpic::Pattern=+Image[UNI]

MEANING IN ENGLISH ”, which means that a pattern may have a conceptual
diagram to visualize that pattern.”
cptpic::ConceptxImage [UNI]

;. MEANING IN ENGLISH ”, which means that a concept may have a conceptual

diagram to visualize that concept.

rrpic::RulexImage [UNI]

MEANING IN ENGLISH 7, which means that a rule may have a conceptual
diagram to visualize that rule.”

CONCEPT URL ”, or unified resource location, is a web address”

imageurl :: ImagexURL

MEANING IN ENGLISH ”, which means that an image may be found on web
addresses .”

KEY Image: Image(PRIMHIML “")

396

397
398

399

400

401

402

403
404

405

40

S

408

409

410

=
S

42

N

A.l. RAP 147

CONCEPT PragmaSentence “an example sentence for a relation to clarify
its meaning” TYPE ”Blob”

decexample :: Declaration * PragmaSentence

MEANING IN ENGLISH ”, which means that a relation may have example
sentences to clarify its meaning.”

ENDPATTERN

PROCESS ”Testing rules”
ROLE Student MAINTAINS otherviolations , multviolationsl ,
multviolations2 , multviolations3 , homoviolations

RULE "multviolations1”: —((I[PropertyRule] /\ declaredthrough ;(’TOT’
\/ ’SUR’);declaredthrough™);rrviols)

MEANING IN ENGLISH ”The user gets feedback on the violations of total
and surjective property rules.”

MESSAGE IN ENGLISH LATEX ”\\textbf{A TOTal or SURjective multiplicity
rule is violated for some relation(s).} Add tuple(s) in the
relation(s) to correct the violation(s).”

VIOLATION (TXT “RULE ”, SRC I, TXT ” is violated by the atom ”, TGT
left , TXT ~.”)

RULE "multviolations2”: —((I[PropertyRule] /\ declaredthrough ;(’UNI’
\/ "INJ’);declaredthrough™);rrviols)

MEANING IN ENGLISH ”"The user gets feedback on the violations of
univalent and injective property rules.”

MESSAGE IN ENGLISH LATEX ”\\textbf{A UNIvalent or INJective
multiplicity rule is violated for some relation(s).} Delete tuple(
s) in the relation(s) to correct the violation(s).”

> VIOLATION (TXT “RULE ”,SRC I, TXT ” is violated by the tuple ”, TGT I,

TXT ” in combination with some other tuple(s).”)

RULE "multviolations3”: —((I[PropertyRule] /\ declaredthrough;” —>";
declaredthrough ™) ;rrviols)

s MEANING IN ENGLISH ”The user gets feedback on the violations of

functional property rules.”

MESSAGE IN ENGLISH LATEX “\\textbf{A UNIvalent or TOTal multiplicity
rule is violated for some relation(s).} Delete tuple(s) in the
relation(s) to correct the violation(s).”

VIOLATION (TXT ”RULE ”,SRC I, TXT ” is violated by the tuple ”, TGT I,
TXT ” in combination with some other tuple(s).”)

RULE "homoviolations”: —((I[PropertyRule] /\ declaredthrough;(RFX’ \/
’IRF’ \/ ’SYM’ \/ ’ASY’ \/ 'TRN’ \/ 'PROP’);declaredthrough™);
rrviols)

MEANING IN ENGLISH “The user gets feedback on the violations of
homogeneous property rules.”

MESSAGE IN ENGLISH LATEX “\\textbf{A rule for homogeneous relation (s)
is violated.} Add or delete tuple(s) in the relation(s) to correct
the violation(s).”

VIOLATION (TXT ”"RULE ”,SRC I, TXT ” is violated by the tuple ”, TGT I,
TXT ” in combination with some other tuple(s).”)

424

425

426

442

444

445

446
447

148 APPENDIX A. THE RAP MODEL

RULE "otherviolations™: —((—I[PropertyRule] /\ I[Rule]);rrviols)

MEANING IN ENGLISH ”The user gets feedback on the violations of non—
property rules. ”

MESSAGE IN ENGLISH LATEX ”\\textbf{A business rule that involves
several relations is violated.} Add or delete tuple(s) in one or
more of the relation(s) to correct the violation(s).”

VIOLATION (TXT “RULE ”,SRC I, TXT ” is violated by the tuple ”, TGT I,
TXT ” in combination with some other tuple(s).”)

ENDPROCESS

PROCESS " Editing a population”
ROLE Student MAINTAINS popchanged

> RULE "popchanged”: inipopu = decpopu
33 MEANING IN ENGLISH “The user gets feedback on uncommitted changes to a

population.”

MESSAGE IN ENGLISH LATEX ”You have made changes to the population. You
can: \\\\ 1) \\textbf{enter more} change(s), or; \\\\ 2) \\textbf
{undo} your changes \\textbf{by (re)loading} any CONTEXT into
Atlas, or;\\\\ 3) \\textcolor{blue}{Click here} to \\textbf{commit
} the change(s) \\textbf{and update} violations on your rules.”

35 VIOLATION (TXT “added or deleted pair ”,TGT I, TXT ” of ”, TGT (

inipopu \/decpopu) 7)
ENDPROCESS

PATTERN Metrics

CONCEPT Int ”a number”

countrules :: ContextxInt[UNI]

MEANING IN ENGLISH ”, which means that the number of rule definitions
in a context may have been calculated.”

countdecls :: ContextxInt [UNI]

MEANING IN ENGLISH ”, which means that the number of relation
declarations in a context may have been calculated.”

countcpts :: ContextxInt[UNI]

MEANING IN ENGLISH 7, which means that the number of concepts in a
context may have been calculated.”

ENDPATTERN

s ENDCONTEXT

A.2 User interfaces for students

CONTEXT RAP
INTERFACE ” Atlas (Play)” FOR Student:I[ONE]
BOX [”CONTEXT” :V[ONEx Context]
BOX [”name” :ctxnm
,”number of RULEs”: countrules
,’number of relations”:countdecls
,”number of concepts”:countcpts

]

36

A.2. USER INTERFACES FOR STUDENTS 149

,”PATTERNs” : V[ONE* Context]; ctxpats
,7concepts”:V[ONE+ Context]; ctxcs
,”ISA—relations”:V[ONE«Context]; ctxpats;ptgns
,"relations” :V[ONExContext]; ctxpats ;ptdcs
BOX ["relation”:1
,"with properties”:decprps;declaredthrough

,"RULEs” : V[ONEx Context]; ctxpats; ptrls ;(I[Rule] /\ —I[PropertyRule

D
1

INTERFACE ”Validate” FOR Student:I[ONE]
BOX [”Click to commit and validate”:V[ONExContext];savecontext

1

INTERFACE “CONTEXT files (Design / reload)” FOR Student:I[ONE]

> BOX [”loaded into Atlas”:V[ONExContext]

BOX [”CONTEXT”: 1
,7source file (click to edit)”:sourcefile \/ includes
,”operations (click to perform)”:sourcefile;applyto”

]

,7overview of files”:V[ONExUser]
BOX [”open new source file”:newfile
,”source files”:uploaded[UserxAdlFile];I[AdlFile]
BOX [”file name (click to edit)”:I

1
1

,created at”:filetime
,”operations (click to perform)”:applyto~

]

INTERFACE ”Diagnosis” FOR Student:I[ONE]

BOX [”concepts
I
,relations

DAY

without definition”:V[ONE«Concept];(—(cptdf;cptdf™) /\

without MEANING” :V[ONExDeclaration];(—(decmean ; decmean

,"RULEs without MEANING” :V[ONE+Rule];(—(rrmean;rrmean”) /\ I)

,”populated

relations”:V[ONE«PairID]; decpopu”

,"unpopulated relations”:V[ONE«Declaration];(—(decpopu;decpopu”)

N\ 1)
]

INTERFACE ”Syntax error” FOR Student:I[ParseError]

BOX ["expecting

,”position”

try”
1

”:pe-expecting

:pe_position
:pe_action

INTERFACE ”Type error” FOR Student:I[TypeError]

BOX [”error”:1

BOX [”in”:te_origtype
,at”:te_position
,”stating”:te_origname

]

,7error message”:te_message

,”declared

relations”:V[TypeError+«Declaration]

66

68
69

70

150 APPENDIX A. THE RAP MODEL

1
INTERFACE ”Extra functions”(filename ,userprofile) FOR Student:I[ONE]
BOX [”Export POPULATIONs to ...”:V[ONE+Context];savepopulation

BOX [”file (INCLUDE only)”:I[SavePopFile]
,"type a file name”:filename
1
,”User settings”:V[ONExUser]
BOX ["use role to load files”:userprofile
1
,7files with only POPULATIONs”:V[ONE«User]; uploaded ;(I[FileRef] /\
—I[AdlFile])
BOX [”file name”:1
,7created at”:filetime
1
1
INTERFACE “CONTEXT” FOR Student:I[Context]
BOX [”name”:ctxnm
, ’PATTERNs” : ctxpats
,”concepts”:ctxcs
,”ISA—relations”:ctxpats;ptgns
,"relations”:ctxpats;ptdcs
BOX [”relation”:1I
,"with properties”:decprps;declaredthrough
1
,"RULEs”: ctxpats; ptrls ;(I[Rule] /\ —I[PropertyRule])
I
INTERFACE “PATTERN” FOR Student:I[Pattern]
BOX [”PURPOSEs” : ptxps
,”name” : ptnm
,’RULEs”: ptrls ;(I[Rule] /\ —I[PropertyRule])
,"relations”:ptdcs
BOX [”relation”:I
,"with properties”:decprps;declaredthrough
]
,”ISA—relations”: ptgns
,”diagram”: ptpic
I
INTERFACE ”ISA—relation” FOR Student:I[Gen]
BOX [”SPEC”: genspc
,"ISA” : gengen
,”in PATTERN”: ptgns~
I

7 INTERFACE ”Concept”(cptos ,atomvalue) FOR Student:I[Concept]
s BOX [”"PURPOSEs”: cptpurpose

,”CONCEPT definition”:cptdf
,”name” : cptnm
,"POPULATION” : cptos
BOX [”atom”:atomvalue
1
,"POPULATION (through ISA)”:(genspc™;gengen \/ genspc™;gengen;
genspc “; gengen \/ genspc”;gengen;genspc”; gengen;genspc ;gengen)”

A.2. USER INTERFACES FOR STUDENTS 151

—TODO closure
105 BOX [”more specific concept”:I

106 ,"POPULATION” : cptos ; atomvalue

10]

108 ,”more generic concepts”:genspc”;gengen \/ genspc”;gengen;genspc”;
gengen \/ genspc”;gengen;genspc”;gengen;genspc ;gengen ——TODO
closure

109 ,"used in relations”:(decsgn;(src \/ trg))~

110 ,"used in RULEs”: (relsgn;(src \/ trg)) ;(rrexp;rels)~;(I[Rule] /\
—I[PropertyRule])

1 ,”diagram”: cptpic

12 1

113 INTERFACE ”Atom” (cptos) FOR Student:I[Atom]; atomvalue”

114 BOX [7in POPULATION of”:cptos”

115 1

116 INTERFACE Relation (decpopu,left ,right) FOR Student:I[Declaration]

117 BOX [”PURPOSEs” : decpurpose

118 , "MEANING” : decmean

19 ,7example of basic sentence”:decexample

120 ,”name” : decnm

121 ,type”:decsgn

122 BOX [”source”:src

123 ,target”:trg

124]

125 ,"properties”:decprps;declaredthrough

126 ,”from PATTERN”: ptdcs”

12 ,”POPULATION” : decpopu

128 BOX [”source”:left

129 ,Vtarget”:right

130]

131 ,"used in RULEs”: (rrexp;rels;reldcl) ;(I[Rule] /\ —I[PropertyRule
1

132 1

133 INTERFACE "RULE” FOR Student:I[Rule]
132 BOX [”PURPOSEs”: rrpurpose

135 , "MEANING” : rrmean
136 ,’name” : rrnm

137 ,7assertion”:rrexp
138 ,7uses”:rrexp;rels

139 BOX ["relation”:reldcl
140 ,”with properties”:reldcl;decprps;declaredthrough

141 ,”source”:relsgn;src
142 ,Vtarget”:relsgn;trg
143]

144 ,”7in PATTERN”: ptrls ~

145 ,”diagram” : rrpic

146 1

147 ENDCONTEXT

152 APPENDIX A. THE RAP MODEL

Bibliography

[1] R. Barends. Activeren van de administratieve organisatie. master thesis, Open
Universiteit Nederland, 2003.

[2] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific
American, 284(5):34-43, May 2001.

[3] Tom R. Burns and Anna Gomolifiska. The theory of socially embedded games:
The mathematics of social relationships, rule complexes, and action modalities.
Quality and Quantity, 34:379-406, 2000.

[4] Business Rule Solutions, LLC. RuleSpeak. Retrieved Februari 27, 2013, from
http://www.rulespeak.com, 2013.

[5] Chris J. Date. What not how: The Business Rules Approach to application
development. Addison-Wesley Longman Publishing Co., Inc., Boston, 2000.

[6] Umeshwar Dayal, Alejandro P. Buchmann, and Dennis R. McCarthy. Rules are
objects too: A knowledge model for an active, object-oriented database system.
In Klaus R. Dittrich, editor, OODBS, volume 334 of Lecture Notes in Computer
Science, pages 129—143. Springer, 1988.

[7] Jan L. G. Dietz. Enterprise ontology - theory and methodology. Springer,
Heidelberg, 2006.

[8] Remco M. Dijkman, Luis Ferreira Pires, and Stef M.M. Joosten. Calculating
with concepts: a technique for the development of business process support.
In Andy Evans, editor, Practical UML based rigorous development methods
countering or integrating the extremists / Workshop of the PUML-Group held
together with the "UML” 2001, October 1st, 2001 in Toronto, Canada. Gesell-
schaft fiir Informatik, volume P-7 of GI-Edition / Gesellschaft fiir Informatik
$ Proceedings ; Vol. 7, pages 87-98, Bonn, Germany, 2001. Gesellschaft fiir
Informatik.

153

154

[9]

(10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

BIBLIOGRAPHY

Atze Dijkstra and S. Doaitse Swierstra. Typing Haskell with an attribute gram-
mar. In Varmo Vene and Tarmo Uustalu, editors, AFP 2004, volume 3622 of
LNCS, pages 1-72, Berlin, 2005. Springer-Verlag.

Erik Duval. Attention please!: learning analytics for visualization and recom-
mendation. In Proceedings of the Ist International Conference on Learning
Analytics and Knowledge, LAK 11, pages 9—17, New York, NY, USA, 2011.
ACM.

Stijn Goedertier and Jan Vanthienen. Declarative process modeling with busi-
ness vocabulary and business rules. In Proceedings of the 2007 OTM confed-
erated international conference on On the move to meaningful internet systems
- Volume Part I, OTM’07, pages 603-612, Berlin, Heidelberg, 2007. Springer-
Verlag.

Terry Halpin. Object Role Modeling. http://www.orm.net, October 2012.

Claudia Hattensperger and Peter Kempf. Towards a formal framework for het-
erogeneous relation algebra. Inf. Sci., 119(3-4):193-203, 1999.

Daniel Jackson. A comparison of object modelling notations: Alloy, UML
and Z. Technical report, Retrieved Februari 27, 2013, from http://people.
csail.mit.edu/dnj/publications/alloy-comparison.pdf, 1999.

R. Joosten, J-W. Knobbe, P. Lenoir, H. Schaafsma, and G. Kleinhuis. Specific-
ations for the RGE Security Architecture. Technical Report Deliverable D5.2
Project TSIT 1021, TNO Telecom and Philips Research, The Netherlands, Au-
gust 2003.

Stef Joosten. Praktijkboek voor procesarchitecten. Koninklijke Van Gorcum,
2002.

Stef Joosten. Sustainable integration. Retrieved Februari 27, 2014, from http:
//portal.ou.nl/documents/1466009/0/isbpplan.pdf, June 2011.

Stef Joosten and Gerard Michels. Generating a tool for teaching rule-based
design. In Proceedings of the Third International Symposium on Business Mod-
eling and Software Design, pages 230-236. SCITEPRESS, 2013.

Kenneth C. Laudon and Jane P. Laudon. Management information systems:
New approaches to organization & technology. Prentice Hall, New Jersey, 5
edition, 1998.

Roger D. Maddux. Relation Algebras, volume 150 of Studies in logic. Elsevier,
Towa, 2006.

BIBLIOGRAPHY 155

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

Jeroen J.G. Merriénboer and Paul A. Kirschner. Ten steps to complex learn-
ing: a systematic approach to four-component instructional design. Lawrence
Erlbaum Associates, Mahwah, New Jersey, 2007.

Gerard Michels, Sebastiaan Joosten, Jaap van der Woude, and Stef Joosten.
Ampersand: Applying relation algebra in practice. In Proceedings of the 12th
conference on Relational and Algebraic Methods in Computer Science, Lec-
ture Notes in Computer Science 6663, pages 280-293, Berlin, 2011. Springer-
Verlag.

Gerard Michels and Stef Joosten. Progressive development and teaching with
RAP. In Proceedings of the Computer Science Education Research Conference
2013, pages 33-43, Heerlen, 2013. Open Universiteit.

Antonija Mitrovic, Kenneth Koedinger, and Brent Martin. A comparative ana-
lysis of cognitive tutoring and constraint-based modeling. In Peter Brusilovsky,
Albert Corbett, and Fiorella de Rosis, editors, User Modeling 2003, volume
2702 of Lecture Notes in Computer Science, pages 147-147. Springer, Heidel-
berg, 2003.

Object Management Group, Inc. OMG model driven architecture. Technical
report, http://www.omg.org/cgi-bin/doc?omg/03-06-01, June 2003.

Object Management Group, Inc. Semantics of Business Vocabulary and Busi-
ness Rules (SBVR), v1.0. Technical report, Retrieved Februari 27, 2013, from
http://www.omg.org/spec/SBVR/1.0/PDF, 2008.

Object Management Group, Inc. Object Constraint Language (OCL). Technical
report, Retrieved Februari 27, 2014, from http://www.omg.org/spec/0CL/,
2012.

Seymour Papert and Idit Harel. Situating constructionism, volume 36, pages
1-11. Ablex Publishing Corporation, New York, 1991.

Norman W. Paton and Oscar Diaz. Active database systems. ACM Comput.
Surv., 31(1):63-103, March 1999.

Simon Peyton Jones, editor. Haskell 98 language and libraries — The Revised
Report. Cambridge University Press, Cambridge, 2003.

Ronald G. Ross. The Business Rules Manifesto. Retrieved Februari 27, 2013,
from http://www.businessrulesgroup.org/brmanifesto.htm, Novem-
ber 2003.

156 BIBLIOGRAPHY

[32] Ronald G. Ross. Principles of the Business Rule Approach. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[33] James Rumbaugh, Ivar Jacobson, and Grady Booch, editors. The Unified Mod-
eling Language reference manual. Addison-Wesley Longman Ltd., Essex, UK,
UK, 1999.

[34] Ernst Schroder. Algebra und logik der relative. Vorlesungen iiber die Algebra
der Logik (Exakte Logik) / Ernst Schroder. Teubner, Leipzig, 1895.

[35] Walter A.A. Shewhart and W. Edwards Deming. Statistical methods from the
viewpoint of quality control. Dover Books on Mathematics Series. Dover Pub-
lications, Incorporated, 1939.

[36] George Siemens, Dragan Gasevic, Caroline Haythornthwaite, Shane Dawson,
Simon Buckingham Shum, Rebecca Ferguson, Erik Duval, Katrien Ver-
bert, and Ryan S. J. d. Baker. Open learning analytics: an integrated
& modularized platform. Technical report, http://solaresearch.org/
OpenLearningAnalytics.pdf, 2011.

[37] S. Doaitse Swierstra, Pablo R. Azero Alcocer, and Jodo Saraiva. Designing and
implementing combinator languages. In S. Doaitse Swierstra, José N. Oliveira,
and Pedro R. Henriques, editors, Advanced Functional Programming, volume
1608 of Lecture Notes in Computer Science, pages 150-206. Springer Berlin
Heidelberg, 1999.

[38] Jaap van der Woude and Stef Joosten. Relational heterogeneity relaxed by sub-
typing. In Proceedings of the 12th conference on Relational and Algebraic
Methods in Computer Science, Lecture Notes in Computer Science 6663, pages
347-361, Berlin, 2011. Springer-Verlag.

[39] Lex Wedemeijer, Stef Joosten, and Gerard Michels. Rule Based Design. Open
Universiteit Nederland, Heerlen, 1st edition, 2010.

[40] Jennifer Widom. The starburst active database rule system. [EEE Trans. on
Knowl. and Data Eng., 8(4):583-595, August 1996.

Summary

Ampersand is a rule-based approach to design information systems and business pro-

cesses (IS&BP). The idea of Ampersand is to make the design of IS&BP more con-

crete by letting requirements engineers produce working software. The requirements

engineer builds software by formalizing functional requirements as a collection of

rules, which is fed to a compiler to generate the software for those requirements.
This rule-based approach puts the emphasize of designing IS&BP on:

e understanding and obtaining agreement upon system requirements.
e translating system requirements to software.
e dealing with changing system requirements.
e formulating and communicating well-defined system requirements.

This dissertation described a development environment for rule-based prototyping
(RAP) and its various roles in research on the didactics of Ampersand. The first role
of RAP is that of a development environment for Ampersand, which is being used by
students for Ampersand design exercises. The second role is the interesting case of
using Ampersand to develop RAP. For the third role, we have implemented metrics in
RAP to measure student behaviour in the development environment. Based on such
measurements we have studied the didactics of Ampersand.

Chapter 2 has introduced the idea that information system software can be derived
from functional requirements alone. This idea has been implemented by the method
Ampersand. Ampersand has been described from the perspective of a requirements
engineer. A requirements engineer uses Ampersand to elicit business rules, formalize
those rules and maintain them in a rule repository, RAP. The Ampersand language to
define systems of rules has been built on relation algebra and the Business Rules Ap-
proach. A requirements engineer processes rules in RAP to develop rule-compliant
run-time systems. In such a run-time system, rules can be guards of the integrity
of business data and processes (integrity rules), or drivers of business processes and

157

158 SUMMARY

workflows (process rules). An engineer may use the Ampersand compiler to generate
rule-compliant run-time systems, validate rules, visualize a system’s design, produce
functional specifications, and more.

Ampersand plays two roles in this dissertation in which RAP is the central sub-
ject. One, RAP is a development tool for Ampersand, which includes the Ampersand
compiler and a rule repository as described. Two, RAP has been developed with
Ampersand and is a generated rule-compliant run-time system. Thus, RAP could be
used to develop RAP. Moreover, the RAP model is being maintained in RAP and
committing changes to the rules in the RAP model causes an instant update of RAP
itself.

In order to make things work, it is imperative that the Ampersand language is
well-defined. In chapter 3 we have defined the Ampersand language. The main
requirement for the Ampersand language is that it is easy to learn by requirements
engineers, but sufficiently expressive to define real-life information systems.

To meet this requirement, the Ampersand language adopts relation algebra and
respects the statements in the Business Rules Manifesto of the Business Rules Ap-
proach. A requirements engineer needs to learn a handful of relational operators and
syntactic elements to define an Ampersand-model. The learning challenge that re-
mains is how to define a meaningful Ampersand-model, one that formalizes the busi-
ness rules of a business context. For that challenge, a requirements engineer needs
to learn how to translate an Ampersand-model of concepts, relations and rules to a
business language of terms, facts and business rules.

The learning challenge turns out to be significant, which we have concluded from
unpublished student evaluations and a study on student behaviour in RAP.

The formal character of the Ampersand language allows us to address the learning
challenge by means of feedback to the requirements engineer. The kinds of feedback
presented in chapter 3 are conceptual diagrams and feedback on type errors. A con-
ceptual diagram gives the requirements engineer a visual overview over the relations
he has declared. A conceptual diagram uses the types of the relations to relate them
to each other. An Ampersand-model must be free of type errors to be meaningful.
We can guarantee that a requirements engineer gets feedback on each type error.

This dissertation shows that the Ampersand language is sufficiently expressive to
define real-life information systems, namely by the case of RAP.

Chapter 4 describes how Ampersand generates software, and how it is used to sup-
port business processes. We have demonstrated how a model in Ampersand presents
itself as a working application to users. Although a fair number of working applic-
ations have been made, we cannot claim that Ampersand produces industry strength
applications. For that, further engineering on the Ampersand compiler is required.
This explains why the Ampersand toolset is currently being used in the design phase,
for the purpose of prototyping and generating documentation.

159

Chapter 6 aims at validation of our five step development cycle with RAP. The
idea behind our approach is that usage of tools for design exercises gives rise to
measuring facts about student behaviour. Such facts can be used to study student
behaviour and enhance those tools for better education.

To execute that idea, RAP has been developed and used for a course on rule-based
design. RAP integrates user interfaces for design exercises with analytics upon a trace
of design products.

Four conclusions can be drawn based on running one development cycle by our
development approach:

e It is feasible to study student behaviour based on measurements in RAP.
o We have drawn multiple lessons about teaching Ampersand.

e The authors are convinced that, by using our development approach, continu-
ous improvement of RAP can be realized in practice based on actual student
behaviour.

e Door Ampersand te gebruiken in onze ontwikkelaanpak zijn we met beperkte
middelen, op een gecontroleerde wijze tot een - naar onze mening - rijk product
gekomen, de tweede versie van RAP.

e By using Ampersand in our development approach, we needed little resource to
produce a - in our opinion - wealthy product (RAPv2) in a controlled manner.

Chapter 5 is the documentation of RAP and has been generated from the RAP
model. For that, we have used the same Ampersand compiler that generates RAP
from the RAP model.

The documentation of RAP yields examples of what can be defined in Ampersand
using the mechanisms presented in chapter 4. We claim that RAP implements Am-
persand, for that reason we conclude that Ampersand can be defined in and docu-
mented by means of an Ampersand-model.

To generate chapter 5 shows how design automation can help to document the
design. There is a guarantee that the documentation of RAP remains up-to-date with
RAP, because both are generated from the same source. The documentation of RAP
is complete, consistent and faultless e.g. correct cross-references and up-to-date dia-
grams, which can be validated by comparing chapter 5 to its source, the RAP model
in appendix A.

Chapter 7 shows that metrics in RAP can be modelled like any other concept in
RAP. The measurement framework is an example of how rules of a common concept,
like a chain, can be defined as an extension for domain-specific Ampersand-models,
like the RAP model.

160 SUMMARY

The purpose of the measurement framework is to configure metrics in RAP to
study student behaviour, such that we can use our cyclic development approach more
efficiently. As a result we could rely on the formal semantics of our measurements
and thereby focus on studying student behaviour.

The dissertation contributes the following:

e A learning platform has been realised that enables research on the didactics of
rule-based design.

Students are enjoying the benefits of RAP as a learning platform.

Ampersand’s rule repository has been generated with Ampersand.

Ampersand fulfils its purpose to automate designing of systems.

e The consistency of the Ampersand language has been documented and ex-
ploited.

Samenvatting

Ampersand is een regelgebaseerde aanpak voor het ontwerpen van informatiesys-
temen en bedrijfsprocessen (IS&BP). Het idee achter Ampersand is dat software
voor IS&BP geproduceerd kan worden door requirements engineers, die de functi-
onele systeemeisen vastleggen als een verzameling van formele regels. Deze (be-
drijfs)regelgebaseerde aanpak legt de activiteit van het ontwerpen van IS&BP bij:

e het begrijpen en afspreken van systeemeisen.

e het vertalen van systeemeisen naar software.

e het kunnen omgaan met veranderende systeemeisen.

e het eenduidig formuleren en communiceren van systeemeisen.

Dit proefschrift beschrijft een ontwikkelomgeving voor regelgebaseerde prototy-
pes (RAP) en haar multifunctionele rol in het onderzoek naar hoe Ampersand onder-
wezen kan worden De eerste rol van RAP is die van een ontwikkelomgeving voor
Ampersand, waarmee studenten praktijkoefeningen kunnen maken. De tweede rol is
de interessante casus over het gebruik van Ampersand, die voortkomt uit het feit dat
RAP ontwikkeld is met Ampersand. Voor de derde rol hebben we metrieken in RAP
geimplementeerd om studentengedrag te kunnen meten. Op basis van die metingen
hebben we de resultaten van de huidige didactiek van Ampersand kunnen bestuderen.

Hoofdstuk 2 heeft het idee geintroduceerd dat informatie systeem software afge-
leid kan worden van functionele systeemeisen. Dit idee is geimplementeerd in de
methode Ampersand. Ampersand is beschreven vanuit het perspectief van de requi-
rements engineer. Een requirements engineer gebruikt Ampersand om bedrijfsregels
naar boven te halen, die regels te formaliseren en te onderhouden in een verzamelbak
voor regels. De Ampersandtaal, waarmee een systeem van regels gedefinieerd kan
worden, is gebouwd op relatie-algebra en de Business Rules Approach. Een require-
ments engineer verwerkt regels in RAP om operationele systemen te ontwikkelen die
zich conformeren aan de regels. In een dergelijk systeem kunnen regels bewakers zijn

161

162 SAMENVATTING

van de integriteit van bedrijfsdata en -processen (integriteitsregels), of aandrijvers van
bedrijfsprocessen en werkstromen (procesregels). Een engineer kan de Ampersand
compiler gebruiken om operationele systemen te genereren, regels te valideren, een
systeemontwerp te visualiseren, functionele specificaties te produceren, en meer.

Ampersand verhoudt zich op twee manieren tot RAP. Eén, RAP is een ontwikkel-
gereedschap voor Ampersand, waarvan de Ampersand compiler en de regelverzamel-
bak een onderdeel zijn. Twee, RAP is ontwikkeld met Ampersand en gegenereerd als
een operationeel systeem, dat zich conformeert aan de regels. Dus, RAP kon gebruikt
worden om RAP te ontwikkelen. Daarenboven, het RAP model wordt onderhouden
in RAP en veranderingen aan de regels in het RAP model hebben direct effect in RAP
zelf.

Om producten geautomatiseerd af te kunnen leiden, is het onontkoombaar dat de
Ampersandtaal eenduidig gedefini€erd is. In hoofdstuk 3 definiéren we de Amper-
sandtaal. De hoofdeis voor deze taal is dat zij eenvoudig te leren is door requirements
engineers, maar voldoende expressief om een echt informatie systeem op te stellen.

Om aan deze eis te voldoen, adopteert de Ampersandtaal relatie-algebra en res-
pecteert zij de uitspraken in het Business Rules Manifesto uit de Business Rules Ap-
proach. Een requirements engineer moet een handvol relationele bewerkingstekens
en syntactische elementen leren om een Ampersandmodel op te kunnen stellen. De
leeruitdaging die dan overblijft is, hoe kan een betekenisvol Ampersandmodel wor-
den opgesteld, een model dat de bedrijfsregels uit een bedrijfscontext formaliseert.
Voor die uitdaging moet een requirements engineer leren hoe dat een Ampersandmo-
del van concepten, relaties en regels vertaald kan worden naar een bedrijfstaal van
termen, feiten en bedrijfsregels.

De leeruitdaging blijkt significant te zijn, hetgeen we geconcludeerd hebben uit
niet gepubliseerde studentevaluaties en een gepubliseerde studie naar studentenge-
drag in RAP.

Het formele karakter van de Ampersandtaal maakt het mogelijk om ondersteu-
ning te bieden tijdens het leren, ondersteuning in de vorm van terugkoppeling aan de
requirements engineer. De soorten terugkoppeling die in hoofdstuk 3 worden gepre-
sententeerd zijn conceptuele diagrammen en terugkoppeling op typefouten in relatie-
expressies. Een conceptueel diagram geeft de requirements engineer een grafisch
overzicht over de relaties tussen concepten die hij heeft bedacht. Een conceptueel
diagram verbindt relaties met elkaar op basis van hun type. Een Ampersandmodel
moet vrij zijn van typefouten om betekenis te hebben. We kunnen garanderen dat een
requirements engineer terugkoppeling krijgt op iedere typefout.

RAP is het bewijs dat de Ampersandtaal voldoende expressief is om een echt
informatie systeem op te stellen.

Hoofdstuk 4 beschrijft hoe Ampersand software genereert en hoe die software
bedrijfsprocessen ondersteunt. We hebben gedemonstreerd hoe een Ampersandmo-

163

del zich kan presenteren als een operationeel systeem voor gebruikers. Ondanks dat
we een redelijk aantal operationele systemen hebben gemaakt, kunnen we niet stellen
dat Ampersand systemen voor industrieel gebruik kan produceren. Daarvoor is ver-
dere ontwikkeling van de Ampersand compiler noodzakelijk. Dat verklaart waarom
de huidige Ampersand gereedschappen gebruikt worden in de ontwerpfase, voor het
ontwikkelen van prototypes en het genereren van documentatie.

Hoofdstuk 6 heeft als doel om onze cyclische ontwikkelaanpak met RAP te vali-
deren. Het idee achter onze aanpak is dat het gebruik van RAP voor ontwerpopgaven
de mogelijkheid schept om feiten over studentengedrag te meten. Dergelijke metin-
gen kunnen gebruikt worden om studentengedrag te bestuderen en RAP te verbeteren
voor educatie.

Om feiten over studentengedrag te verzamelen is RAP ontwikkeld en door studen-
ten gebruikt in een cursus voor regelgebaseerd ontwerpen. RAP combineert software
voor ontwerpopgaven met metrieken op een historie van ontwerpproducten.

Vier conclusies zijn getrokken op basis van één cyclus volgens onze ontwikkel-
aanpak:

e Het is mogelijk om studentengedrag te bestuderen op basis van metingen in
RAP.

e We hebben meerdere lessen getrokken over het onderwijzen van Ampersand.

e De schrijvers zijn overtuigd dat onze ontwikkelaanpak in de praktijk kan zor-
gen voor een continue verbetering van RAP voor educatie, die gebaseerd is op
feitelijk studentengedrag.

e Door Ampersand te gebruiken in onze ontwikkelaanpak zijn we met beperkte
middelen, op een gecontroleerde wijze tot een - naar onze mening - rijk product
gekomen, de tweede versie van RAP.

Hoofdstuk 5 documenteert de tweede versie van RAP volledig, zodat de lezer
het product kan waarderen op wat het is. Dit hoofdstuk is gegenereerd uit het RAP
model, waarmee ook RAP gegenereerd is.

Deze documentatie van RAP levert voorbeelden van dat wat geproduceerd kan
worden met Ampersand, gebruikmakend van de mechanismes gepresenteerd in hoofd-
stuk 4. We stellen dat RAP Ampersand implementeert, waardoor we concluderen dat
Ampersand gedefiniéerd en gedocumenteerd kan worden door middel van een Am-
persandmodel.

Door hoofdstuk 5 te genereren laten we zien hoe geautomatiseerd ontwerpen kan
helpen bij het documenteren van het ontwerp. We kunnen garanderen dat de docu-
mentatie van RAP actueel blijft, omdat RAP en de documentatie beide afgeleid zijn
uit dezelfde bron. De documentatie van RAP is compleet, consistent en foutloos,

164 SAMENVATTING

wat gevalideerd kan worden door hoofdstuk 5 te vergelijken met zijn bron, het RAP
model in de appendix.

Hoofdstuk 7 laat zien dat metrieken in RAP hetzelfde gemodelleerd worden als
alle andere concepten in RAP. Het meetraamwerk is een voorbeeld van hoe regels op
een algemeen concept, zoals een keten, gedefini€erd kunnen worden als een extensie
voor domeinspecifieke Ampersandmodellen, zoals het RAP model.

Het doel van het meetraamwerk is om metrieken in RAP te configureren om stu-
dentgedrag te meten, zodat we onze cyclische ontwikkelaanpak efficiénter kunnen
toepassen. Omdat het raamwerk een Ampersandmodel is, kunnen we vertrouwen
op de formele betekenis van onze metingen en ons bezighouden met het bestuderen
studentengedrag.

Het proefschrift levert de volgende bijdragen:

e Een leerplatform is gerealiseerd, waarmee onderzoek naar het onderwijzen van
Ampersand mogelijk is.

e Studenten gebruiken RAP en profiteren daarmee van de voordelen die RAP als
leerplatform brengt.

e De regelverzamelbak van Ampersand is gegenereerd met Ampersand zelf.
e Ampersand voldoet aan zijn doel om systemen geautomatiseerd te ontwerpen.

e De eenduidige definitie van de Ampersandtaal is vastgesteld en benut.

Curriculum Vitae

GERARD MICHELS

27 februari 1980

1992 - 1998

1998 - 2003

2004 - 2006

2006 - 2008

2008 - 2013

2014 - heden

Geboren te Utrecht

VWO, Jacob Roelandslyceum te Boxtel

WO - Bestuurlijke Informatiekunde, Universiteit van Tilburg
Afstudeeronderzoek naar de toepasbaarheid van Rational Unified
Process met een offshore ontwikkelteam, Infopulse B.V. te Best
en te Kiev in Oekraine

Technisch integratiespecialist, Atos Origin B.V. te Utrecht

Enterprise Applicatie Integratie consultant, Virtual Sciences BIS
te Utrecht

Promovendus, faculteit Informatica, Open Universiteit

Integratie Architect, ValueBlue B.V. te Utrecht

165

Index

adl-file, 49 rule-based design, 2
Ampersand, 1 rule-based process, 36
Ampersand compiler, 3

Ampersand design, 10 the framework, 119
Ampersand-model, 3 the upload page, 49
Ampersand-script, 12 trace, 103, 119

Atlas, 3

automated (design) tasks, 5 upload page, 31

business rule, 10 version, 103, 120

data interface, 35 web interface, 35

Design Exercise, 102

information system, 2
integrity rules, 14
interface definition, 40
interfaces, 35

key definitions, 42

metric relation, 119
metrical percept, 106
Model elements, 46

pop-file, 50
pragma, 78
process rules, 14

RAP, 3

RAP model, 4

RAPv2, 31

Repository of Ampersand Projects, 2

166

