

COMPUTING EDUCATION
IN A HYBRID WORLD

Laura Benvenuti

ISBN: 978-94-6375-497-2
© Laura Benvenuti, Utrecht, NL, 2019, unless stated otherwise
Cover design and illustration by Martha Lauria Baca (www.lauria.nl)
Printed by Ridderprint BV (www.ridderprint.nl)

http://www.lauria.nl/
http://www.ridderprint.nl/

COMPUTING EDUCATION IN A HYBRID
WORLD

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Open Universiteit

op gezag van de rector magnificus
prof. dr. Th. J. Bastiaens

ten overstaan van een door het
College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrijdag 20 september 2019 te Heerlen
om 13.30 uur precies

door

Laura Benvenuti

geboren op 30 maart 1962 te Etterbeek (België)

Promotores
Prof. dr. ir. J.M. Versendaal, Open Universiteit
Prof. dr. G.C. van der Veer, Open Universiteit

Leden beoordelingscommissie
Prof. dr. L.J.M. Nieuwenhuis, Universiteit Twente
Prof. dr. E. Barendsen, Open Universiteit
Prof. dr. M.C.J.D. van Eekelen, Open Universiteit
Dr. ing. J.P.P. Ravesteijn, Hogeschool Utrecht

For my father

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Main research question 2

1.2 Readers’ Road Map 2

1.3 Decomposed research questions 4

PART I—WHAT IS TAUGHT AND WHY? 7
Research questions RQ1, RQ2, RQ3, RQ6, RQ7 7

2 PRELIMINARY STUDY 9

2.1 Introduction 9

2.2 Computing curricula 11

2.3 Is computing a science? 12

2.4 Mathematical intermezzo 13

2.5 Verification and validation 14

2.6 Software Engineering 14

2.7 Two interpretations of validation in Software Engineering 15

2.8 Information Systems 16

2.9 One interpretation of validation in Information Systems 17

2.10 The nature of guidelines and recommendations 18

2.11 Discussion 19

2.12 So what? 20

3 HISTORICAL REVIEW AND EPISTEMOLOGICAL
CONSIDERATIONS 23

3.1 Introduction 24

3.2 Computing curriculum guidelines 25
3.2.1 A theoretical approach 26
3.2.2 The software crisis 26
3.2.3 The Snowbird conferences in the 1980s 27
3.2.4 The ACM/IEEE curriculum reports 28
3.2.5 Hybrid computing curricula 29

3.3 Cultural styles in computing 29

3.4 Discussion: curricular trade-offs 31
3.4.1 Incorporation of the three cultural styles 31
3.4.2 Fostering discipline oriented thinking 32
3.4.3 The role of mathematics 33

3.5 Hybrid curricula: two cases 33
3.5.1 Liberal Arts and Computer Science 33
3.5.2 Front End Development 34

3.6 Conclusions 35

4 COMPUTING CURRICULA IN DUTCH UNIVERSITIES OF
APPLIED SCIENCES 37

4.1 Introduction 37

4.2 Frameworks for curriculum recommendations 37
4.2.1 ACM/IEEE series 38
4.2.2 e-CF 40
4.2.3 Dutch Bachelor of ICT frameworks 42

4.2.3.1 Similarities and differences HBO-ICT 2009 & 2014 44
4.2.4 HBO Creative Technologies 45

4.3 Models for comparison 46
4.3.1 The Darmstadt model 47

4.3.1.1 Discussion 48
4.3.2 Van den Akker’s curricular spider web 49
4.3.3 5 aspects 50

4.4 Curricular frameworks compared 51
4.4.1 Rationale 51

4.4.1.1 ACM/IEEE series 51
4.4.1.2 e-CF 52
4.4.1.3 HBO-ICT 2009 52
4.4.1.4 HBO-ICT 2014 52
4.4.1.5 HBO-Creative Technologies 53

4.4.2 Intentions: Learning Objectives 53
4.4.2.1 ACM/IEEE series 53
4.4.2.2 e-CF 53
4.4.2.3 HBO-ICT 2009 53
4.4.2.4 HBO-ICT 2014 53
4.4.2.5 HBO-Creative Technologies 54

4.4.3 Intentions: Competencies 54
4.4.3.1 ACM/IEEE series 54
4.4.3.2 e-CF 54
4.4.3.3 HBO-ICT 2009 55
4.4.3.4 HBO-ICT 2014 55
4.4.3.5 HBO-Creative Technologies 55

4.4.4 Intentions: educational standards 55
4.4.4.1 ACM/IEEE series 56
4.4.4.2 e-CF 56
4.4.4.3 HBO-ICT 2009 56
4.4.4.4 HBO-ICT 2014 56
4.4.4.5 HBO-Creative Technologies 56

4.4.5 Knowledge 57
4.4.5.1 ACM/IEEE series 57
4.4.5.2 e-CF 57
4.4.5.3 HBO-ICT 2009 58
4.4.5.4 HBO-ICT 2014 58
4.4.5.5 HBO-Creative Technologies 58

4.5 Discussion 61
4.5.1 The aims of undergraduate computing education 61
4.5.2 Hybrid curricula and new professional roles 63

4.6 Conclusions and recommendations 64

PART I - CONCLUSIONS 67
Research question RQ1 67
Recommendations 68
Research questions RQ2, RQ3 68
Recommendations 71
Research questions RQ6, RQ7 72
Recommendations: 72

PART II—HOW DO STUDENTS UNDERSTAND THE SUBJECT 75
Research questions RQ4, RQ6, RQ7 75

5 COGNITIVE ASPECTS OF SOFTWARE DEVELOPMENT 79

5.1 Introduction 79

5.2 Background 81
5.2.1 Mental models 81
5.2.2 Individual preferences 82
5.2.3 Assessing mental models: the teach-back protocol 84

5.3 Literature review 85
5.3.1 Cognitive aspects of (OO) programming 85
5.3.2 Cognitive aspects of user-database interaction 88

5.4 A need for empirical study 89

5.5 A first experiment: how do professionals understand their
systems? 91

5.5.1 Questions 92
5.5.2 Scoring categories 93
5.5.3 Participants 93

5.5.4 Hypotheses 93
5.5.5 Preliminary Results 94

5.6 Preliminary conclusions 95

5.7 Acknowledgements 95

6 CONCEPTUALIZATIONS OF THE NOTION OF AN OBJECT 97

6.1 Introduction 97

6.2 Backgrounds 99
6.2.1 Mental models 99
6.2.2 Individual preferences 100
6.2.3 Assessing mental models: the teach-back protocol 100

6.3 Literature Review 101
6.3.1 Objects 101
6.3.2 Cognitive aspects of (OO) programming 102
6.3.3 Cognitive aspects of user-database interaction 103

6.4 A need for empirical study 103

6.5 Experiment design 104
6.5.1 Context 105
6.5.2 Questionnaire 105
6.5.3 Research questions and scoring categories 106
6.5.4 Reliability 108
6.5.5 Participants 109
6.5.6 Hypotheses 109

6.6 Results 110
6.6.1 Ha: amounts of different objects reported 110
6.6.2 Hb: mental models across the disciplines 112
6.6.3 Hc: problem solving preferences 114

6.7 Lessons learned 115

6.8 Conclusions 116

6.9 Our message for education 116

PART II – CONCLUSIONS 119
Research question RQ4 119
Research questions RQ6, RQ7 120
Recommendations 120
Further Research 120

PART III—CASE STUDIES IN A HYBRID CURRICULUM 123
Research questions RQ5, RQ6, RQ7 123

7 A CRAFTSMANSHIP-BASED APPROACH (1) 125

7.1 IntroductioN 125

7.2 New technology, new paradigm 125
7.2.1 Constructivist learning 126
7.2.2 Why 3D virtual worlds afford constructivist learning 127
7.2.3 Downsides of constructivist learning 128
7.2.4 Do 3D virtual worlds always support constructivist learning? 129
7.2.5 how to assess subjective impressions 129
7.2.6 Measuring experience 130

7.3 Observations in theory and practice 130

7.4 A course on 3D virtual worlds 132
7.4.1 Course structure 133
7.4.2 A virtual world as an educational tool 133

7.4.2.1 What does not work 134

7.5 Assessment 134
7.5.1 The survey 135
7.5.2 Results 136

7.6 Conclusions and future works 138

8 A CRAFTSMANSHIP-BASED APPROACH (2) 141

8.1 Introduction 141

8.2 A virtual village as a community of learners 141

8.3 Measuring experienced connectedness and learning 143

8.4 The asterix village 144

8.5 What’s new, what’s next? 145

8.6 Perceived connectedness and learning 148

8.7 Conclusions 150

PART III - CONCLUSIONS 153
Research question RQ5 153
Research questions RQ6, RQ7 154
Recommendations 155
Further research 155

PART IV—HCI IN A HYBRID CURRICULUM: RESEARCH IN ACTION
 157

Research question RQ7 157

9 HCI IN A HYBRID CURRICULUM: RESEARCH IN ACTION 159

9.1 Introduction 159
9.1.1 An excellent curriculum 160
9.1.2 Success factors 160
9.1.3 Corporate guidelines for the e-learning environment 161
9.1.4 Discussion 162

9.2 A workplace online 162
9.2.1 Actual experiment (Blackboard course site) 163

9.3 Design issues and solutions 164
9.3.1 Context and content both central 165
9.3.2 Encourage student participation in research 165
9.3.3 Share results 166
9.3.4 Practice what you preach and ask for feedback 166
9.3.5 Apply new concepts while adapting to organisational constraints
 166

9.4 Preliminary evaluation 167
9.4.1 Conclusion 168

PART IV - CONCLUSIONS 169
Research question RQ7 169
Recommendations 169
Further research 170

10 OVERALL CONCLUSIONS AND RECOMMENDATIONS 171

10.1 Research question RQ1 173
10.1.1 Part I 173
10.1.2 Part III 174
10.1.3 Recommendations 175

10.2 Research questions RQ2, RQ3 176
10.2.1 Part I 176
10.2.2 Part III 178
10.2.3 recommendations 179

10.3 Research question RQ4 179
10.3.1 Part II 180

10.3.1.1 The differences we had expected 180
10.3.1.2 The differences we found 180
10.3.1.3 A possible explanation 181
10.3.1.4 Hypothesis and further research 183

10.3.2 Recommendations 183

10.4 Research question RQ5 183
10.4.1 Part III 184

10.4.2 Recommendations 184

10.5 Research questions RQ6, RQ7 184
10.5.1 Part I 185
10.5.2 Part II 185
10.5.3 Part III 186
10.5.4 Part IV 187
10.5.5 Recommendations 188

10.6 Which lessons can we learn that can be applied? 188

REFERENCES 191

SUMMARY 199

SAMENVATTING 201

CURRICULUM VITAE LAURA BENVENUTI 203

Introduction

1

1 Introduction
Computing is an interdisciplinary field that can be approached from

different points of view. Each point of view has its goals, aims and
fundamental assumptions. In addition of this fragmentation, the field of
computing is still rapidly evolving. Hybrid domains are emerging such as
medical information systems. The domain of Creative Technologies, the
interdisciplinary field of study combining computer technology, design and
humanities, is one of the emerging disciplines in the computing related
family. The importance of this new branch of computing for the Netherlands
is uncontested. The related economic sector, Creative Industries, is one of
the economic top sectors in the Netherlands.

Industry asks for skilled workforce. But skill requirements change
rapidly in Information and Communication Technology (ICT)-related
domains. This poses complex questions to designers of undergraduate
computing curricula, especially of hybrid curricula. One possible solution is
accommodation: a continuing re-adjustment, in order to match the most
promising trends on the employment market. In the Netherlands, this is the
leading strategy of the Universities of Applied Sciences. But in the long term,
this strategy could put other aspects of education at risk, as the students’
employability, or the development of the discipline. Do students acquire
knowledge that is useful in the long term? Do computing professionals,
educated in different areas of computing, understand each other’s points of
view? These questions are not new, as we will see in chapter 3.

In this thesis, we reflect on the education of computing professionals in
general and of professionals in hybrid professions in particular. Our field of
investigation is tertiary education. One of the challenges, for an inquiry on
educational systems, is terminology. We will focus on the first stage after
secondary education, the stage conferring a Bachelor’s degree or
Baccalaureate. The approach to education can be academic or applied, as in
the European Universities of Applied Sciences. In accordance with the
ACM/IEEE Curriculum Recommendations series, we will refer to this stage
of education with the term “undergraduate education”.

Our aim is to support designers of computing curricula, including
designers of hybrid computing curricula. We will formulate
recommendations for designing computing curricula in a way that (1)
ensures graduates access to the labor market (2) allows them to keep up
with their turbulent profession and (3) delimits these professions. This
leads to the following Main Research Question.

Computing Education in a Hybrid World

2

1.1 MAIN RESEARCH QUESTION
The main research question in this thesis is:

Which lessons can be learned from past and present undergraduate

computing education, which can be applied in the design of future
undergraduate computing curricula and hybrid undergraduate computing
curricula in particular?

1.2 READERS’ ROAD MAP
Hybrid computing curricula draw our attention when we designed the

computing content of a curriculum on Digital Communication. The units on
Multimedia and Web Design were particularly challenging. At that time, the
Multimedia sector used specific programming environments, designed to
enable other software developers than “computer programmers” to
implement their ideas. These tools were mainly used by artists. Something
similar applies to Web languages. Web languages were developed as end
user tools; they are user friendly and forgiving. Specific training seemed
unnecessary to use these technologies. But the labor market develops over
time, and new professional figures emerge as Web Developers, professional
users of Web Technologies. Should students Web and Multimedia
technologies be approached as future software developers – which would
have meant including some general computing principles in the program, or
was it sufficient to briefly explain the tools and set up a helpdesk? What
does it mean to be a “professional user of software development tools”?
Should all software developers be educated in the same way?

We explored these subjects with two papers. One described differences
between the aims of the humanities on Multimedia education and those of
computing (Benvenuti, L. & van der Veer, G.C., 2009). We pointed at
different attitudes towards interpretation (is it acceptable that users freely
interpret the output of software?) and at different expectations about the
software’s lifecycle. The other paper discussed the classification of
computing: natural science or formal science. Although that paper raised
interesting questions, it quickly became clear that the dichotomy
scientific/formal did not cover the issue. You will find that paper in chapter
2.

At the same time, we observed the effects of computing education in
Dutch Universities of Applied Sciences. We investigated how undergraduate
students, educated in different computing programs, understand the
abstract concept of “object”. We had the opportunity to observe a course in a

Introduction

3

hybrid curriculum, were undergraduate students developed applications in
a virtual world. The course had been enthusiastically welcomed by the
students. We investigated their learning experience. We explored online
instructional strategies in academic setting. Taking a hands-on approach, we
designed a course on computing targeting a hybrid audience. Instead of
simplifying, the overall picture became more and more diversified.
This changed when we found the work of Tedre and Apiola on three
traditions of computing (Tedre & Apiola, 2013). Tedre and Apiola distinguish
three traditions of computing, or cultural styles, fulfilling different roles in
the development of the discipline: the theoretical, the scientific and the
engineering tradition. Based on Tedre and Apiola’s work, we consider these
cultural styles as attempts to cope with the same fundamental problem.

Computing requires working with abstractions: models, structures,
algorithms. Unlike mathematicians, who work with institutionalized
abstract concepts, computing professionals often define the abstractions
they work with (Dijkstra, Programming as a discipline of mathematical nature,
1973). This raises the question, how to sustain claims concerning these
abstractions. The theoretical cultural style addresses this question formally,
and describes abstract structures in an unambiguous way. The scientific
cultural style addresses the question: do our models match with the world
they describe? The engineering cultural style addresses the question, how to
design and implement reliable systems.

Tedre and Apiola’s considerations about three cultural styles of
computing support reasoning about hybrid curricula, as we will see in
chapter 3 (Part I). Their perspective turned out to be helpful in the
discussion of the findings in our studies at the HU University of Applied
Sciences Utrecht (Parts II and III). It enables understanding of the strengths
and weaknesses of the course we designed for a hybrid audience (Part IV).

This thesis describes the details of that journey. Different reading
strategies can be followed. To readers, who are mainly interested in the
three traditions of computing, we suggest this reading path: start with
chapter 2 (exploration), then read Part II (is there a problem?), chapter 3
(additional research), chapter 4 (computing curricula in Dutch Universities
of Applied Sciences) and finally section 10.3.

To readers, who are mainly interested in hybrid curricula, we suggest to
start with chapter 4 (computing curricula in Dutch Universities of Applied
Sciences), then read Part III (how is this applied?), then chapter 3
(suggestions to type a hybrid curriculum), followed by Part IV (a suggestion
for course design) and finally chapter 10 (Overall Conclusions and
Recommendations).

Computing Education in a Hybrid World

4

1.3 DECOMPOSED RESEARCH QUESTIONS
The journey we are describing is one made of field research, case studies

and reflection about computing education. After a general exploration of
undergraduate computing education, we will narrow our inquiry to
computing education at the Dutch Universities of Applied Sciences. We will
focus on undergraduate computing curricula, and undergraduate hybrid
curricula. We will discuss the outcomes of one experiment and a case study
we conducted in Dutch Universities of Applied Sciences. We will comment
on the way computing is taught today and has been taught in the past
decades. We will make suggestions for improvement.

Finding a ‘greatest common divisor’ for this research has not been easy.

An overarching theme would allow us to explicate which aspects of the
overarching theme we have addressed, and which we have not.

Our decomposed research questions are:

RQ1 What are possible approaches to computing and computing education?
RQ2 What are the aims of undergraduate computing education?
RQ3 What is the purpose of undergraduate computing curriculum

recommendations series, i.e. of (RQ3a) international curriculum
recommendations series and (RQ3b) curriculum recommendations
series for Dutch Universities of Applied Sciences?

RQ4 Do students, who were educated in different programs, develop the
same mental models for the abstract concepts they work with? I.e., are
different approaches to computing interchangeable?

RQ5 How do students in a hybrid curriculum experience a craftsmanship-
based approach?

RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

What our research questions do have in common is that they all concern
knowledge and beliefs about education in computing related topics.

Magnusson et al. (Magnusson, Krajcik, & Borko, 1999) discuss this kind of

knowledge, Pedagogical Content Knowledge, applied to science teaching.
They conceptualize Pedagogical Content Knowledge of science teaching as
consisting of five components:

Introduction

5

(1) orientation towards science teaching,
(2) knowledge and beliefs about science curriculum,
(3) knowledge and beliefs about students’ understanding of specific science
topics,
(4) knowledge and beliefs about assessment in science and
(5) knowledge and beliefs about instructional strategies for teaching
science.

We will refer to these pedagogical components to delimit our inquiry. In this
thesis, we investigate collective assumptions about undergraduate
computing curricula, in particular about:

 (1) Orientations to computing education:
RQ1 What are possible approaches to computing and computing education?

(2) Guidelines for computing curricula :
RQ2 What are the aims of undergraduate computing education?
RQ3 What is the purpose of undergraduate computing curriculum

recommendations series, i.e. of (RQ3a) international curriculum
recommendations series and (RQ3b) curriculum recommendations
series for Dutch Universities of Applied Sciences?

(3) Students’ shared understanding of computing subjects,
RQ4 Do students, who were educated in different programs, develop the

same mental models for the abstract concepts they work with? I.e., are
different approaches to computing interchangeable?

RQ5 How do students in a hybrid curriculum experience a craftsmanship-
based approach?

(5) Instructional strategies specific to computing
RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

The focus of our investigation has been on the first two components of
Magnusson’s PCK framework: approaches to computing and guidelines for
undergraduate curricula. We have targeted specific issues of students’
understanding. We have not investigated assessment. The discussion of
instructional strategies is by no means complete; it consists of suggestions
we have gathered during our investigations.

Part I—What Is Taught And Why?

7

Part I—What Is Taught And Why?

RESEARCH QUESTIONS RQ1, RQ2, RQ3, RQ6, RQ7

RQ1 What are possible approaches to computing and computing education?

RQ2 What are the aims of undergraduate computing education?
RQ3 What is the purpose of undergraduate curriculum recommendations

series, i.e. of (RQ3a) international guidelines for undergraduate
computing curricula and (RQ3b) guidelines for computing curricula at
Dutch Universities of Applied Sciences?

RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

In this Part, we will reflect upon the discipline of computing and upon
(Dutch) national and international curricular frameworks for
undergraduate education.

Chapter 2 shows the first exploration of the question: what are possible
approaches to computing and computing education? We start with the
discussion of the classification of computing. We point at differences
between validation according to Software Engineers and according to
Information Systems specialists.

Chapter 3 expands the discussion to the whole discipline of computing,
including hybrid disciplines. We characterize computing as a field that can
be approached from three points of view: theoretical, scientific and
engineering. We illustrate how this description can be adopted to better
understand hybrid curricula.

Chapter 4 treats differences between (Dutch) national and international
curricular frameworks for undergraduate computing education. It includes
examples of the positioning of hybrid curricula.

Preliminary Study

9

2 Preliminary Study1

ABSTRACT

Computing, or informatics as we call it in Europe, covers many areas. In this paper
we will discuss an important difference between two of these areas: software
engineering and information systems. Epistemology, the study of the question:
“What grounds can we justifiably have for believing the truth of assertions about
reality?”, is complex in informatics. This question has different answers, depending
on the area we investigate. Curricula in informatics do not discuss this difference
explicitly. In our opinion, they should.

KEYWORDS

Computer Science Education, Information Science Education, Intellectual Discipline,
Cultural Differences

ACM CLASSIFICATION KEYWORDS

K.3.2 [Computer and Information Science Education]: curriculum

2.1 INTRODUCTION
Computer applications increasingly determine how we live. Our choices

depend on the information we retrieve using (mobile) apps, the same
applies to the services we as citizens interact with. These applications are
written by computing practitioners. Some of them are trained on the job,
others have an academic or a professional degree.

We will discuss one aspect of the education of computing practitioners.
When we write “computing” we also mean “informatics”, unless it is
perfectly clear that we intend to attribute different meanings to these two
words. We choose “computing” to remain consistent with the terminology of
the ACM-IEEE curriculum recommendation series. We have considered

1 This work was originally published as: "Sciences, Computing, informatics: who is the keeper

of the Real Faith?", In: G. van der Veer, P. Sloep, M. van Eekelen (eds) Proceedings of
Computer Science Education Research 2011, April 7 and 8, Heerlen, the Netherlands. ©
2011 Open Universiteit, Heerlen, NL. ISBN: 9789035819870

Computing Education in a Hybrid World

10

using “computer science” to indicate the discipline, but rejected the option
because the curriculum recommendation series use that term to indicate
one of the computing disciplines (see section 2.2). Incidentally, we will use
“computer science”, but only while quoting other authors. Finally, we will
use “informatics” in the discussion of European curricula in section 2.2
because that is how the discipline is called in Europe.

In this paper we express our concern about the education of computing
practitioners. The discipline is young, and discussion about its focus and
boundaries is taking place (Cassel, 2007). At the same time, the industry
demands skilled professionals. How curricula in higher education should
approach computing is a relevant question. If computing is seen as a
competence, it is appropriate to focus on guidelines and recommendations -
and how to apply them. But computing is an intellectual discipline too
(Wing, 2006) (Lewis, Jackson, & Waite, 2010), where creativity is
accompanied by reasoning. From that point of view, it is appropriate to
focus on the discussion of choices.

This discussion is not new. Software Engineering (SE), is aware of the
problems encountered by practitioners. Making choices is an important
issue in the undergraduate curriculum in SE (ACM / IEEE, 2004, p. 40),
Curriculum Guideline 8 (section “exercising critical judgment”)) that is
covered by offering a variety of methods and their backgrounds (Guideline 7
(section “computing”)).

In our opinion, confining the discussion of the philosophical
underpinning of methods in the academic setting is not enough. Future
programmers should be able to motivate their choices in a setting we do not
know yet. They should have tools to evaluate the methods they are
acquainted with. They also should develop an intellectual attitude towards
the profession of programmer.

Lewis, Jackson and Waite (Lewis, Jackson, & Waite, 2010) looked at side
effects of higher education in our discipline. They investigated student
attitudes early and late in an undergraduate Computer Science (CS)
curriculum. One of the statements they proposed to 1st semester students,
2nd semester students and senior level students was: “When I solve a
computer science problem, I explicitly think about which computer science
ideas apply to the problem”. The staff would have wanted the students to
endorse this statement, and many of them did, but student endorsement
declined from 72% for 1st semester students to 44% for senior level
students. Lewis, Jackson and Waite’s conclusion was that the CS curriculum
might fall short in helping students develop the perspective that CS is an
intellectual discipline.

Preliminary Study

11

Undergraduate computing curricula should emphasize the intellectual
aspects of the disciplines, besides the competences. After all, today’s
students will be designing tomorrow’s world. Discussion is necessary.

In section 2.2, we will look at undergraduate computing curricula in
European higher education; in section 2.3 and 2.4 we point at a discrepancy
between the administrative classification of computing and the historical
roots of the discipline. In the sections 2.6 and 2.7 we discuss the nature of
guidelines in software engineering; in 2.8 and 2.9 we look at the same aspect
of another computing discipline, information systems. In section 2.10 we
compare the approaches of these two disciplines. In the sections 2.11 and
2.12 we draw conclusions for the professional practice as well as for the
academic curricula.

2.2 COMPUTING CURRICULA
In Europe, there is little agreement on the organization of higher

education in computing or informatics. Harmonization is taking place
(EHEA, sd) but it is far from being accomplished. The United Kingdom has a
system that resembles the US standard (Cowling, 2006). France has
university education and top graduate schools or “Grandes Écoles”
(Commission des Titres d'Ingénieur) awarding prestigious Master’s degrees.
Flanders (NVAO, sd), and the Netherlands (NVAO, sd) have a dual system
with institutes for Higher Professional Education (Hogescholen) and
Universities. Hogescholen generally confer Bachelor’s degrees; in Flanders
these degrees can be “academic” (Vlaamse overheid, sd) while in the
Netherlands they never are (NVAO, 2008). In Italy there is one system of
academic degrees (Ministero dell'Istruzione, dell'Universita' e della Ricerca,
2000) that includes Engineering and Architecture disciplines. We will focus
here on the first academic degree in computing or informatics, the
(academic) Bachelor’s degree.

The name of the discipline also reflects different views. In Europe, we
use “informatics” as an umbrella term (Informatics Europe, sd), except for the
U.K. where “computing” is preferred, in analogy with the U.S.A. (Cowling,
2006). The first name suggests an emphasis on automated information
processing, the second on the computerization of calculus.

Surprisingly, there is agreement on the classification of the discipline.
The conferred academic degree in Europe, including the UK, is B.Sc. From a
legal point of view, informatics is one of the Natural Sciences. In the
Netherlands, it falls under the area “Nature”, with Mathematics and the
Natural Sciences, which is often bundled with Technology into the area of

Computing Education in a Hybrid World

12

“ß-wetenschappen” (ß sciences) (Larsen & Lubbe, 2008), or “Exacte
Wetenschappen” (exact sciences) (NWO, 2011). In Italy, the Informatics
curricula are classified as “Scientific” and “Engineering” (Ministero
dell'Istruzione, dell'Universita' e della Ricerca, 2000), in France (Comité de
Suivie de la Licence, 2010) Informatics is listed in the domain “Sciences,
Technologies et Santé” (Sciences, technology and health). In the UK,
Computing is considered part of Science, Technology, Engineering and
Mathematics (STEM) [26]. There are rare exceptions, for example the
University of Groningen (NL) offers a full Information Systems-curriculum
in the Faculty of Arts (Rijks Universiteit Groningen, Faculty of Arts, sd). It
confers a BA degree.

The ACM-IEEE Joint Task Force for Computing Curricula has defined a
classification for academic curricula in the USA and in the UK (ACM / IEEE,
2005), as an overview for the Computing Curricula series with guidelines
and standards. There is no agreement (yet) on the content of academic
curricula in informatics in Europe, but many national institutions for
curriculum evaluation are inspired by the Computing Curricula
recommendations,such as the Italian “Bollino GRIN” (Cortesi & Nardelli,
2007) and the last Dutch report on the quality of Bachelor’s degrees in
Informatics (QANU, 2007). For this reason, we will follow the Task Force in
the terminology we will use, in particular in its definition of undergraduate
computing curricula, i.e. of the bachelor’s degrees in computer engineering,
computer science, information systems, information technology and
software engineering.

2.3 IS COMPUTING A SCIENCE?
The Task Force for Computing Curricula defines “computing” as “any

goal-oriented activity requiring, benefitting from or creating computers” (
(ACM / IEEE, 2005), § 2.1). This definition is followed by the observation, in
the same paragraph, that “an information system specialist will view
computing somewhat differently from a software engineer”, each computing
area having its focus and perspective. The definition of robust methods for
creating reliable artefacts is at the core of the SE agenda, whereas the
information system (IS) perspective emphasizes generating, processing and
distributing information using computer technology. These differences are
seen as gradual; the common interest is computing.

European administrations too tend to consider computing as one
discipline, one of the natural sciences. That is not obvious at all: in
computing, unlike in the natural sciences, the object of investigation is

Preliminary Study

13

artificial. Computing has that in common with engineering, but unlike in the
case of engineering, the proof of soundness of computing theories is not
necessarily situated in the outside world. Computing leans heavily on
mathematics and formal logic.

The question “is computing a science” is a recurrent one. In 2007, P.
Denning wrote in the Communications of the ACM “Computing is a Natural
Science” (Denning P. , Computing is a Natural Science, 2007). In his opinion,
computing has never been just a science of the artificial, but is an activity
revealing deep structures of various natural processes. Denning also
remarked that the acceptance of computing as a science is a recent
development, that has taken place in less than a generation. Three years
later, G. Génova reconsiders the scientific status of computer science
(Genova, 2010) and argues for more speculative research in the discipline.
The pendulum has swung too far in the direction of experimentalism.
Experimentation and speculation should go hand in hand in all sciences but
in computer science in particular. This discipline owes too much to
theoretical research to focus principally on experimentation, says Génova.

2.4 MATHEMATICAL INTERMEZZO
Computing theories have their origin in D. Hilbert’s formalist school, one

of the answers to the 19th Century’s crisis in the philosophy of mathematics.
The German mathematician and philosopher David Hilbert wanted to
provide for the foundation of number theory – and mathematics – in an
axiomatic way, through formal logic. If number theory turned out to be
consistent , then there had to be some sort of truth in it. Wegner and Golding
(Wegner & Goldin, Principles of problem solving, 2006) call this a rationalist
point of view: Hilbert considered mathematical knowledge independent of
sense experience.

We owe the theory of computability to Hilbert and his school (Lolli,
2006) in the early 20th century at the University of Göttingen, that included
Ernst Zermelo and John von Neumann (Hilbert, sd). But Hilbert’s program
failed. We know now that number theory cannot be grounded in formal
logic. Nor can mathematics, as an extension of number theory. We still do
rely on mathematics and number theory, but the reason why is less clear.

In sections 2.6 to 2.9 we will explore the role of mathematics in two
computing disciplines: software engineering and information systems.

Computing Education in a Hybrid World

14

2.5 VERIFICATION AND VALIDATION
One of the fundamental issues for programmers is: how do we know that

the machine will always do what we want it to do? The question has two
aspects: 1. Did we build the right program (Validation) and 2. Did we build it
right (Verifications and Validation of software, sd)

According to the General Principles of Software validation of the FDA
(Food and Drug Administration, 2002) “Software verification provides
objective evidence that the design outputs of a particular phase of the
software development life cycle meet all of the specified requirements for
that phase.” (§ 3.1.2). In large and complex projects, software is specified
formally. In these cases, verification concerns the correspondence between
code and formal requirements and can be supported by formal proofs.

The FDA considers software validation to be “confirmation by
examination and provision of objective evidence that software specifications
conform to user needs and intended uses, and that the particular
requirements implemented through software can be consistently fulfilled.” (
(Food and Drug Administration, 2002), § 3.1.2). Validation concerns the
correspondence between the product and what is needed in the real world.
We will focus on this aspect of computing: are we making artefacts that are
“valid”?

The story is becoming less “exact” at this point. In fact, there are different
opinions about what should be considered “valid”: does the adjective apply
to the product, to the process, to the stakeholders’ requests, or to the
stakeholders’ needs?

In real life, the concept of “users” can be considered in a narrow way as
“anybody who actively uses the system” or in a broad way “anybody who is
client of the services provided by the system”. The second variant of the
concept includes stakeholders who never touch the system but who ”benefit
from”, or are ”victim of” others using the system. Validity, in this case,
concerns not only stakeholder specifications, but also stakeholder
understanding and acceptance. We will coin this broad concept “stakeholder
validity”.

2.6 SOFTWARE ENGINEERING
The first area of computing we will investigate is software engineering.

The most recent version of the “IEEE/ACM Software Engineering
Curriculum Recommendations” specifies the nature of the discipline:
“Software engineering thus is different in character from other engineering
disciplines, due to both the intangible nature of software and to the discrete

Preliminary Study

15

nature of software operations. It seeks to integrate the principles of
mathematics and computer science with the engineering practices
developed to produce tangible, physical artifacts.” (ACM / IEEE, 2004, p. 6)

Software engineering uses mathematics; but why? Formal methods are
used to describe software in order to control the process of software
construction: “The mathematical and engineering fundamentals of software
engineering provide theoretical and scientific underpinning for the
construction of software products with desired attributes. These
fundamentals support describing software engineering products in a precise
manner. They provide the mathematical foundations to model and facilitate
reasoning about these products and their interrelations, as well as form the
basis for a predictable design process”. (ACM / IEEE, 2004, p. 23)

Software, at least critical software, is described in a formal way first and
translated into code afterwards. The question “does code meet its formal
specification?” (verification) is answered by formal, mathematical proof.
The other crucial question (does the code do what it was designed for?) can
be answered in different ways: we can validate the correspondence between
formal specifications and the stakeholders’ requirements, we can validate
the correspondence between formal specifications and his understanding
and acceptance (stakeholder validity) and we can validate the software in
the same way we validate other artifacts.

2.7 TWO INTERPRETATIONS OF VALIDATION IN
SOFTWARE ENGINEERING

The IEEE/ACM Software Engineering Curriculum Recommendations is
ambiguous at this point: “Requirements represent the real-world needs of
users, customers, and other stakeholders affected by the system. The
construction of requirements includes an analysis of the feasibility of the
desired system, elicitation and analysis of stakeholders' needs, the creation
of a precise description of what the system should and should not do along
with any constraints on its operation and implementation, and the
validation of this description or specification by the stakeholders” (ACM /
IEEE, 2004, p. 25)

We can read “precise descriptions” in two ways: as “formal
specifications” or as “description by a finite number of objective,
measurable criteria”.

In the first interpretation, software is meant to fulfill a formal
description. In this case, the software engineer is charged with the
translation between the stakeholders’ requirements, understanding and/or

Computing Education in a Hybrid World

16

acceptance and the formal specifications of the product. In order to increase
the confidence in the outcome of this process, future software engineers are
provided with a solid background in mathematics. Mathematics is also used
to design software and to prove its correctness. We trust this approach
because we trust mathematics. This is the research area Génova wants to
safeguard.

In the second interpretation, software is considered as an artefact, an
answer to well defined and measurable needs. The process of translating
those needs into formal specifications and from formal specifications to
software is evaluated as a whole. In this interpretation of “precise
description”, we trust the validation process because we trust our
observations, as we do in the natural sciences.

2.8 INFORMATION SYSTEMS
In the ACM/AIS Curriculum Guidelines for Undergraduate Degree

Programs in Information Systems we read: “Information Systems as a field
of academic studies encompasses (…) acquisition, deployment, management
and strategy for information technology resources and services (…) and
packaged system acquisition (...) for use in organizational processes.(…) The
systems that deliver information and communication services in an
organization combine both technical components and human operators and
users. They capture, store, process, and communicate data, information, and
knowledge.” ((ACM / AIS, 2010, p. 13).

The Foundations of Information Systems course “is designed to
introduce students to contemporary information systems and demonstrate
how these systems are used throughout global organizations. The focus of
this course will be on the key components of information systems - people,
software, hardware, data, and communication technologies, and how these
components can be integrated and managed to create competitive
advantage.” (ACM / AIS, 2010, p. 36).

The operationalization is taught in the Data and Information
Management course, which “provides the students with an introduction to
the core concepts in data and information management. It is centered
around the core skills of identifying organizational information
requirements, modelling them using conceptual data modelling techniques,
converting the conceptual data models into relational data models and
verifying its structural characteristics with normalization techniques, and
implementing and utilizing a relational database using an industrial-
strength database management system.” (ACM / AIS, 2010, p. 40).

Preliminary Study

17

The requirements are translated into relational data models and
implemented with a relational database. The relational database
management system is supposed to be provided by the industry fully
conforming to the relational model.

Relational data models are formal representations of existing structures:
libraries, population registers etc.. They are implemented into relational
databases, which are filled with data representing the actual situation in the
real world, or at least of the portion of the real world represented by the
system.

This approach is based on the assumption that formal reasoning
preserves truth. Let us consider the case of the library. The librarian wants
to answer questions about his library, by querying the library database. The
queries are written by a database engineer. The engineer assumes that the
digital representation describes the real library correctly. He formulates
each query in terms of entities in the model and convinces himself by formal
reasoning that the queries correspond with the questions he wants to
answer. If the questions are correct and the digital representation of the
library matches the library, the answers to the queries should be true.

We trust the outcome of database queries because we trust formal
reasoning.

2.9 ONE INTERPRETATION OF VALIDATION IN
INFORMATION SYSTEMS

In the information systems discipline, the only possibility to describe
software requirements is the formal one. The issue of the correctness of
database management software is delegated to the software houses, which
should implement the relational model, a mathematical model.
Requirements for information systems are always formal; all the
communication between professionals concerning information systems is
supported by mathematics. This applies both to communication between
practitioners and to communication between practitioners and their
software houses. The other variant does not apply here.

One could reply that, even if the specifications of information systems
are formal, their content concerns the real world. Can we consider these
systems as artefacts, is it possible to skip the verification/validation
sequence and match the input/output with real world situations? There are
two reasons to answer “not always” to this question.

The first one concerns the system’s dimension. It is always possible to
match the real world situation with a positive answer to a database query,

Computing Education in a Hybrid World

18

but this does not apply to the negative answer. I can look up a title in a
library. The answer “You will find the book at location XX” can easily be
checked. The answer “This book is not available” can only be confirmed by
checking every single book in the library. This is possible in a small library,
but most present-day libraries are too large and, moreover, they are
distributed systems; the books are stored in different locations.
Confirmation of the negative answer is seldom feasible in practice.

The second reason concerns the human factor in information systems
and its dynamics. What is likely to happen in a very large library, where it is
impossible for the operator to overview the situation, is that the operator
will trust the system’s negative answer and will discard the book when he
happens to find it. The system’s state will match the real world situation
again, but the reason of the match is far from being scientific. We cannot
validate this software by matching the system’s behavior with the real
world because, unlike in the natural sciences, the “world” described by
information systems is made to comply to the model.

2.10 THE NATURE OF GUIDELINES AND
RECOMMENDATIONS

We have discussed the validation of software so far. The question we
focus on here is not “why do we think our software is correct” but “why do
we trust our guidelines and recommendations?”

Epistemology is the branch of philosophy studying the nature and limits
of knowledge. One of the discussions in epistemology concerns rationalism
versus empiricism. Rationalism claims that pure reason can be a source of
knowledge. The opposite position is held by empiricism, claiming that all
knowledge has its origin in sense experience (Formal Sciences, sd). Sciences,
and natural sciences in particular, are essentially empiricist. Scientific
knowledge is refined by application of the scientific method that is based on
empirical and measurable evidence. The status of mathematics is the subject
of debates. (Formal Sciences, sd) (Putnam, 1975).

Validation of software is so complex because it concerns both the
software in question and the discipline itself. If in software engineering,
software performs unwanted behavior despite of having been tested
meticulously, and the reason why cannot be found, the discipline
reconsiders its guidelines. Of the two interpretations of “validation” (the
correspondence of the requirements and the formal specifications versus
validation by empirical evidence), the empirical variant is the one that

Preliminary Study

19

counts here. The discipline practices the scientific method. Epistemology is
principally empiricist in software engineering.

Validation by empirical evidence is undeniable if the software is meant
to produce results that are observable to everybody, if it controls processes
in the physical world: software that commands the Mars Lander, or the
Dutch Delta Works etc. Peter Denning’s claim that computing reveals deep
structures of nature matches with this approach to computing.

Validation of information systems occurs principally by comparing test
results with their abstract counterpart. This process always entails a
translation from the system’s output to the abstract model. There is some
objectiveness in this translation: professionals agree on how it should take
place and agree on the definition of “malfunction of the system”. There is
less agreement on the definition of “malfunction” among the uninitiated
ones. In real-life application of information systems, errors can remain
invisible. Information systems relies principally on formal methods to
validate both its software and its guidelines. The underlying assumption
seems to be: if the model is consistent, then there has to be some truth in it.
Epistemology appears to be principally rationalist here.

2.11 DISCUSSION
Apparently, the scientific interpretation does not fit the discipline of

computing or informatics as a whole. In particular, it does not fit the
construction of software that implements abstract models. Here, there is
some room for different views on the status of theories, guidelines and
recommendations. Different branches of computing seem to have different
reasons to trust their guidelines. Who is the Keeper of the Real Faith? Our
conclusion is: the question does not fit the discipline anymore

The discipline has expanded. There are areas where the ultimate test lies
in the real world and in the perceived functioning of software. In other areas
the ultimate test is formal. Practitioners (and their stakeholders) should be
made aware of this issue.

Information processing is a key issue in our discipline. But there is no
decisive answer to the question what information is. One of the ideas on this
subject was translated into a formal model, the relational model, and laid
the foundation for extremely successful technology. Working with that
technology requires a formal approach to the discipline.

We doubt the rationalist assumption “if the model is consistent, there
has to be some truth in it”. In particular, we reject the application of the
notion of “truth” or “correctness” to software producing results that cannot

Computing Education in a Hybrid World

20

be evaluated by the end users. What is the opposite of “correctness” in this
case: “error” or “failure”? The unskilled user will only detect the latter.

Concerning the “validation” of software implementing an abstract model,
it appears adequate to add criteria to the notion of “correctness”, criteria
expressing stakeholder validity. Among them, we mention “applicability”,
“usability”, “efficiency” or “effectiveness”. On which criteria to focus is a
choice that depends on the context, a choice that precludes other choices.
Therefore, it should be made explicitly.

Concerning the role of formal models in the computing practice, there
seems to be more room for discussion on this point than most
undergraduate curricula suggest.

2.12 SO WHAT?
We question the classification of computing among technology and the

natural sciences because it blurs the objectives of the academic location of a
discipline. An impartial discussion about the status of computing theories is
unlikely to happen inside a faculty that has its right to exist in one of the
possible outcomes of that discussion.

In our view, an impartial discussion might well end in the division of the
discipline in “computing” (in accordance with the natural sciences),
“engineering” and “informatics” (matching other criteria, depending on the
context).

With regard to professional ethics, we witness that the classification of
our discipline in the domain of the natural sciences entails an attitude of
taking the benefits of technology too much for granted. We are afraid that
the library will fit the designed system in the end. We want the system to fit
the library instead. To facilitate this, future practitioners should be educated
in discussing the criteria for application of the technology they use. They
should be aware of the downsides of technologies, besides their benefits.

As regards the educational programs, we recommend academic curricula
in all the computing disciplines to pay more attention to this issue. Today,
students get acquainted with different branches of computing, without
discussing the differences. Academic curricula cover different application
areas with the corresponding methodologies, without a discussion of the
reason why different contexts request different methods.

We recommend discussing the backgrounds of theories explicitly. Each
field of application has its own needs and accents: aerospace application
programmers follow different guidelines than Web artists. Awareness of the

Preliminary Study

21

backgrounds of theories helps practitioners to determine if the
corresponding guidelines can be applied and how to do it properly.

Historical Review And Epistemological Considerations

23

3 Historical Review And Epistemological
Considerations2

ABSTRACT

Computing is an interdisciplinary field that can be approached from
different points of view. Each point of view has its goals, aims and
fundamental assumptions. This makes computing a complex discipline.
Moreover, new computing disciplines appear regularly. With the trend that
ICT-professionals should have non-ICT competences as well, and non-ICT-
professionals should have ICT-competences, new computing curricula are
often hybrid in nature. As a hybrid computing curriculum cannot cover the
full range of computing, it is interesting to investigate the ‘computing part’
of such curricula.

Our analysis framework consists of three elements: the curricular
components ‘goals and objectives’ and ‘instructional strategies’, and the
underlying epistemological view on the discipline (‘cultural styles’). Taking
a historical perspective, we describe the origins of the ACM/IEEE
Curriculum Recommendation series. We discuss the three main cultural
styles of computing: theoretical, scientific and engineering.

Observing that in a curriculum the above elements should be aligned, we
present three trade-offs for the case of hybrid computing curricula. We
apply our results to two concrete examples, Liberal Arts and Computer
Science and Front End Development. Based on our investigation, we
formulate recommendations for designers of hybrid computing curricula.
We recommend, for example, discussing disciplinary boundaries and
resulting trade-offs explicitly while designing and documenting curricula.

CCS Concepts
• Social and professional topics ~ Computing education programs •

Social and professional topics ~ History of computing

Keywords

2 This work was originally published as: Benvenuti, L., Barendsen, E., van der Veer, G. C., &
Versendaal, J. (2018) Understanding computing in a hybrid world, on the undergraduate
curriculum Front End Development. SIGCSE’18 , February 21-24, 2018, Baltimore, MD, USA ©
2018 ACM, NY, USA. ISBN 978-1-4503-5103-4 , doi: 10.1145/3159450.3159532

https://doi.org/10.1145/3159450.3159532
https://doi.org/10.1145/3159450.3159532

Computing Education in a Hybrid World

24

Interdisciplinary programs (CS+X); Hybrid undergraduate curricula;
Cultural styles in computing; Front End Development

3.1 INTRODUCTION
New computing curricula often are hybrid in nature. Since the

introduction of the World Wide Web, new areas, commonly referred to as
Creative Technologies, have gained importance. Educational programs
appear, meant to foster these developments by stimulating crossovers
between computing and non-technological sectors as fashion, health etc.
The corresponding curricula only partially concern computing, since a
considerable part is devoted to sector specific topics. Designing curricula for
hybrid contexts poses interesting questions. Which part of computing is
relevant for hybrid programs, in how far should we consider graduates of
these curricula as computing professionals? The answer to these questions
is controversial.

Recent research on the Dutch labor market (Dialogic & Matchcare, 2016)
observes that boundaries between Information and Communication
Technology (ICT) and other sectors are fading away. It refers to the
European e-Competence Framework (eCF) (European Committee for
Standardisation, 2014) that divides specific ICT competences in primary ICT
skills, as software development, and secondary ICT skills supporting
primary skills, like information security strategy development of user
support. Specific ICT competences are increasingly requested in other
professions than the computing professions listed in eCF. If professional
profiles were classified by the required ICT competences, argues the Dutch
report, the computing professions would double. The report predicts a
shortage of professionals having primary ICT skills in the immediate future,
in particular a shortage of software developers. It also warns against the
growth of hybrid undergraduate computing curricula, where ‘hybrid’ is
defined as: “programs that primarily concern other areas than computing”.
According to the Dutch researchers, hybrid curricula focus too much on
secondary ICT skills to comply with the industry’s demand.

We question the researchers’ conclusions about the education of
software developers. But we do acknowledge that designing computing
content for hybrid setting is a challenge. This paper strives at understanding
computing, to scaffold choices, necessary to design hybrid curricula. Which
part of computing is relevant in hybrid contexts, and why?

In our pedagogical analysis we consider two central curricular themes
(cf. (van den Akker, Curriculum perspectives, an introduction, 2004)), namely

Historical Review And Epistemological Considerations

25

Goals and objectives of computing curricula and Instructional strategies
specific for teaching computing. The underlying cultural or epistemological
view on the discipline (Tedre & Apiola, 2013) is a third theme, which we
refer to as Cultural styles. In a balanced curriculum, the above three themes
are aligned, that is, goals and instructional strategies fit together and are
consistent with an underlying cultural style.

We will conduct our investigation from a historical perspective. In
Section 3.2 we will sketch the preamble for the joint ACM/IEEE series of
curriculum guidelines, to better understand the international guidelines for
the undergraduate computing curricula, in particular with respect to goals
and objectives of computing curricula.

In Section 3.3, we will further examine the interdisciplinarity of
computing. Besides a comparison of the different cultural styles in
computing, we will discuss the implications for computing education,
especially concerning instructional strategies.

We explore the challenges for hybrid curricula in terms of trade-offs
between the three themes in Section 3.4. In Section 3.5 we apply our
analysis to two particular hybrid curricula, Liberal Arts and Computer
Science and Front End Development. We conclude with a summary and
recommendations in Section 3.6.

3.2 COMPUTING CURRICULUM GUIDELINES
North America has a tradition of dialogue between professionals

covering different roles in the computing community: scholars,
professionals, engineers, and theoreticians. This is remarkable; in the
Netherlands, the computing community was shaped by debates and is still
divided today (Dael, 2001). In this section, we will explore the preamble to
the Joint Task Forces on Curriculum Recommendation, that were initiated in
North America but operate worldwide today.

The usage of programmable computing machines for practical purposes
took off with the Second World War in the United States, Germany and Great
Britain. But the European computers did not survive the war. The German
Z3 was destroyed in an allied bombardment of Berlin in 1943; the British
Colossi were considered highly classified and were dismantled for that
reason. Things went differently in the U.S.A. The ENIAC was announced to
the press in 1946. In the summer of that year, the Pentagon organized
lectures about the construction of digital electronic computers, and invited
computing professionals from the United States and Great Britain (Moore

Computing Education in a Hybrid World

26

School lectures, sd). The dissemination of the ideas underlying computing
construction starts here.

Societies for computing professionals were quickly established: one of
the precursors of IEEE (the Subcommittee on Large-Scale Computing of the
American Institute of Electrical Engineers) in 1946, followed by ACM in
1947. American organizations of computing professionals have collaborated
since the early days (Joint Computer Conferences, sd) by sponsoring joint
conferences.

Tedre (Tedre, 2007) draws a detailed picture of the debates that have
shaped the discipline in the second half of the 20th Century. Until the 1960s,
mathematicians collaborated with engineers to realize computing machines
and languages to program them. These activities resulted in artifacts that
have an impact on the world, an impact that sometimes is measurable, but
not always. Should computing be considered an art or a science? Should
practical topics as programming be taught in academia; is computing an
academic discipline at all?

3.2.1 A THEORETICAL APPROACH
The first edition of the ACM curriculum recommendations, published in

1968, took a stance in this debate. Computer Science (CS) had to be
considered an academic discipline studying information structures and
processes (Tedre, 2007). Its core issue was handling abstraction.
Mathematics provided for theoretical foundation of the discipline. In these
days, computer scientists were accommodated in Departments of
Mathematics or in Departments of Electronic Engineering. Training for the
positions of programmers could be supplied by technology programs,
vocational education or junior colleges.

3.2.2 THE SOFTWARE CRISIS
The theoretical approach appeared not to be able to solve all the

problems of the booming discipline. In the late 1960s, software complexity
increasingly had become problematic. Complexity did not only arise from
the parts of a system – object of study in the Computer Science (CS)
departments - but from the connections between these parts (Tedre, 2007).
This software crisis uncovered a lack of methodology for understanding and
controlling software systems that were too big for single programmers.
Software Engineering (SE) emerged, a discipline that considers software
development as the effort of a team whose members might have contrasting
intentions.

Historical Review And Epistemological Considerations

27

The update of the ACM Curriculum in 1978 brought programming back
in the academic curriculum. With the software crisis, the focus of computing
had shifted from a discipline studying information structures into an
application-centered discipline (Tedre, 2007). Computing had gained
independence from mathematics and engineering, but a clear definition of
the discipline had been lost.

Curriculum ’78 has been criticized for too strongly identifying computing
with programming. In their objection to that view, Ralston and Shaw
(Ralston & Shaw, Curriculum '78 is Computer Science really that
unmathematical?, 1980) stated that mathematics lays a foundation under
both science and engineering, and that understanding of any of these
disciplines is impossible without understanding mathematics. Also, the
mathematic foundations of computing are stable, where specific skills
rapidly become obsolete. Giving students a background in mathematics
would protect them from this obsolescence, pleaded Ralston and Shaw.

3.2.3 THE SNOWBIRD CONFERENCES IN THE 1980S
Starting with 1972, the Heads of CS Departments offering PhD in the USA

and Canada held biennial meetings in Snowbird, Utah. Members of
government and representatives from the computer industry attended
these meetings, which evolved towards meetings of the North American
computing community.

The 1980 Snowbird Report “A discipline in crisis” (Denning, et al., 1981)
depicts a worrisome situation at Computer Science departments. The
computing field was growing explosively. Universities were overburdened
by the growth of undergraduate enrollments. There was no time for
supervision of graduate students. The best students were hired by industry,
which caused a shortage of PhDs. The situation threatened the ability to
conduct basic research in Computer Science.

As an answer to the problems described in “A discipline in crisis”,
dialogues were improved between academia, the industry, government
agencies and professional organizations (Yau, et al., 1983). The 1984 report
(Future Issues in Computer Science (Tartar, et al., 1984) addresses the
question of the lack of agreement about the accreditation of undergraduate
programs. ACM and IEEE had started investigating the desirability of
cooperating in the accreditation process at the 1982 Snowbird conference
(Yau, et al., 1983). By 1984, the professional organizations had created a
Computer Science Accreditation Board (CSAB); the volunteers necessary to
administrate the CSAB were provided by academia.

Computing Education in a Hybrid World

28

One of the aims of CSAB was: providing a more common view of a core
description, at least for the undergraduate curriculum. ACM and IEEE
formed a joint task force to describe the intellectual substance of the
computing field in 1985 (Denning, et al., 1989). A joint task force for the
definition of the undergraduate curricula was formed in 1988 (Reilly, 2004).

3.2.4 THE ACM/IEEE CURRICULUM REPORTS
The Task Force, chaired by P. Denning, presented its final report

“Computing as a Discipline” in 1989. The Task Force uses the phrase
discipline of computing as an umbrella term for scientific and engineering
aspects of computing. It starts with stating having extended its task to both
Computer Science and Computer Engineering because it had concluded that
no fundamental differences exist between the two fields in the core material
(Denning, et al., 1989). The report distinguishes three major paradigms, or
cultural styles, for the computing discipline: theory (rooted in mathematics),
abstraction (rooted in the experimental scientific method), and design
(rooted in engineering). The three cultural styles are fundamental for the
discipline, which is described as a blend of interaction among theory,
abstraction and design.

“Computing as a discipline” addresses the question, in which area of
computing majors should be competent. The answer is cautious: discipline-
oriented thinking should be the primary goal of every curriculum for
computing majors, based on solid mathematical foundations. Teaching
paradigms emphasizing inquiry and orientation in the computing literature
are recommended, instead of lectures presenting answers.

“Computing as a discipline” pleads against a strong identification of
computing with programming. It also states that every computing major
should be competent in programming. The Task Force remarks, that the
distinctions between the computing disciplines are embodied in the
differences between programming languages, and recommends
programming languages to be treated as a vehicle to access these
distinctions.

Since 1989, the ACM/IEEE has jointly formed Task Forces that have
published and iterated overview reports with recommendations for
computing curricula. They appeared in 1991 and 2005. These reports have a
triple ambition. They aim at (1) training the professionals requested by
industry, (2) training the students’ intellectual skills necessary to find
employment, enter the Master level and keep up with future developments,
and (3) granting the development of the discipline of computing.

Historical Review And Epistemological Considerations

29

Over the years, the amount of sub disciplines has narrowed to 5 (ACM /
IEEE, 2005): Computer Science, Computer Engineering, Information
Systems, Information Technology, and Software Engineering.
Undergraduate curriculum recommendations for each of these areas were
published in 2005. Specific committees of ACM and IEEE representatives
worldwide have updated them since then. CS2013 applies to Computer
Science, one of the sub-disciplines of computing. It falls outside the scope of
this investigation.

3.2.5 HYBRID COMPUTING CURRICULA
Until the 1970s, computers were used in professional setting in the

industry, in academia and in big governmental institutions. The first
computer users were programmers, but the user base changed as the costs
of hardware lowered (Tedre, 2007). New interdisciplinary fields of study
emerged, as Management Information Systems, combining computing topics
with topics from other disciplines.

Today, all computing curricula are “hybrid” to a certain extent. Non-
computing topics as Risk Management or Interpersonal Communication are
taught in most undergraduate computing programs. But there also is a “core
of computing”, common to all these programs. The last ACM/IEEE Overview
Report, CC2005 (ACM / IEEE, 2005), provides 10 knowledge areas and 40
topics every Computing Curriculum should cover. The weight of these topics
in single curricula can differ, and some topics might not be covered at all,
but the clear intention of the Report is to describe a core, common to the
five sub disciplines of computing.

Today, there also are undergraduate curricula covering a significant part
of the core of computing, but omitting another significant part. Some
examples are: Medical Information Systems (Dialogic & Matchcare, 2016),
Business Analytics (Dialogic & Matchcare, 2016), Liberal Arts and Computer
Science (Liberal Arts and Computer Science Consortium, 2007). We will adopt
the Dutch researchers’ definition and will indicate as “hybrid” these
curricula dedicating less than half of their program to topics belonging to
the core of computing.

3.3 CULTURAL STYLES IN COMPUTING
The Task Force’s view on three cultural styles of computing (Denning, et

al., 1989) was not new. In 1969, Peter Wegner had held a lecture at the
annual meeting of the American Association for the Advancement of Science.
Its title was: Three computer traditions (Wegner, Three computer traditions:

Computing Education in a Hybrid World

30

Computer technology, computer mathematics and computer science, 1970).
Wegner objected to a single view of computing. CS, argued Wegener, is in
part a scientific discipline concerned with the empirical study of a class of
phenomena, in part a mathematical discipline concerned with the formal
properties of certain classes of abstract structures, and in part a
technological discipline concerned with the cost-effective design and
construction of commercially and socially valuable products.

In a recent article (Tedre & Apiola, 2013) Tedre and Apiola discuss the
different cultural styles of computing, or (in their terminology) three
traditions of computing. According to the authors, these three traditions
fulfill different roles in the development of the discipline of computing. The
scientific tradition copes with the fundamental problem: does an abstract
model fit the world? The engineering tradition copes with the question, how
to translate abstract models into working artifacts. The theoretical tradition
aims at building a coherent abstract framework supporting understanding
of notions as algorithms, complexity, data structures. All authors agree upon
the importance of intertwining the traditions in the computing practice.

Despite the statement in the 1989 report, that “no fundamental
difference exists between the […] fields in the core material”, founding the
discipline on three traditions is a challenge. Tedre and Apiola (Tedre &
Apiola, 2013) analyze the differences between the three cultural styles, and
the implications of these differences implications for basic (K-12)
computing education. They state that, however intertwined and
overlapping, the three cultural styles are fundamentally different in their
aims, in the status of the knowledge they pursue and in their methodological
views.

The aim of the theoretical tradition is to produce coherent structures, in
order to describe algorithms and cope with complexity. The scientific
tradition aims at understanding the world by modeling phenomena (such as
the weather, the mind) and testing the accuracy of the models. The
engineering tradition aims at changing the world, by producing artifacts that
fulfill social needs or desires.

In the theoretical tradition, knowledge is considered independent of
what people may think. It is considered universal and is validated in its
theoretical context. Also the scientific tradition claims to aim at value-free
knowledge, which should be descriptive. This is opposed to the engineering
tradition, in which knowledge is partially value-free (where it concerns
physical constraints) and partially value-laden (where it concerns social
needs and desires). The Body of Knowledge in the engineering tradition is
partially descriptive and partially normative (know-how).

Historical Review And Epistemological Considerations

31

The theoretical tradition analyzes ideas. Propositions should be proven.
The scientific tradition observes the world. Claims should be sustained by
empirical results. The engineering tradition acts. It evaluates tangible
products. Engineers must be able to act, even without having sufficient
information to fully sustain the design of the artifact.

Tedre and Apiola’s paper concerns K-12 computing education. The
authors plead for aligning learning objectives with the corresponding
computing traditions (expressed in pedagogic approaches and educational
resources), because a mix would not result in effective educational
interventions. If the learning objectives of the school concern construction
processes, assessment tasks should not be propositional (quizzes), but
procedural (assessment of design artifacts), because they better fit in the
related tradition, which in this case is engineering. The authors stress that
educators should understand all the traditions of computing. They warn for
bias induced by hidden ethos elevating one of the traditions above the
others, both inside schools as in university departments educating teachers.

Tedre and Apiola reflect on the role of computing traditions in
educational design. The authors recommend matching the tradition with the
learning objectives of educational units. In the end, it is an argument about
the efficacy of educational interventions. It does not concern the learning
objectives themselves, nor the goals and objectives of computing curricula.

3.4 DISCUSSION: CURRICULAR TRADE-OFFS
In this section we will reflect on hybrid computing education using the

three pedagogical themes described earlier. Alignment of the three themes
in combination with the limited space for computing in a hybrid curriculum
gives rise to challenges. Below we will discuss three of these challenges:
representing all cultures (cultural styles), fostering of discipline oriented
thinking (goals and objectives) and the role of mathematics (goals and
objectives, again). In our opinion, the trade-offs involved with curricular
choices ought to be made explicit by authors of hybrid curricula. In Section
3.5 we will discuss two cases in more detail.

3.4.1 INCORPORATION OF THE THREE CULTURAL STYLES
In 1989, the Task Force on the Core of Computer Science described a

common core of the discipline of computing. Content from each cultural
style should be treated by all undergraduate computing curriculums. To
prepare students for the future –which was uncertain— the 1989

Computing Education in a Hybrid World

32

recommendations included inquiry-based learning activities and orientation
in the computing literature, instead of lectures presenting answers.

According to Tedre and Apiola, the three cultural styles not only entail
different approaches to the discipline, but also respect different
epistemological values. Should value-laden knowledge be accepted (as it is
in the engineering culture) or should knowledge always be value-free?
Should ideas be analyzed (theoretical culture) or evaluated empirically
(scientific culture)?

An inquiry-based curriculum appears not to be neutral from this
perspective. There is a risk that Institutions (schools, academies,
departments) prefer one culture, one approach to research above others.
Even an inquiry-based educational approach can canalize students’
understanding of the discipline, towards values, consistent with the method
of inquiry.

A possible direction for a solution is given by “Computing as a discipline”
in stating “most of the distinctions in computing are embodied in
programming notations”. It suggests using differences between
programming languages as a vehicle to discuss differences between
approaches to computing. We will return to this in Section 3.5.2.

3.4.2 FOSTERING DISCIPLINE ORIENTED THINKING
The ACM/IEEE curricula are written from a triple ambition: to serve the

students, serve the industry and grant the development of a (unified)
discipline. In the light of Tedre and Apiola’s findings, we are not optimistic
about the possibility of fulfilling all the ACM/IEEE curricular ambitions by
any of the undergraduate computing curricula. Especially the aims
concerning overview of the discipline and employability appear to be
scarcely compatible with each other. Mixing content from cultural styles will
not automatically grant overview of the discipline, since knowledge is also
rooted in the understanding of research methods. Nor will an investigative
approach to education necessarily support discipline oriented thinking.

Employability and capability to keep up with future developments often
suppose up-to-date knowledge in one of the sub disciplines and related
research skills. Once acquainted with one of the cultural styles, the graduate
is likely to pursue a career path compatible with it, reinforcing the chosen
orientation.

If granting overview of the discipline is challenging for hybrid curricula,
explicating boundaries becomes necessary.

Historical Review And Epistemological Considerations

33

3.4.3 THE ROLE OF MATHEMATICS
Both the 1989 Task Force and the authors of “Computing as a discipline”

recognized the importance of a solid mathematical foundation to foster
discipline oriented thinking.

We partially agree on the overall importance of mathematical thinking
for computing professionals. Yes, the theoretical cultural style does support
discipline oriented thinking, because it provides a common language to
discuss computing constructs. It certainly does support formal reasoning.
But Mathematics too is a vast discipline. Different branches of computing
rely different branches of Mathematics. A course on continuous
mathematics supports skills that are relevant to computer engineers, not
necessarily to information scientists. The existence of one form of
mathematical training, apt to foster overall understanding of computing, is
debatable.

3.5 HYBRID CURRICULA: TWO CASES
In this section we will apply our findings to two existing hybrid

programs: Liberal Arts and Computer Science and Front End Development,
respectively. For each of these we will examine our pedagogical themes and
the appearance of trade-offs.

3.5.1 LIBERAL ARTS AND COMPUTER SCIENCE
The Liberal Arts and Computer Science (LACS) curriculum (USA) (Liberal

Arts and Computer Science Consortium, 2007), has its origin in a reaction to
ACM’s Curriculum ’78, a strongly engineering oriented curriculum (Bruce,
Cupper, & Drysdale, 2010) (Tedre, 2007). Liberal Arts undergraduate
programs traditionally emphasize intellectual growth of students, rather
than preparing them for a specific career. In 1984, a consortium of small
Liberal Arts colleges offering computing degrees, was formed to discuss the
problems these colleges had with the implementation of Curriculum ’78. The
meetings resulted in the first Model Curriculum for a Liberal Arts Degree in
Computer Science (LACS), which appeared in 1986.

LACS offers a Bachelor of Arts degree. Roughly 40% of the curriculum is
dedicated to Computer Science, 5-10% to other science courses and the
remaining 50-55% to humanities and social sciences (Liberal Arts and
Computer Science Consortium, 2007). LACS is a hybrid computing curriculum.

It is interesting to see, what the LACS curriculum guidelines states about
the role of mathematics. Mathematical education is considered part of the

Computing Education in a Hybrid World

34

Computer Science curriculum, for several reasons. Computing relies on
mathematical objects (as sets, relations) and mathematical reasoning (logic,
algorithms, correctness proofs); mathematical tools as probability and
statistics allow analysis of software (Liberal Arts and Computer Science
Consortium, 2007).
Cultural styles

LACS chooses a generalist approach and de-emphasizes specific
technical details. It acknowledges the importance of mathematics in this –
hybrid – curriculum. In terms of Tedre and Apiola’s work, the theoretical
and the scientific view are combined in the LACS curriculum, but the
engineering viewpoint is somehow overshadowed.
Goals and objectives

LACS strives to train generalists. The curriculum de-emphasizes specific
technical details; its ambition is to develop student’s intellectual skills. The
objective of the curriculum is to support durable intellectual growth,
combined with (generalist, discipline oriented) helicopter view.
Trade-offs

The LACS curriculum explicitly makes concessions to its ambitions
towards software development.

3.5.2 FRONT END DEVELOPMENT
We will refer to the discipline that is specialized in the development of

multimodal user interfaces as Front End Development (FED), and to the
corresponding professionals as Front End Developers (FEDs).

“A front-end developer specializes in building the front end, or client-
side, of a web application, which encompasses everything that a client, or
user, sees and interacts with. Front-end development is all about what’s
visible to the user.” (Skilledup, 2016) .

There is no consensus yet about an undergraduate curriculum for FED.
In Amsterdam, FED is a major of the undergraduate curriculum
Communication and Multimedia Design, in the domain Creative
Technologies. FEDs are professional users of client-side technology. They
work in interdisciplinary teams in developing projects. FEDs produce
software that interacts with APIs, services and other ready-to-use software
components, written by other computing professionals.
Cultural styles

FED is teamwork and aims to produce maintainable software products.
For these reasons, we tend to include FED among the disciplines
emphasizing primary ICT skills as described in section 3.1. Still, not all of

Historical Review And Epistemological Considerations

35

computing is relevant for FEDs. Most of the Front End Developer’s work is
visible to the user and can be tested directly. There is no need for
correctness proofs in FED. FEDs need Mathematics to interpret quantitative
research data. Acquaintance with basic abstract structures as sets and
enumerations is needed, since every Front End communicates with other
computer systems through abstract interfaces. In how far modeling skills
are necessary for FEDs is subject to discussion. In terms of Tedre and
Apiola’s work, the engineering and the scientific aspects of computing are
emphasized by this program, at the expenses of theoretical aspects.
Goals and objectives

FED is characterized by focus on craftsmanship, in the context of
interdisciplinary developing teams and rapid technologic evolution. It
strives at training competent manpower for the discipline of FED, who will
be able to to comply with future developments in FED.
Instructional strategies

Front-end developing languages are introduced stressing their aims and
their boundaries, conform the Task Force’s remark on programming
languages: “Software, written with HTML, performs behavior that is visible.
It is not necessary to express intended outcomes in formal statements; the
software can be tested. To support interaction with abstract agents,
professional HTML code should respect conventional semantics. These are
defined by a political process”. This supports future FEDs’ understanding of
the scope of their craftsmanship, helps them to follow the evolution of their
discipline, and to participate in that process.
Trade-offs

The choice for an engineering-based FED curriculum, at the expense of
the theoretical content, has consequences. Graduates are not all-round
software developers. Their sphere of activity is limited to the user interface.
FEDs are trained in making Front-End artifacts, not in developing Front-End
technology. They use and research the possibilities of existing technology.
The question, whether FEDs should develop simple APIs is still open.

FED graduates are granted access to the Master’s level in hybrid
computing disciplines as Digital Communication and Media, not to Master’s
programs in Software Engineering.

3.6 CONCLUSIONS
We investigated the possibility to type hybrid computing curricula. Our

conclusion is: refer to the complex epistemological background of
computing to type hybrid curricula. It is inevitable for designers of hybrid

Computing Education in a Hybrid World

36

curricula to make choices. This approach gives insight in the related trade-
offs; it is relevant for both educational institutions and accreditation boards.

We do think that some of the hybrid computing curricula can train
developers, although bound to specific contexts, like FEDs. Though, it is
fundamental to describe and stress the boundaries of such programs, and of
the corresponding professions. Defining and tuning undergraduate
computing curricula is not only a matter of training manpower requested by
industry. We saw that the field of computing was shaped by a joint effort of
industry, academia and governmental institutions, and urge designers of
hybrid curricula, to take responsibility for the definition of new disciplines.
Trade-offs, involved by curricular choices, should explicitly be discussed in
broad communities including: related computing disciplines in academia,
the industry and the public authorities.
Following Tedre and Apiola’s observations, we also recommend that all
educators of computing topics understand the complex nature of computing.
This applies in particular to those lecturing in hybrid curricula, a condition
that is not always met. We address educators, to warn them against a sloppy
approach to computing: (1) lecturing the outcomes without the method
would not result in durable knowledge; (2) lecturing technology without
mentioning its trade-offs would not allow students to position themselves as
professionals in the dynamic field of computing; (3) lecturing the method
without the philosophical motivations would mean not taking students
seriously enough to invite them to join the conversation about their own
professional future.

Computing Curricula in Dutch Universities of Applied Sciences

37

4 Computing Curricula in Dutch
Universities of Applied Sciences

4.1 INTRODUCTION
In this section, we investigate similarities and differences between the

Dutch framework for computing education at the Universities of Applied
Sciences (the HBO-ICT framework) and international frameworks that were
designed to describe the discipline of computing. Our goal is twofold: (1) to
understand Dutch tertiary professional education, and (2) to understand
aims and purpose of its undergraduate computing curricula and their
relation to hybrid curricula.

We are not interested in the individual curricula, but in what they have
in common. Dutch institutions for professional educational refer to national
and international frameworks to build and validate their curricula. We will
examine the following frameworks.
 (1) ACM/IEEE recommendations for the undergraduate computing
curricula,
(2) the European E-Competence Framework e-Cf 3.0 ,
(3,4) the last two versions of the HBO-ICT framework for computing
education at the Dutch Universities of Applied Sciences, the
“Domeinbeschrijving Bachelor-ICT”,
(5) The framework for the new hybrid domain in Dutch Universities of
Applied Sciences, HBO-Creative Technologies

Frameworks 3 and 4 form the basis for Dutch undergraduate computing
curricula at Universities of Applied Sciences. In some cases, hybrid curricula
are also covered by these frameworks’ descriptions. In such cases, we will
briefly discuss the position the framework gives to hybrid computing
curricula.

In 2014, a new framework HBO-Creative Technologies was published in
the Netherlands. Dutch programs Creative Technologies refer to this
framework (5) at the present.

4.2 FRAMEWORKS FOR CURRICULUM
RECOMMENDATIONS

In the Netherlands, concerning professional undergraduate education,
basically the following frameworks for curriculum recommendations exist:

Computing Education in a Hybrid World

38

(1) ACM/IEEE curriculum recommendations series (Denning, et al., 1989)
and its most recent overview report CC2005 (ACM / IEEE, 2005)

(2) The European e-Competence Framework e-CF 3.0 (European
Committee for Standardization, 2014);

(3,4) The HBO-ICT framework for computing education at the
Universities of Applied Sciences. The last edition of the HBO-ICT framework
dates from 2014; our research in Part II concerns students, enrolled in
curricula that were designed prior to 2014. For that reason, we will
investigate the last two editions of the HBO-ICT framework: 2009 (Schagen,
Kwaal, Leenstra, Smit, & Vonken, 2009) and 2014 (Valkenburg, et al., 2014).

(5) We will involve the curriculum framework HBO Creative
Technologies (Domein Creative Technologies, 2014) because it describes
hybrid programs. Some of them were addressed by the 2009 version of the
HBO-ICT framework, but fall outside the scope of HBO-ICT today. We
remark that this first version of the HBO framework Creative Technologies
is not a fully mature curriculum framework yet. It is more a description of
curricular aims.

4.2.1 ACM/IEEE SERIES
The origin of the ACM/IEEE curriculum recommendations is described

extensively in section 3.2.4. These recommendation frameworks are written
and updated by worldwide committees (‘Task Forces’), mainly of scholars.
Industry and (North American) governmental organizations are consulted
in the process. The members of these Task Forces are recruited among the
members of the professional organizations for computing professionals,
ACM and IEEE. The first joint ACM/IEEE curricular Task Force was
established in 1989 in North America. Today, the coverage is global and so is
the range of the ACM / IEEE Curriculum Recommendations. In particular,
they are determinant for Dutch Universities (QANU, 2014).

Today, the ACM/IEEE curriculum recommendations series is articulated
as follows: an overview report describing the discipline of computing and,
for each sub-discipline, reports with curriculum recommendations. We will
mainly refer to the first Task Force’s report (Denning, et al., 1989) and the
most recent overview report Computing Curricula 2005 (CC2005) (ACM /
IEEE, 2005), describing ten elements that “Any reputable computing degree
programs should include”. “Computer programming” is one of them. Figure
4-1 shows its description.

Computing Curricula in Dutch Universities of Applied Sciences

39

Figure 4-1 CC2005, description of Computer Programming

To illustrate our findings, we will refer to the most recent updates of the
curriculum recommendations reports, which are relevant for the Dutch
professional undergraduate curricula. These are: CS2013 concerning
Computer Science (ACM / IEEE, 2013), SE2014 concerning Software
Engineering (ACM/IEEE, 2014), and IT2017 concerning Information
Technology (ACM / IEEE, 2017).

A typical report for curriculum recommendations will describe the
correspondent sub discipline of computing and its evolution since the last
report with curriculum recommendations. It will state its view on education.
It will list essential topics (that all undergraduate curricula in that specific
sub discipline should address), and electives or supplementals (topics that
can be included in the curriculum). Finally, it will provide examples of
curricula.

Hybrid computing curricula traditionally fell outside the scope of
ACM/IEEE curriculum recommendations. IT2017 (ACM / IEEE, 2017)
includes, for the first time, models for the implementation of IT programs in
different contexts. One of these, the “IT is a concentration in a larger degree
program”, concerns (in our terminology) hybrid curricula. The guideline is:
cover the essential part of the IT topics, which requires approximately one
year’s program.

2) A foundation in the concepts and skills of computer
programming. The foundation has five layers:

a) an intellectual understanding of, and an appreciation for, the central
role of algorithms and data structures;
b) an understanding of computer hardware from a software perspective,
for example, use of the processor, memory, disk drives, display, etc.
c) fundamental programming skills to permit the implementation of
algorithms and data structures in software;
d) skills that are required to design and implement larger structural units
that utilize algorithms and data structures and the interfaces through
which these units communicate;
e) software engineering principles and technologies to ensure that
software implementations are robust, reliable, and appropriate for their
intended audience.

Computing Education in a Hybrid World

40

4.2.2 E-CF
The European e-Competence Framework (e-CF) is an industry standard.

It provides for 40 competences “as required and applied in the ICT
workplace” (European Committee for Standardisation, 2014). Its development
was supported by the European Commission. The Framework aims to
enhance understanding of ICT-professionals’ competences and roles across
Europe. It is a component of the European union’s strategy for e-Skills in the
21st Century.

e-CF is the result of an iterative process. The initiative was taken by
representatives of the European Industry such as Airbus, Michelin and
BITKOM. One educational Institution participated (Politecnico di Milano)
and the United Kingdom’s sector skills council e-Skills UK, which is a
network of employers (UK, sd). The initiative was supported by the
European Community (European Committee for Standardisation, 2014). In
2006, existing computing job profiles frameworks across Europe were
compared and found fundamentally different (Valkenburg, et al., 2014). Two
years multi-stakeholder (ICT and human resources experts’) work followed,
from multiple organisation levels. (European Committee for Standardisation
(2), sd). The outcome was version 1.0 of e-CF, published in 2008. The
framework was extended and updated in 2010 and in 2013, taking into
account the stakeholders’ feedback and application experiences. It became a
European standard in 2016. European governmental organisations also
participate in e-CF today, including the Dutch Ministry of Economic Affairs.

e-CF defines competence as “a demonstrated ability to apply knowledge,
skills and attitudes for achieving observable results” (European Committee
for Standardization, 2014, p. 5). Strictly speaking, e-CF does not provide for
curriculum recommendations. But e-CF 3.0 explicitly mentions in its
foreword that the Framework also was created for application by education
institutions, including higher education.

The framework is structured in four dimensions. Dimension 1 refers to
stages in the ICT business process plan (Plan-Build-Run-Enable-Manage).
Dimension 2 consists of a set of e-competences for each stage listed in
dimension 1, 40 in total. Dimension 3 lists proficiency levels for each e-
competence, and refers to the European Qualification Framework EQF
(European Commission, 2005). EQF’s scope is larger than e-Cf. We will look at
e-CF’s proficiency level 3, corresponding with the Bachelor’s level.
Dimension 4 gives samples of knowledge and skills related to the e-
competence; these samples are not intended to be exhaustive. You will find

Computing Curricula in Dutch Universities of Applied Sciences

41

the description of e-competence B1 (Build – Application Development) in
Figure 4-2.

Figure 4-2 e-Competence Application Development (B1) of e-CF 3.0

In a separate publication (CEN), e-CF describes 23 iconic profiles of
computing professionals, the e-competences required to fulfill these
professional roles, and the corresponding levels of proficiency. These are
linked to the European Qualification Framework EQF. We remark that

Computing Education in a Hybrid World

42

“digital media specialist”, a profile that is considered hybrid in the
Netherlands, is one of these profiles.

4.2.3 DUTCH BACHELOR OF ICT FRAMEWORKS
The Netherlands has a dual system of tertiary (post-secondary)

education conferring Bachelor’s and Master’s degrees (HBO-Raad, 2009).
The academic track focuses on research and development of knowledge
areas. The application of knowledge is delegated to highly educated
professionals – nurse practitioners, physiotherapists, teachers, social
workers, hydraulic engineers – who are not educated in pre-university
schools and academia, but in a professional track, whose tertiary stage is
called Hoger Beroeps Onderwijs (HBO). Institutions offering these programs
are called Universities of Applied Sciences. HBO is organized in sectors;
technology is one of them. The technology sector used to be organized in
four domains: ICT, Engineering, Built Environment and Applied Science.
Maritime Operations and Creative Technologies were added in 2015.

A typical undergraduate HBO curriculum spans over 4 years and always
includes a professional internship (Commissie Accreditatie Hoger Onderwijs,
2011). The track prepares for entering the labor market; it is not primarily
intended to access academic Master courses. For that reason, most
Universities require the HBO graduate to accomplish a bridging program of
6-12 months before enrolling for a Master’s degree. Undergraduate HBO
programs are defined by educational institutions, and are subject to
accreditation by the Dutch Flemish Accreditation Board NVAO.

The Dutch managers of HBO programs in computing at Universities of
Applied Sciences are organized in the HBO-I association. This association
periodically publishes a description of the qualifications undergraduate
computing curricula strive at, in collaboration with representatives of Dutch
industry. Like the ACM/IEEE computing curricula, HBO-I distinguishes
different sub disciplines of computing. These are: Informatica, Technische
Informatica and B-ICT. This investigation concerns the global framework for
computing curricula at the Dutch Universities of Applied Sciences or, in
HBO-I’s terminology, the “Domeinbeschrijving HBO-ICT. We will use “HBO-
I” to indicate the association, “HBO-ICT framework” to indicate the global
curriculum framework and “HBO-ICT” to indicate the educational domain,
i.e. all undergraduate computing programs offered by Dutch Universities of
Applied Sciences.

The HBO-ICT framework is a systematic, exhaustive description of the
final qualifications for Dutch HBO programs Bachelor of ICT. It is task-based,

Computing Curricula in Dutch Universities of Applied Sciences

43

and lists the typical professional tasks, performed by Bachelor-ICT
graduates. However, no HBO program in computing will cover all the
matching learning goals. One of the framework’s aims is to support
educational institutions in explicating which part of this description is
covered by their curriculum.

Most Dutch educational institutions refer to the HBO-ICT framework to
build and validate their curricular choices, and a number of these
institutions explain how far these choices match e-CF. For example
Rotterdam University of Applied Sciences and HU University of Applied
Sciences Utrecht follow this strategy. Avans University of Applied Sciences
acts differently. It compared the HBO-ICT framework, SE2014 and e-CF, and
decided to build its computing curriculum on e-CF instead of the HBO-ICT
framework or SE2014.

Figure 4-3 Description of a possible HBO-ICT program. Darker colors indicate
higher levels of proficiency

The HBO-ICT framework is structured in 3 dimensions. Dimension 1
consists of 5 software lifecycle activities (Manage, Analyze, Advise, Design,
and Implement). Dimension 2 consists of 5 architectural layers (User
Interaction, Business Processes, Infrastructure, Software and Hardware
Interfacing). Dimension 3 consists of 3 levels of proficiency, linked to
different kinds of contexts: stable – predictable – unpredictable); these
levels are linked to e-Cf levels.

HBO-ICT programs can show the emphasis of curricula by stating which
levels of proficiency graduates will attain for all relevant combinations of

Computing Education in a Hybrid World

44

lifecycle activity and architectural layer. An example of such descriptions is
included in Figure 4-3 (Valkenburg, et al., 2014), English version.

For the reasons stated in the introduction of this section we will look at
the last two editions of the HBO-ICT framework: HBO-ICT 2014 (Valkenburg,
et al., 2014) and HBO-ICT 2009 (Schagen, Kwaal, Leenstra, Smit, & Vonken,
2009). These editions of the framework have similar structures, but the 2009
edition of the HBO-ICT framework also includes examples of professional
profiles, with the corresponding tasks. You will find the professional tasks
associated with the dimension “Software” in Figure 4-4.

Unlike the ACM/IEEE recommendations, the HBO-ICT framework gives
no indications of the efforts that should be devoted to specific topics,
“lectures” or “curricular hours”.

4.2.3.1 Similarities and differences HBO-ICT 2009 & 2014
Both editions of the HBO-ICT framework describe the domain of ICT by

listing tasks that starting computing professionals should be able to fulfill.
Both descriptions are written by representatives of educational institutions,
in collaboration with representatives of Dutch industry. They both refer to
international frameworks. They both aim to mark the boundaries of the
domain of ICT. There also are differences, though.

The 2009 edition provided a dynamic description of the domain of ICT. It
strived at supporting educational institutions to keep up with developments
in the domain, by allowing specialized curricula as Business Informatics or
Communication and Multimedia Design to fit in the description. From 2014
onwards, the domain of ICT is not longer seen as fluid. Emphasis has shifted
from specialization to standardization. In 2014, there seems to be more
consensus on the “profession of ICT” and its boundaries in the Netherlands.
The 2014 framework reflects this consensus. Today, Communication and
Multimedia Design is not seen as a program of the domain of ICT anymore,
but of Creative Technologies.

In the 2009 spirit of specialization, knowledge too was seen as fluid.
Bodies of Knowledge (BoKs) were seen as context specific. Institutions
offering computing programs that did not have developed a BoK yet, were
urged to develop one. The framework addressed the question, how students
should be prepared to keep up with future developments. Students should
learn to read professional literature. In 2014, teaching students to read
professional literature is not sufficient anymore. The 2014 framework sees
graduates as contributors to the professionalization of the computing

Computing Curricula in Dutch Universities of Applied Sciences

45

practice. The framework puts more emphasis on (applied) research, and on
a theoretical foundation common to all graduates.

Figure 4-4 Dimension "Software" of HBO-ICT 2014

4.2.4 HBO CREATIVE TECHNOLOGIES
The first description of undergraduate programs Creative Technologies

was published in 2014, by managers of pre-existing hybrid HBO-programs
with a creative component. The domain was created to better serve the
economic sector Creative Industries, which is one of the economic top
sectors in the Netherlands. Creative Industries differs from other
technology-driven domains as ICT because it mostly consists of small
companies, where interdisciplinary teams apply cutting-edge digital
technologies in small–scale projects (Domein Creative Technologies, 2014).
Typical professional products are Serious Games and Smart Fashion, where
technology, psychology and art fuse together. One of the graduates’ core
competences is: acting in multi- and interdisciplinary teams.

Creative Technologies covers three programs: Communication and
Multimedia Design, Creative Media & Game Technologies and Fashion &
Textile Technologies. The curriculum framework is a competence-based
description of what the three programs have in common. In our analysis, we

Computing Education in a Hybrid World

46

will look at the competences related to computing. The framework does not
use the word “computing”, though. It uses the term “(digital) technology”. By
doing so, it seems to open the door for other new technologies than
computing in the future. However, no other technologies than digital
technologies are mentioned at the present.

In section 4.3.2.1, we saw that in the Netherlands, the position of HBO-
ICT towards hybrid programs has changed. Communication and Multimedia
Design (CMD), the program training Digital Media Specialist, was considered
as a possible new variant of a computing curriculum in the HBO-ICT 2009
framework but not anymore in the 2014 framework. e-CF adopts a different
position. One of the 23 standardized European ICT profiles (CEN) is “Digital
Media Specialist”. For this professional figure, undergraduate level of
proficiency is requested for the following e-CF competences: B.1
(Application development) and B.4 (Solution deployment). This is
compatible with the guidelines of Creative Technologies. e-CF seems less
strict than HBO-ICT in its definition of ICT.

4.3 MODELS FOR COMPARISON
The aim of this chapter is to understand Dutch computing education at

the Universities of Applied Sciences. In the next section, we will compare the
HBO-ICT framework for computing curricula with the ACM/IEEE computing
curricula and with the European e-Competence Framework.

Comparing curricular frameworks is a complex task. It entails the choice
for a terminology covering differences and similarities between curricula at
a high level of abstraction. But national educational systems differ;
policymakers express themselves in national languages, refer to different
systems and use different terminology.

In 2011, an ITiCSE working group elaborated a coding system for
comparing Computer Science Education research in secondary education:
the Darmstadt model (Hubwieser, et al., 2011). The Darmstadt model was
written to bridge differences between national systems. Its origin is well
documented. The model was elaborated to set the standard for a
terminology to discuss educational systems. It is sound and very complete.
But it also was designed for secondary education. Secondary and tertiary
education are regulated differently. Curricular aims, goals and objectives of
secondary education (as defined by UNESCO, (UNESCO, 2018)) are usually
set by governmental institutions. Tertiary education sets its own goals and
objectives. For that reason, we will also investigate an alternative approach.

Computing Curricula in Dutch Universities of Applied Sciences

47

We will compare the Darmstadt model with van den Akker’s work on
(generic) curriculum design research (van den Akker, Building bridges - how
research may improve curriculum policies and classroom practices, 2010). As a
result, we will expand the Darmstadt model with one aspect, central in van
der Akker’s model for curriculum description: the rationale.

4.3.1 THE DARMSTADT MODEL
The Darmstad model is an elaboration of P. Heimann’s Berlin Model

(Hubwieser P. , 2013), which was designed to support teachers in evaluating
their educational efforts. In 2011, the ITiCSE working ggroup chaired by
Hubwieser took the Berlin Model as a starting point to compare research in
(secondary) computing education. But educational research does not only
concern classroom activities. It can also focus at individual students’
accomplishments, or at national educational programs.

Through a process of coding papers, the workgroup further specified
some terms to the Berlin Model and added some others. Finally, the
workgroup agreed on a new model, where the top dimensions of the Berlin
Model were maintained as an ordinal scale (preconditions of learning: 1 /
actor’s decision area: 2 / consequences of measures: 3), and two dimensions
were added: an ordinal scale specifying the reporting persons’ range of
influence (student: 1, classroom: 2, school: 3, region: 4, state: 5, country: 6,
international: 7) and a nominal scale with relevant areas in educational
research (outcomes/effects, media, extracurricular activities, teaching
methods, examination/certification, curriculum issues, knowledge,
intentions, motivation, teacher qualification, policies, socio-cultural factors,
educational systems). The result of this process is the 3-dimensional
Darmstadt model (Figure 4-5).

Computing Education in a Hybrid World

48

Figure 4-5 The Darmstadt model, v 1.1

We refer to the 2013 description of the Darmstadt Model (Hubwieser P. ,
2013). The educational areas that are most relevant for our purpose are
“knowledge” and “intentions”. “Intentions” includes competencies (defined
by the ITiCSE workgroup as the needs of the customers or the desired
outcomes), learning objectives (defined by the workgroup as the aims of the
teaching persons) and educational standards (Hubwieser, et al., 2011).

Hubwieser (Hubwieser, et al., 2011) remarks that “standardization of the
subject of informatics runs far behind traditional subjects like mathematics”.
We agree. All the frameworks we investigate are meant to standardize the
outcomes of undergraduate computing education. But, as Hubwieser
remarks, the definition of educational concepts is poorly developed. We will
list among “educational standards” the global criteria for qualification the
Bachelor’s level, specific for computing, identified in the frameworks.

We will compare the curriculum frameworks along these “relevant
areas” of the Darmstadt Model: “knowledge”, “competencies”, “learning
objectives” and “educational standards”.

4.3.1.1 Discussion
Despite the dimensions added by the ITiCSE workgroup, we cannot

adopt the Darmstadt model as it is for our purpose. We still miss terms.
When the ACM/IEEE Task Force on the Core of Computing argues that

Computing Curricula in Dutch Universities of Applied Sciences

49

computing is “a” (unified) discipline that all computing professionals should
know, when European employers choose competences as the basis for the
definition of professional roles, they do more than solving a practical
problem. They choose a position in how to address the problem. Such
choices are not covered by the Darmstadt model.

One could argue that the approach to computing is a matter of “general
opinion towards ICT”, one of the Darmstadt Model’s Socio-Cultural factors.
But analysis of the text (Hubwieser, et al., 2011) reveals that these “Socio
Cultural Factors” should be considered fixed qualities as age and gender. We
also considered the possibility to code this aspect between the “Policies”.
We rejected this option because in the Darmstadt model, the term “Policies”
refers to modes of action. We are interested in the reasons behind these
modes of action.

We will borrow a consistent part of the terminology for our comparison
from the Darmstadt model, but we still miss one relevant area for the
comparison of curriculum recommendations: the approach that resulted in
curriculum recommendations.

4.3.2 VAN DEN AKKER’S CURRICULAR SPIDER WEB
According to van den Akker (van den Akker, Building bridges - how

research may improve curriculum policies and classroom practices, 2010),
curriculum design is a matter of balance between the curriculum’s
components. These components are: Rationale, Aims and Objectives,
Content, Learning Activities, Teacher Roles, Materials and Resources,
Grouping, Location, Time and Assessment. Van den Akker visualizes these
components as a spider web, to emphasize the curriculum’s complexity and
its vulnerability.

Van den Akker puts the Rationale at the center of this spider web (Figure
4-6). The rationale is the curriculum designers’ position statement about the
curriculum’s motivation. It expresses (1) The academic and cultural
backgrounds of the program (2) Problems and issues, relevant for society
(3) Elements of vital importance or interest for the learners themselves.
Curriculum design, argues van den Akker, is a matter of choices. To keep the
curriculum balanced and consistent, inevitable choices in curriculum design
should refer to the Rationale.

In his earlier work (van den Akker, Curriculum perspectives, an
introduction, 2004), van den Akker distinguished four levels of curricular
activities as policymaking, design, development, implementation and
evaluation. These levels were: macro (system/society/nation), meso

Computing Education in a Hybrid World

50

(school), micro (classroom) and nano level (individual). Three curriculum’s
components are most important at the macro level, argued the author.
These are the Rationale, the Aims and Objectives and the Content. Later, van
den Akker added a higher level (van den Akker, Building bridges - how
research may improve curriculum policies and classroom practices, 2010): the
supra level (international / comparative). For our comparison, we will look
at the “Knowledge”, the “Aims and Objectives”, and at the “Rationale”.

Figure 4-6 van den Akker's curricular spider web

4.3.3 5 ASPECTS
The act of publishing curriculum recommendations takes place in what

the Darmstadt Model labels: “the author’s Decision area”. The 4 frameworks
we discuss (ACM/IEEE curriculum recommendations, European e-
Competence Framework, HBO-ICT frameworks) can all be located at level 2
of the “Berlin Model Top Dimensions” scale, the “Decision Areas”. All
frameworks have national or international scope, which corresponds with
levels 6 or 7 of the Darmstadt Model’s “Range of Influence”.

We will look at some of the “ Educational relevant Area’s”. Van den
Akker’s components “Aims and Objectives” and “Content” can be traced
here, resp. as “Intentions” and “Knowledge”. Van den Akker’s “Aims &
Objectives” answers the question “towards which goals are they learning?”
It matches the Darmstadt Model’s “Intentions”, which includes
competencies (defined by the ITiCSE workgroup as the needs of the
customers or the desired outcomes), learning objectives (defined by the

Computing Curricula in Dutch Universities of Applied Sciences

51

workgroup as the aims of the teaching persons) and educational standards
(defined as: qualification criteria, specific for computing in section 4.3.1).
Van den Akker’s “Content” answers the question “What are they learning?”
In the Darmstadt Model, it corresponds with the “Knowledge” area. We will
add van den Akker’s Rationale answering the question “Why are they
learning?”

Summarizing, we will compare these frameworks’ following aspects:
- Rationale (answer to “Why are they learning?”)
- Intentions: Learning Objectives (aims of the teaching persons)
- Intentions: Competencies (needs of the customers, desired

outcomes)
- Intentions: Educational standards (criteria for qualification, specific

for computing)
- Knowledge (answer to “What are they learning?”)

4.4 CURRICULAR FRAMEWORKS COMPARED

4.4.1 RATIONALE
The curriculum’s Rationale answers the question “Why are they

learning?”

4.4.1.1 ACM/IEEE series
The rationale of the ACM/IEEE curriculum recommendation series is

stated in the report that announced the ACM/IEEE joint Task Forces on
Computing Curricula (Denning, et al., 1989). The goal of education, states the
report, is to gain competence in a domain. The domain of computing is a
complex domain, because computing is an intellectual discipline and a
rapidly evolving discipline. The report divided it in sub-disciplines,
supported by research communities. According to the report, the goal of
undergraduate computing education is to foster discipline oriented
thinking. Graduates in all the computing sub-disciplines should be
acquainted with the common core of computing, which is defined by a joint
effort of academia and industry. Undergraduate programs should foster the
sub disciplines’ understanding of each other’s view on computing, and
ensure further development of a united discipline of computing.

Computing Education in a Hybrid World

52

4.4.1.2 e-CF
The European e-Competence Framework was born as an effort to

improve transparency of ICT practitioners’ professional roles and degrees
across Europe. e-CF is an industrial standard, not a framework for
curriculum design. But it does refer to the European Qualification
Framework EQF, and the reference “has been systematically developed to
enable consistent interpretation of the EQF in the ICT workplace
environment” (European Committee for Standardisation (2), sd). e-CF is meant
as a reference for European computing education in general and tertiary
education in particular. The e-CF’s rationale is: to prevent shortage of
qualified ICT manpower, by establishing a common language to express
professional roles and competencies across Europe. This will support
mobility of qualified manpower and define competencies that can serve as a
guideline for the development of educational programs.

4.4.1.3 HBO-ICT 2009
The HBO-ICT framework is a task-based, exhaustive description of the

final qualifications for Dutch HBO programs Bachelor of ICT. The 2009
framework strived at empowering Dutch institutions, offering tertiary
professional education in computing, to design new programs. It provided
these institutions with an instrument, suited to describe new or specialized
computing curricula, in order to keep their education up-to-date. The 2009
edition aimed at supporting specialization.

The framework responded to the rapid sequence of upcoming
technology by providing a dynamic description of the domain of ICT, not
based on technology (that changes too rapidly) but on professional tasks.
The description strived at compatibility with internationals standards. It
referred to the first edition of e-CF and acknowledged existence of the
ACM/IEEE curricular frameworks.

4.4.1.4 HBO-ICT 2014
The 2014 edition of the HBO-ICT framework emphasizes

standardization. Its aim is to describe learning outcomes of Dutch
professional Bachelor of ICT programs. The description matches e-CF 3.0.
Conforming to this description enables educational institutions to train ICT
professionals requested by Dutch and European industry. The framework
also aims to train professionals who will contribute to the
professionalization of the computing practice.

Computing Curricula in Dutch Universities of Applied Sciences

53

4.4.1.5 HBO-Creative Technologies
The HBO-sector Creative Technologies was created to establish

educational programs, requested by the Dutch economic top sector Creative
Industries. Its aim is to train professionals for companies that can act as
motors for innovation.

4.4.2 INTENTIONS: LEARNING OBJECTIVES
Learning objectives are defined as “the aims of the teaching persons”.

This section will discuss the educational aims of the frameworks.

4.4.2.1 ACM/IEEE series
The main learning objective of the ACM/IEEE curriculum

recommendations is: support students’ intellectual development, in order
to: (1) raise new generations of researchers in the field of computing and
(2) equip students with enough background to keep up with developments
of the discipline of computing.

4.4.2.2 e-CF
e-CF is not a curriculum framework. But it explicitly also “was created

[…] for education institutions and training bodies including higher
education” (European Committee for Standardization, 2014). The learning
objectives can be summarized as: providing access to the pan-European
labor market to graduates.

4.4.2.3 HBO-ICT 2009
The HBO-ICT 2009 framework’s educational aim was to train students’

skills and understanding, needed to fulfill standardized professional tasks.
In order to keep up with future developments in the domain of computing,
students should learn to read professional literature and develop aptitude
for learning.

4.4.2.4 HBO-ICT 2014
The HBO-ICT 2014 framework is written to train students’ skills and

understanding, needed to fulfill standardized professional tasks. The
framework remarks that fulfilling professional tasks in the domain of
computing always requires (a) the acquisition of knowledge and (b)

Computing Education in a Hybrid World

54

contributing to the professionalization of the computing practice. Therefore,
students should develop skills for applied research.

4.4.2.5 HBO-Creative Technologies
The curriculum recommendations of HBO-Creative Technology aim at

training professionals to work in interdisciplinary teams, where new digital
technologies are adopted to design and develop groundbreaking, people-
oriented applications.

4.4.3 INTENTIONS: COMPETENCIES
In this context, competencies are defined as “needs of the customers,

desired outcomes”. The customers are: Master’s programs, industry and
students. This section discusses the question: “which customer needs do the
frameworks meet?”

4.4.3.1 ACM/IEEE series
The ACM/IEEE curriculum recommendation series aim at (1) providing

Academia with students, qualified to enter the Master’s level and
(eventually) doctoral programs; (2) providing industry with skilled
workforce in a rapidly changing world.

Plessius and Ravesteyn (Plessius & Ravesteyn, 2016) compare e-CF with
ACM’s description of the domain of IT (or, in our terminology: the domain of
computing). They remark that ACM’s description stresses a more technical
definition of the domain. In their opinion, it does not fully do justice in to the
more business-oriented scope of e-CF.

IT2017, the most recent report in the curriculum recommendations
Series, has a revolutionary approach. It “diverges from existing computing
curricula guideline documents by focusing on competency instead of
knowledge expectations” (ACM / IEEE, 2017, p. 15). IT2017 describes
learning outcomes in terms of performances, i.e. “actions revealing
understanding”. The IT2017 workgroup’s aim is to encourage academic
departments to forge working collaborations with employers, targeted at
offering students meaningful learning contexts.

4.4.3.2 e-CF
Competencies are the core of e-CF. The framework provides European

professionals, educational institutions and industry up-to-date descriptions
of competencies that are relevant for the computing profession and uniform

Computing Curricula in Dutch Universities of Applied Sciences

55

across the European countries. e-CF establishes a common language to
express professional roles and competencies across Europe

4.4.3.3 HBO-ICT 2009
The 2009 edition HBO-ICT framework was written to clarify differences

and similarities between Bachelor of ICT programs in the Netherlands. The
aim was to support students in their educational choices and industry in
grasping the curricular aims of educational institutions. To do so, it listed
many examples of professional situations recent graduated could encounter,
and linked these to the professional tasks, listed in the framework.

4.4.3.4 HBO-ICT 2014
The 2014 edition of the HBO-ICT framework strives at the definition of

standard professional tasks and levels of proficiency, requested for fulfilling
standardized professional roles. It refers to e-CF 3.0. The framework enables
Dutch institutions, offering Bachelor of ICT programs, to explain the focus of
their program.

4.4.3.5 HBO-Creative Technologies
This first edition of the curriculum recommendations focuses on the

industry’s requests: a broad-based education (necessary to act in
interdisciplinary teams), and knowledge of cutting-edge (digital)
technologies.

The authors expect to offer a valuable alternative to a group of students
who otherwise would have to choose between a technology oriented
program and a creative one.

4.4.4 INTENTIONS: EDUCATIONAL STANDARDS
We have defined educational standards as “global criteria for

qualification at the Bachelor’s level, specific for computing”.
Strictly speaking, none of the frameworks we are investigating sets

educational standards. But they all provide in authoritative descriptions of
what society can expect from graduates in computing, descriptions that are
referred to in accreditation processes.

This section discusses the question: “what can society expect from
graduates in computing?”

Computing Education in a Hybrid World

56

4.4.4.1 ACM/IEEE series
The ACM/IEEE curriculum recommendation series define and update the

“core of computing”, a description of the common knowledge base every
computing graduate should be acquainted with. Besides, every sub
discipline of computing defines core and elective content for sub-discipline
specific curricula.

IT2017 (ACM / IEEE, 2017) describes this content in terms of
performances (actions revealing understanding).

4.4.4.2 e-CF
e-CF is not an educational standard. Qualification is not discussed

directly. It is discussed indirectly, in the definition of 23 iconic standardized
professional profiles. These definitions refer to the European Qualification
Framework. e-CF does not address the question ”what should all computing
professionals have in common”?

4.4.4.3 HBO-ICT 2009
The 2009 edition of the HBO-ICT framework emphasized specialization.

Individual educational institutions were encouraged to design specialist
curricula, and to clarify their scope by referring to (standard) professional
tasks listed in the framework. Criteria for qualification should be deduced
from the descriptions of these professional tasks. The question “what should
all computing professionals have in common” is not addressed.

4.4.4.4 HBO-ICT 2014
The 2014 edition of the HBO-ICT framework emphasizes

standardization. The methodology of defining an undergraduate curriculum
and its qualification criteria is similar to the 2009 edition. But this report
also recommends adding a theoretical foundation, common to all Bachelor-
ICT programs, equivalent to 1 year or 25% of the curriculum.

4.4.4.5 HBO-Creative Technologies
The curriculum recommendations for Creative Technologies define four

core competencies every program should cover. These are: technological,
design, entrepreneurial and professional competencies. In order understand
new technologies, graduates should be able to perform engineering type of
practical research on Bachelor level. The Bachelor-‘s level is defined in

Computing Curricula in Dutch Universities of Applied Sciences

57

generic terms, by referring to the policy agenda of the Union of Universities
of Applied Sciences (HBO-Raad, 2009). We found no references to
qualifications, specific to computing, to international frameworks, or to
HBO-ICT.

4.4.5 KNOWLEDGE
In this section we will describe what the frameworks state about

knowledge.

4.4.5.1 ACM/IEEE series
Knowledge is explicitly specified in the ACM/IEEE series. CS2013 and

SE2014 (ACM / IEEE, 2013), (ACM/IEEE, 2014) distinguish 18 resp. 10
Knowledge Areas. We give an example: one of the CS2013 knowledge areas
is Software Engineering, one of its core learning outcomes is “Describe how
programming in the large differs from individual efforts with respect to
understanding a large code base, code reading, understanding builds, and
understanding context of changes” (CS2013, pag. 176).

IT2017 (ACM / IEEE, 2017) fits in the ACM/IEEE tradition. The
curriculum description is competency-based; knowledge is one of the
components of competency. We give two examples: The report (1) discusses
mathematics education, and recommends including at least discrete
structures in IT curricula; (2) it considers reflecting upon technology an
essential performance, and mentions it frequently, as in: “Describe how the
historical development of hardware and operating system computing
platforms produced the computing operating systems we have today”
(IT2017, page 95).

4.4.5.2 e-CF
e-Cf sees competences as a holistic concept, consisting of knowledge,

skills and attitude. Descriptions of knowledge and skills are provided for
each competence, in generic terms.

Operating systems are treated in section “Application Development”
(Figure 4-2). We see the following description of knowledge: “K8 Operating
systems and software platforms” and skills: “apply appropriate software
and/or hardware architectures”. More than CS2013 or IT2017, e-CF seems
to allow programs to focus on knowledge of current or emerging
technology.

Computing Education in a Hybrid World

58

Plessius and Ravesteyn (Plessius & Ravesteyn, 2016) compared the e-CF
knowledge areas with ACM’s taxonomy of the domain of computing. They
concluded: “e-CF more or less covers the IT domain, but some themes (such
as ‘theory of computing’, ‘mathematics of computing’ and ‘computing
methodologies’) appear only superficially on the e-CF”. We agree with this
observation. As we saw in section 4.2.2, e-CF relates competences to
observable results. Most listed knowledge examples directly relate to
practice, as in “K8 prototyping” (European Committee for Standardization,
2014, p. 25). Examples pointing towards deeper understanding, as in “K1
research methods, benchmarks and measurements methods” (p. 46), do
occur, but scarcely.

4.4.5.3 HBO-ICT 2009
The HBO-ICT frameworks consider Bodies of Knowledge (BoK) the

responsibility of the educational institutions. The 2009 framework
recommends Institutions, not referring to a BoK, to define one. The
professional tasks listed by the framework, and the professional products
listed in the illustration, could serve as a starting point to draw up BoKs,
specific for educational programs.

4.4.5.4 HBO-ICT 2014
The 2014 edition of the HBO-ICT framework states that the task-based

description of the domain of ICT can be seen as the BoK of the domain.
Different Bachelor of ICT programs will cover different parts of the
description; the BoK is still seen as specific for programs and institutions.
But the 2014 HBO-ICT framework also acknowledges the existence of a
common BoK, and aims to give all graduates a solid theoretical foundation.

The content of this theoretical foundation is defined in terms of current
tools, methods and techniques, as in: knowledge of widespread tools, testing
methods, design methodology, modeling, architecture and business
processes. Knowledge is deepened with specific components, depending on
the profile of the program. These components are described in terms of
professional tasks.

4.4.5.5 HBO-Creative Technologies
HBO-Creative Technologies’ BoK consists of basics (common to all

programs), visions and trends. Basic knowledge in technology is defined in
terms of state-of-the art technologies. Visions are defined as “the most

Computing Curricula in Dutch Universities of Applied Sciences

59

important theories and methods from industry and academia”; trends refer
to current and future developments. Visions and trends are not yet
specified.

K
no

w
le

dg
e

Ex
pl

ic
it

de
sc

ri
pt

io
n

kn

ow
le

dg
e

ar
ea

s,
le

ar
ni

ng
 o

bj
ec

tiv
es

an

d
in

di
ca

tio
n

of

m
in

im
al

 a
m

ou
nt

of

 h
ou

rs
.

IT
20

17
:

co
m

pe
te

nc
y-

ba
se

d
de

sc
ri

pt
io

n
in

cl
ud

es

kn
ow

le
dg

e

In
di

ca
tio

ns
 p

ro
vi

de

in
 g

en
er

ic
 te

rm
s.

De
sc

ri
pt

io
ns

 m

ai
nl

y
in

 te
rm

s o
f

cu
rr

en
t o

r
 e

m
er

gi
ng

te

ch
no

lo
gi

es
.

Th
eo

re
tic

al
 th

em
es

un

de
r-

re
pr

es
en

te
d

Ed
uc

at
io

na
l

St
an

da
rd

s

Ev
er

y
gr

ad
ua

te
 in

 a

co
m

pu
tin

g
di

sc
ip

lin
e

sh
ou

ld
 b

e
ac

qu
ai

nt
ed

w

ith
 th

e
co

m
m

on

 co
re

 o
f c

om
pu

tin
g

 No
t a

 cu
rr

ic
ul

um

fr
am

ew
or

k.

Qu
al

ifi
ca

tio
n

is

ad
dr

es
se

d
in

di
re

ct
ly

, t
hr

ou
gh

th

e
de

fin
iti

on
 o

f 2
3

ic
on

ic
 p

ro
fe

ss
io

na
l

pr
of

ile
s a

nd

co
rr

es
po

nd
in

g
le

ve
ls

 o
f

pr
of

ic
ie

nc
y

in
 e

-
co

m
pe

te
nc

es

Co
m

pe
te

nc
ie

s

En
tr

an
ce

 le
ve

l
M

as
te

r’s
 d

eg
re

e.

Pr
ov

id
e

in
du

st
ry

co

m
pe

te
nt

w

or
kf

or
ce

 in
 a

 ra
pi

d

ch
an

gi
ng

 w
or

ld

De
fin

iti
on

 o
f

kn
ow

le
dg

e
an

d
sk

ill
s,

re
qu

ir
ed

fo

r s
ta

nd
ar

di
ze

d
pr

of
es

si
on

al

co
m

pe
te

nc
e

Le
ar

ni
ng

ob

je
ct

iv
es

Su
pp

or
t s

tu
de

nt
s’

in
te

lle
ct

ua
l

de
ve

lo
pm

en
t

Ra
is

e
ne

w

ge
ne

ra
tio

ns
 o

f
sc

ho
la

rs

Eq
ui

p
st

ud
en

ts
 to

fo

llo
w

de

ve
lo

pm
en

ts

Gi
ve

 st
ud

en
ts

ac

ce
ss

 to
 th

e
pa

n-
Eu

ro
pe

an

la
bo

r m
ar

ke
t

Ra
tio

na
le

De
ve

lo
pm

en
t o

f t
he

di

sc
ip

lin
e

Fo
st

er
 d

is
ci

pl
in

e
or

ie
nt

ed
 th

in
ki

ng

Im
pr

ov
e

tr
an

sp
ar

en
cy

 o
f

pr
of

es
si

on
al

ro

le
s

Ex
pl

ic
itl

y
m

ea
nt

as

 re
fe

re
nc

e
fo

r
co

m
pu

tin
g

ed
uc

at
io

n
in

 E

ur
op

e

 AC
M

/I
EE

E

e-
Cf

 3
.0

Computing Education in a Hybrid World

60

K
no

w
le

dg
e

No
 B

od
y

of
 K

no
w

le
dg

e
(B

oK
) p

ro
vi

de
d.

 T
he

do

m
ai

n
de

sc
ri

pt
io

n
ca

n
be

 u
se

d
by

ed

uc
at

io
na

l
in

st
itu

tio
ns

 to
 d

ef
in

e
 a

 (s
pe

ci
al

is
tic

) B
oK

.

Bo
K

sp
ec

ifi
c f

or

ed
uc

at
io

na
l

in
st

itu
tio

n.

Co
m

m
on

th

eo
re

tic
al

fo

un
da

tio
n

de
sc

ri
be

d
in

 te
rm

s
of

 cu
rr

en
t t

oo
ls

,
m

et
ho

ds
 a

nd

te
ch

ni
qu

es
.

(t
ec

hn
ol

og
ic

al
)

Bo
K

co
ns

is
ts

 o
f b

as
ic

s,
vi

si
on

s a
nd

tr

en
ds

.B
as

ic
s d

ef
in

ed

in
 te

rm
s o

f s
ta

te
-o

f-
th

e
ar

t t
ec

hn
ol

og
ie

s,

Ed
uc

at
io

na
l

St
an

da
rd

s

N
on

e
–

fr
am

ew
or

k
em

ph
as

iz
es

sp

ec
ia

liz
at

io
n.

In

st
itu

tio
ns

 re
fe

r t
o

st
an

da
rd

iz
ed

pr

of
es

si
on

al
 ta

sk
s t

o
de

fin
e

sp
ec

ia
liz

ed

cu
rr

ic
ul

a.

Th
e

fr
am

ew
or

k
re

co
m

m
en

ds

th
eo

re
tic

al

fo
un

da
tio

n,

co
m

m
on

 to
 a

ll
gr

ad
ua

te
s i

n
co

m
pu

tin
g

di
sc

ip
lin

es
.

Ab
ili

ty
 to

 p
er

fo
rm

en

gi
ne

er
in

g
ty

pe
 o

f
pr

ac
tic

al
 re

se
ar

ch
 .

Co
m

pe
te

nc
ie

s

De
fin

iti
on

 o
f s

ta
nd

ar
d

pr
of

es
si

on
al

 ta
sk

s a
nd

le

ve
ls

 o
f p

ro
fic

ie
nc

y,

ill
us

tr
at

ed
 b

y
pr

of
es

si
on

al

 si
tu

at
io

ns
, w

hi
ch

 a
re

ty

pi
ca

l f
or

 n
ew

ly

gr
ad

ua
te

s.

De
fin

iti
on

 o
f s

ta
nd

ar
d

pr
of

es
si

on
al

 ta
sk

s
 a

nd
 le

ve
ls

 o
f

pr
of

ic
ie

nc
y.

Co

m
pa

tib
le

 w
ith

 e
-C

f
3.

0 Br
oa

d-
ba

se
d

ed
uc

at
io

n
an

d
kn

ow
le

dg
e

of
 n

ew

(d
ig

ita
l)

te
ch

no
lo

gi
es

.

Le
ar

ni
ng

ob

je
ct

iv
es

Tr
ai

n
st

ud
en

ts
’ s

ki
lls

 a
n

un

de
rs

ta
nd

in
g

 n
ee

de
d

to
 fu

lfi
ll

st
an

da
rd

iz
ed

pr

of
es

si
on

al
 ta

sk
s.

Eq
u

th

em
 to

 fo
llo

w
 fu

tu
re

de

ve
lo

pm
en

ts

 in
 th

e
fie

ld
 o

f
co

m
pu

tin
g.

Tr
ai

n
st

ud
en

ts
’

sk
ill

s a
nd

un

de
rs

ta
nd

in
g

ne
ed

ed
 to

 fu
lfi

ll
st

an
da

rd
iz

ed

pr
of

es
si

on
al

 ta
sk

s,
eq

ui
p

gr
ad

ua
te

s t
o

le
ar

n
an

d
to

co

nt
ri

bu
te

 to
 th

e
pr

of
es

si
on

al
iz

at
io

n

Tr
ai

n
st

ud
en

ts
,

ab
le

 to
 a

do
pt

 n
ew

(d

ig
ita

l)
te

ch
no

lo
gi

es
 to

de

ve
lo

p
gr

ou
nd

br
ea

ki
ng

pe

op
le

-o
ri

en
te

d
ap

pl
ic

at
io

ns

Ra
tio

na
le

Pr
ov

id
e

a
dy

na
m

ic

de
sc

ri
pt

io
n

of
 th

e
do

m
ai

n
of

 co
m

pu
tin

g,

co
m

pa
tib

le
 w

ith
 in

tl.

de
sc

ri
pt

io
ns

, t
o

su
pp

or
t r

ec

og
ni

za
bi

lit
y

of

 (n
ew

) c
ur

ri
cu

la
r

pr
og

ra
m

s

Pr
ov

id
e

a
de

sc
ri

pt
io

n
of

 th
e

do
m

ai
n

of

co
m

pu
tin

g,
 to

su

pp
or

t
re

co
gn

iz
ab

ili
ty

 o
f

cu
rr

ic
ul

ar

pr
og

ra
m

s i
n

th
e

Ne
th

er
la

nd
s a

nd

ac
ro

ss
 E

ur
op

e.

Bo
os

t i
nn

ov
at

io
n

by
 su

pp
or

tin
g

th
e

to
p

se
ct

or
 C

re
at

iv
e

In
du

st
ri

es

 H
BO

-I
CT

 2
00

9

H
BO

-I
CT

 2
01

4

H
BO

- C
re

at
iv

e
Te

ch
no

lo
gi

es

Computing Curricula in Dutch Universities of Applied Sciences

61

4.5 DISCUSSION
The five frameworks we have compared are very different, in their

origins and in their aims. ACM and IEEE are international professional
associations. The computing curriculum recommendations they jointly
publish are mainly drawn up by scholars; industry and governmental
organizations participate in the process. The e-CF project is funded by the
European Union. e-CF is drawn up by industry; educational institutions
participate as partners. HBO-I is an association of heads of departments
offering undergraduate computing curricula. The HBO-ICT frameworks are
drawn up by educational institutions; industry participates in the process.
The framework for HBO-Creative technologies was written by heads of
departments offering programs in Creative Technologies.

4.5.1 THE AIMS OF UNDERGRADUATE COMPUTING EDUCATION
We have found different ideas about the aims of undergraduate

computing education. One view is: undergraduate computing education
should ensure further development of the discipline. The other view is:
computing education should train professionals able to apply state-of-the-
art knowledge. In the first case, undergraduate curricula are seen as the fist
stage in academic education. Their aim is to develop the students’
intellectual skills. Students, enrolled in such curricula, should understand
the discipline’s accomplishments and its wicked problems. Some of them
will enter Master’s, eventually PhD programs and will further develop of the
discipline through research. Those who will not transfer to the next
academic program will be hired by industry. The undergraduate curriculum
can also be seen as a program, whose aim is to train highly skilled
professionals needed by industry, in order to enable economic growth.
Industry periodically needs professionals who fully understand the
possibilities of the newest digital technologies. Such professionals should be
able to translate their state-of-the-art knowledge into reliable digital
artifacts. Some of them will pursue their education and enter Master’s
programs, eventually PhD. The educational system has many stakeholders;
each of them will emphasize different aims.

Computing is a young discipline, and a dynamic one. The discipline is
expanding: technology rapidly becomes obsolete, new professional roles
emerge periodically. Curricula are limited. In curriculum design, long-term
development and sustainability of training clash with the ambition to train
state-of-the art skills. Undergraduate computing education is facing a

Computing Education in a Hybrid World

62

wicked choice: should it focus at the intellectual development of its
students, at the expense of the development of their skills or vice versa?

The international ACM/IEEE curriculum recommendations series points
towards both directions. In 1989, the ACM/IEEE Task Force on the Core of
Computing stated that undergraduate computing education has three main
stakeholders: its students, industry and the discipline itself. Students should
gain access to the Master’s level and to the labor market; they should be well
equipped to keep up with future developments. Industry needs skilled
manpower. According to ACM/IEEE, the development of the discipline of
computing goes hand in hand with the definition of educational programs
for professional figures.

Although the European e-Competence framework is not a curriculum
framework, it is explicitly meant as a guide for European educational
institutions. It emphasizes the output of education, in terms of
competencies, and delegates educational aims, like the students’ intellectual
development or the development of new disciplines, to educational
institutions. These competencies occasionally include methodological
issues, but most of them are described in terms of observable output,
related to current technology. European institutions should keep this in
mind while developing computing curricula. Focusing strictly on
competencies requested by e-CF, that are related to current technology, will
satisfy the industry’s immediate need for qualified workforce. Yet, it is not
likely to offer newly graduates overview of the discipline of computing, both
in the large (understanding how different views on computing relate to each
other) as in depth (reflection on technology). Such an approach is not likely
to foster long-term development of the discipline, or to offer sustainable
education to its students.

The Netherlands has a dual system. Academia focuses on research and
development; it is responsible for the development of the discipline of
computing. Universities of Applied Sciences, mainly prepare students to
enter the labor market. Their computing programs focus on the application
of state-of-the-art knowledge. Their graduates are not trained to develop
the intellectual core of the discipline, but to contribute to the
professionalization of the computing practice at hand. This duality might
work in health care or hydraulic engineering, but seems problematic to us
when it comes to computing. Human anatomy will not change over the
years, nor will the principle of the communicating vessels. Educational
health care programs, or programs for hydraulic engineers, offer future
professionals understanding that will support them throughout their
careers. This is less obvious in computing. Computing is evolving rapidly. A

Computing Curricula in Dutch Universities of Applied Sciences

63

system, built on the idea that knowledge development takes place in
Academia and its application elsewhere, seems not adequate anymore.
Industry, in particular the Creative Industries, might be ahead of Academia.
The Dutch educational system seems not to take this possibility into
account.

In the last two editions of the HBO-ICT framework, we have witnessed a
shift in emphasis from specialization to standardization. One of the aims of
the 2009 framework was to provide graduates with enough intellectual
baggage to keep up with future professional developments. In 2014, the
environment has changed. Europe has reached consensus about the
profession of ICT. The 2014 edition of the framework reflects this
consensus. The framework recommends a theoretical foundation common
to all graduates, expressed in terms of knowledge of tools, methods for test-
ing, design and modeling techniques. It emphasizes the role of computing
practitioners in the professionalization of the computing practice. HBO-ICT
increasingly calibrates its programs by referring to e-CF, but it also narrows
its range. This could indicate a trend towards a limitation of the degree of
freedom institutions take to define their own programs. In our opinion,
increased standardization of programs towards e-CF entails the risk of
inheriting the trade-offs we discussed above.

This applies even more to the Creative Technologies’ hybrid curricula.
They appear to be targeted to train professionals, able to use current and
emerging (digital) technologies, without stating their relation to the field of
computing. Hybrid curricula have limited time to address computing topics.
Curriculum designers could feel pressured to focus on hands-on knowledge
of the newest technologies, instead of basic understanding of computing, or
understanding of the area of computing targeted by the program they are
designing. In that case, we fear that these graduates’ possibilities to build
upon their knowledge of (digital) technology will be limited to few, less than
5, years after graduation.

4.5.2 HYBRID CURRICULA AND NEW PROFESSIONAL ROLES
The frameworks we have investigated adopt different strategies towards

new professional roles. According to ACM/IEEE, educational institutions
and industry share responsibilities in the standardization of computing
curricula and the development of new ones. According to e-CF, the public
authorities are responsible for the standardization of professional roles.
Educational institutions bear responsibility for curriculum design. In the
Netherlands, the situation is less clear. The domain of (applied) computing,

Computing Education in a Hybrid World

64

HBO-ICT, claims responsibility for the development of the existing
professional roles, in coordination with Dutch industry. It increasingly
refers to e-CF. The development of new curricula for the Creative Industries
was stimulated by the Universities of Applied Sciences, with the definition of
a new domain HBO-Creative Industries. It is unclear if this domain also
assumes to share responsibility for the definition of the accompanying
professional roles.

As a consequence of the differences described above, the position of new
curricula differs too. IT2017 (ACM / IEEE, 2017), the last report in the
ACM/IEEE series, provides guidelines for hybrid IT-curricula containing at
least one year of computing related content. ACM/IEEE seems to include
these hybrid curricula in their curriculum recommendations effort. e-CF
lists “Digital Media Specialist” among the standardized European ICT
profiles. e-CF standardizes this professional role, including it among the
computing professions. In Dutch Universities of Applied Sciences, the trend
is towards separation. A program training Digital Media Specialists was
considered a possible variant of computing curricula in 2009. From 2014 on,
the program belongs to a new domain called HBO-Creative Technologies,
which appears to consider itself disjoint from ICT. HBO-ICT is entitled to
professionalize the computing practice, but is cut off from at least some of
the innovations in the digital area. This way, HBO-ICT will professionalize,
but risks to jeopardize its evolution. HBO-Creative Technologies will boost
innovation. However, the economic sector Creative Industries is likely to
suffer from growing pains if its companies will not share in the know-how of
HBO-ICT, or in the future professionalization of the computing practice. This
approach seems to overlook possibly harmful long-term effects for Dutch
economy.

4.6 CONCLUSIONS AND RECOMMENDATIONS
The ACM/IEEE curriculum recommendations program strives at defining

and monitoring the intellectual core of the discipline of computing. But
computing is also an applied discipline. The last report of the series
acknowledges this and is structured around “performances” instead of
“knowledge”. In line with its academic approach, the report considers
“Reflection” upon technology a core performance.

The European e-CF is not a curricular framework. It mainly focuses on
the employers’ requirements. Other stakeholders’ requirements as the
students’, or society’s seem in danger of being overlooked. European

Computing Curricula in Dutch Universities of Applied Sciences

65

educational institutions offering computing programs should cope with this
issue.

The Netherlands has a dual system, with academic and applied
undergraduate computing curricula. Academia is responsible for the
development of the discipline, the applied track for its professionalization.
We fear that this separation will not be fruitful in the long term for the
rapidly evolving discipline of computing.

The last report of the ACM/IEEE series includes examples of hybrid
curricula. E-Cf lists at least one profession among the standardized
European ICT professional profiles that is considered hybrid in the
Netherlands. But in the Netherlands, applied computing curricula seem to
direct towards separation from hybrid curricula. The Dutch domain of
applied computing seems to narrow its range, while hybrid domains
emerge. We fear that this separation will prevent computing to
professionalize in innovative ways. As for the new domain of Creative
Technologies, we recommend it to reconsider its relation to computing, to
explicate its scope and implement its choices in the final draft of its
curriculum framework.

Dutch applied computing curricula calibrate their theoretical base by
referring to current technologies. Curricula in the Creative Technologies
refer to emerging technologies. Extensive learning skills should ensure
these graduates’ long-term employability. We doubt that “extensive learning
skills”, not supported by overview of the discipline, will be sufficient to offer
their graduates a sustainable professional perspective. We fear a loss of
investments for society. Understanding computing fundamentals, or
understanding the raison d’être of current technology (besides learning how
to use it) seems a better approach to us. We recommend the HBO computing
disciplines, including the hybrid ones, to approach technology as illustration
of general computing principles, rather than focusing on lecturing
technology itself.

Academic and professional education are separated in the Netherlands.
Academia is responsible for the development of the discipline of computing.
HBO-ICT sets the standards for its professionalization; a process Academia
is not involved in. Innovation and the design of ground-breaking
applications involving (digital) technology is delegated to a new HBO-
domain, Creative Technologies, that seems to neglect its relation with
computing. We doubt that a too strict separation between Academia and
practice can be fruitful in this area. Computing is a rapidly evolving
discipline, with an important intellectual component. We recommend HBO-
ICT and Creative Technologies to intensify their collaboration with each

Computing Education in a Hybrid World

66

other and with Academia, to (1) define a sustainable theoretical base for
their graduates, (2) allow the creative industry to benefit from the
professionalization of the computing practice and (3) prevent computing
from being cut off from evolution. We recommend Dutch government to
support these collaborations.

PART I - Conclusions

67

PART I - Conclusions
In this Part, we have reflected upon the discipline of computing and upon

(Dutch) national and international curricular frameworks for
undergraduate education. Our aim was to identify the aims and rationale of
undergraduate computing curricula, both (Dutch) national and
international. The purpose was to prepare for the formulation of
recommendations for designers of undergraduate computing curricula in
general and hybrid computing curricula specifically.

RESEARCH QUESTION RQ1
RQ1 What are possible approaches to computing and computing education?
We have found 3 approaches to computing (or cultural styles), all
fundamental for computing: theory, science and engineering. The
theoretical cultural style describes abstract structures in an unambiguous
way. The scientific cultural style addresses the question: do our models
match with the world they describe? The engineering cultural style
investigates how to design and implement reliable systems. According to
Tedre and Apiola (Tedre & Apiola, 2013), these cultural styles embody
different epistemological values, scarcely compatible with each other.
Tedre and Apiola reflect upon the role of cultural styles in education. They
recommend matching cultural style with learning objectives, in order to
design efficient education. They also recommend that all computing
educators fully understand the complex epistemological background of the
discipline, and warn for bias introduced by hidden ethos in elevating one of
the cultural styles above the others.
The ACM/IEEE Task Force on the Core of Computing (Denning, et al., 1989)
acknowledges the existence of three major paradigms or cultural styles of
computing, and states that they all are fundamental for the discipline. The
ACM/IEEE curriculum recommendations are based on this standpoint.
e-CF (European Committee for Standardization, 2014) does not state how
computing should be approached. The framework is competence based. It
defines competencies as “a demonstrated ability to apply knowledge, skills
and attitude for achieving observable results” (European Committee for
Standardization, 2014, p. 5). Knowledge is fundamental in this framework,
not the paradigms behind that knowledge, or the interplay between these
paradigms.
The Dutch HBO-ICT framework (Valkenburg, et al., 2014) too is competence-
based. We found no references to possibly different approaches to

Computing Education in a Hybrid World

68

computing in the framework documentation. We have expressed the fear
that a too strict competence-based approach in an applied computing
curriculum, not addressing reflection upon the discipline, could have
unwanted side effects. It might result in training professionals prone to
overlook other possible approaches to computing than the one, preferred by
the sub discipline they were trained in.
We saw examples of hybrid curricula, and argued that these curricula can be
typed by explicating the cultural style or mix of cultural styles they adopt
while approaching computing.

RECOMMENDATIONS
We recommend that all educators of computing topics understand the

complex nature of computing. This applies to hybrid curricula and to Dutch
undergraduate applied curricula in particular.

We recommend HBO-I to stress the importance of “reflection upon (the
evolution of) the discipline” in the next version of the HBO-ICT framework.

We recommend designers of hybrid curricula to refer to the three
cultures of computing to type the curricula they design. It is inevitable for
designers of hybrid curricula to make choices: which part of computing
should be included, and why? A characterization of the computing-related
part of a curriculum by referring to its orientation gives insight in the
related trade-offs.

RESEARCH QUESTIONS RQ2, RQ3
RQ2 What are the aims of undergraduate computing education?

We have found different ideas about the aims of undergraduate
computing education. One view is, that undergraduate computing education
should ensure further development of the discipline. The other view is:
computing education should train professionals able to apply state-of-the-
art knowledge. Different stakeholders of the educational system will
emphasize different aims: Academia will ask for intellectual development,
Industry will ask skilled workforce, students will ask education offering
them a sustainable view on the discipline.

Computing is a young discipline, and a dynamic one. The discipline is
expanding. Technology rapidly becomes obsolete, new professional roles
emerge periodically. Curricula are limited in time. Undergraduate
computing education is facing a wicked choice: should it focus at the
intellectual development of its students, possibly at the expense of the
development of their ready-to-use skills? Vice versa, should it focus at

PART I - Conclusions

69

training state-of-the art skills, possibly at the expense of their intellectual
development?

The international ACM/IEEE curriculum recommendations series points
towards both directions. In 1989, the ACM/IEEE Task Force on the Core of
Computing stated that undergraduate computing education has three main
stakeholders: its students, industry and the discipline itself. Students should
gain access to the Master’s level and to the labor market; they should be well
equipped to keep up with future developments. Industry needs skilled
manpower. According to ACM/IEEE, the development of the discipline of
computing goes hand in hand with the definition of educational programs
for professional figures.

Although the European e-Competence framework is not a curriculum
framework, it is explicitly meant as a guide for European educational
institutions. It emphasizes the output of education, in terms of
competencies. These European e-competences are described by stating their
name, giving a generic description, indicating which tasks are related to
different levels of proficiency, and listing examples of related knowledge
and skills (not exhaustively). Descriptions of competencies occasionally
include methodological issues, but most of them are described in terms of
observable output.

The Netherlands has a dual system. Academia focuses on research and
development; it is responsible for the development of the discipline of
computing. Universities of Applied Sciences, mainly prepare students to
enter the labor market. Their computing programs focus on the application
of state-of-the-art knowledge. Their graduates are not trained to develop
the discipline but to contribute to the professionalization of the computing
practice at hand.

RQ3 What is the purpose of undergraduate computing curriculum
recommendations series, i.e. of (RQ3a) international curriculum
recommendations series and (RQ3b) curriculum recommendations series for
Dutch Universities of Applied Sciences?

RQ3a The purpose of undergraduate computing curriculum recommendation
series: international series.

We investigated the ACM/IEEE curriculum recommendations and the
European e-Competence framework e-CF.

ACM/IEEE: The goal of education in general is to gain competence in a
domain. The domain of computing is complex, because computing is a
rapidly evolving intellectual discipline that can be approached from

Computing Education in a Hybrid World

70

different points of view. The joint ACM/IEEE committees identify various
sub-disciplines of computing, all (1) having substantial theoretical
component (2) handling significant abstractions (3) dealing with important
design and implementation issues and (4) that are sustained by one or more
research communities providing their own literature (Denning, et al., 1989).
Research communities of these sub disciplines validate their assumptions
by investigating them from different points of view: theoretically, scientific
and from an engineering point of view. A considerable part of all
undergraduate curricula is devoted to the “core of computing”. This is a
Body of Knowledge, common to all sub disciplines, each graduate in
computing should master. It illustrates the three possible approaches to
computing: formal, scientific and engineering. With the curriculum
recommendations series, ACM/IEEE aims to foster discipline-oriented
thinking.

e-CF: e-CF is not a curriculum framework, but is intended as an industry
standard. The framework emphasizes the output of education. It describes
competencies, associated to standardized professional roles. The European
Union claims responsibility for definition and description of (standardized)
professional roles in terms of observable application of knowledge and
skills. It delegates the development of curricula educating these
professionals to educational institutions. e-CF aims at preventing shortage
of qualified ICT manpower, by establishing a common language to express
professional roles and competencies across Europe.

RQ3b The purpose of undergraduate computing curriculum
recommendation series: series for Dutch Universities of Applied Sciences
The Dutch Universities of Applied Sciences (HBO) train practitioners to
apply knowledge that was developed in Academia. The HBO-ICT
frameworks’ principal aim is to support designers of curricula in the
specification of programs for the education of computing practitioners,
needed by the Dutch (and pan-European) labor market. This also applies to
the new Dutch framework for hybrid curricula we have viewed, HBO-
Creative Technologies.

The last Dutch framework for computing curricula at the Universities of
Applied Sciences (HBO-ICT 2014) (a) trains computing professionals for the
pan-European labor market, (b) having a common theoretical foundation,
described in terms of state-of-the art technology (c) having extensive
learning skills (d) able contribute to the professionalization of their
profession.

PART I - Conclusions

71

The question rises, if the “theoretical foundation”, common to all HBO-
ICT graduates, should include understanding of three cultural styles of
computing. In my opinion, understanding the three cultural styles of
computing and their different approaches to research is necessary to those,
who want to contribute to the development of a unified discipline of
computing. This includes educators of computing related topics. For
practicing professionals, a balanced knowledge base seems more important
than ability to switch between epistemological points of view. ACM/IEEE
have described such a knowledge base, illustrating the full spectrum of
computing. But for practicing professionals it is important to be able to keep
up with future development. How this ambition relates to the
epistemological differences we have found in the three cultural styles of
computing, is a question that ought to be addressed.

The Dutch framework for curricula in the Creative Technologies (HBO-
Creative Technology, hybrid) aims at boosting innovation by supporting the
Dutch economic top sector Creative Industries. It does not state its relation
to computing explicitly.

RECOMMENDATIONS
e-CF describes the output of the educational system. Other stakeholders’
requirements, as the students’ need for a sustainable career perspective, or
the discipline’s long-term perspectives, seem in danger of being overlooked.
European educational institutions offering computing programs should
cope with this issue. This applies to Dutch institutions, offering applied
computing programs in particular.

We recommend national and international organizations to explore the
question, of how differences in the research values of the three cultural
styles of computing relate to the education of computing practitioners.

We recommend HBO-I to define a sustainable theoretical base for its
curricula in collaboration with Academia. We recommend Dutch
government to support the collaboration between institutions offering
computing curricula in Academia and in the applied domain.

We recommend designers of hybrid computing curricula to acknowledge
that their programs are related to computing. We recommend them to take
responsibility for the definition of new professions, and to participate in
their development, in collaboration with related computing disciplines,
Academia, the industry and the public authorities.

Computing Education in a Hybrid World

72

RESEARCH QUESTIONS RQ6, RQ7
RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

The first Task Force on the Core of Computing (Denning, et al., 1989)
recommended using differences between programming languages as a
vehicle to discuss differences between approaches to computing.

In order to support graduates in keeping up with the changes in the
domain of computing, the first Task Force on the Core of Computing
recommended an inquiry-based approach to education. Rather than lectures
presenting answers, the Task Force recommended acquaintance with the
computing literature and with the related research methods. But according
to Tedre and Apiola, the three cultural styles have fundamentally different
approaches to research.

Up-to-date knowledge of one of the sub disciplines of computing and
acquaintance with the related research methods is more likely to point
towards a specialist career path than towards overview of the discipline.

In general, we doubt that an inquiry-based approach in the
undergraduate curriculum can be combined both with the Task Forces’ aim
to foster discipline-oriented thinking and its goal to train students to access
the labor market.

Tedre and Apiola recommend aligning learning objectives with the
cultural style because a mix would not result in successful educational
interventions.

RECOMMENDATIONS:
The combination of the first ACM/IEEE Task Forces’ aim to foster

discipline oriented thinking, the curricular goal to train students for
entering the labor market, and the recommended instructional strategy
(inquiry-based) ought to be reconsidered.

At course level, we endorse Tedre and Apiola’s recommendation to align
the learning objectives with the cultural style, but we also recommend to
cultivate awareness for differences in cultural style in computing curricula.

We endorse the first ACM/IEEE Task Force’s recommendation to use
programming languages, or programming paradigms, as a vehicle to discuss
differences between approaches to computing. In general, we recommend
HBO-ICT to address the problems behind the development of technologies
rather than focusing on knowledge of state-of-the-art technology.

PART I - Conclusions

73

Approaching technology as an illustration of more general principles will
support the graduates’ future understanding of the discipline.

As for hybrid computing curricula, we recommend that lecturers of
computing topics (1) should have a CS degree or equivalent, (2) discuss
aims and boundaries of hybrid programs with their students and (3) refer to
technology as a vehicle for that discussion.

Part II—How Do Students Understand The Subject

75

Part II—How Do Students Understand The
Subject

RESEARCH QUESTIONS RQ4, RQ6, RQ7

RQ4 Do students, who were educated in different computing disciplines,

develop the same mental models for the abstract concepts they work
with? I.e., are different approaches to computing interchangeable?

RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

After a literature review on cognitive aspects of programming and
reasoning, we will describe the results of an experiment we conducted in a
Dutch University of Applied Sciences (HBO-ICT). We recruited senior
students, enrolled in different undergraduate computing programs. They
were about to complete their classes and start their internships. We
investigated if they conceptualize abstract entities in the same way.

All these students had enrolled between 2009 and 2013 in computing
programs of the Utrecht University of Applied Sciences. Some of them
followed a program in Business IT and Management, others in Software
Engineering. Figure II-1 describes the emphasis of Business IT and
Management in terms of (1) software lifecycle activities (columns: Analysis,
Advice, Design, Implementation and Maintenance), (2) architectural layers
(rows: User Interaction, Business Processes, Software, Infrastructure and
Hardware Interfacing) and (3) the levels of proficiency newly graduates
should attain (in the cells, values: 1..3).

The Business IT and Management curriculum emphasized (and still
emphasizes) Business Processes. As we can see in Figure II-1, the dimension
‘Software development’ is considered secondary.

Computing Education in a Hybrid World

76

Figure II 1 Levels of proficiency BIM (Hogeschool Utrecht, 2012)

Students enrolled in Computer Science can major in different programs.
Software Engineering is one of them. Its curriculum focuses on the
architectural layer Software (Hogeschool Utrecht, 2012), how to analyze,
design and develop it.

Figure II 2 Levels of proficiency SE (Hogeschool Utrecht, 2012)

In 2013-2014, Information Engineering was a major program of
Computer Science at the Utrecht University of Applied Sciences. The
curriculum shared its attention between the architectural layers User
Interaction, Business Processes and Software (Figure II-3). The emphasis
was on design and development of software that is meant to support user
interaction, in particular of User Interfaces.

Figure II 3 Levels of proficiency IE (Hogeschool Utrecht, 2012)

Part II—How Do Students Understand The Subject

77

In this Part, you will find two papers. The first one describes work in
progress. In line with the considerations in chapter 2, we had hypothesized
differences in mental models for the notion of “object” of students Software
Engineering and students Business IT and Management. We did find
differences, but not the differences we had expected. In the second paper,
we further analyzed our results to better understand the differences we had
found across the groups.

We will return to the unexpected results of this experiment in chapter
10.3.

Cognitive Aspects of Software Development

79

5 Cognitive Aspects of Software
Development3
Keywords: POP-I.A. group characteristics, POP-II.A. individual differences POP-II.C. working
practices, POP-V.A. mental models

ABSTRACT

Computer Science has evolved towards a discipline with different
branches. Scholars study and define artefacts from different viewpoints:
computer languages, environments, paradigms. Practitioners work with
these artefacts. They design, produce and link software that was designed
according to different paradigms. They often work in multidisciplinary
teams. We are interested in the communication between these practitioners.
Do they refer to the same concepts when they use the same words? We
designed an experiment to assess this.

5.1 INTRODUCTION
In the past couple of decades, Computer Science has developed different

branches, each with its own body of knowledge and its own problem area.
Practitioners operate in the real world; the problem areas they encounter
often are heterogeneous. Choosing an approach for the solution of problems,
or combining results from different branches of Computer Science, is not at
all straightforward.

Object-oriented software and relational databases have their origins in
different approaches to the digitalization of information. There are evident
differences between the Object Oriented and the Relational paradigm. The
semantics of the UML is not specified in a formal way, whereas the
semantics of the relational model is given in terms of mathematical
concepts. In database theory, data models define database universes for
databases that are built to last. OO models describe program structures at a
certain moment in time. They are designed to be adapted to changing
circumstances during their lifecycle. Ireland et al. (Ireland, 2011) remark that

3 Based on: L. Benvenuti, G.C.van der Veer: "The Object-Relational impedance mismatch form a

cognitive point of view", In: B. du Boulay and J. Good (eds) Psychology of Programming
Interest Group annual conference 2014, 25-27th June, Brighton, United Kingdom

Computing Education in a Hybrid World

80

the concepts underpinning the relational model are prescriptive and formal,
while those underpinning object schemas are more descriptive. Finally, a
database universe defines a closed world. Each row corresponds to a true
statement about that world, and conversely, a precise meaning is attributed
to the absence of rows: objects that are not represented in the database
world are assumed not to exist in the problem domain. That conclusion is
less straightforward in Object Oriented environment.

In Computer Science departments, different groups of scholars use
different kinds of language, depending on the paradigm they study. SQL, the
query language for relational databases, is a Domain Specific Language,
while Object Oriented languages such as Java are considered General
Purpose Languages. In the imperative-declarative spectrum, SQL is seen as a
declarative language while OO languages such as Java and Smalltalk are held
to be more imperative (van Roy, 2008).

What happens when the paradigms meet, when engineers link together
software that was designed from different points of view? This area is
characterized by a persistent problem, the Object/Relational impedance
mismatch. Many attempts have been made to solve the Object/Relational
impedance mismatch, mainly by developing new software solutions: Object
Relational Mappings. These mappings are based on the assumption that
relational data models can be interpreted as class diagrams, where tables
correspond to classes and rows correspond to objects. This is problematic,
though. In an OO program, an object has an identity independent of its state,
but specific to the program execution. Various objects with the same state
can coexist during one program execution. In the relational model, the row
is identified by its attribute values (the state of the row) and it is accessible
through set operations only: not directly. Direct access to objects during the
execution of OO programs is possible and is based on navigation. The
conclusion is that despite the supposed correspondence between rows and
objects, these mappings are problematic. The Object/Relational impedance
mismatch has been postponed but has not been resolved yet. (Ireland, 2011)
(Zicari, 2012)

The problem with these solutions is their validation. Multidisciplinary
teams that work on tangible artifacts have a common field of application:
the world we live in. Engineers from different backgrounds can discuss
advantages and disadvantages of machine control software, plant
engineering software or computer graphics software, knowing that in the
end they refer to the same tangible or visible artifacts. Computer scientists,
in particular database engineers, do not work on tangible artifacts: they
work on abstract entities. Technical solutions of the Object Relational

Cognitive Aspects of Software Development

81

Mismatch can only be evaluated if working practitioners perceive a common
field of application, if they work with the same abstract entities. The
question here is, whether they do.

In this paper, the emphasis is on human characteristics, rather than on
the formal properties of programming and modeling languages. We will
focus on mental representations of abstract entities involved in
programming and modeling. In section 5.2 we explore the notion of a mental
model. In section 5.3 we give an overview of research on cognitive aspects
of programming and database interaction, followed by reflections in section
5.4 in section 5.5 we give the outline of a first experiment we designed to
assess possible differences in mental models between (OO) programmers
and database professionals, followed by preliminary results. We will draw
preliminary conclusions in section 5.6.

5.2 BACKGROUND

5.2.1 MENTAL MODELS
One of the first to identify the concept of mental model was K. Craik,

(Johnson-Laird, Mental Models, 1989), (van der Veer & Puerta Melguizo,
Mental Models, 2002) who suggested that the mind constructs “small-scale
models” of reality and uses them to anticipate events. Ph. Johnson-Laird
elaborated the concept further and formulated a theory of mental models,
meant to explain human thinking and reasoning. According to Johnson-
Laird, people do not only apply inference rules while reasoning; they also
consider the semantic content of the problems they are solving. While
reasoning, people construct mental models representing the (semantic)
information of the problems they are considering. A mental model or mental
representation does not provide a complete description of a problem
situation, but a simplification. Mental representations are based on pre-
existing knowledge plus new, problem-specific, information and actual
needs.

An influential article by D. Norman (Norman, 1983) is more specifically
concerned with mental models in Human-Computer Interaction. Users,
states Norman, construct mental models of computer systems
incrementally, while interacting with these target systems. This process
results in models that are constrained by the users’ prior knowledge, needs
and context. Most of the times, these models are incomplete. They are
limited by the human information processing system, by experience and by
needs that can be contrasting: the need to focus and the need to retain

Computing Education in a Hybrid World

82

important details. They are parsimonious: people often prefer adding
actions in order to reduce mental complexity. User mental models are
unscientific and unstable. They evolve over time: people learn, people
forget. People happily use metaphors to simplify their models. Nevertheless,
mental models are functional to support various tasks such as planning,
execution, assessment of results and understanding of unexpected events.

Despite the attention to mental models and their conception, there is
little agreement on the exact definition of the term “mental model”. Does the
term refer to temporary structures in Working Memory (WM) or knowledge
structures in Long Term Memory (LTM)? Cañas and Antolí (Cañas, 1998)
introduce this definition: a mental model is “the dynamic representation that
is formed in WM combining the information stored in LTM and the extracted
information from the environment”.

Knowledge, in particular practitioners’ knowledge concerning
computing paradigms, is acquired by education and experience and stored
in LTM. Johnson Laird describes “mental models” as knowledge chunks in
LTM that evolve in time. According to Norman, evolution is not necessarily
positive: improvement is possible, deterioration also. These knowledge
chunks can only be used if they are retrieved and instantiated in WM, in
what we will call a mental model from now on, following Cañas’ and Antolí’s
definition. The function of these mental models is to represent relevant
aspects of reality in WM, and this includes the representation of actions:
mental models are partially runnable.

Human WM is limited to a small number of chunks (7±2 chunks)
(Baddeley, Eysenck, & Anderson, 2009), for brief periods of time after each
chunk has been given attention (ca. 30 sec). Users, practitioners and human
beings in general, take these limitations into account. They adopt strategies
to keep mental models manageable in WM. The question here is: can we
assume mental models of practitioners with different backgrounds to be
compatible with each other?

5.2.2 INDIVIDUAL PREFERENCES
Schwank’s research (Schwank, Cognitive structures and cognitive strategies

in algorithmic thinking, 1993) (Schwank, Zur Konzeption prädikativer versus
funktionaler kognitiver Strukturen und ihrer Anwendung, 1996) concerns
mainly the didactics of mathematics. She found differences in the way
people select mental models to represent knowledge. Schwank
distinguishes a predicative and a functional approach to mathematic
thinking. Predicative thinking is “static grasping”, thinking in terms of

Cognitive Aspects of Software Development

83

judgments and relations; functional thinking is “dynamic grasping”, thinking
in terms of actions, processes and their effects. Schwank adopts this
metaphor: predicative thinking is like solving puzzles, where one looks for
(static) patterns. Functional thinking is mechanical thinking, like using gear:
the focus is on what happens next.

Most mathematical problems can be solved either way; this also applies
to many problems in computer science. To explain the working of a given
algorithm, one of Schwank’s subjects wrote: “the program always counts
one (…) more than the triple of the content of (…) R1”. This describes the
relation between input (the content of R1) and result. According to
Schwank, this indicates a preference for predicative thinking. Another
respondent characterized the same algorithm with: “as long as something is
in R1, take it off and multiply it by three. Then, at the end, add one”. Here,
the result is derived from the input, and the algorithm’s description
highlights the process. Schwank calls this functional thinking.

Functional thinking matches the simulation of mechanical processes.
Schwank cites as example the Turing machine, an idealized model of a
computer. To illustrate predicative thinking, emphasizing judgements, she
refers to set theory (Schwank, Cognitive structures and cognitive strategies in
algorithmic thinking, 1993) (Raven, 1965, cited by Schwank)

To validate her theory, Schwank used Raven’s progressive matrices
(Raven, 1965 cited by (Schwank, Analysis of eye-movements during functional
versus predicative problem solving, 2002)). 3x3 matrices lacking the lower
right symbol were presented to the subjects, which were asked to construct
the last symbol to complete the sequence (instead of choosing the last
symbol as is requested in Raven’s intelligence test). The subjects were asked
to argue why they draw that particular symbol. Schwank found support for
the thesis that the preference for a predicative or functional mode in
problem solving is a stable individual characteristic.

Schwank (Schwank, Cognitive structures and cognitive strategies in
algorithmic thinking, 1993) compares her findings with other cognitive
theories. In particular, she wonders if the distinction she makes matches
with the distinction between declarative and procedural knowledge, as
elaborated by Anderson (as cited by Schwank). The conclusion is negative:
declarative / procedural applies to the kind of knowledge as stored in Long
Term Memory, while predicative /functional is a “property of the structure
of knowledge representation” (Schwank, Cognitive structures and cognitive
strategies in algorithmic thinking, 1993). Schwank illustrates this with the
mathematical operation of division. Division can be approached functionally
and predicatively. Both approaches generate components (knowledge) in

Computing Education in a Hybrid World

84

what Schwank labels “production memory” and components in declarative
memory, but different components. In other words: predicative/functional
applies to the way information is processed and encoded (Schwank,
Cognitive structures and cognitive strategies in algorithmic thinking, 1993).
Schwank remarks that preference for one of the approaches is likely to have
consequences for the knowledge that is stored in Long Term Memory.

About Johnson-Laird’s theory of mental models, Schwank concludes that
Johnson-Laird “neglects to include an independent functional component in
his theory of mental models” (Schwank, Cognitive structures and cognitive
strategies in algorithmic thinking, 1993).

Schwank’s distinction concerns problem-solving skills. No assumptions
are made as to the nature of mathematical knowledge. One could argue that
some problems seem to request a functional approach, while others ask for
a predicative approach. Schwank’s conclusion is that, even with problems
that seem to ask for a declarative approach, functional thinkers will adopt a
functional strategy. Sometimes, they will perform worse than when solving
problems that are more akin to be approached functionally; they might need
more time to solve the problem, they may make more mistakes than
predicative thinkers and vice versa.

Schwank aims to introduce the functional dimension in the discourse on
the didactics of mathematics. She uses the distinction between
predicative/functional thinking to better understand gender differences in
learning mathematics, and cultural differences (between German students,
Indonesian students and Chinese students). For our paper, the distinction is
relevant because it might explain differences in mental models adopted by
groups of computing practitioners differing in the paradigms they use and
are educated in.

5.2.3 ASSESSING MENTAL MODELS: THE TEACH-BACK PROTOCOL
Mental models cannot be observed directly. Many authors draw

conclusions about a respondent’s mental models based on their behavior
(Moray, 1998). Van der Veer adopts a different strategy: he asks the
respondents. Van der Veer extended an hermeneutic method designed by G.
Pask, intended to elicit information about mental models (the Teach-Back
method), and adopted it to elicit mental models from users interacting with
computers and to detect differences in mental representations (van der Veer,
Learning, individual differences and design recommendations, 1990).

A situation is simulated where the respondent has to interact with a
computer. The respondent is asked to explain the computer’s functioning to

Cognitive Aspects of Software Development

85

an imaginary counterpart, a colleague or a student, who has similar
experience with the situation. Questions are presented on white sheets of
paper, and the respondents are instructed to express themselves in
whatever way they consider most adequate: text, drawings, keywords,
diagrams etc. In this manner, the subjects are encouraged to externalize the
mental model they made of the situation. Next, the protocols are scored
along pre-defined scoring categories in order to map the respondent’s
mental representations. Rating implies (1) reading the protocol in its
entirety and trying to understand fully what it says; (2) trying to formulate
how the subject represents the space of the teach-back question and (3)
classify the responses into relevant categories for the purpose of the study.
Rating is done independently by two persons in order to safeguard
reliability.

5.3 LITERATURE REVIEW
In the next sections, we will review the literature on mental

representations of programming constructs.

5.3.1 COGNITIVE ASPECTS OF (OO) PROGRAMMING
The academic debate on the cognitive process supporting programming

was especially active from the 1970s to the late 1980s, when the dominant
question became: “how do programmers make sense of code?”. Later, the
emphasis switched to the relationship between procedural and Object
Oriented (OO) programming.

Robins, Rountree and Rountree (Robins, Rountree, & Rountree, 2003)
provide us with an extensive literature review on research concerning
learning and teaching programming between 1970-2003, in order to
formulate recommendations for teachers. In a survey study, Détienne
(Detienne, 1997) reviews empirical research on OO design and assesses
claims about the cognitive benefits of the OO paradigm. We will focus on
three topics: mental models involved in learning programming, strategies of
program creation, and comparison between the procedural and the OO
paradigm.

Robins et al. mention different kinds of mental models involved in
learning programming: mental models of the “task, problem or
specification” that has to be solved by the program, mental model of the
programming language, and mental models of the behavior of the running
program. Many studies have noted a central role played by a model (or
abstraction) of the computer. Du Boulay et al. (du Boulay, O'Shea, & Monk,

Computing Education in a Hybrid World

86

1989) call this the “notional machine”, an idealized, conceptual computer
that is defined with respect to the language. Novices should develop an
appropriate notional machine to master a programming language: the
notional machine underlying Pascal is very different from the machine
underlying PROLOG. A study by Mayer (Mayer, 1989) confirms that students
supplied with a notional machine model perform better while solving some
problems than students who are not given the model (Robins, Rountree, &
Rountree, 2003).

A model of program comprehension was provided by Pennington
(Pennington, 1987) . Comprehension is seen as the assignment of meaning
and occurs in the context of a problem domain. Attribution of meaning
starts from a text (the language specific code in the programming domain)
which is re-organized in mental representations with help of available
knowledge structures. Pennington describes Text Structure and Plan
Knowledge. Text Structure knowledge emphasizes the role of abstract
knowledge of text structures. Plan Knowledge emphasizes the role of
content-dependent knowledge. Abstract plans are achieved by specific
program functions. Plan Knowledge tells us which plans are achieved by
which functions.. Pennington investigates which structure is dominant in
the cognitive organization needed for program comprehension. Pennington
studies expert FORTRAN and COBOL programmers, and finds significant
differences in their performances of comprehension tasks. She observes that
one of the possible explanations is that the structure of the language
influences the mental representation of programs.

Détienne also mentions mental simulation. She points out that the
strategy of mental simulation was documented by authors of several studies
on procedural design. Few studies were conducted on this subject about OO
design; they concerned small groups of programmers and the findings are
contradictory.

One of the central notions when describing programming knowledge is
the “plan”, understood as a structure or schema in Long Term Memory.
According to Rist (Rist, 1995) “the plan is the basic cognitive chunk used in
program design”, but Rist also observes that the exact meaning of “plan”
varies between authors. Rist also refers to the term “script”. Détienne uses
the term “schema” to indicate knowledge chunks. Robins et al. observe that
the term “plan” or “schema” is ill-defined. In general, the term “script”
indicates a type of schema relating to the typical sequence of events in
common situations. “Plan” is used in relation to problem-solving activities.
People use scripts to keep track of sequences they have experienced, but
plan ahead. Considering that our investigation concerns mental models as

Cognitive Aspects of Software Development

87

instantiated in WM (though based on knowledge in LTM), we will avoid
using these terms.

Détienne (Detienne, 1997) describes three strategies guiding OO design
activities. Two of these (function-centered and object-centered) are
declarative strategies, where static characteristics guide solution
development, and one is a procedural strategy (procedure-centered), where
dynamic characteristics prevail. Rist (1996, as cited by Détienne) describes
similar strategies (based on roles, objects and goals). Each of these studies
shows dominant strategies for groups of designers, but they also show that
individual designers switch between strategies while solving problems.

Independently of each other, Détienne and Rist investigate the
conditions which trigger the use of one strategy rather than another. Their
results do not fully match. In separate studies, Détienne finds (1) that
novices tend to adopt a procedural strategy, where experienced designers
more often choose an object-centered approach, and (2), in a study
conducted with Chatel, that expert OO designers match their strategy to the
problem. A related issue concerns the classification of problems for OO
design. Many distinctions have been proposed. In particular, the procedural-
declarative distinction seems not to influence the design activity (Detienne,
1997).

Rist concludes that strategies of experienced OO designers are mainly
procedure-centered, where Détienne reports that the procedure-centered
strategy is most commonly used by novices. Détienne explains this by noting
that different authors categorize the subjects in different ways. Rist’s
experienced designers were students, and might have been closer to
Détienne’s novices than to the (professional) experts she observed.

OO programming languages were expected to improve
understandability, in comparison to traditional languages. More precisely,
the OO approach has claimed to make modeling the problem domain easier
for programmers. Studies by Wiedenbeck et al. (Wiedenbeck, Ramalingam,
Sarasamma, & Corritore, 1999) compared novices’ comprehension of
procedural and OO programs. Wiedenbeck et al. found that for short
programs, there was no significant difference between languages, but if
multiple classes were used, procedural programmers did better. The
authors conclude that the distributed nature of OO programs may make it
more difficult for novices to form a complete mental representation of an
OO program than of a procedural program. They also suggest that OO
novices focus on program model information, instead of focusing on the
problem domain. Robins, Rountree and Rountree conclude that there is little

Computing Education in a Hybrid World

88

support for the claim that the OO paradigm focuses the programmer on the
problem domain, especially where novice programmers are concerned.

Détienne investigates the OO claim of naturalness and greater ease of
design. Novice programmers have difficulties in class creation and in
articulating procedural and declarative aspects of their solutions. They need
to start with a procedural representation of the situation. This seems to
indicate that knowledge is organized in terms of procedures, not in terms of
objects and relations. But for expert OO designers, the claims find support.
Experts do analyze problems in terms of objects and their relationships.
Also the claim that OO designers design solutions that are closer to the
problem domain is supported. Expert OO designers seem to shift between
object view and procedure view. This may support Rist’s claim, that OO
programming is not different from procedural programming, “it is more” in
that it adds a class structure to a procedural system (Rist, 1995).

Détienne comments on the oddity of the situation: if OO design is driven
by domain knowledge, then the biggest benefit should be observed in
novices; but this is not the case. In her explanation, she notes that at the
time no studies were conducted on native OO designers. It would be
interesting to compare novice programmers learning to design in the OO
and the procedural paradigms. This is what Wiedenbeck et. al. did, but their
conclusions match Détienne’s previous findings.

5.3.2 COGNITIVE ASPECTS OF USER-DATABASE INTERACTION
Today, the Relational Model is the leading model in database theory. Its

main feature is that the model facilitates re-use of data. Once collected and
stored, data can be used for other purposes than it was originally intended
for. There is no need to know how data are stored in memory in order to
write a query: knowledge of the (abstract) data model of the database is
sufficient. The Relational DataBase Management System (RDBMS) provides
the interface between the user writing the query and the physical
implementation of storage and retrieval processes.

Cognitive aspects of query languages were studied at the same time as
cognitive aspects of programming, but the aim of the enquiry was different.
The motivation was found in measuring the ease-of-use of query languages,
from the point of view of end users (Reisner, 1981). One of the issues that
were discussed in the early days is the procedurality of the query language.
Some query languages specify more step-by-step methods to obtain results
than others. SQL, today’s standard, is a set-oriented language, and was been
labeled “less procedural” or even non-procedural in the debate.

Cognitive Aspects of Software Development

89

Chan, Wei and Siau (Chan, Wei, & Siau, 1993) focus on cognitive
processes of abstraction in the user-database interface. They distinguish
three levels of abstraction: a conceptual level (a description of the user’s
world), a logical level (describing the database world) and a physical level
(describing states in computer memory). Entity Relationship (ER) models
describe the conceptual level (objects from the user’s world). The relational
model, relational algebra and SQL refer to the logical level. At the logical
level, objects are held to exist in the user’s mind. The physical level is not
important to the user, because it is hidden by the RDBMS.

There are knowledge transformations between the conceptual level and
the logical level, conceptual to logical transformations and logical to
conceptual. The authors’ conclusion is that to support understanding of how
to write queries, the ER model (conceptual level) performs best.

Chan, Wei and Siau study naive users. De Haan and Koppelaars (de Haan
& Koppelaars, 2007) explicitly address database professionals. Aside from
writing queries, professionals need tools to control the RDBMS. RDBMSs
conform to the relational model, which is why professional database
engineers should master the logical level, and the database world’s
description in terms of set theory. Database professionals work with
“objects” in the database world, a mathematical construct, based on set
theory. No studies on the cognitive aspects of this kind of user-database
interaction are known to us.

5.4 A NEED FOR EMPIRICAL STUDY
Computer programs can be characterized by their algorithm and by their

abstract description (Pair, 1993). The question here is how programmers,
designers and professionals characterize the abstract software structures
they work with.

First of all, we observe that this characterization can change over time.
Novice OO programmers mainly adopt a procedural strategy and start with
a procedural representation of the topic they are considering (Detienne,
Wiedenbeck et al.). Expert OO designers are able to switch between object
view, emphasizing relations in the problem domain, and procedure view,
emphasizing the execution of the program. According to Rist (as cited by
Détienne, 1997), objects in OO design are an addition to the procedural
structure of the system.

Procedurality of database languages has been the object of debates, but
today database theory has a standard language, that can be characterized as
less-procedural: SQL. Users of RDBMSs formulating queries need not know

Computing Education in a Hybrid World

90

how the software works. RDBMS software is a product that responds to
requirements. Its accurateness in implementing the relational model is a
measure of its quality. When a database professional detects behavior that is
not conform with the model, he or she calls the vendor’s helpdesk and
reports a bug. The helpdesk sometimes offers an alternative strategy to
avoid the problem (if available), unveiling parts of the RDBMS’s structure.
Expert database professionals know the software they work with better
than their colleagues. Their queries perform better, and they are able to
avoid deviant behavior of the RDBMS because they partially understand
what is “ inside the machine”. Database experts, too, switch between
abstract (relational) view and procedure view.

We are interested in mental models, instantiated by computing
professionals while communicating with each other. These mental models
are instantiated in WM, a structure having limited capacity. Even if experts
of both disciplines seem to be able to switch between object view and
procedural view of the software they handle, this does not mean that they
can use the two views simultaneously, or that professionals are able to
switch between views while communicating with colleagues.

We found different references to mental models in the literature
concerning cognitive aspects of (OO) programming and user-database
interaction. These are: (1) the notional machine, simulating an idealized
computer, (2) the object view, where the individuation of (problem domain)
objects guides the design activity, emphasizing static aspects of the solution,
(3) the procedure-centred view, emphasizing the dynamics of a program
and (4) a set-theoretical model, describing the problem domain in abstract
terms and thus defining the database world. The notional machine and a
procedure-centred view correspond to Schwank’s functional thinking; set
theory and the object-view correspond to predicative thinking.

We experience no contradiction between Schwank’s view on algorithmic
thinking and the findings we report in section 5.3 on cognitive aspects of OO
design and user-database interaction. Terminology can be confusing, in
particular where the term “functional” is used. Schwank (Schwank, Cognitive
structures and cognitive strategies in algorithmic thinking, 1993) observes that
in “functional thinking”, the word “functional” does not refer to the
mathematical term “function” intended as “a relation where each element of
the domain (input) is related to exactly one element of the range (output)”.
Schwank classifies descriptions of algorithms in terms of input/output as
“predicative thinking”, thinking in terms of judgments. Détienne’s
“functional” strategy, where the definition of functions guides the design
process, is not related to Schwank’s “functional” thinking.

Cognitive Aspects of Software Development

91

Many efforts have been made to describe knowledge structures involved
in programming. The distinction between a more descriptive dimension of
knowledge and a dimension describing activities is omnipresent, just as the
distinction between active and passive views on problems. The differences
refer to structures in LTM; Schwank describes the relation between her
theory and cognitive theories describing knowledge structures in LTM.

Triggered by Pennington’s remark on the role of the language in the
mental representation of expert FORTRAN and COBOL programmers, we
ask ourselves why the FORTRAN programmers have become experts in
FORTRAN instead of COBOL and vice versa. FORTRAN is known as a
language that emphasizes the control flow of the program (Pennington,
1987), where COBOL was intended to be a business-friendly language,
suitable to inexperienced programmers, and independent of knowledge of
the underlying computer (Cobol, 2014) .We experience no necessary
contradiction between Pennington’s results and Schwank’s view on
algorithmic thinking.

We found unsolved issues, in particular the oddity reported by Détienne.

If OO design is driven by domain knowledge, why do novice designers
experience difficulties in class creation? This could match Schwank’s
observation of functional thinkers: they are able to learn to accomplish
“predicative” task successfully, but might need more time or perform worse
than predicative thinkers.

We hypothesize differences between groups in the instantiated mental
models used to handle a concept that is fundamental to both disciplines: the
“object”. We expect software engineers’ mental models to match a functional
approach and information managers’ mental models to match a predicative
approach.

We also expect to find different problem-solving preferences, directing
the student toward one direction (a career in programming/software
engineering) rather than another (a career in databases/information
management).

5.5 A FIRST EXPERIMENT: HOW DO PROFESSIONALS
UNDERSTAND THEIR SYSTEMS?

We designed a teach-back protocol to elicit information about the
participants’ mental models and recruited students of comparable age and
level of education, enrolled in different computing curricula. The
participants’ answers are scored along categories, derived from the four

Computing Education in a Hybrid World

92

types of mental models mentioned in section 5.4. Three raters are involved
in this experiment. Two are currently lecturing Computer Science in Dutch
higher education, one is senior designer of documentation for scientific
software. All the raters have a background in computer science and hold a
Master’s degree.

The protocol was tested in a pilot study with 5.6 participants, all
lecturers of Computer Science in higher education. Based on the feedback,
textual changes were made to the questions.

5.5.1 QUESTIONS
The protocol is introduced by a brief case description, an online

bookstore (see Figure 5-1).

Figure 5-1 The context of the teach-back question: an online bookstore

The case description states that only information about books is relevant
for our purposes, and that, therefore, the rest of the data is skipped. This
results in a dataset with repeating rows having the same state. Participants
are asked to count and describe the “Book-objects” they distinguish. No
indications are provided for the choice of a theoretical context.

This situation is, in fact, ambiguous: the question can be answered by
describing: (1) books in the bookstore’s assortment (objects in the problem
domain), (2) Book-objects in permanent storage (in the programming
domain) or (3) instances of Book-objects (in the programming domain)

Participants are instructed to explain in writing to an imaginary fellow
student: (1) How many different Book-object they see and what these
objects are, (2) What happens if the system is asked to produce additional
information about one of the books. Up to now, we have been concentrating

Cognitive Aspects of Software Development

93

on the analysis of the first part of question (1): “How may different Book-
objects do you see?”

5.5.2 SCORING CATEGORIES
To establish the number of different Book-objects, the rater scores one of

the following answers:
• 4 objects (or 5, if the participant counts the last row, which is only

partially visible),
• 6 objects (or 7, if the participant counts the last row),
• O (a number that is not traceable to Book-objects, or no number

mentioned),
• B (both answers “4 objects” and “6 objects” are mentioned and

explained).

5.5.3 PARTICIPANTS
The teach-back questions were answered by four groups of male

Bachelor students, enrolled in professional curricula:
• 35 students attending 1st year classes Business IT & Management. Most

of them enrolled in a professional curriculum in a computing discipline
in 2013, 2 in 2010.

• 19 attending 3rd year classes Business IT & Management. Most enrolled
in 2011, 1 in 2010, 1 in 2008.

• 18 attending 3rd year classes Computer Science, field of study
Information Engineering. Most enrolled in 2011, 6 in 2010, 1 in 2009, 1
in 2002.

• 29 attending 3rd year classes Computer Science, field of study Software
Engineering. Most enrolled in 2011. 4 in 2010.

All groups had attended at least one course “Relational Databases” and
one course “Introduction to Programming in Java”. The Business IT &
Management curriculum emphasizes modelling. The Computer Science
curriculum concerns software development and has two fields of study.
Software Engineering puts the emphasis is on programming, Information
Engineering on the construction of business solutions (Hogeschool Utrecht,
2012).

5.5.4 HYPOTHESES
With this preliminary experiment, the following hypotheses are tested:

Computing Education in a Hybrid World

94

H1: “there is no significant difference between the conceptualization of
the notion of ”object” reported by 1st and 3rd year students Business IT &
Management”.

H2: “there is no significant difference between the conceptualization of
the notion of ”object” reported by members of the following groups: 3rd year
students Business IT & Management, 3rd year students Information
Engineering and 3rd year students Software Engineering”.

5.5.5 PRELIMINARY RESULTS
The following categories were scored:

• 4: 47 participants. Many of them explain their choice (“There are 6
Book-objects, but two of them occur twice”), indicating that they are
counting sets of objects.

• 6: 26 participants. Explanations vary from “n rows, n Book-objects” to
“6 Book-objects. Some occur twice, but they are different objects” and “I
am thinking OO-Java”.

• O: 28 participants.
Category “B” was not scored in our samples. The answers are

summarized in Table 5-1 and Table 5-2.

 4 6 O n
1st year Business IT & Management 19 6 10 35
3rd year Business IT & Management 7 1 11 19

Table 5-1 number of Book-objects counted by students Business IT & Management

We found differences close to significance between the samples in Table
5-1 (chi sqr = 4.87; p<0.1) and reject H1. Most students of the 1st year
Business IT & Management count 4 objects. They seem to interpret “objects”
as problem domain entities or as database entries. 3rd year students seem to
be less certain in their interpretation: their answer is scored more
frequently “O”.

 4 6 O n
3rd year Business IT & Management 7 1 11 19
3rd year Information Engineering 5 10 3 18
3rd year Software Engineering 16 9 4 29

Table 5-2 Number of Book objects counted by 3rd year students, sampled by
curriculum

Cognitive Aspects of Software Development

95

We found significant differences between the samples in Table 5-2 (chi
sqr = 19.19; p<0.01) and reject H2. We conclude that future Information
Engineers seem to interpret “objects” as instances: the answer “6 objects” is
predominant. Future Software Engineers show the opposite preference and
count 4 objects. Business IT & Managements students seem to elude the
question.

5.6 PRELIMINARY CONCLUSIONS
Our investigation shows at least two ways to characterize the abstract

notion of “object” that are currently used by professionals. These
characterizations are not compatible and lead to different judgements about
“objects”. In the same situation, some professionals will identify 4 objects
but others will perceive 6. The preference for 4 or 6 objects is not
distributed ad random between professionals. We found indications for
differences between groups of 3rd year students, enrolled in different
computing curricula. Different preferences in the conceptualization of
“object” can be a source of communication problems between groups of
computing professionals. The lack of agreement about the definition of one
of the basic notions of the discipline is alarming, just as the apparent
difficulties to recognize this issue and to discuss it.

5.7 ACKNOWLEDGEMENTS
We thank the Hogeschool Utrecht and Johan Versendaal for their

support; we thank the students and their lecturers for their cooperation.

Conceptualizations of the Notion of an Object

97

6 Conceptualizations of the Notion of an
Object4

Abstract— Computer Science has evolved towards a discipline with different
branches. Software is designed, produced and linked taking into account
different viewpoints. This process typically involves multidisciplinary
teams: Front End Developers, (OO)Programmers, Database Engineers.
Software developers, who were educated in different computing disciplines,
meet on the shop floor, where they link together software that was designed
from different viewpoints. In this paper, the emphasis is on human
characteristics, rather than on the formal properties of programming and
modeling languages. Do the involved computing practitioners refer to the
same concepts when they use the same words? A preliminary version of this
study (Benvenuti & van der Veer, PPIG2014, 2014) addressed the assessment
of differences in mental representations of abstract entities involved in
programming and modeling. In this extended version we report the results
of an experiment, designed to compare mental representations of abstract
concepts with mental models described in the literature. We point at
differences between groups of students, enrolled in different computing
curricula, and explore possible explanations.

KEYWORDS:

computer science education, engineering education research, human factors

6.1 INTRODUCTION
 In the past couple of decades, Computer Science has developed different

branches, each with its own body of knowledge and its own problem area.
Different computing curricula have their raison d’être in different
approaches to the digitalization of information. What happens when the
paradigms meet, when engineers link together software that was designed
from different points of view? This area is characterized by persistent
problems, such as the Object/Relational impedance mismatch.

4 This work was originally published as: Benvenuti, L., Louwe Kooijmans, C.F., Versendaal, J., &

van der Veer, G.C. (2015). Representations of abstract concepts, differences across
computing disciplines. Frontiers in Education 2015. El Paso, TX. ©2015 IEEE, ISBN :978-1-
4799-8454-1 ,doi: 10.1109/FIE.2015.7344411

https://doi.org/10.1109/FIE.2015.7344411

Computing Education in a Hybrid World

98

Many attempts have been made to solve these problems by developing
new software, such as Object Relational Mappings. This is problematic,
though. The problem with these solutions is their validation.
Multidisciplinary teams that work on tangible artifacts can discuss
advantages and disadvantages of machine control software, plant
engineering software or computer graphics software, knowing that they
refer to the same tangible or visible artifacts. But many computing
professionals work exclusively on abstract entities. Technical solutions of
the Object Relational Impedance Mismatch can only be evaluated if
practitioners perceive a common field of application, if they work with the
same abstract entities.

The new ACM/IEEE guidelines for the undergraduate program in
Software Engineering (SE) (ACM/IEEE, 2014) acknowledge the problem of
working with abstract entities and the challenges it involves for “knowledge
exchange during the process of [software] design” (pg. 11). Although we
acclaim the attention for this phenomenon, we regret the location of the
problem inside the SE discipline. We suspect practitioners from other
branches than SE to conceptualize abstract entities differently than SE. More
generally, we suspect different computing disciplines to operate from
different conceptualizations.

We will focus on the cognitive backgrounds of the issue, rather than its
pedagogical perspective, although we will touch on educational
implications. This paper describes an experiment to assess differences in
mental representations of abstract entities, involved in programming and
modeling. We recruited students of comparable age and level of education,
enrolled in different computing curricula, and asked them to help us
understand the way they conceptualize abstract concepts. In a preliminary
(work-in-progress) version of this study (Benvenuti & van der Veer,
PPIG2014, 2014), we reported incompatible ways to characterize the
abstract notion of “object”. We also found indications for group preferences:
significant discrepancies between participants, enrolled in different
curricula.

This extended paper focuses on the explanation of the differences we
have identified. We compare the participants’ mental representations with
mental models described in the literature. We provide an overview of the
research on cognitive aspects of programming and database interaction and
explore the notion of individual preferences in mathematical problem
solving (Schwank, Cognitive structures and cognitive strategies in algorithmic
thinking, 1993).

Conceptualizations of the Notion of an Object

99

In section 6.2 we explore the notion of a mental model. In 6.3 we give an
overview of research on cognitive aspects of programming and database
interaction, followed by discussion in section 6.4. In section 6.5 we design
an experiment to assess possible differences in mental models between
senior students, enrolled in different computing curricula. Results are given
in section 6.6, followed by a reflection in section 6.7, conclusions in section
6.8 and relevance in section 6.9.

6.2 BACKGROUNDS

6.2.1 MENTAL MODELS
According to Craik, the mind constructs “small-scale models” of reality

and uses them to anticipate events (Johnson-Laird, Mental Models, 1989) (van
der Veer & Puerta Melguizo, Mental Models, 2002) Johnson-Laird formulated
a theory of mental models, meant to explain human thinking and reasoning.
People, states Johnson-Laird, do not only apply inference rules while
reasoning; they also consider the semantic content of the problems they are
solving. Norman (Norman, 1983) is more specifically concerned with mental
models in Human-Computer Interaction. Users, states Norman, construct
mental models of computer systems incrementally, while interacting with
systems. The resulting models are constrained by the users’ prior
knowledge, needs and context. These models are often incomplete. They are
limited by the human information processing system, by experience and by
needs that can be contrasting: the need to focus and the need to retain
important details. They are parsimonious in order to reduce mental
complexity. User mental models are unscientific and unstable. They evolve
over time: people learn, people forget. People use metaphors to simplify
their models. Nevertheless, mental models are functional to support tasks
such as planning, execution, assessment of results and understanding of
unexpected events.

There is little agreement on the exact definition of the term “mental
model”. Does the term refer to temporary structures in Working Memory
(WM) or knowledge structures in Long Term Memory (LTM)? Cañas and
Antolí (Cañas, 1998) introduce this definition: a mental model is “the
dynamic representation that is formed in WM combining the information
stored in LTM and the extracted information from the environment”.

Knowledge, in particular knowledge concerning computing paradigms, is
acquired by education and experience and stored in LTM as knowledge
chunks that evolve in time. According to Norman, evolution is not

Computing Education in a Hybrid World

100

necessarily positive: improvement is possible, deterioration also. These
knowledge chunks can only be used if they are retrieved and instantiated in
WM, in what we will call a mental model from now on, following Cañas’ and
Antolí’s definition.

Human WM is limited. People take these limitations into account and
adopt strategies to keep mental models manageable in WM. The question
here is: can we assume mental models of practitioners with different
backgrounds to be compatible with each other?

6.2.2 INDIVIDUAL PREFERENCES
Schwank (Schwank, Cognitive structures and cognitive strategies in

algorithmic thinking, 1993) studies the way people select mental models to
represent mathematical knowledge. Schwank distinguishes a predicative
and a functional approach to mathematic thinking. Predicative thinking is
“static grasping”, thinking in terms of judgments and relations; functional
thinking is “dynamic grasping”, thinking in terms of actions, processes and
their effects. Schwank adopts this metaphor: predicative thinking is like
solving puzzles, where one looks for (static) patterns. Functional thinking is
mechanical thinking, like using gear: the focus is on what happens next.
Most mathematical problems can be solved either way; this also applies to
many problems in computer science.

Schwank used Raven’s progressive matrices to assess problem solving
preferences (Raven, cited by Schwank). 3x3 matrices lacking the lower right
symbol were presented to the participants, which were asked to construct
the last symbol to complete the sequence (instead of choosing the last
symbol as is requested in Raven’s intelligence test). The participants were
asked to argue why they draw that particular symbol. Schwank found
support for the thesis that the preference for a predicative or functional
mode in problem solving is a stable individual characteristic.

6.2.3 ASSESSING MENTAL MODELS: THE TEACH-BACK PROTOCOL
Mental models cannot be observed directly. Many authors draw

conclusions about respondent’s mental models based on their behavior
(Moray, 1998). Van der Veer adopts a different strategy: he asks the
participants. Van der Veer (van der Veer, Learning, individual differences and
design recommendations, 1990) extends an hermeneutic method designed by
G. Pask, intended to elicit information about mental models (the Teach-Back
method), and adopts it to detect differences in mental representations of
users interacting with computers.

Conceptualizations of the Notion of an Object

101

A situation is simulated where the respondent has to interact with a
computer. He/she is asked to explain the computer’s functioning to an
imaginary counterpart, a colleague or a student, who has similar experience
with the situation. The questions are designed to activate both declarative
and procedural knowledge structures, to obtain an overall picture of the
participants’ mental models. Questions are presented on white sheets of
paper, and the participants are instructed to express themselves in
whatever way they consider most adequate: text, drawings, keywords,
diagrams etc. In this manner, the participants are encouraged to externalize
the mental model they made of the situation. Next, the protocols are scored
“blind”, along pre-defined scoring categories in order to map the
respondent’s mental representations. Rating implies (1) reading the
protocol in its entirety and trying to understand fully what it says; (2) trying
to formulate how the participant understands the space of the teach-back
question and (3) classify the responses into relevant categories for the
purpose of the study. Rating the answers is a complex task: the rater has to
interpret the participant’s intention and classify it by means of scoring rules.
This task requires considerable training. In order to safeguard reliability,
two or more persons score the answers independently.

6.3 LITERATURE REVIEW

6.3.1 OBJECTS
One of the basic notions of software development is the “object”.

According to Booch, Rumbaugh and Jacobson (Booch, Rumbaugh, &
Jacobson, 2005) an object is “A concrete manifestation of an abstraction; an
entity with a well-defined boundary and identity that encapsulates state and
behavior; an instance of a class”. Objects are software constructs that can
refer to real-world entities, entities that are also called objects (although
some authors use the term domain objects (Larman, 2005)). A class
describes a set of objects (Booch, Rumbaugh, & Jacobson, 2005). Equivalent
objects can coexist during program running: instantiation generates bags of
objects. Nevertheless, the term instance is seen as synonym with object
(Booch, Rumbaugh, & Jacobson, 2005)

Handling these different natures of objects requires switching between
mental models. In the next sections, we will review the literature on
understanding of programming constructs.

Computing Education in a Hybrid World

102

6.3.2 COGNITIVE ASPECTS OF (OO) PROGRAMMING
Robins, Rountree and Rountree (Robins, Rountree, & Rountree, 2003)

provide us with an extensive literature review of research concerning
learning and teaching programming between 1970-2003. In a survey study,
Détienne (Detienne, 1997) reviews empirical research on OO design and
assesses claims about the cognitive benefits of the OO paradigm.

Robins, Rountree and Rountree mention different kinds of mental
models involved in learning programming: mental models of the “task,
problem or specification” that has to be solved by the program, mental
model of the programming language, and mental models of the behavior of
the running program. Many studies have noted a central role played by a
model (or abstraction) of the computer. Du Boulay et al. (du Boulay, O'Shea,
& Monk, 1989) call this the “notional machine”, an idealized, conceptual
computer that is defined with respect to the language. Novices should
develop an appropriate notional machine to master a programming
language: the notional machine underlying Pascal is very different from the
machine underlying PROLOG. A study by Mayer (Mayer, 1989) confirms that
students supplied with a notional machine model perform better while
solving some problems than students who are not given the model.

A model of program comprehension was provided by Pennington
(Pennington, 1987). Comprehension occurs in the context of a problem
domain. The program’s text is re-organized in mental representations with
help of available knowledge structures. Pennington studies expert
FORTRAN and COBOL programmers, and finds significant differences in
their performances of comprehension tasks.

The OO approach has claimed to make modeling the problem domain
easier for programmers. Détienne investigated this claim. She found that
novice programmers have difficulties in class creation. According to
Détienne, novices need to start with a procedural representation of the
situation. This seems to indicate that knowledge is organized in terms of
procedures, not in terms of objects and relations. But for expert OO
designers, the claims find support. Experts do analyze problems in terms of
objects and their relationships. Also the claim that OO designers design
solutions that are closer to the problem domain is supported. Expert OO
designers seem to shift between object view and procedure view.

Détienne comments on the oddity of the situation: if OO design is driven
by domain knowledge, then the biggest benefit should be observed in
novices; but this is not the case.

Conceptualizations of the Notion of an Object

103

6.3.3 COGNITIVE ASPECTS OF USER-DATABASE INTERACTION
Today, the Relational Model is the leading model in database theory.

There is no need to know how data are stored in a Relational Database in
order to write a query: knowledge of the (abstract) data model of the
database is sufficient.

Cognitive aspects of query languages were studied at the same time as
cognitive aspects of programming (Reisner, 1981). One of the issues was the
procedurality of the query language. Some query languages specify more
step-by-step methods to obtain results than others. SQL, today’s standard, is
a set-oriented language, and was been labeled “less procedural” or even
non-procedural in the debate.

Chan, Wei and Siau (Chan, Wei, & Siau, 1993) focused on cognitive
processes of abstraction in the user-database interface. They distinguished
three levels of abstraction: a conceptual level (a description of the user’s
world), a logical level (describing the database world in in set-theoretical
terms) and a physical level (describing states in computer memory). The
authors concluded that naïve users’ understanding of how to write queries
was best supported by a model of the conceptual level.

De Haan and Koppelaars (de Haan & Koppelaars, 2007) explicitly address
database professionals. Professionals need to control the RDBMS, which is
why professional database engineers should master the logical level, and the
database world’s description in terms of set theory. Database professionals
work with “objects” in the database world, a mathematical construct, based
on set theory. No studies on the cognitive aspects of this kind of user-
database interaction are known to us.

6.4 A NEED FOR EMPIRICAL STUDY
The question here is how programmers, designers and professionals

characterize the abstract software structures they work with. We observe
that this characterization can change over time. Novice OO programmers
mainly adopt a procedural strategy and start with a procedural
representation of the topic they are considering (Detienne, 1997) Expert OO
designers are able to switch between object view, emphasizing relations in
the problem domain, and procedure view, emphasizing the execution of the
program.

We are interested in mental models, instantiated in WM by computing
professionals while communicating with each other. WM has limited
capacity. Experts seem to be able to switch between object view and
procedure view. This does however not mean that they can use the two

Computing Education in a Hybrid World

104

views simultaneously, or that they are able to switch while communicating
with colleagues.

We found multiple references to mental models in the literature
concerning cognitive aspects of (OO) programming and user-database
interaction. These are: (1) the notional machine, simulating an idealized
computer, (2) the object view, where the individuation of (problem domain)
objects guides the design activity, emphasizing static aspects of the solution,
(3) the procedure-centered view, emphasizing the dynamics of a program
and (4) a set-theoretical model, describing the problem domain in abstract
terms and thus defining the database world. The notional machine and a
procedure-centred view correspond to Schwank’s functional thinking; set
theory and the object-view correspond to predicative thinking.

We found references to discrepancies between professional groups.
Pennington reports of expert COBOL and FORTRAN programmers
performing differently on program comprehension tasks.

We also found unsolved issues, in particular the oddity reported by
Détienne. If OO design is driven by domain knowledge, why do novice
designers experience difficulties in class creation? This could match
Schwank’s observation of functional thinkers: they are able to learn to
accomplish “predicative” task successfully, but might need more time or
perform worse than predicative thinkers.

We hypothesize differences between professional groups in the
instantiated mental models used to handle a concept that is fundamental to
most computing disciplines: the “object”

6.5 EXPERIMENT DESIGN
Do future computer professionals perceive sets of objects or bags of

objects (instances)? Do they locate “objects” in the problem domain or in the
programming domain? Do they think of software in terms of processes in
the notional machine (sequences of events, communication between
objects) or in terms of structures (attribute values, relationships, queries)?

We designed a Teach-Back protocol to elicit this information, and
enquired students enrolled in different computing curricula. The
participants’ answers were scored along categories, derived from the four
types of mental models mentioned in section 6.4. Four raters were involved
in this experiment. Three have been lecturing Computer Science in Dutch
higher education for over 20 years; one is senior designer of documentation
for scientific software. All the raters have a background in Computer Science
and hold a Master’s degree or equivalent.

Conceptualizations of the Notion of an Object

105

6.5.1 CONTEXT
The protocol is introduced by a brief case description, an online

bookstore (see Figure 6-1). It states that only information about books is
relevant for our purposes, and that, therefore, the rest of the data is skipped.
This results in a dataset with repeating rows having the same state.
Participants are asked to describe the “Book-objects” they distinguish. No
indications are provided for the choice of a theoretical context.

Figure 6-1 Online bookstore

The situation is, in fact, ambiguous: the question can be answered by
describing: (1) Book-objects in the problem domain (books in the
bookstore’s assortment), (2) Book-objects in the programming domain
(Book–objects in permanent storage), (3) Book-objects in the programming
domain (instances of Book-objects), (4) objects in the programming domain
(elements of the HTML-document).

6.5.2 QUESTIONNAIRE
We asked the participants, how many different Book-objects they saw in

the table in Figure 6-1. To answer the question, a mental model had to be
instantiated.

Participants were presented with white sheets of paper and were
instructed to explain in writing to an imaginary fellow student:

How many different Book-objects they saw and what these objects were,
What would happen if the system was asked to produce additional

information about one of the books.

Computing Education in a Hybrid World

106

These questions activate declarative and procedural knowledge
structures (section 6.2.3). A last question aims to obtain an indication of the
respondent’s preference for predicative or functional thinking. Following
Schwank’s method, we used a matrix from Raven’s test (Figure 6-2) as
explained in section 6.2.2. We asked participants:

to add the missing symbol and to explain how they had constructed the
solution.

Figure 6-2 The matrix used to math individual problem solving preferences

6.5.3 RESEARCH QUESTIONS AND SCORING CATEGORIES
This experiment was designed to answer the following research

questions.

Are there differences across the disciplines in the amounts of objects

counted by participants?
The aim of research question a) is to identify possible communication

problems between computing professionals. Scoring was based on the
participants’ answers to the first part of question 1 of the questionnaire
(how many different objects do you see?).

Although differences in amounts of objects can indicate differences in
mental models, their occurrence is not sufficient to draw conclusions.
Research question b) focuses on the participants’ mental model.

a. Are there differences across the disciplines in the mental models,
instantiated by participants?

Scores concerning questions b were based on the interpretation of the
participant’s answers to both questions 1 and 2 of the questionnaire. To
determine the mathematical structure envisioned by participants (Set or
Bag, see sections 6.3.1 and 6.3.3) and the participants’ approach to software

Conceptualizations of the Notion of an Object

107

(object view or procedure view, see section 6.3.2), we defined the following
sub-questions:

b1. Does the participant envision a set of Book-objects or a bag of Book-
objects (instances)?

b2. Does the participant make assumptions about the software
implementation?

b3. If the participant describes the programming domain, on which aspects
does s/he focus?

Different problem solving preferences might reflect on the approach to
software, resulting in different mental models. We investigated the
participants’ problem solving preference, as defined by Schwank (see
section 6.2.2).

c. Which problem solving strategy adopts the participant to construct the
solution of question 3?

For each research question and sub-question, scoring categories were

defined.
a) To analyze discrepancies between the numbers of Book-objects counted
by the participants, we scored:

• 4 objects (or 5, if the participant counts the last row, which is only
partially visible),

• 6 objects (or 7, if the participant counts the last row),

• A: a number that is not traceable to Book-objects,

• N: no number mentioned,

• Both: both answers “4 objects” and “6 objects” are mentioned and
explained

b) To determine the participants’ mental models, we analyzed the answers
to research questions b1..b3.
b1. Does the participant envision a Set of Book-objects or a Bag of Book-
objects?:

• S: a set of objects

• B: a bag of objects (instances)

• N: none of the above answers are supported by the participant’s
description

• BS: participant sees both possibilities, a Bag of objects and a Set of
objects

Computing Education in a Hybrid World

108

Rating the dominant aspect of software description (b3) s only possible
if the participant describes the software. Many participants did not. We
rated the granularity of software description (b2), and – if the software was
described in some detail – the dominant aspect.
b2. To determine the granularity of software description, we scored:

• Macro: the participant describes the system in terms of its macro-
structure, or as a black box. No details about the software’s
implementation are added.

• Detail: the participant adds detailed hypotheses about (part of) the
software’s implementation.

b3. To determine the dominant aspect in the description of software, we
adopted the following categories:

• S: Participant focuses on static aspects of software (Détienne’s object
view)

• P: Processes are also described (Détienne’s procedure view)

• M: Unclear. Participant provides mixed information

c) To determine the participant’s problem solving strategy, we used
Schwank’s categories,:

• P: Predicative thinking. Participants refers to the location of symbols
to justify the solution he proposes

• F: Functional thinking. Participant perceives symbols as entities that
can move, and performs motion analysis to justify the solution he
proposes

• N: No choice could be made

6.5.4 RELIABILITY
Scoring was done by two raters at the time. The raters interpreted the

participant’s answers and scored them along the categories we discussed in
section 6.5.3. The raters had been trained by scoring 6-10 questionnaires,
followed by more sessions where interpretations issues were discussed.
Still, discrepancies between raters do occur where interpretation is involved
The degree of agreement (inter-rater reliability) is expressed by Cohen’s
Kappa coefficient (Bryman, 2012). Generally, a coefficient above 0.75 is
considered very good; between 0.6 and 0.75 as good and between 0.4 and
0.6 as fair (page 280). Reliability was calculated on the questionnaires that
had not been used for training purposes.

Conceptualizations of the Notion of an Object

109

After scoring the categories and measuring the reliability, the
discrepancies were discussed between the raters. If agreement was
possible, the discrepancies were solved. In the other case, the answer was
scored as “N” (research questions a, b1 and c) or “M” (research question b3).
All issues concerning research question b2 could be solved.

6.5.5 PARTICIPANTS
The teach-back questions were answered by five groups of male

Bachelor students, enrolled in professional curricula:
• 35 attending 1st year classes of Business IT and Management. Most of

them enrolled in a professional curriculum in a computing discipline
in 2013, 2 in 2010. They were not included in our samples.

• 19 attending 3rd year Business IT and Management, enrolled in in a
professional curriculum in a computing discipline in 2011. The
exceptions: 1 enrolled in 2010, 1 in 2008.

• 18 attending 3rd year of Computer Science, field of study Information
Engineering. Most enrolled in 2011. The exception: 6 enrolled in 2010,
1 in 2009, 1 in 2002.

• 29 attending 3rd year of Computer Science, field of study Software
Engineering. Most enrolled in 2011. 4 enrolled in 2010.

• 4 enrolled in other computing curricula. They were not included in
our sample.

All groups had attended at least one course “Relational Databases” and
one course “Introduction to Programming in Java”. The Business IT and
Management curriculum emphasizes modelling. The Computer Science
curriculum concerns software development. Computer Science has two
fields of study: Software Engineering puts the emphasis is on programming,
Information Engineering on the construction of business solutions
(Hogeschool Utrecht, 2012) (Hogeschool Utrecht, 2013)

6.5.6 HYPOTHESES
Different computing disciplines seem to allow, or even to promote,

fundamentally different conceptualizations of the “object”. These differences
between disciplines can be systematic. Systematic differences would lead
both to different conceptualizations and to different amount of objects
detected, therefore to systematically divergent frequencies of the answers

Computing Education in a Hybrid World

110

to the questions in section 6.5.2. We cannot formulate expectancies about
the magnitude of this effect.

To test the effect, we will investigate if we can reject the following null
hypotheses in favour of plausible alternative hypotheses. We will reject the
null-hypotheses if the probability p of finding our results less is than 0,05. In
that case, we will conclude that the deviation from the null hypothesis is
significant. We will state that we have found significant differences if the
deviation is conform our expectation.

We will test the following null hypotheses:
Ha: “there is no difference between the amount of different ”objects”

reported by members of the following groups: 3rd year students Business & IT
Management, 3rd year students Information Engineering and 3rd year students
Software Engineering”.

Hb: “there is no difference between the conceptualization of the notion of
“object” reported by the members of the following groups: 3rd year students
Business & IT Management, 3rd year students Information Engineering and 3rd
year students Software Engineering”

Hypothesis Hb can be divided in
Hb1: “there is no difference between the structures (set or bag) envisioned

by the members of the groups mentioned above.”
Hb2: “there is no difference in granularity of description of the software

between the members of the groups mentioned above.”
Hb3: “there is no difference in the aspects, emerging from the software

descriptions of members of the groups mentioned above.”
Hc: “there is no difference between the problem solving preferences of the

members of the following groups: 3rd year students Business & IT
Management, 3rd year students Information Engineering and 3rd year students
Software Engineering”.

6.6 RESULTS

6.6.1 HA: AMOUNTS OF DIFFERENT OBJECTS REPORTED
From the answers to question 1 of the questionnaire: “How many

different Book-objects does the participant count?”, the following categories
were scored:

• 4: 27 participants. Many of them explain their choice (“There are 6
Book-objects, but two of them occur twice, hence 4 different Book
objects”, “there are 4 Book objects, since some are double”).

Conceptualizations of the Notion of an Object

111

• 6: 19 participants.. Explanations vary from “n rows, n Book-objects” to
“6 Book-objects. Some occur twice, but they are still different objects”
and technological explanations (“I am thinking OO-Java”).

• A: 8 participants mention an amount of objects that is not traceable to
Book-objects: they count 1,2,3,4,12,14 or 16 objects. They describe:
classes, attributes, User Interface objects (e.g. search-fields) or
attribute values.

• N: 12 participants do not answer the question. 4 out of these 12 give
elaborate answers, incidentally illustrated with diagrams, without
counting the objects (e.g. “7 books, described with title and author. 2
of them occur twice”).

• B: 0 participants. The answer: “We see 6 instances of 4 Book-objects”
is never given. One student counts “6 instances of 4 Books”. He is one
of the participants that were not included in our sample (see section
6.5.5).

Number of objects

4 6 O n

3rd BIM 7 2 10 19

3rd IE 5 10 3 18

3rd SE 15 7 7 29

Table 6-1 Number of Book-objects, sampled by curriculum

Discrepancies between raters were very limited (Cohen’s Kappa =
0,795). Agreement on 1 answer was not possible; it was scored “N”, as
indicated in section 6.5.4.

The scores of question a) are shown in Table 6-1. Column “O” (“Other”)
summarizes the categories “A” (a number, not referring to Book-objects)
and N (not a number). Category “B” was not scored in our samples.

We found significant differences between the samples in Table 6-1. (chi
sqr = 13,1 ; p<0,05) and reject Ha. Students Software Engineering seem to
count more often 4 objects. Students Information Engineering seem to
prefer counting 6 objects. Student Business IT and Managements seem to
elude the question.

Computing Education in a Hybrid World

112

6.6.2 HB: MENTAL MODELS ACROSS THE DISCIPLINES
To determine differences in mental model, the participants’ answers to

the questions about the system (questions 1 and 2 of the questionnaire)
were read in totality and interpreted. This could only be done if the
participant had answered at least one of these. This was not the case for two
participants; one of them was included in our sample. Questions b1..b3 were
scored for 17 students, enrolled in the Information Engineering curriculum,
instead of 18.

The following categories were scored for research question b1 (“Does
the participant envision a set of objects or a bag of objects?”):

• Set: 26 participants. (“There are 4 Book objects, because some of them
are double”, “6 records representing 4 Book objects”).

• Bag: 25 participants (“6 instances”, “12 different objects, Books and
Authors”)

• N: 14 participants. this category was scored if question 1 was not
answered, if no useful answer was provided (e.g. “2 Book-objects”) or
if the answer was contradictory (“Book objects are identified by their
attributes: ID, title, author. I see 4 Book-objects with different ID’s”)

• BS: this category was not scored.

Some discrepancies between raters occurred (Cohen’s Kappa = 0.597).
Agreement was not possible on 2 answers in this sample. They were scored
‘N’.

The meaning of the term “different” is ambiguous in OO-programming.
Equivalent instances can refer to the same object. We found 3 answers
reflecting this dilemma: “6 Book-objects, but two of them occur twice, hence
4 different Book objects”. They were scored as “Bag”.

Set or Bag

Set Bag N n

3rd BIM 5 7 7 19

3rd IE 6 11 0 17

3rd SE 15 7 7 29

Table 6-2 Set or Bag, sampled by curriculum

The answers to research question b1 are shown in Table 6-2. We found
significant differences between the samples in Table 6-2. (Fisher’s exact test,

Conceptualizations of the Notion of an Object

113

p= 0,0101279) (Soper, sd) and reject Hb1. Students Software Engineering
seem to show a preference for the structure “Set”, where students
Information Engineering appear to work with “Bag”s of objects. Students
Business IT and Management are random divided between the options.

The case provides minor structural information about Book objects, in
Figure 6-1. While scoring b2 and b3, the raters focused on information that
was added by the participants, information that could not be traced back to
the case or the questions.

Discrepancies between raters occurred (Cohen’s Kappa = 0.576).
Agreement was not possible on the scores on question b3 for the answers of
5 participants. They were scored “M”.

The following categories were scored for research question b2
(assumptions about the software implementation):

• Macro: 18 participants roughly described the software they had
envisioned without adding structural or process information. (“the
name of the book is looked up in the database”, “If the user points at
the row, the system displays information”).

• Detail: 48 participants provided more detailed information (list of
attributes, class diagram, code, activity diagram, query)

Granularity of software description
Macro Detail n

3rd BIM 9 10 19

3rd IE 5 12 17

3rd SE 3 26 29

Table 6-3 Granularity of software description, sampled by curriculum

The scores of question b2 are summarized in Table 6-3. Approximately
90% of the Software Engineering students provided implementation
information, against ca. 70% of the Information Engineering group and 50%
of the Business IT and Management group. The differences are significant
(chi sqr = 8,21, df=2, p < 0,05). We reject Hb2.

The following categories were scored for research question b3
(“dominant aspects in the description of software”):

• S: 28 participants mainly added structural information (attributes or
relationships, class diagram, query)

Computing Education in a Hybrid World

114

• P: 14 participants mainly added information about procedures
(activity diagram, sequences of events, communication between
software components)

• M: 6 participants added both kinds of information

The scores of question b3 are summarized in Table 6-4. We found no
significant differences between the samples in Table 6-4. (Fisher’s exact test,
p= 0,12682945) (Soper, sd)

Dominant aspects in software description

S P M n

3rd BIM 9 1 0 10

3rd IE 5 6 1 12

3rd SE 14 7 5 26

Table 6-4 Dominant aspects in software description, sampled by curriculum

We found significant differences in mental models of students enrolled in
different curricula, and reject HB. Apparently, there are differences in the
way future professionals conceptualize software.

Some of the participants appear to be in doubt (it depends on the
interpretation of the figure, on the relationship between title and author,
etc.), but seem not to be able to give expression to their doubts.

6.6.3 HC: PROBLEM SOLVING PREFERENCES
For research question c, the following categories were scored:
• P: Predicative. (“the circle’s position is the same in every row, the dot’s

position is the same in every column”, or: “I choose the missing
symbol”)

• F: Functional (“In each row, the dot moves counterclockwise while the
circle stays at the same place”)

• N: No choice could be made

Discrepancies between raters were limited (Cohen’s Kappa = 0.742).
Agreement could not be reached on 2 answers; they were scored “N”.

The scores of question c are summarized in Table 6-5. We found no
significant differences between the samples in Table 6-5. (Fisher’s exact test,
p= 0,25695717) (Soper, sd)

Conceptualizations of the Notion of an Object

115

Problem solving preference

P F N n

3rd BIM 6 7 6 19

3rd IE 5 11 2 18

3rd SE 14 11 4 29

Table 6-5 Problem solving preferences, sampled by curriculum

6.7 LESSONS LEARNED
Our initial ambition was to classify mental representations of “objects”,

in problem domain objects, stored objects or instances. We partially
succeeded. We were able to underpin some observations about the
participants’ mental models. We determined the mathematical settings
participants refer to while working with objects (set or bag), and assessed in
which terms they envision software while communicating with colleagues
(macro or detail). No conclusions could be drawn about the location of the
objects in problem domain or programming domain. This might be due to
different causes. One applies to the casus. Students know bookstore-cases
from their courses on Databases. The choice for a bookstore might have
appealed to previous knowledge, pointing towards a possible interpretation
for the term “object”. Also, the formulation of question 2 of the
questionnaire (“What happens if the system is asked to produce additional
information about one of the books?”) might have suggested a macro
approach to the system, reinforcing that interpretation. We will take this
experience into account for the new version of the questionnaire.

Interpreting student mental models has proven to be challenging, even
for experienced assessors of students’ work. The raters are puzzled by the
measure in which their interpretations can differ. One example is: although
“set” and “bag” are well-defined mathematical concepts, some of the
participants’ answers gave cause for discussion. One student explained how
he counted: “Objects are different versions. E.g. [if we have]: 1,2,1. 1 and 1
are the same: 2 different objects”. The raters (one has an engineering
background, one is a former database professional) scored respectively
“Bag” (different objects: 1 and 1), and “Set” (different objects: 1 and 2). Both
understood the other’s point of view, but agreement could not be reached.
Rating in teams of mixed expertise appears to be crucial in this experiment.
Structured interviews with participants may be necessary in the future to
fully understand some of the answers.

Computing Education in a Hybrid World

116

6.8 CONCLUSIONS
Our investigation showed at least two ways to characterize the abstract

notion of “object” that are currently used by professionals. Both
characterizations are correct, but they are not compatible: they lead to
different judgments on the number of “objects”. Some participants identified
4 Book-objects, others identified 6 Book-objects. The preference for 4 or 6
objects was not distributed at random. Apparently, Software Engineers are
more likely to see 4 objects, in contrast with most Information Engineers,
who show a preference for detecting 6 objects.

One third of the participants could not provide information about the
amount of objects. Although some of them expressed doubts about the
question, only one of them was able to point in the direction of possible
ambiguity of the notion of “object”.

We found indications for the instantiation of different mental models
across the disciplines. SE, IE and BIM students in our study seem to differ in
their perception of the appropriate structure for objects (set or bag). More
in general, they appear to differ in the measure in which they envision a
possible implementation while discussing software. Further research is
needed to better describe computing professionals’ mental models, and
investigate differences across the disciplines.

We did not find significant differences in the way different groups
approach software (object view or procedure view). No significant
differences between individual problem solving preferences were found
across the groups either. This might indicate that the differences we
describe are acquired, hence a responsibility of designers of computing
curricula.

6.9 OUR MESSAGE FOR EDUCATION
The immediate relevance of our work is in curriculum design. We

recommend all computing curricula to explicitly cultivate awareness for
different approaches to computing concepts. Based on this study, we also
recommend educators and practitioners to establish and use a refined
terminology for the notion of “object”. A refined terminology will improve
recognition of different mental models. Whether it will support computing
professionals sufficiently in handling different mental models, is an issue
that needs to be researched.

 The lack of agreement about the definition of one of the basic notions of
the computing discipline, we have found between students enrolled in

Conceptualizations of the Notion of an Object

117

different curricula, is worrisome, just as the apparent difficulties to
recognize this issue and to discuss it properly.

ACKNOWLEDGMENT

We thank raters Jikke van Wijnen and Brigit van Loggem. We thank the
students and lecturers of the HU University of Applied Sciences Utrecht for
their cooperation.

PART II – Conclusions

119

PART II – Conclusions
In this part, we have investigated if students, enrolled in different

undergraduate curricula, conceptualize abstract entities in the same way.
We had hypothesized differences in mental models for the notion of object
between students Software Engineering (functional approach) and students
Business IT and Management (predicative approach).

RESEARCH QUESTION RQ4
RQ4: Do students, who were educated in different computing disciplines,
develop the same mental models for the abstract concepts they work with? I.e.,
are different approaches to computing interchangeable?

We inquired differences across computing disciplines between

conceptualizations of software, in particular: (1) differences in numbers of
“objects” counted, (2) problem solving preferences of students and (3)
conceptualizations of the notion of “object”. We found indications for
differences between disciplines, but the differences we found were not the
differences we had hypothesized.

The samples we were able to collect were small, interrater reliability of
the scores varied between 0.795 (very good) and 0.576 (fair). We will
discuss our findings in descending order of reliability;
(1) Within the limits set by our sample size, we found reliable indications
for differences between the way students, enrolled in different computing
curricula, conceptualize the abstract notion of “object”. The numbers of
objects students counted appear to be different across the disciplines in our
samples.
(2) We did not find significant differences in problem solving preferences
(functional/predicative) across the groups.
(3) Although less reliably than the indications listed above, we found
indications for differences between the structures the students refer to
while counting objects (sets or bags). We found indications of differences in
the measure in which students, enrolled in different computing curricula,
envision possible implementations of the “object” while discussing software.
We did not find significant differences in the way students approach
software (object view or procedure view).

We had started our investigation by hypothesizing differences between
groups of students in the instantiation of mental models for the “object”. We
had expected to find differences in problem solving preferences across these

Computing Education in a Hybrid World

120

groups (section 5.4), and had expected Software Engineers’ mental models
to match a functional approach and Information Managers’ mental models
to match a predicative approach. This did not occur. We will return to these
unexpected results in section 10.3.1.

Overall, we did not find awareness about the possible ambiguity of the
abstract notion of “object”. In our opinion, this is an issue education should
address.

RESEARCH QUESTIONS RQ6, RQ7

RQ6 Which subject-specific strategies were recommended in the past?

One of the fundamental constructs in present-day’s software
development is the “object”. Objects are often introduced informally, as
software constructs that can refer to real-world entities. Depending on the
context, the term can refer to real-world entities, or to software constructs.
When it refers to software constructs, it can indicate persistent objects, but
it can also be seen as synonym to instance. Handling these different
meanings of the term requires different mental models.

RQ7 Which subject-specific strategies can we recommend?

We recommend educators and practitioners to establish and use a
refined terminology for the notion of “object”. A refined terminology will
improve recognition of different mental models. Whether it will support
computing professionals sufficiently in handling different mental models, is
an issue that needs to be researched.

We recommend all computing curricula to explicitly cultivate awareness
for possible different conceptualizations of abstract concepts.

RECOMMENDATIONS
We recommend all computing curricula to explicitly cultivate awareness

for possible different conceptualizations of abstract concepts. Based on this
study, we also recommend educators and practitioners to establish and use
a refined terminology for the notion of “object”. A refined terminology will
improve recognition of different mental models.

FURTHER RESEARCH
As our research has limitations we suggest the following areas for future
research:

PART II – Conclusions

121

(1) The samples we were able to collect were small. The reliability of the
scores of some the research questions was fair. To scaffold
conclusions about the students’ mental models, it is necessary to
repeat the experiment.

(2) We found indications for differences between groups of students,
enrolled in different computing curricula. Education evolves, the IE
curriculum does not exist anymore today, curricula Front End
Development are emerging. It would be interesting to repeat the
experiment in contemporary hybrid curricula.

(3) An interesting question is, if the differences we have found result
from different educational settings. Further research is needed to
assess which differences are pre-existent to the enrollment in
different computing programs.

(4) Further research is needed to describe computing professionals’
mental models, and investigate if the differences we describe are
present in the computing practice.

(5) How far is it possible to combine different abstract models during
work operations? Combining models while discussing with
colleagues might just be too complex for the human mind, even if the
terminology is optimized.

Part III—Case Studies In A Hybrid Curriculum

123

Part III—Case Studies In A Hybrid
Curriculum

RESEARCH QUESTIONS RQ5, RQ6, RQ7
RQ5 How do students in a hybrid curriculum experience a craftsmanship-
based approach?

RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

Authoring tools support users with little background in computing in the

development of multimedia applications. These tools generally provide
visual support for linking together pre-programmed elements, but they also
allow customization through scripting. Although it is possible to develop an
interactive multimedia application without writing code, coding becomes
necessary to implement innovative features.

 In 2008/2009, we investigated experiences of Multimedia students, who
were exposed to a 3D Virtual World authoring tool, without being offered
any support in how to conceptualize notions related to the software they
were using. This approach was rather common at the time in Dutch
Multimedia education, where computing was seen as instrumental and
computing classes aimed at empowering students to concretize their ideas.

 We had the opportunity to witness two editions of the same course.
During the first edition, we explored the lecturers’ assumption about the
course’s success. One of the course’s assignments involved all students.
They cooperatively created a village in a 3D Virtual World. According to the
lecturers, the students had formed a community of learners during that
assignment. This had resulted in greater engagement in the learning
process, and better performances. In the second edition, we measured how
students assessed their own learning experience. The hypothesis was, that
increased sense of community during the assignment in the virtual world
had triggered increased construction of learning. We were indeed able to
measure an increased sense of community between the start and the end of
the assignment. But despite that progression, despite the performance of the
students, the students themselves reported that their learning had not
increased during the hands-on assignment. They had learned in that time,
but they had not learned more than in the weeks preceding the assignment.

A Craftsmanship-Based Approach (1)

125

7 A Craftsmanship-Based Approach (1)5

7.1 INTRODUCTION
3D virtual worlds have been around since the early nineties, originally,

mainly in games and only in single-player mode. Later, multiplayer modes
were added and because of increased use and growing internet bandwidth,
the massive online role playing game mode was added to 3D games, like
World of Warcraft (Vivendi, 2004). 3D is now no longer limited to games, it
allows new ways of communication and even the possibility of having
several lives, i.e. Second Life (Linden Lab, 2003). In this paper we focus on
the use of 3D virtual worlds in an educational setting, and relate this to the
course “Virtual Worlds” of the Hogeschool Utrecht University of
Professional Education. Currently, innovating educational practice applying
new technologies is an important topic (Educause Learning Initiative, 2006),
though it is not straightforward that courses utilizing state-of-the-art
technology have added value for students.

In this paper we explain the need for new paradigms when developing
courses with new technologies. We illustrate this by positioning education
in immersive virtual worlds in terms of the learning paradigm being applied.
We suggest criteria for the successful implementation of a constructivist
learning environment using a virtual world. We explore a few cases of the
use of virtual worlds in education and identify some good and bad practices
of using 3D virtual worlds. We then describe the “Virtual Worlds” course as
a typical example of intertwining real life instructional education with a
constructivist learning approach using a virtual world.

7.2 NEW TECHNOLOGY, NEW PARADIGM
New technology often changes the context of use, the constraints and the

opportunities of application, making existing paradigms obsolete. This
results in underutilization of new technology, until new paradigms arise and
users become familiar with the new way of interaction.

Literature on education shows that the traditional instructional methods
can be supplemented or even be replaced by constructivist learning

5 This work was originally published as: Benvenuti, L., Hennipman, E., Oppelaar, E. R., van
der Veer, G. C., Cruijsberg, R., & Bakker, G. (2010). Experiencing and learning with 3D
virtual worlds. In J. M. Spector, D. Ifenthaler, P. Isaias, & D. G. Kinshuk, Learning and
instruction in the digital age (p. CH 12). NewYork, NY, USA. © 2010 Springer
Science+Business Media, inc. doi: 10.1007/978-1-4419-1551-1_12

https://www.springer.com/gp/book/9781441915504

Computing Education in a Hybrid World

126

methods when using new technology, such as the upcoming and still
evolving e-Learning environments and, in the last decades, immersive
virtual worlds (Dede, 1995), (Dickey, 2005), (Educause Learning Initiative,
2006), (Antonacci & Modaress, 2008).

Eliëns, Feldberg, Konijn & Compter (Eliëns, Feldberg, Konijn, & Compter,
2007) describe applying the traditional learning paradigm to virtual worlds
as “rather naive”: for the virtual campus of the Vrije Universiteit there was
“frankly no reason to include what may be considered an outdated
paradigm of learning” especially when “there might be more appealing
alternatives”. However, other literature claims that there is added value in
using virtual worlds preserving the traditional learning paradigm in a
virtual classroom setting, mainly in creating a sense of a classroom
community and in the fact that students will more easily join in class
discussion in virtual life than in real life (Lamont, 2007), (Martinez, Martinez,
& Warkentin, 2007), (Ritzema & Harris, 2008).

7.2.1 CONSTRUCTIVIST LEARNING
First of all, we will describe the notion of constructivism. The

constructivist philosophy asserts that all knowledge is constructed as a
result of cognitive processes within the human mind (Orey, 2001). We apply
constructivism as a theory of learning: “Constructivism is (…) a theory of
learning based on the idea that knowledge is constructed by the knower
based on mental activity” (EduTech Wiki, sd). Constructivism knows
different perspectives and induces various educational strategies. Most of
them assert that the learning activity is supported by social interaction. The
Constructionist strategy focuses on the interaction between the individual
and the environment. According to constructivists, learning occurs through
interaction and reflection; learners can create meaning by building artifacts
(Orey, 2001). Notions which often are associated with constructivist learning
are: collaborative problem solving, knowledge building communities,
situated learning, experiential learning, immersive environments,
participatory processes, interaction, learning by doing, activity theory,
critical learners, as well as other terms.

We will define constructivist learning as the process of creating, sharing
and evaluating knowledge, skills and understanding in a collaborative
environment through interaction with that environment. The process
results in the learner’s ownership of what is learned. We emphasize the
learner’s responsibility for the acquisition and the management of
knowledge, skills and understanding.

A Craftsmanship-Based Approach (1)

127

7.2.2 WHY 3D VIRTUAL WORLDS AFFORD CONSTRUCTIVIST LEARNING
Course management systems (CMSs) such as Blackboard, Moodle, and

WebCT can be considered virtual learning environments (VLEs). These
CMSs provide tools for creating virtual communities and are a central place
where students meet, discuss their work, find and organize course
materials, and discuss the course content with their lecturers. Though not
very immersive, VLEs allow the emergence of knowledge-building
communities, promote an interactive style of learning, have opportunities
for collaboration and have meaningful engagement across time and space
and thus enable constructivist learning (Dickey, 2005).

Current VLEs often enable more visual immersion, yet still providing the
same tools and assets to education as the traditional CMSs have. These VLEs
enable students to see each other and the lecturer by means of webcams,
using for example Acrobat Connect (Adobe Systems, sd). Though still not
fully immersive, these applications have a huge advantage over traditional
CMSs in the fact that they allow for non-verbal communication and create a
stronger sense of community.

Fully immersive massively multiplayer virtual worlds such as Active
Worlds and Second Life have seen a rapid growth over the past decade
(especially the last few years). These growing communities in virtual worlds
with no preset narrative have spawn interest from both (large) companies,
researchers, and educational institutes. We will focus on the researchers
and educational institutes. In these worlds, learners themselves construct
knowledge through interpreting, analyzing, discovering, acting, evaluating
and problem solving in an immersive environment, rather than through
traditional instruction (Antonacci & Modaress, 2008). Especially virtual
worlds with no preset narrative, such as Second Life and Active Worlds are
considered to be a very usable asset in education (Livingstone & Kemp,
2006). These worlds differ from massively multiplayer online role-playing
games (MMORPG) in the sense that there is no objective in the virtual world,
other than social presence. Though we focus on virtual worlds without
preset narrative, even virtual worlds that do have a preset objective (i.e.
games) support learning (Steinkuehler, 2004) as well as research. The
MMORPG World of Warcraft suffered from a corrupted blood epidemic, a
situation that now is considered a disease model by some scientists (Gaming
Today, 2007). Although learning is done in the virtual world, the skill and
knowledge gained in virtual worlds is as real as it gets. This aspect of virtual
learning is being researched to help people with Asperger’s to socialize
(Loftus, 2005) (Kirriemuir, 2008).

Computing Education in a Hybrid World

128

According to Dede, a virtual world needs at least two essential
capabilities for constructivist education: (1) telepresence (via avatars) and
(2) immersion, ”the subjective impression that a user is participating in a
“world” comprehensive and realistic enough to induce the willing
suspension of disbelief” (Dede, 1995). But “immersion” is not an absolute
quality: one can feel “somehow immersed” in a virtual community.
Moreover, immersion does not only depend on the application. Participants
in the first newsgroups felt probably more “immersed” in the Internet-
community than they would feel now if we were using the same
applications.

We can say that the capabilities Dede describes are less prominent in
traditional CMSs (or VLEs) than in 3D virtual worlds. Present-day’s students
would probably not even consider CMSs as ‘virtual environments’. We
therefore assume that constructivist learning is better supported by 3D
virtual worlds, than it is by traditional CMSs. This is something a lecturer
should realize when considering new technologies for a course.

7.2.3 DOWNSIDES OF CONSTRUCTIVIST LEARNING
It is difficult or sometimes even impossible to define learning goals in a

constructivist learning setting (Educause Learning Initiative, 2006) (Jonassen
& Roher-Murphy, 1999). This automatically results in difficulty of
assessment; with no fixed learning objectives there is no easy way to assess
whether objectives have been met. Jonassen and Rohrer-Murphy (Jonassen
& Roher-Murphy, 1999) argue that: “designers committed to designing and
implementing CLEs (Constructivist Learning Environments) need an
appropriate set of design method for analyzing learning outcomes and
designing CLEs that are consistent with the fundamental assumptions of
those environments”. They propose the use of an activity-theory based
framework to assist in the mentioned tasks, because activity theory closely
relates to constructivist theory on collaborative problem solving,
experiential learning (Mason, 2007) and situated learning (Hayes, 2006).

Immersive virtual worlds have another downside as well. Being
‘immersive’, they can be so engaging to students that it distracts them from
the actual course (Educause Learning Initiative, 2006). A good example was
found by Martinez et al. (Martinez, Martinez, & Warkentin, 2007) where a
student did not come to the course because he rather spent his time in a
virtual bar.

A Craftsmanship-Based Approach (1)

129

7.2.4 DO 3D VIRTUAL WORLDS ALWAYS SUPPORT CONSTRUCTIVIST
LEARNING?

We agree with Dede (Dede, 1995) that 3D virtual worlds can support
constructivist learning, but in our view, the success of a constructivist
virtual learning environment does not depend on “telepresence” and
“immersion”. We will provide one example of an educational application in a
virtual world allowing telepresence and immersion, but with no added value
for the learners. We will also discuss successful learning environments using
3D virtual worlds and will discuss key features for the implementation of
similar environments.

We are looking for criteria for the successful implementation of
constructivist learning environments with virtual worlds. Some key features
for education that are supported by virtual worlds have been described by
Cross, O'Driscoll and Trondsen (Cross, O'Driscoll, & Trondsen, 2007) and
related to learning strategies: (1) Flow - balancing challenge and inactivity
for an engaging experience; (2) Repetition - virtual worlds allow for endless
repetitions with no extra costs; (3) Experimentation - virtual worlds allow
for simulation and modeling; (4) Experience - being part of a collaborative
community; (5) Doing - virtual worlds are big practice fields; (6) Observing -
learning by observing how others do things; (7) Motivation - the rich
context motivates through situated learning. We agree with the criteria, but
unlike Cross, O’Driscoll and Trondsen we do not think that learning
exclusively takes place in the virtual world. We will paraphrase those
criteria, mainly by renaming them, and will add (8): Reflection, as a key
feature of constructivist learning that does not necessarily take place in the
virtual world. This way, we will focus on: (1) Flow; (2) Training; (3)
Experimentation; (4) Collaboration; (5) Learning by Doing; (6) Observing;
(7) Motivation and (8) Reflection.

7.2.5 HOW TO ASSESS SUBJECTIVE IMPRESSIONS
We identify (1) Flow; (2) Training; (3) Experimentation; (4)

Collaboration; (5) Learning by Doing; (6) Observing; (7) Motivation and (8)
Reflection as key features for constructivist learning environments with
virtual worlds.

Some of those criteria are objective. Virtual worlds always allow
Training and Experimentation. The fulfilling of some of the other criteria
depends on the situation. Learning by Doing, Observing and Reflection can
be supported by the educational setting. If the circumstances are known, it
is possible to check whether those criteria are met or not. “Flow,

Computing Education in a Hybrid World

130

Collaboration and Motivation, however, are subjective criteria. They apply
to the learners’ experience in interaction with the environment rather than
to the learning environment itself. To validate those criteria, we should
measure the learners’ experience.

7.2.6 MEASURING EXPERIENCE
In our view, experience is not an isolated phenomenon, but a process in

time, in which individuals interact with situations. During this process
interpretation takes place: individual meaning is constructed. Therefore we
consider experience a subjective and constructive phenomenon. Both the
individual and the situation contribute to the experience, that’s why we
argue for a holistic approach in measuring experience. Measuring
experience should include assessment of the respondent’s expectations, of
the actual “living through” the experience and of the after effects (Vyas &
van der Veer, 2006).

Vyas and van der Veer (van der Heide, 2002)developed several strategies
to assess the respondent’s interpretation of the situation at different
moments in time. Basically, they interview the respondents prior to the
experience and afterwards. The assessment of the “living through” is done
by observing the respondents who perform tasks while they talk aloud.

Another tool which is used to measure subjective impressions is the
Visual Analogue Scale. Visual Analogue Scales or VAS scales are used in the
medical world for subjective magnitude estimation, mainly for pain rating.
They consist originally of straight lines of 10.0 cm long, whose limits carry
verbal descriptions of the extremes of what is being evaluated. VAS scales
are of value when looking at changes within individuals; their application
for measuring a group of individuals at one point is controversial (van der
Heide, 2002) (Langley & Sheppeard, 1985).

7.3 OBSERVATIONS IN THEORY AND PRACTICE
3D virtual worlds enable modeling and simulation, and they facilitate

communication between personalized avatars. In some cases intelligent
agents can be created for the virtual world. These aspects result in the
creation of virtual lives and the formation of social networks; in many ways
similar to those in reality. This resemblance of reality makes these virtual
worlds an immense virtual ‘lab’ for communication studies, social studies,
psychology studies (Stanford University, 2001), architecture, and medical
studies (Kamel Boulos, Hetherington, & Wheeler, 2007). These and many
other examples of educational use of Second Life have been collected by

A Craftsmanship-Based Approach (1)

131

Conklin (Conklin, 2007). From a broad range of examples, we have chosen
two that in our opinion are exemplary for constructivist learning in virtual
worlds.

Our first example is the VNEC (Virtual Neurologic Education Centre) on
Second Life. VNEC was developed by Lee Hetherington at the University of
Plymouth, Devon, in the United Kingdom. It contains a simulation where
people (avatars to be more precise) can experience common symptoms that
may occur from a neurological disability (Kamel Boulos, Hetherington, &
Wheeler, 2007). This is an immersive experience, partly to make people
aware of neurological disabilities, but the education center has information
facilities as well. In terms of the criteria mentioned in section 7.2, this
education center scores very well on all eight points. A member group is
associated with the VNEC, so a community has been formed around it. VNEC
uses the available technology to near-full potential, and it creates an
environment that has most elements for constructivist learning.

The second example is an experimental course by Polvinen (Polvinen,
2007) for Fashion Technology students at Buffalo State College. This course
consisted of both a real-world part and a virtual-world part, where the
virtual-world part complemented the real-world. The students used Second
Life to create fashion, doing a fashion show, creating fashion collections with
a vendor display and many other activities that fashion designers would do
in real life. Polvinen concluded that “all the aspects involved in real world
production of a fashion show can be simulated in the virtual world as well as
fashion product design, development, and presentation”. In this course
virtual worlds are a very cost-effective way to simulate processes from the
real world, including many social, business and psychological aspects.

Multimedia Virtual Worlds are especially useful in constructivist
learning, by enabling experiential learning, situated learning, and
collaborative problem-solving. From existing examples of education using
virtual worlds and from literature, we draw the following conclusions.

Virtual classrooms in a traditional instructional setting do not fully
utilize the possibilities of the immersive virtual world. They do however
have added value over non-immersive virtual worlds by creating a ‘class’-
feeling. Compared to real-world classroom settings, the virtual ones suffer
from the engaging context of the classroom (virtual worlds encourage
exploration). An advantage of the virtual classroom over real-world
classrooms is that students join a discussion more easily through chat, than
they would do in real life. Whether this is an advantage is debatable: do
students acquire the competence to speak in public?

Computing Education in a Hybrid World

132

When transforming a course from real-life into a virtual world, the initial
learning objectives of the course will need to be reformulated and
assessment should be reconsidered. Virtual worlds afford another type of
learning than real life education. The learning objectives of courses in
virtual worlds should match the possibilities of a virtual approach, and
assessment should take place in an appropriate way.

Modeling, simulation, and collaboration are effective tools for knowledge
creation and knowledge transfer. In general, you can get rid of real world
constrains (Wages, Grünvogel, & Grützmacher, 2004).

Virtual worlds are especially an asset to real life education when
students can try out concepts that would be too difficult, too expensive, or
too risky in real-life, or when lecturers need to demonstrate things that are
difficult, if not impossible, in real-life, such as complex large-scale molecule
models.

The course “Virtual Worlds” (which will be described below) combines
the best of both worlds. Traditional instructional methods (classroom
setting) in real life provide the course framework, a solid knowledge base,
and create opportunity to share design knowledge. The virtual world (in
this case an Active Worlds world) is used for practical assignments. We
found that this complementary approach works very well, collaboration
continued naturally in both worlds (virtual and real), resulting in a
‘community of learners’.

7.4 A COURSE ON 3D VIRTUAL WORLDS
The course “Virtual Worlds” is part of the Digital Communication

curriculum (third or fourth year of University College) of the Hogeschool
Utrecht University of Professional Education in the Netherlands. The goal is
to teach students to think about virtual worlds in a conceptual way. Because
of the curriculum, the course deals with virtual worlds from a
communication perspective: the exercises are about possible usage of
virtual worlds, advantages and disadvantages.

One half of the course is about theory, the other half is about practice.
Contrary to previous years, in the spring 2008 course, students’ practical
assignments took place in a shared virtual world (enabling collaboration),
situated in Active Worlds. The students were asked to build contributions to
an ‘Asterix village’. Assessment and discussion took place in a plenary
closing meeting. Active Worlds is a virtual world platform without preset
narrative. This enabled students to individually develop and implement
interaction concepts (in the current course a house and some activity in or

A Craftsmanship-Based Approach (1)

133

near the house) as well as to collaboratively develop interaction concepts
for the entire village.

7.4.1 COURSE STRUCTURE
The ‘Virtual World’-course takes seven weeks. It starts with an

introduction to design concepts within virtual worlds and on how to design
an experience. In the first part of the course, theory focuses on perceptual
opportunities. Best practices are considered. A lecture discusses whether
rendering photorealistic 3D or other techniques may increase credibility of
virtual worlds (Bakker, Meulenberg, & de Rode, 2003). In this part the
students practice building a VR application, (a model of a house and its
environment for the Asterix-village) in 3D Studio Max.

In the second part of the course, theory focuses on the future of virtual
worlds when artificial intelligence and photorealistic rendering will increase
opportunities for agent intelligence and for interaction within virtual
worlds. The practical part consists of an assignment to bring their little
virtual world concept to life, and to describe an interesting application for
the common virtual world, the Asterix village. Examples of applications:
illustrating how ancient people constructed their homes; and a “language
village” for visiting avatars speaking a foreign language.

In the final weeks students reflect on the benefits of virtual worlds and
present their work.

7.4.2 A VIRTUAL WORLD AS AN EDUCATIONAL TOOL
Building a village collaboratively promised advantages over individual

projects. Students had to learn how to implement models in Active Worlds
from each other, especially since no tutorial was available. In fact, by
working as a group they all succeeded to take this hurdle relatively fast.
Their houses and surroundings would never have reached the sophisticated
level if they had not been able to learn and copy from each other and from
other virtual worlds. In addition, creating a real virtual world as a group is
expected to stimulate and motivate students as the result, for each
individual, is really a new world to explore.

Re-using each others’ work raised unexpected issues: one student
created an animated smoke that was soon featuring the chimneys of many
others. The teachers, needing to establish individual students’ credits, easily
established who was the original creator of unique features, and
successfully discussed the concept of “intellectual property” as a side effect.

Computing Education in a Hybrid World

134

They also established a citation index, to guarantee that the creators of
interesting features would benefit from their work.

7.4.2.1 What does not work
Without an adequate strategy, a virtual world is just a playground. In a

previous course, a Bachelor student presented his thesis work (on the
possibilities of Active Worlds for schools and universities). His assignment
included the creation of a building with classrooms in the virtual world and
required him to present in one of those classrooms, where “presence” for all
students was compulsory However, the students’ avatars did not have any
role other than to sit and watch the presenting avatar. In this situation, the
use of a virtual world did not show any advantage. Students’ avatars were
indeed in the virtual room but, in stead of participating in discussion, were
engaged in activities like dancing the Macarena, labeled by abstract
nicknames.

7.5 ASSESSMENT
The ‘Virtual Worlds’ course was not an experiment. We heard about the

course when it was about to reach its conclusion. The teachers reported
interesting issues:

• The course was very successful: all the students accomplished their

assignment, compared to 33% needing a second assignment in the past;
• The application of new technology was challenging. No tutorial of Active

Worlds was available; conversion from 3D Studio Max was problematic
and implementing interactivity reduced the performance seriously.
Despite of all this, the performance of the course increased dramatically
compared to previous editions;

• The Hogeschool Utrecht always performs student evaluations. The
Virtual Worlds course was rated 8.4 on a scale from 1 to 10, which is the
highest score ever.

Did the ‘Virtual Worlds’- course meet the criteria for the implementation

of a successful constructivist learning environment that we described in
section 7.2.4?

Obviously, implementing a 3D-application is an activity which allows
Training, Experimentation and Learning by Doing.

Since the results were placed in a common virtual world and sharing
sources was allowed, the students could Observe fellow-students who were

A Craftsmanship-Based Approach (1)

135

performing the same task and give them feedback. Reflection was supported
this way and encouraged during classroom meetings.

Assessing Flow, Collaboration and Motivation is more complicated.
Those questions concern the students’ experience.

7.5.1 THE SURVEY
To assess the students’ experience we might have performed interviews

before the course, have followed the students during the course and have
interviewed them again after conclusion. Since our involvement with the
course started late, the best possibility to perform the assessment was to
develop one questionnaire with 3 search areas:

The students’ expectations prior to the experience

Q1. What were your expectations when you started with the ‘Virtual
Worlds’ course?

Q2. What did you think you were going to learn in this course?

The actual living through

Q3. What is the most important thing you have learned by cooperating with
the class in a virtual world?

Q4. Did you witness things you had never heard of during this course?
Q5. Did anything surprise you during this course?

The after effects

Q6. What do you tell your friends and family about this course?
Q7. What would you advise the school on the next implementation of this

course?

Additionally, we asked the students to express themselves on issues

related to their attitude, their view on the usefulness of cooperation and on
the way the course was taught. We asked them to rate their answers to
those questions on Visual Analogue Scales (4.1). For obvious reasons, we
performed only one measurement. We asked the students to rate their
answers to the following questions:

Their attitude during the course

V1. Passive / Active
V2. Not involved / Very involved

Computing Education in a Hybrid World

136

Their opinion about the course
V3. Boring / Surprising
V4. Unattractive / Attractive)

Their opinion about the cooperation in the virtual world

V5. Not instructive /Very instructive
V6. Not useful / Useful

7.5.2 RESULTS
At the time we performed our survey, the course was finished. We

managed to locate 14 students out of 19; they all responded to our request.

Their answers to the questionnaire showed:

• Issues concerning the students’ expectations prior to the experience
(Q1, Q2)

The students started with different expectations about what they would
learn (3D modelling: 5; applications of Virtual Worlds: 5; 3D modelling and
Virtual Worlds: 4).

• Issues concerning the living through the experience (Q3, Q4, Q5)

The majority of the students had been positively surprised by the course
(Yes: 10, Not surprised: 3). Most of the students had witnessed things they
had never heard of (Yes: 10; No: 3, not answered: 1). One student was
negatively surprised by the amount of time 3D modelling requires but
reported nevertheless positively to friends and family.

• Issues concerning the after effects (Q6, Q7):

Technology was challenging: many suggestions for improvement
concerned this subject (4 were related to Active Worlds, 5 to 3D Studio Max,
though 5 suggested to not change anything).

10 students looked back at the course with explicit satisfaction (“I

worked very hard but had a lot of fun”, “it was fun to do and we could work
together in the virtual world”, “It was worth it”) despite of the technical
problems they mentioned. Almost everybody who did report to friends and
family had reported positively. The only respondent who had reported
negatively, had thought he was going to learn how to make a complete 3D
environment and had been disappointed by the course mainly discussing

A Craftsmanship-Based Approach (1)

137

design theory and the state of 3D-technology. He would rather have spent
more time in class discussing technical issues.

For the second part of the survey, we used VAS scales. VAS scales are

mostly used to assess changes in time of individual ratings of subjective
findings: comparing the results of a group of individuals is not straight
forward. We are aware of this problem, which is why we only give an
impression of the results. The questions concerned:

• The students’ attitude (V1, V2):

• The course (V3, V4)

Figure 7-2 The students' opinion about the course

• The cooperation in the virtual world (V5, V6):

Figure 7-3 The students' opinion about the cooperation

To summarize:
• Figure 7-1 shows that most of the students called their own attitude

“active”; almost everybody considered themselves involved.

Figure 7-1 The students’ answers to the question concerning their own attitude

Computing Education in a Hybrid World

138

• Figure 7-2: The large majority of the students reported having been
surprised by the course. The students labelled the course “Attractive”.

• Cooperation was not always evaluated positively (Figure 7-3). This
might be related to the problems the group had encountered with
intellectual property. One of the students who had criticized
cooperation answered question Q3 saying that he had learned that
“they steal everything. My fishes!”. Nevertheless, even at this point the
scores were mostly positive.

Although we did not prove that the learning environment of the ‘Virtual

Worlds’ course meets all the criteria we identified in section 7.4.2, the
results of our survey support a positive answer to our question.

7.6 CONCLUSIONS AND FUTURE WORKS
Current literature about ‘best practices’ and our own findings in our

Active Worlds course show the following:

• In 3D virtual worlds, it is possible to show (and teach about) some
things in a more realistic way than in a real world since, as Wages,
Grünvogel and Grützmacher (Wages, Grünvogel, & Grützmacher, 2004)
state: one can get rid of real world constraints.

• In a shared virtual world students can learn from each other and
cooperate in creating, which, in addition, is strongly motivating.

• Individual assessment is not straight forward as students work in
groups. Copying and reusing each others’ work should in many cases be
considered positive learning behavior, though special measures are
needed to credit individuals for unique contributions. Discussing this in
(real) group sessions works well, as do individual plenary final
presentations.

• Moving traditional classroom activities into virtual worlds is not always
effective, as in the case of attending lectures.

There will be new editions of the ‘Virtual World’ course. We intend to

investigate the students’ experience, to scaffold our claim that this course
meets our criteria for a constructivist learning environment with a virtual
world.

The 2008 “Virtual Worlds” course was successful and an improvement to
its classical predecessors. Students were more present, more active, and,
according to informal evaluation, more satisfied. Teachers estimate that

A Craftsmanship-Based Approach (1)

139

students gained more conceptual insights in virtual world applications. This
success surpassed teachers’ expectations.

It is evident that the relation between the course subject and the applied
technology was fundamental: a course about virtual worlds with an
assignment in a virtual world is a powerful combination. Other success
factors might be the choice for an immersive collaborative structure, or the
village metaphor.

Before we would dare to generalize this local success, we intend to
explore other learning domains, and other collaborative narratives and
related world metaphors.

ACKNOWLEDGEMENT

We would like to thank the students of the course “Virtual Worlds”.

A Craftsmanship-Based Approach (2)

141

8 A Craftsmanship-Based Approach (2)6

8.1 INTRODUCTION
The Digital Communication curriculum of the Hogeschool Utrecht (the

Netherlands) has, as one of its courses, a course on Virtual Worlds. As a
strategic choice, the lecturers decided to rely on the same technology for the
implementation of the learning and teaching environment.

New technologies in classroom offer opportunities for innovation. They
also change the way students experience education. This can be challenging
for educators who are confronted with unexpected situations. But use also
promotes understanding. Through an assignment in a virtual world the
students would gain more familiarity with the technology. The lecturers
would get better acquainted with de didactic possibilities of the medium.

In this paper we share our observations from practice. We focus on the
educational possibilities of virtual worlds with no preset narrative by
describing the Virtual Worlds course, which partially took place in an Active
Worlds environment. We discuss the advantages of moving part of the
action to a virtual setting, but also point at its limitations. We describe some
problems that were raised by the medium and offer strategies to deal with
them.

We show how to improve our understanding of new media and
technology by combining education with research. In particular we
measured the students’ experienced “connectedness” and “learning” in the
time span of the course.

8.2 A VIRTUAL VILLAGE AS A COMMUNITY OF LEARNERS
Virtual worlds with no preset narrative, such as Active Worlds or Second

Life, are considered usable asset in education (Livingstone & Kemp, 2006).
The implementation of the learning environment in a virtual world is not
necessarily successful.

The “Virtual Worlds” course of the Digital Communication curriculum of
the Hogeschool Utrecht (University of Applied Science, Utrecht, the
Netherlands) combines traditional instructional methods (classroom
setting) with a collective practical assignment in an Active Worlds world.

6 This work was originally published as: Benvenuti, L., & van der Veer, G. (2011). Practice what

you preach: experiences with teaching 3D concepts in a virtual world. In S. H.-J. (ed.), Virtual
Immersive and 3D Learning Spaces: Emerging Technologies and Trends (p. Ch. 3). ©2011 IGI-
global, doi: 10.4018/978-1-61692-825-4.ch003

https://www.igi-global.com/chapter/practice-you-preach/46771

Computing Education in a Hybrid World

142

Starting with the spring of 2008, the students are asked to build an
application, consisting of 3D-model of a house and its surroundings, and to
place it in a common village situated in an Active Worlds environment.
Figure 8-1, as well as Figure 8-4 and 8-5, show examples of students’ work
during the courses we analyzed.

The complementary approach of the Virtual Worlds course works very
well: collaboration continues naturally in both worlds, virtual and real
(Benvenuti L. , et al., 2008). The spring 2008 edition of the course was very
successful. The relation between the courses subject and the applied
technology was a powerful combination. Other success factors might be the
choice for an immersive collaborative structure, or the village metaphor.

The question whether a virtual village is an appropriate tool to support a
community of learners is not one-dimensional. Sense of community is a
subjective concept. Some students consider participating in a community
equivalent to sharing results with colleagues; others expect the results to be
produced together.

The same applies to learning: the students who pass an exam frequently
don’t agree on what they have learned, nor on its significance. In 2008, we
had investigated the students’ opinion about the way the course was taught
and about their own attitude. Though the answers were obviously positive –
the students stated having found themselves involved and participating in
the learning community - we noticed a large variety of opinions on the
usefulness and instructiveness of the collaboration in the virtual world.

Figure 8-1 The spring 2008 Asterix village: house of the bard and surroundings.
©2008 Hogeschool Utrecht, used with permission

A Craftsmanship-Based Approach (2)

143

With the introduction of the assignment in a common virtual world, the
course’s results had increased beyond the lecturers’ expectations. In their
opinion, this was due to the fact that the students had been able to learn
from each other more than in the previous editions of the course. The
students themselves seemed more cautious in sharing that conclusion.

In 2009, we had again the opportunity to perform measurements in the
spring edition of the Virtual Worlds course. We decided to focus on the two
issues mentioned above: experienced community membership and
experienced learning.

8.3 MEASURING EXPERIENCED CONNECTEDNESS AND
LEARNING

In our view, experience is not an isolated phenomenon, but a process in
time, in which individuals interact with situations. During this process
interpretation takes place: individual meaning is constructed. Therefore we
consider experience a subjective and constructive phenomenon. Measuring
experience should include assessment at three moments in time: the
respondent’s expectations before the experience, their assessment during
the experience and afterwards (Vyas & van der Veer, 2006).

Vyas and van der Veer developed several strategies to assess the
respondent’s interpretation of the situation at different moments in time.
Basically, they interview the respondents prior to the experience and
afterwards. The assessment of the “living through” is done by observing the
respondents who perform tasks while they talk aloud. This was not possible
in a classroom setting, so we decided to assess the students’ subjective
impressions by conducting the same written survey at three moments in
time.

A reliable tool for measuring subjective impressions is the Visual
Analogue Scale. Visual Analogue Scales or VAS scales are used in the medical
world for subjective magnitude estimation, mainly for pain rating. They
consist of straight lines of 10.0 cm long, whose limits carry verbal
descriptions of the extremes of what is being evaluated. Because the interval
between the limits does not carry any verbal label, the exact location of the
value that respondents mark will not be remembered, so with repeated
measurements it is impossible that respondents just repeat their previous
scores. VAS scales are of value when looking at changes in time within
individuals (Langley & Sheppeard, 1985).

The impressions we were interested in are the student’s sense of
belonging to a community and the extent to which student’s learning goals

Computing Education in a Hybrid World

144

are met. The Classroom Community Scale or CCS (Rovai, 2002) was a good
starting point. The CCS is a psychometric scale, developed using factor
analysis with 2 principal components: Connectedness and Learning.
Connectedness indicates the perceived cohesion, spirit, trust and
interdependence between members of the classroom community. Learning
represents their feelings regarding interaction with each other as they
pursue the construction of understanding. Learning also indicates the
degree to which they share values and beliefs concerning the extent to
which their educational goals and expectations are being satisfied.

Our variant of the Classroom Community Scale applied VAS-scales
instead of Likert scales because this prohibits memory of previous scores
when applied to repeated measures.

8.4 THE ASTERIX VILLAGE
The “Virtual Worlds”- course (3rd year in the curriculum) takes seven

weeks. The course’s goal is to teach students to think about virtual worlds in
a conceptual way. The students should learn to establish when it is
appropriate to make an application in a virtual world. Virtual worlds are
powerful instruments, but developing a VR application can be very
expensive. Sometimes a less demanding solution is better.

Half of the course is dedicated to theory, the other half is practical.
Theory is assessed individually, with a written test. The course has two
related practical assignments; in the laboratory the students work in pairs.

Figure 8-2 General course outline

The course starts with an introduction to virtual worlds. Design concepts
within virtual worlds are discussed. In this part, students develop a VR
model of a house and its environment in 3D Studio Max. In order to
stimulate relations between individual designs, the lecturers introduced a
common theme. In 2008 and 2009 the common theme was “Asterix”.

A Craftsmanship-Based Approach (2)

145

In the second part, theory focuses at the future of virtual worlds when
artificial intelligence and photorealistic rendering increases. Students are
also stimulated to find best practices. The focus switches to the second
practical assignment which takes place in a shared Active Worlds context,
the Asterix village. Active Worlds has no preset narrative; this triggers
students to develop and implement interaction concepts individually as well
as to develop these collaboratively for the entire village. The setting –a
village– was chosen consciously, to obtain a common structure.

In the final weeks students reflect on the benefits of virtual worlds and of

virtual worlds in cross-media concepts. At the end of the course students
present their work in a plenary classroom meeting. Discussion and
assessment of the practicum assignment also takes place in that meeting.

8.5 WHAT’S NEW, WHAT’S NEXT?
The spring 2008-edition of the Virtual Worlds-course was not the first

one. The upper part of the course outline in Figure 8-2 also applies to
previous editions, but those courses only had one practicum assignment:
design and develop a new VR-concept. In 2008, the assignment in the shared
virtual world was added. Nothing else changed. The teaching timetables
remained unaltered. The class meets twice a week in the multimedia
laboratory. Meetings last 2 hours. The first hour is dedicated to theory,
during the rest of the time the students work on their assignments, in pairs.
Students are – and always were - stimulated to ask questions to the
lecturers and to ach other. Students are – and always were - stimulated to
learn from each other.

Until the spring of 2008, students mainly exchanged information during
laboratory time. If the lecturers were busy and a student had a well-defined
question, it came naturally to ask other students. With the introduction of
the assignment in the Active World world this pattern changed. Now
students also “met” while working in the virtual world from home, in the
evening or at night. As we can see in Figure 8-3, Active Worlds has a chat
box. Communication comes easily. The first improvement which came with
Active Worlds lays in the increased possibilities for students to discuss
issues while they are working, and to support each other on the spot
without face to face contact.

This is a powerful feature. In the first edition of the Virtual Worlds-
course in Active Worlds, implementing 3DS Max models into Active Worlds
was challenging, since good tutorials had not been written yet. But the

Computing Education in a Hybrid World

146

students succeeded to import their 3D-applications relatively fast by
working as a group: one of them was very skilled in 3D developing and
shared his knowledge generously. In the next editions of the course, the
group had tutorials but lacked the experienced colleague. Technical
problems seemed more difficult to overcome in that situation. In the spring
of 2009, the lecturers added an extra meeting and invited an expert in 3DS
Max and Active World to answer to the students’ questions.

Figure 8-3 Active Worlds: the students' perspective with the chat box

The second improvement concerns the possibility to follow each others’
progresses. Before the introduction of the common virtual village, students
only discussed each others’ work thoroughly during the conclusive meeting.
These discussions always concerned the final versions of the products.
While working in Active Worlds, students can follow the process of creation
of all products. Every prototype is published and is visible for everybody.
This triggers a fertile competition between the students: everybody wants
his application to excel.

Software can be copied. The participants in the virtual village work in an
open source environment: they can see and even copy parts of other
students’ work. This is very instructive and inspiring but also challenging. In
2008, one student had created animated smoke; a few days later most of the

A Craftsmanship-Based Approach (2)

147

huts in the village had smoking chimneys (see Figure 8-4). This was
disappointing for the student who had invested time in developing what he
thought would be a unique feature. He felt robbed.

The lecturers wanted to encourage the students to share results, but they
also wanted to grant the credits for interesting ideas to the right persons. An
appropriate assessment policy had to be developed. ‘Intellectual property”
was discussed in classroom and a citation index was established. From that
moment, copycat behaviour was not seen as “stealing” anymore but as a
tribute to the conceiver of the particular feature.

The third improvement lies in the possibilities to share results, to learn
and copy from each other.

Figure 8-4 The spring 2008 Asterix village with the smoking chimneys. ©2008
Hogeschool Utrecht; Used with permission.

Of course, the question was raised if it was appropriate to skip the
traditional meetings and move the whole course to the virtual environment.
The answer is negative. The traditional classroom setting offers
opportunities to plenary discussion. This is difficulty to reproduce in a
virtual environment, while it appears to be very useful. The problems
concerning the intellectual property were discussed in classroom. Without
the presence of all the students and their participation at the discussion it
would not have been possible to come to a solution.

Presence is a cloudy concept in a virtual setting. Benvenuti et al (2008)
discuss the case of a compulsory meeting in a virtual classroom, where the
students had labelled their avatars with nicknames and made them

Computing Education in a Hybrid World

148

misbehave. But even if the avatar is present and respectful, it is difficult to
know if the student is.

Not everything turned out to be feasible. After the first edition, the
lecturers had planned to store the “best practices” so that they could be re-
used the next year. This way they wanted to establish a canon of interesting,
inspiring applications made by students. At the same time, they wanted to
prevent new groups to start with an empty ‘world’. This turned out to be too
ambitious. The best applications needed too much memory, therefore the
system slowed down too much. This idea was frozen until technology will
support it.

In order to overcome the “empty world” feeling, the lecturers instructed
one group of students to provide for different strategies to induce the
experience of being part of a village structure. They did so by implementing
a palisade to demarcate the border, a map of the village to support
navigation and several means of transport to encourage exploration. An
impression of those solutions is given in Figure 8-5.

Figure 8-5 Strategies to delimit the action. ©2009 Hogeschool Utrecht; Used with
permission

8.6 PERCEIVED CONNECTEDNESS AND LEARNING
Our research goal was to investigate the students’ experience on

community membership and learning. First of all, we have to emphasize that
conducting research in real-live educational setting is difficulty. We had the
opportunity to witness two editions of the same course in two consecutive

A Craftsmanship-Based Approach (2)

149

years, which is promising. In 2009 we collected data. But a course is not an
experiment; there are many important variables we were not able to
control, first of all, the composition of the group. But also the moment in
time in the school’s history, with the school starting a new program, and the
lecturers’ intermitted absence (because of illness and other personal
circumstances) probably have had an impact on the way the course evolved.

Measuring experience included assessment of expectations prior to the
experience, during the experience, and after the facts (Vyas & van der Veer,
2006). We measured the students’ perception of belonging to a classroom
community and their perception on accomplishing (subjective) learning
goals. We used the questions of the Classroom Community Scale (Rovai,
2002), structured along the Visual Analogue Scales (VAS) to identify changes
within individuals (Langley & Sheppeard, 1985). These questions consist of 2
domains: Connectedness (10 questions) and Learning (10 questions) that
are scored on an analogue scale from 0-10. We had to delete one item of the
learning questionnaire because it was poly- interpretable to our Dutch
audience.

In 2009, 15 students followed the Virtual Worlds-course. The survey was
filled in the first meeting (week 1), again in the meeting where the students
gained access to Active Worlds (week 4) and finally in the conclusive
plenary meeting (week 8). 5 students were absent in one of more of those
meetings, so our findings concern the 10 students who filled all the surveys.

We calculated the initial change in connectedness and in learning by
subtracting the scale scores of week 4 from week 1, and calculated the later
change by subtracting those of week 8 from week 4 for each individual. We
calculated the significance of the change scores by applying the student t-
test against the 0-hypothesis of no change in the population.

We found that the sensed/perceived “connectedness” increased
significantly (Student t-test, p<0.05) in the first part of the course (between
the start in week1 and week 4, when students meet each other and start
collaborating) as well as in the second part (from week 4 to week 8, when
the collaboration is continued in the virtual world). The sensed/perceived
“learning” only grew significantly in the beginning of the course (between
week 1 and week 4) even though new experiences as well as new designed
artifacts were in fact (objectively) evident from the students’ behavior in
Active Worlds.

We expected connectedness to increase after the common virtual world
was introduced, despite of the fact that by then the students were
acquainted to each other. But the lack of increase of the perceived learning
puzzles us. It is possible that the setting triggers ambitions that are difficult

Computing Education in a Hybrid World

150

to fulfill. The software might be easier to learn than to master, especially if
none of the community members has real expertise in 3D-programming.
This can be an interesting starting point for further investigations.

8.7 CONCLUSIONS
The application of the Active Worlds environment to the Virtual Worlds

course was a very fruitful step, to the students, the lecturers and the
researchers.

The students gained insight into the possibilities of virtual applications,
even if their satisfaction on their own learning leveled off in the last weeks.

 The lecturers discovered new features – and new problems - of virtual
worlds. They developed educational strategies on how to optimize the use of
a virtual world as an educational tool an how to cope with the problems it
entails.

The researchers had the opportunity to test their hypotheses on the
effect of the application of this new technology in education, and to
formulate new research goals.

We summarize our findings.
Common assignments in a Virtual World lead to:

• Increased possibilities for students to support each other on the
‘virtual’ spot. This is traditionally an advantage of face2face
meetings. Now, at any time (and from any location) students
turned out to be able to discuss with their colleagues online.

• The possibility to follow each other’s progress, which is
inspiring and stimulating.

• The possibilities to share results, to learn and copy from each
other in an ‘open source’ setting.

• A stronger sense of community. The perceived sense of
connectedness, of belonging to a community, increases when the
students collaborate in a virtual world as a group.

Traditional classroom meetings are still useful:

• To support plenary discussions.
• To capitalize the historical knowledge of classroom teaching.

The lecturers intended to “reuse” the best practices by keeping
them in the virtual village during the following editions of the
course, to establish a canon of inspiring applications. Current
technology does not (yet) support this option.

A Craftsmanship-Based Approach (2)

151

We found new questions for further discussion and research:

• Allow students to collaborate and even to copy from each other
asks for a re-design of the assessment policy.

• Why does the perceived learning level?

Our recommendation is: practice what you preach in classroom and use

the opportunities this combination offers to learn. Even if the topic of
discussion is a moving target, indeed, precisely in that case it is important to
rely on one’s own experience to draw one’s own conclusions.

ACKNOWLEDGMENTS

We thank the lecturers of the Virtual Worlds course, Bob Cruijsberg and
Geeske Bakker, for having admitted us in their classroom. We also thank the
students of both courses for their cooperation and their products.

Part III - Conclusions

153

Part III - Conclusions
We have investigated experiences of Multimedia students, who where

exposed to advanced technology (3D Virtual World authoring tools),
without being offered any support in how to conceptualize notions related
to the software they were using. This approach was common at the time in
Dutch Multimedia education.

RESEARCH QUESTION RQ5
RQ5 How do students in a hybrid curriculum experience a craftsmanship-

based approach?
In the Virtual World course, the students’ accomplishments surpassed

the lecturers’ expectations. The lecturers attributed this success to the
formation of a community of learners during the hands-on assignment in
the virtual world. We partially agree with them. The learning objectives
concerned thinking about virtual worlds in a conceptual way. The
assessment policy was aligned with the course’s educational ambitions. The
lecturers were indeed pleased by the results. But at the end of the 2009
edition of the course, the students reported that their learning had not
increased during the assignment in the virtual world.

To support each other in their learning process, the members of a
learning community should agree with each other (and with their lecturers)
upon the objectives that are pursued. We think that the students’ learning
ambitions during the assignment in the 3D Virtual World did not match the
lecturers’ educational ambitions. From the lecturers’ perspective, the course
showed a consistent picture. But the challenges students had to face during
the assignment were not aligned with the learning objectives. During the
assignment, students had to solve problems that did not concern the
concepts behind virtual worlds, but the implementation of 3D applications
in a specific Virtual World. Most students had overcome these problems
somehow, and the sense of community had increased in the 2009 edition of
the course, but no increase of the students’ learning experience was
measured in the 2009 class.

Our interpretation of the students’ responses is that when they had
stated that their learning had leveled, students had referred to what they
had learned about developing 3D applications using Virtual World
technology. We conclude that understanding of a complex software
environment, merely by the formation of a community of learners, is
unlikely to occur in a few weeks time.

Computing Education in a Hybrid World

154

RESEARCH QUESTIONS RQ6, RQ7
RQ6 Which subject-specific strategies were recommended in the past?

We have explored the effects of an educational approach that was
common in Dutch undergraduate Multimedia education in 2008-2009.
Students with little background in computing were exposed to advanced
technology as authoring tools with minimal (if any) support. Lecturers
assumed that learning communities would emerge, where students would
share knowledge of specific, cutting-edge technology. Together, they would
develop a professional approach to specific computing topics as 3D
scripting.

RQ7 Which subject-specific strategies can we recommend?

We distinguish two possible strategies, depending on the course’s
learning objectives and the role of technology. If learning objectives do not
include mastering advanced authoring tools because use of technology is
only meant to illustrate concepts, students should be aware that they are
not trained to develop working applications. In this variant, there should be
a helpdesk where students can be informed about possible solutions to
common problems, and be supported when facing more complex problems.
Complex solutions can be faked, as long as the idea the student is
elaborating is illustrated. Plenary presentations and assessments concern
ideas rather than their implementation. In fact, this is what happened in the
2008 edition of the course, when one of the students, who already knew 3D
technology, generously helped his colleagues. In the ideal elaboration of this
variant, the use of technology is not assessed. Learning objectives do not
include the competence to translate ideas in working prototypes, or, in
today’s terminology, minimum viable products. Students are aware they are
not trained for development tasks, or professional use of digital technology.

If the learning objectives include mastering the tool because the course
pursues the objective to translate innovative ideas in working digital
products, the course should address implementation issues. In the case of
the Virtual World course:

(1) students would have had access to resources about basic principles
of 3D coding,

(2) the Active Worlds tool would have been introduced by stating the
problems it addresses, their solutions and the downsides of these solutions,
and

(3) basic notion of software quality would have been discussed, in order
to safeguard further development of the product.

Part III - Conclusions

155

In this alternative, lectures discuss quality criteria of code in class. Some
of the plenary presentations are devoted to common implementation
problems and possible solutions. The use of technology is assessed. Students
are aware that they are trained for professional use of authoring tools, and
to produce (minimum viable) digital products.

RECOMMENDATIONS
We recommend lecturers of courses requiring the use of authoring tools

to align the infrastructure of the course, its content and the assessment
policy to the course’s ambitions. We recommend them to state the role of
technology explicitly.

FURTHER RESEARCH
We are aware of the important role online, informal communities of

learners have played (and are playing) in the evolution of hybrid sub-
disciplines of computing. It would be interesting to investigate if

(1) Understanding of a complex software tool can be developed by a
community of learners .

(2) what such understanding consists of, and
(3) is it reasonable to expect transfer of understanding to other

scripting languages / authoring tools?

Part IV—HCI In A Hybrid Curriculum: Research In Action

157

Part IV—HCI In A Hybrid Curriculum:
Research In Action

RESEARCH QUESTION RQ7

RQ7 Which subject-specific strategies can we recommend?

In 2010/2011, we designed a course on Webculture for an audience,

mainly consisting of students from the Department of Computer Science and
students from the Department of Cultural Studies. The course had an
important topic on design for the Web. The course addressed basic notions
of Human Computer Interaction (HCI), and applied them to User Interface
Design. Web technology was introduced by stating its history and its aims.

The students were academic distance learners. Some of them – those
enrolled in a computing track – were freshmen, but the course was also
open to senior students, enrolled in other programs. We wanted to involve
all these students in our research activities, to allow them to witness
research in action and discuss its outcomes.

But our intentions were too disruptive for our educational institution.
Despite an encouraging pilot in a regular University, we were not able to
test our instructional design. This section describes the ideas underlying the
design of the online learning environment.

HCI in a Hybrid Curriculum: Research in Action

159

9 HCI in a Hybrid Curriculum: Research
in Action7

ABSTRACT

Motivation – Tools that should support academic distance learning often support
mainly distance teaching. In our vision, this is not compatible with the academic
ambitions of university curricula. We propose an alternative approach.
Research approach – We share our observations from practice.
Findings/Design – We developed an environment for academic distance learning to
allow adult students to experience research.
Research limitations/Implications – The setting, the Dutch University for Distance
Learning, only allows action research.
Originality/Value – The researchers have experimented with online environments
where they can perform research in the presence of their students.
Take away message – For distance learners too, academic education and research
should go hand in hand. Online learning environments should be designed to
support that.

KEYWORDS

Blended academic education; distance learning; Internet based learning
environments; interaction design;

9.1 INTRODUCTION
The Open Universiteit, the Dutch Open University, is an institute for

adult distance learning. The Computer Science Department developed an
excellent blended curriculum that is considered as one of the European
“best practices” (Sjoer, Veeningen, Jacobs, & de Jong, 2008), In the past few
years, the focus switched from: how offer distance learners an up-to-date
curriculum in Computer Science to: how to offer distance learners academic
education.

7 This work was originally published as: Benvenuti,L.,E.Rogier,G.C. van der Veer: " (Benvenuti,

Rogier, & van der Veer, E-learning in a distance learning curriculum:a workplace approach,
2012)", Proceedings of the 2012 European Conference on Cognitive Ergonomics, Edinburgh,
29-31.08.2012. ©2012 ACM, NY, USA ISBN: 978-1-4503-1786-3 , doi:
10.1145/2448136.2448177

https://doi.org/10.1145/2448136.2448177

Computing Education in a Hybrid World

160

In this paper, we discuss our experiences in designing online courses
that were meant to practice academic attitude. The approach is: take these
students more seriously. Support them in their own exploration instead of
giving them materials that have already been processed by somebody else.

This paper is on the development of student-centred educational
resources. Merging action research (Kemmis & McTaggart, 1988) with
education offers us the opportunity to witness the performance of the
artefacts we design for distance education.

Sadly, an innovative approach is not always encouraged by the course
development management that has to match educational goals with
traditional business models and managerial constraints.

The result often is a compromise.

9.1.1 AN EXCELLENT CURRICULUM
The Open Universiteit’s students are adult distance learners. At the

Faculty of Computer Science, most of the students have full time jobs, many
have families. They hardly have time to spend. Common motivations for
these students to subscribe are: wish for promotion or need to certify one’s
experience (Menendez Blanco, van der Veer, Benvenuti, & Kirschner, 2012).
The Open Universiteit allows these students to study at their own pace and
at their own location, which is received as very successful. In the national
ranking of suppliers of curricula for part-time higher education, the Open
Universiteit has been on nr. 1 for the past few years (Centrum Hoger
Onderwijs Informatie, 2012).

9.1.2 SUCCESS FACTORS
To investigate the success factors in the academic education of life long

learners, E. Sjoer et al. (Sjoer, Veeningen, Jacobs, & de Jong, 2008) studied 5
best practices of blended curricula for lifelong learners. One of them was the
Computer Science curriculum of the Open Universiteit. According to Sjoer,
the critical succes factors are:
• The competence of the teachers
• Using collaborative activities, both online and face-to-face, to avoid

lonely learners syndrome.
• The learning paradigm. The best paradigm is workplace learning,

especially when authentic case material is used.
Sjoers conclusions at the educational level are that a vision for learning

should be developed. Teachers should be educated in workplace learning,

HCI in a Hybrid Curriculum: Research in Action

161

supported in maintaining their didactical competence and guided on how to
apply their knowledge to (e)learning processes.

9.1.3 CORPORATE GUIDELINES FOR THE E-LEARNING ENVIRONMENT
The Open Universiteit choose a proprietary system, Blackboard, as E-

learning environment. Experiments with Moodle (Open Source) are
conducted, but using Moodle as a live environment is viewed with suspicion.
The policy on e-learning software is very cautious because the Electronic
Learning Environment is a business-critical application. Today, the Open
Universities workflow is completely based on Blackboard.

The Blackboard environment is used to support the educational process.
Every course has a course site providing information on tutoring and exams.
Communication between students is facilitated by forums. Virtual
classrooms, that are commonly used, are accessible through the course site.

Course sites should be designed according to corporate guidelines to
grant recognisability, both of the brand “Open Universiteit” and of the single
Faculties.

Figure 9-1 shows one of the pages of the Computer Science course on
Databases. The same page of most other courses of the Computer Science
curriculum will differ only slightly from Figure 9-1: only the course name
and code (encircled in Figure 9-1) will change.

Figure 9-1 Page in a standard course site

Computing Education in a Hybrid World

162

9.1.4 DISCUSSION
The Open University uses its Electronic Learning Environment to help

the students to take courses efficiently and to support the lecturers in the
delivery of course material. The workflow is moulded to fit to this approach.
Here, we remark that efficiency in learning does not necessarily match with
an academic attitude.

Most distance learners at the Computer Science Department are already
working in ICT. ICT is evolving rapidly, hence their need for further
education. Some students never were educated as computer scientists, but
switched from other disciplines and learned on the job. They need
certification of their expertise.

If the curriculum’s aim is either refreshing knowledge or certification, a
checklist-approach is appropriate: the course material will tell the students
exactly what they have to know to pass the exam and will structure these
items in a way that allows to process them rapidly. The focus on the
teaching process fits these goals.

But the Open Universiteit aims at an academic curriculum. In that case
the checklist approach is not enough. We focus on the essence of the
academic practice: research and debate. We advocate a change of
perspective from academic training (by the lecturer) to academic learning
(by the student). Our aim is to design a rich learning environment for our
students, an environment that supports exploration and peer “teaching”
through forum discussion. Above all, we aim to design a distance research
laboratory where the lecturers can perform their research in the presence of
their students.

There is a lot of practice expertise among these students. Involving them
structurally in their lecturers’ research on how to optimally support
distance learning can be inspiring.

9.2 A WORKPLACE ONLINE
Figure 9-2 shows a page of a course we designed on Webculture. The

course, covering topics on design for the Web, is mandatory in the first year
of the Computer Science curriculum but is also open to students from other
Faculties. The course aims to improve the students’ Web literacy and their
participation in the online world. Also, it strives to sharpen awareness of the
basic issues in design for the Web.

For this course, we designed an online workplace in Moodle, meant to
stimulate exploration and exchange of opinions. The idea was to include
written materials where needed, but to locate the course itself on the Web.

HCI in a Hybrid Curriculum: Research in Action

163

By keeping track of student’s behavior and feedback, we would be able to
validate our design choices.

Figure 9-2 Page of the Web-based course on Webculture

Unfortunately, the approach did not work in this environment. The Web-
based version of the course was successfully tested in a regular University
but was never released. A written version of this course will soon be
published instead, accompanied by a course site in Blackboard (Figure 9-4).
Some features of the Moodle version are implemented in this course site. In
particular, we still can allow students to participate in our research
program.

9.2.1 ACTUAL EXPERIMENT (BLACKBOARD COURSE SITE)
One of the areas investigated by the research group, is: design patterns

for learning activities in a multimodal e-learning environment. Design
patterns describe solutions to problems that occur frequently (Alexander,
1977) and the rationale for each solution, to support the making of
motivated choices. We set up an experiment to investigate how different
learning activities can be supported in multimodal distance e-learning
environments.

Multimodal mini-courses of few minutes long were added to the course
site as additional (optional) materials, explaining techniques or concepts
that are taught in the course. We were interested in the students’
appreciation for these additional resources.

Computing Education in a Hybrid World

164

Different modalities were implemented, including video courses, video
with synchronised adjacent slides, text files, and demonstrations of websites
with narration. Sometimes, several modalities are integrated, i.e. video,
slides with voice over, presentation by a speaker while the slides are visible.

Figure 9-3 Mini course, added for research purposes

After watching the mini-courses, the students were asked to fill in
questionnaires. This way, we investigated the following parameters in the
learning material:
• Meaning: is it understandable?
• Attitude/emotion: is it fun?
• Attractivity: is it aesthetically pleasing?
• Engagement: Does it encourage you?

9.3 DESIGN ISSUES AND SOLUTIONS
To design an online workplace, suitable to our target audience, we

formulated design recommendations for the course site, based on extensive
literature research (Menendez Blanco, van der Veer, Benvenuti, & Kirschner,
2012).

The main goal of the workplace is: stimulate an academic attitude in the
approach of our discipline. We summarize our strategy: (1) Put context and
content both central in the design of the learning environment. (2)
Encourage students to participate in the research program on free distance

HCI in a Hybrid Curriculum: Research in Action

165

learning. (3) Share results. (4) Practice what you preach and ask for
feedback. (5) Apply new concepts while adapting to organisational
constraints.

9.3.1 CONTEXT AND CONTENT BOTH CENTRAL
Following the principles that knowledge is most meaningful when rooted

in a relevant, scaffolded context and that understanding is most relevant
when rooted in personal experience (Hannafin & Land, 1997), we decided to
support students in their exploration of the Web. We designed a structured
online environment to return to in case the exploration would not be
fruitful. This was translated in a content centred course site, where the table
of content is always visible in the left column (Figure 9-2).

The course site is page based. Subsections that do not fit in one screen,
are cut in pages that can be accessed sequentially. This is done to maintain
the same visual design through the course, supporting the learning context.

Adult distance students have busy lives. We cannot assume that all our
students are able to attend activities at the same time. Still, we occasionally
want to encourage discussions, in the context of an assignment or as a tool
to sharpen understanding of a particular issue. To support asynchronous
communication in a shared educational context, we designed a right column
for “tools” with access to a discussion forum (Figure 9-2).

9.3.2 ENCOURAGE STUDENT PARTICIPATION IN RESEARCH
Our aim is to gradually encourage students’ participation in research.

Webculture is mandatory to the first year, student involvement is mainly
passive here. By filling the questionnaires, students can see how actual
research is being done. They can experience how research topics are
presented, how experiments are set up, how to make questionnaires and
how responses on the experiments are acquired.

In the following years involvement in research can grow into a more
active role. In other courses, we have asked students to explore certain
topics themselves and to present the results to each other. These results are
discussed by both the students and the lecturer. Elements that are
particularly well done in a certain presentation are highlighted to allow
others to learn from it.

Computing Education in a Hybrid World

166

9.3.3 SHARE RESULTS
Include recent publications of the lecturers’ relevant research in the

material and encourage discussion between students as well as discussion
with the authors.

9.3.4 PRACTICE WHAT YOU PREACH AND ASK FOR FEEDBACK
The Moodle course was tested in a traditional university context. A

welcome-message on the homepage stated the design philosophy and
incited the students to provide us with comments about the design of the
course site. The response was not massive (10%) but of excellent quality
and lead to improvements. Two students observed that they probably had
not been able to find all the pages of the course; one remarked that even if
he had done so, he was not aware of it. We added a progress indicator to the
menu, showing for each section whether all the pages have been visited by
the user or not (Figure 9-2). Its colour code is based on the traffic light
metaphor.

9.3.5 APPLY NEW CONCEPTS WHILE ADAPTING TO ORGANISATIONAL
CONSTRAINTS

While adapting to organisational constraints, be creative in optimally
applying new opportunities and new understanding. In the Blackboard site,
learning in context is supported by using one of the existing features
(Learning Module) showing partial tables of content near the corporate
buttons (see Figure 9-4).

Not all content can be integrated in this structure. Where integration is
preferable but not possible, the second best solution is: open a new window.
By closing that window, the student will return to the course site providing
context information.

HCI in a Hybrid Curriculum: Research in Action

167

Figure 9-4 Design solution, implemented in Blackboard

Concerning the discussions in context, Blackboard does support
asynchronous discussion in forums, but by opening the forum the student
loses the context of the discussion. In the actual course site, discussions are
introduced briefly; a link to a forum is added in the same page. It will open
in a new window for the reasons stated above.

The same applies to the mini lessons that were inserted for research
purposes. They could not be displayed in the course site itself. We
introduced the mini lessons briefly in the relative section, and added a link
that opens in a new window.

9.4 PRELIMINARY EVALUATION
Our first intuition was: a course about the Web should be situated in the

Web. Learning should take place online. That approach was considered too
disruptive for our administration; the course has finally been published in
printing, with references to its course site in Blackboard. Nevertheless, we
succeeded in implementing some of the features we had designed for the
Moodle course in Blackboard .

The test run of Webculture is taking place as this is being written. 12
students are taking the course are and will provide us regularly with
feedback.

We asked the students if they occasionally work at the course without
using a computer. Some of them answered affirmatively; studying in the
train was mentioned as example. We were surprised.

Computing Education in a Hybrid World

168

The course is performing well, students are triggered by the content they
value as interesting, significant, stimulating. The additional resources are
appreciated by the students, but active participation is lower than in
fulltime education.

9.4.1 CONCLUSION
Our aim was to create an online resource supporting exploration and

facilitating student participation in an online research lab. We partially
succeeded.

Our aim was also: releasing an online resource suitable to test our ideas
on design patterns for free distance learning. This part was less satisfactory.
It would be easier to accomplish this goal if we were able to use Moodle. In
that case, we would be able to adapt the tool to our ideas, design our own
course sites and collect data from our students. This is not the case.

But even then, it is possible to apply new ideas, grown by new
understanding, to the design of new course sites. Validating ideas is still
possible, but more restrictedly. To do so with the course on Webculture, we
had to step back, re-consider our design choices for the Moodle-site and
translate them in Blackboard where possible.

ACKNOWLEDGMENTS

We thank our students for their feedback.

PART IV - Conclusions

169

PART IV - Conclusions
In this Part, we describe a course on Webculture we designed for an

audience of freshmen, enrolled in an academic program on Computer
Science, and senior students, enrolled in an academic program Cultural
Studies.

RESEARCH QUESTION RQ7

RQ7 Which subject-specific strategies can we recommend?
The course on Webculture illustrates an inquiry-based approach to

computing targeting a hybrid audience. Students were freshmen, enrolled in
a computing program, and students, enrolled in other programs as Cultural
Studies. The inquiry-based approach was adopted to support distance
learners in developing an academic attitude. Students were introduced to
the essence of the academic practice, research and debate, by stimulating
them to participate in the lecturer’s research program. With the design of
the course on Webculture, we show how participation of freshmen students
can be achieved in a research program on Human Computer Interaction.

More in general, participating in activities related to knowledge
enhancement supports understanding of the scope of knowledge. It helps
students to better understand the evolution of the topics they are exploring,
to approach literature and to keep up with future developments in their
discipline. This applies both in academic and in professional setting, in
distance learning as well as face-to-face, in full computing curricula and in
hybrid curricula.

We were able to implement activities related to research in the course on
Webculture. The course also aimed at engaging students in design activities,
by allowing them to participate in the design of the resource’s User
Interface. This part was satisfactory in the test run. But in the end, the
course was released on paper (Open Universiteit, 2012); no resources were
allocated for further development of the course website. For these reasons,
it was not possible to implement this ambition in the final course release.

RECOMMENDATIONS
(1) Align context and content, encourage students’ participation to

research, share results, practice what you preach and ask for
feedback.

(2) Adapt to organizational constraints.

Computing Education in a Hybrid World

170

(3) An inquiry-based approach as described in this Part requires
that lecturers be actively engaged in knowledge enhancement.

FURTHER RESEARCH
Our current aim is to implement a blended course on digital design in an

applied undergraduate program, and to implement features, designed by
students during the course, in the course Web site.

It would be interesting to investigate if this approach results in better
understanding of state-of-the-art guidelines for digital design, in a more
active approach to literature and in more insight in strengths and
weaknesses of the design methods lectured in class.

Overall Conclusions and Recommendations

171

10 Overall Conclusions and
Recommendations

This thesis is a reflection upon undergraduate computing education.
Computing professions change over time. Our understanding of learning
evolves. Educational programs are frequently updated. In the past 20+
years, we have witnessed major changes in this area, as the emergence of
hybrid computing professions. What should designers of computing
curricula always bear in mind, and what is important for designers of hybrid
computing curricula in particular?

We started with philosophical considerations about computing and

about hybrid computing professions (chapter 2, (Benvenuti, L. & van der
Veer, G.C., 2009)). At the same time, we investigated the effects of education
in a Dutch University of Applied Sciences, and designed educational units for
the Dutch Open University.

We investigated, if different approaches to computing result in the
instantiation of the same mental model for an abstraction describing a
specific situation, and found differences (Part II).

We investigated an educational approach that was commonly adopted in
Multimedia Education: the craftsmanship-based approach. Advanced
software was considered as “tooling”. Students were offered pointers of
tutorials, but no theoretical introduction was offered to them about
computing topics as coding, or software development. The underlying
assumption was: the students will form a community of practice and will
learn from each other. We found indications for the community, less for the
learning (Part III).

We designed a course for distance learners that aimed at increasing
student participation in our research activities, and reflected upon the role
of research in higher education. (Part IV)

To explain our findings, we took an historical perspective (Chapter 3).

We found differences in the way computing disciplines approach one
fundamental problem. The problem is: computing requires working with
abstractions. Unlike mathematicians, who work with institutionalized
abstract concept, computing professionals currently define the abstractions
they work with. This raises the question, how to sustain claims concerning
these abstractions. The first joint Task Force on the Core of Computing
(Denning, et al., 1989) describes three approaches to this problem: the

Computing Education in a Hybrid World

172

formal, the scientific and the engineering approach. Computing, states the
Task Force, is a unique blend of interaction between these three
approaches. According to Tedre and Apiola (Tedre & Apiola, 2013), each of
these approaches involves a specific view on the discipline of computing and
respects specific epistemological values. We called these approaches the
three cultural styles of computing, and referred to these three cultural styles
to type hybrid computing curricula.

Finally, we reflected upon computing education in general and upon the
mission of Dutch Universities of Applied Sciences (chapter 4). That mission
is: providing Dutch industry with skilled workforce. We reflected upon the
implications of this mission for undergraduate education in a rapidly
evolving field as computing.

In this chapter, we will revisit all research questions. We will recall the

conclusion of Part I (chapters 2,3 and 4). We will comment on the
conclusions of Part II (chapters 5 and 6), Part III (Chapters 7 and 8) and Part
IV (Chapter 9), while keeping in mind the framework we have sketched in
chapter 3 to describe the discipline of computing and its relation to hybrid
curricula. We will formulate recommendations concerning the design of
undergraduate computing curricula including hybrid computing curricula.

Our main research question is:

Which lessons can be learned from past and present undergraduate

computing education, which can be applied in the design of future
undergraduate computing curricula and hybrid undergraduate computing
curricula in particular?

We have decomposed the main research question in:

RQ1 What are possible approaches to computing and computing
education?

RQ2 What are the aims of undergraduate computing education?
RQ3 What is the purpose of undergraduate computing curriculum

recommendations series, i.e. of (RQ3a) international curriculum
recommendations series and (RQ3b) curriculum recommendations
series for Dutch Universities of Applied Sciences?

Overall Conclusions and Recommendations

173

RQ4 Do students, who were educated in different computing traditions,
develop the same mental models for the abstract concepts they work
with? I.e., are different approaches to computing interchangeable?

RQ5 How do students in a hybrid curriculum experience a craftsmanship-
based approach?

RQ6 Which subject-specific strategies were recommended in the past?
RQ7 Which subject-specific strategies can we recommend?

10.1 RESEARCH QUESTION RQ1
RQ1 What are possible approaches to computing and computing

education?

10.1.1 PART I
In part I, we introduced three cultural styles of computing that were first

described by Wegner (Wegner, Three computer traditions: Computer
technology, computer mathematics and computer science, 1970), then by
Denning et al. (Denning, et al., 1989) and recently by Tedre and Apiola (Tedre
& Apiola, 2013). These cultural styles of computing fulfill different roles in
the development of the discipline. All cultural styles are born from an
attempt to cope with the same fundamental problem: how can claims,
concerning abstraction, be sustained? The theoretical cultural style
addresses the question in a formal way. It describes abstract structures in
an unambiguous way and investigates their properties. The scientific
cultural style addresses the question: do our (abstract) models match with
the world they intend to describe? The engineering cultural style addresses
the question, how to design and implement reliable computer systems, a
process that requires exchanging information about these abstractions.
According to Tedre and Apiola, cultural styles embody different
epistemological values, in particular different approaches to research.

Our main research question concerns computing education. Do
frameworks for computing curricula acknowledge this triple cultural
approach to the discipline? ACM/ IEEE explicitly does. One of the aims of the
(international) ACM/IEEE curriculum recommendations series is to support
the development of one, unified, discipline of computing. Therefore, ACM /
IEEE requires all graduates to be acquainted with “the core of computing”, a

Computing Education in a Hybrid World

174

selection of topics grounding all its sub disciplines and covering three
cultural styles.

The European e-Competence Framework e-CF, and the HBO-ICT
framework for computing education at the Dutch Universities of Applied
Sciences, are less explicit in their vision of the discipline. The aim of the
frameworks is primarily the description of professional roles. The approach
is competence-based. We warned for a too strict translation of these
descriptions in computing curricula. As for the Dutch Universities of Applied
Sciences, we feared that applied curricula, strictly defined in terms of
professional competences, without addressing reflection upon the
discipline, could result in professionals overlooking other approaches to
computing than the cultural style they were educated in.

We have called “hybrid” these programs, devoting a substantial part of
their curriculum to computing, but less than 50%. The framework for the
new hybrid domain in Dutch Universities of Applied Sciences (HBO-Creative
Technologies) does not state its relation to computing explicitly. The
framework seems to approach computing from a scientific point of view
when assessing stakeholder requirements. In section 3.5.2, we argued that
Front End Development is a hybrid computing curriculum. The program
trains students for the development of marketable digital artifacts. It adds
an engineering approach to computing to the scientific approach required
by the framework HBO-Creative Technologies.

The three cultural styles address fundamental questions. They embody

different epistemological values. An umbrella view, covering three
epistemological points of view, sustains the development of a unified
discipline of computing. Acquaintance with content from three cultural
styles of computing is necessary to better understand the discipline and to
collaborate with colleagues from other sub-disciplines. It is legitimate to
ask, if a triple approach to research is also necessary for practicing
professionals. This is a question that should be investigated.

Hybrid computing curricula devote less than 50% of their effort to
computing. They cannot cover the core of computing. In section 3.6, we
pleaded for the demarcation of the scope of hybrid professions.

10.1.2 PART III
In Part III, we followed the Virtual Worlds course at the Utrecht

University of Applied Sciences, to better understand success factors of
computing education in hybrid setting.

Overall Conclusions and Recommendations

175

The 2008 and 2009 editions of the Virtual World course, considered the
authoring tool adopted to make digital artifacts (Active Worlds), merely as
an instrument. The digital artifacts made by students were considered as
prototypes, not meant for further development but to illustrate ideas.
Quality criteria for code were not discussed, nor were implementation
problems and solutions.

Retrospectively, we would not type the education offered in the Virtual
Worlds course as “computing education”, because it did not address the
question, how to handle abstraction. None of the following questions
identifying the cultural styles of computing were addressed:

• how to describe abstract structures in an unambiguous way.
• Does an abstract model match with the world it describes?
• What does it take to design and implement reliable digital artifacts?

In our view, the students of the Virtual World course were not trained
for professional use of the adopted tool, and were not trained to make
reliable digital artifacts. They were trained to produce prototypes, rather
than software products. To fulfill minimal quality criteria as maintainability
or scalability, these prototypes ought to be re-implemented by professional
software developers.

10.1.3 RECOMMENDATIONS
We recommend that all educators of computing topics understand the

complex nature of computing. This applies to hybrid curricula and to
undergraduate curricula at Dutch Universities of Applied Sciences in
particular.

We recommend the Dutch HBO-I association, owner of the HBO-ICT
framework, to stress the importance of “reflection upon (the evolution of)
technology and upon the discipline of computing” in the next version of the
HBO-ICT framework.

We recommend designers of hybrid curricula to refer to the three
cultures of computing to type the curricula they design. It is inevitable for
designers of hybrid curricula to make choices: which part of computing
should be included, and why? Typing the computing related part of a
curriculum by referring to its orientation gives insight in the related trade-
offs.

We recommend educational programs, not addressing any of the
fundamental questions of computing, to cultivate students’ awareness of the
scope of their programs.

Computing Education in a Hybrid World

176

10.2 RESEARCH QUESTIONS RQ2, RQ3
RQ2 What are the aims of undergraduate computing education?
RQ3 What is the purpose of undergraduate computing curriculum

recommendations series, i.e. of (RQ3a) international curriculum
recommendations series and (RQ3b) curriculum recommendations
series for Dutch Universities of Applied Sciences?

10.2.1 PART I
RQ2 What are the aims of undergraduate computing education?

In Part I, we compared different frameworks for undergraduate
computing education. We have found different ideas about the aims of
undergraduate computing education. One view is, that undergraduate
computing education should ensure further development of the discipline.
The other view is: computing education should train professionals able to
apply state-of-the-art knowledge. Different stakeholders of the educational
system will emphasize different aims: Academia will ask for intellectual
development, Industry will ask skilled workforce, students will ask
education offering them a sustainable view on the discipline.

The international ACM/IEEE curriculum recommendations series points
towards both directions. In 1989, the ACM/IEEE Task Force on the Core of
Computing stated that undergraduate computing education has three main
stakeholders: its students, industry and the discipline itself. Students should
gain access to the Master’s level and to the labor market; they should be well
equipped to keep up with future developments. Industry needs skilled
manpower. According to ACM/IEEE, the development of the discipline of
computing goes hand in hand with the definition of educational programs
for professional figures.

Although the European e-Competence framework is not a curriculum
framework, it is explicitly meant as a guide for European educational
institutions. It emphasizes the output of education, in terms of
competencies.

The Netherlands has a dual system. Academia focuses on research and
development; it is responsible for the development of the discipline of
computing. Universities of Applied Sciences, mainly prepare students to
enter the labor market. Their computing programs focus on the application
of state-of-the-art knowledge. Their graduates are not trained to develop
the discipline but to contribute to the professionalization of the computing
practice at hand.

Overall Conclusions and Recommendations

177

 RQ3a What is the purpose of undergraduate computing curriculum

recommendation series: international series.
We investigated the ACM/IEEE curriculum recommendations and the

European e-Competence framework e-CF.
According to ACM/IEEE, the goal of education in general is to gain

competence in a domain. The domain of computing is complex, because
computing is a rapidly evolving intellectual discipline that can be
approached from different points of view. With the curriculum
recommendations series, ACM/IEEE aims to foster discipline oriented
thinking. All computing professionals should be acquainted with a common
core of computing, defined and updated by ACM/IEEE committees.

e-CF is not primarily a curriculum framework, but an industry standard.
It aims at preventing shortage of qualified ICT manpower, by establishing a
common language to express professional roles and competencies across
Europe. Computing curricula are not standardized in this system.. e-CF
emphasizes the output of education and pays less attention to other possible
purposes of education.

RQ3b What is the purpose of undergraduate computing curriculum

recommendation series: series for Dutch Universities of Applied
Science?

The Dutch Universities of Applied Sciences (HBO) train professionals to
apply knowledge that was developed in Academia. The HBO-ICT framework
describes computing curricula for the Universities of Applied Sciences. The
frameworks’ principal aim is to support designers of curricula in the
specification of programs for the education of computing practitioners,
needed by the Dutch (and pan-European) labor market. This also applies to
the new Dutch framework for hybrid curricula we have viewed, HBO-
Creative Technologies.

The last edition of the HBO-ICT framework (HBO-ICT 2014) (a) trains
computing professionals for the pan-European labor market, (b) having a
common theoretical foundation, described in terms of state-of-the art
technology (c) having extensive learning skills (d) able contribute to the
professionalization of their profession.

We asked ourselves if definition of a “common theoretical foundation”
should include the epistemological differences between cultural styles of
computing, and concluded that this question still ought to be addressed.
The Dutch framework for curricula in the Creative Technologies (HBO-
Creative Technology, hybrid) aims at boosting innovation by supporting the

Computing Education in a Hybrid World

178

Dutch economic top sector Creative Industries. It does not state its relation
to computing explicitly.

10.2.2 PART III
RQ3b What is the purpose of undergraduate computing curriculum

recommendation series: series for Dutch Universities of Applied
Science

In Part III, we investigated the students’ learning experience in a course
on Virtual Worlds at the Utrecht University of Applied Sciences. We pointed
at a possible ambiguity about the course’s learning objectives. The
curriculum on Digital Communication at the Utrecht University of Applied
Science does not exist anymore. Its successor’s name is Communication and
Multimedia Design, one of the programs of today’s domain of Creative
Technologies. We will refer to the Virtual World course to illustrate
inconsistencies in the ambitions of the domain HBO-Creative Technologies.

In the Virtual World course, the stated learning objectives concerned the
concepts behind 3D Virtual Worlds, not implementation issues. In section
10.1.2, we have concluded that in our view, the course was not a course on
computing because it did not address any of the fundamental questions of
computing. The domain HBO-Creative Technologies gives room for this
position towards computing. But the Virtual Worlds course might very well
have looked as a course addressing computing topics to its students. Their
future employers might have shared this perception.

Students were asked to use an advanced authoring tool to make a
prototype implementing Virtual World concepts. Authoring tools support
the implementation of proven, well-known features. Students who have
innovative ideas need to expand the tools’ boundaries. They will try to
better understand the software they are working with, to add functionality.
Their learning objectives for such an assignment are likely to be related to
computing.

Designers of innovative applications can of course fake innovative
features and deliver prototypes, which will be implemented by developers.
But such a process supposes an articulated workflow. Small innovative
companies, the companies targeted by the domain HBO-Creative
Technologies, are more likely to work ad hoc. They are more likely to
implement small working applications and further develop them in case of
success. Employers in the Creative Industries are likely to expect basic
development skills.

Overall Conclusions and Recommendations

179

10.2.3 RECOMMENDATIONS
e-CF describes the output of the educational system. Other stakeholders’

requirements, as the students’ need for a sustainable career perspective, or
the discipline’s long-term perspectives, seem in danger of being overlooked.
European educational institutions offering computing programs should
cope with this issue. This applies in particular to Dutch institutions offering
applied computing programs.

We recommend (Dutch) national and international organizations to
explore the question, of how differences in the research values of the three
cultural styles of computing relate to the education of computing
practitioners.

We recommend HBO-I to define a sustainable theoretical base for its
curricula in collaboration with Academia. We recommend Dutch
government to support the collaboration between institutions offering
computing curricula in Academia and in the applied domain.

We recommend the domain HBO-Creative Technologies to fully clarify
the professional roles its graduates will fulfill. Which programs will train
designers of prototypes that will be implemented by developers, which ones
to produce (minimum viable) innovative software products? The programs,
which aim at training professionals to produce (minimum viable) products,
should state their relation to computing.

We recommend designers of hybrid computing curricula to acknowledge
that their programs are related to computing. We recommend them to take
responsibility for the definition of new professions, and to participate in
their development, in collaboration with related computing disciplines,
Academia, the industry and the public authorities. We also recommend
stating the scope of these new professions explicitly. This applies in
particular for the programs of the Dutch domain of Creative Technologies.

We recommend designers of hybrid curricula to include the competence
“understanding the limits of the acquired competences” among their final
qualifications.

10.3 RESEARCH QUESTION RQ4
RQ4 Do students, who were educated in different computing traditions,

develop the same mental models for the abstract concepts they work
with? I.e., are different approaches to computing interchangeable?

Computing Education in a Hybrid World

180

10.3.1 PART II
RQ4 Do students, who were educated in different computing programs,

develop the same mental models for the abstract concepts they work
with? I.e., are different approaches to computing interchangeable?

We found indications for differences between the way students, enrolled

in different computing curricula, conceptualize the abstract notion of
“object”. The differences we found were not the differences we had
expected.

Overall, we did not find awareness about the possible ambiguity of the
abstract notion of “object”. In our opinion, this is an issue education should
address.

10.3.1.1 The differences we had expected
In our preliminary study (chap. 2), we had described different ways to

approach the computing practice: the formal approach to software
requirements of Information Systems vs. the engineering approach of
Software Engineering. We hypothesized different conceptualizations of
abstract concepts by computing practitioners, educated in different
programs.

We tested our hypothesis with the experiment described in chapter 5
and 6. We targeted senior students, enrolled in programs Business IT and
Management (BIM) and Software Engineering (SE) at the Utrecht University
of Applied Sciences. Senior students Information Engineering (IE) also were
present at the time. They were included in the sample.

We had expected to find differences in problem solving preferences
across these groups. We also had expected to find differences in mental
models for the notion of “object”, and had expected that these differences
would go hand in hand with differences in the computing practice. We had
expected students BIM to conceptualize objects as sets, in analogy with the
relational model. We had expected students SE to focus on entities, handled
in software development. We had hypothesized that they would perceive
instances, and would conceptualize them as bags of objects.

10.3.1.2 The differences we found
Within the limits set by the sample size, we found reliable indications for

differences between the way students, enrolled in different curricula,

Overall Conclusions and Recommendations

181

conceptualize the abstract notion of “object”. We did not find significant
differences in problem solving preferences across the groups.

We found indications for different mental models for the notion of object
(sets or bags), although less reliably. SE students showed a preference for
“set”, IE students for “bag”, the answers of BIM students were divided ad
random between the options. This did not match our expectations. Within
the same reliability range, we found indications for differences in the
approach to abstractions related to software. 90% of the SE students
provided implementation information about the system (as code, or a class
diagram), against 70% of the IE students and 50% of the BIM students

10.3.1.3 A possible explanation
We had expected BIM students to conceptualize objects as sets, and SE

students to conceptualize them as bags. But we found no evidence of such
differences between BIM and SE students. We did find indications for these
differences (set or bag) between groups of students. But these differences
did not concern BIM students and SE students. They concerned SE and IE
students.

A possible explanation refers to Tedre and Apiola’s framework of three
cultural styles of computing (chapter 3). Dael (Dael, 2001) distinguishes two
traditions in the development of educational programs for computing
professionals in the Netherlands. He describes mighty battles between the
factions in the first decades of the computing era. No consensus could be
reached in the Netherlands on this issue until the 1990es. Dael traces the
origin of computing programs in Dutch higher education back to the
tradition that had started them.

One of the factions approached computing as an asset in business
administration. The group was originally hosted by the Faculty of
Economics and Business of the University of Amsterdam. In 2001, its
heritage can be found both in Dutch Academia and the Universities of
Applied Sciences. The other faction adopted a formal point of view. It was
housed in the Mathematisch Centrum in Amsterdam. In 2001, its heritage
can be found in Dutch Academia, not in Universities of Applied Sciences. A
third faction (that Dael calls “the technicians”) did not participate at all in
the debate about education, but formed a significant factor in Dutch
industry.

It seems reasonable to assume that today’s Business IT and Management
program in Dutch Universities of Applied Sciences has its origin in the
business tradition (approaching computing from a scientific point of view),

Computing Education in a Hybrid World

182

and to track Software Engineering back to “the technicians” (professional
figures requested by industry, who probably approached computing from
an engineering point of view). But these are suppositions that should be
investigated.

As for IE, the participants in our experiment had enrolled between 2009
and 2013. As we saw in chapter 0, the 2009 edition of the HBO-ICT
framework emphasized specialization, and sustained the development of
new computing programs. IE was one of these programs. It does not exist
anymore today, but at the Utrecht University of Applied Sciences its know-
how is maintained by the interest group Front End Development. In section
3.5.2, we argued that Front End Development’s approach to computing is
partially engineering and partially scientific.

If we relate the results of the experiment in Part II to the programs’
cultural styles of origin to (instead of relating them to approaches to the
computing practice), the overall picture changes. Let us assume that the
cultural style of the faction, who once had initiated a program, still was a key
factor to understand the effects of computing programs at the Dutch
Universities of Applied Sciences in 2014. In that case, SE’s cultural style
would have been predominantly engineering. BIM’s cultural style would
have been predominantly scientific. Based on other arguments, we have
stated that IE’s cultural style is likely to have been partially engineering and
partially scientific.

If we put the programs in order, from “predominantly engineering” to
“predominantly scientific”, we obtain this sequence: SE – IE – BIM. The
results of our experiment at the Utrecht University of Applied Science reflect
precisely this sliding scale. “The system” was described by providing
implementation information by 90% of the students SE, 70% of the students
IE and 50% of the students BIM. Within the limits of our scores’ reliability,
these differences seem to be significant. The scientific cultural style of
computing seems to go hand in hand with representing computer systems
as black boxes, the engineering cultural style with representation as white
boxes.

We explain the set/bag differences we have found by looking at the
software layer the different educational programs focus at. IE focuses on
designing and developing user interfaces. IE students mainly work with
instances of objects; the “bag” was their preferred structure. SE programs
focus more generally on “software”, which includes storage. As we remarked
in section 6.7, the ‘Bookstore” example is a typical case, used in courses on
Databases. SE students probably referred to stored objects when describing

Overall Conclusions and Recommendations

183

“sets” of objects. BIM is not a design program, BIM students showed no
preference for set of bags.

10.3.1.4 Hypothesis and further research
Our hypothesis concerning computing programs in Dutch Universities of

Applied Sciences is that some of them (notably BIM, SE) still approach
computing from different points of view. We suspect that these differences
reflect the different traditions of the factions who, according to Dael (Dael,
2001), initiated them in the second half of the past century.

Our new hypothesis about mental representations of abstract concepts
in computing is that students, educated in programs favoring different
cultural styles of computing, seem to adopt different mental models of the
same abstract concepts.

We found indications for such differences, but the samples we were able
to collect were small and the interrater reliability was no more than fair. It
would be interesting to repeat the experiment.

We have many open questions. We presume that the differences we have
found result from different educational settings. They might also be pre-
existent to the enrollment in different computing programs. Further
research is needed to assess this.

Further research is also needed to investigate if the differences we
presume are also present in other settings: in Dutch academic curricula, in
foreign curricula implementing ACM/IEEE’s core of computing, in
computing practice.

How far is it possible to combine different abstract models during work
operations? Combining models while discussing with colleagues might just
be too complex for the human mind, even if the terminology is optimized.

All these issues require further research.

10.3.2 RECOMMENDATIONS
We recommend designers of computing curricula to aim at cultivating

awareness for possible differences between conceptualizations of
abstractions

10.4 RESEARCH QUESTION RQ5
RQ5 How do students in a hybrid curriculum experience a craftsmanship-

based approach?

Computing Education in a Hybrid World

184

10.4.1 PART III
RQ5 How do students in a hybrid curriculum experience a craftsmanship-

based approach?

In 2008-2009, a craftsmanship-based approach was common in Dutch

undergraduate Multimedia education. Students with little background in
computing were exposed to advanced technology as authoring tools with
minimal (if any) support. Lecturers assumed that learning communities
would emerge, where students would share knowledge of specific, cutting-
edge technology. Together, they would develop a professional approach to
specific computing topics as 3D scripting.

Although we do not exclude that this strategy could work in limited
settings, we warn against too enthusiastic expectations. In 2009, we
investigated the students’ learning experience in a course on Virtual Worlds,
which seemed to have enabled the emergence of such a community. We
found indeed that during an assignment in a shared virtual world, the sense
of community among the students had increased significantly. But the
students also reported that their learning had not increased during the
assignment in the virtual world.

We think that when the students had stated that their learning had
leveled, they had referred to what they had learned about developing 3D
applications using Virtual World technology. Sadly, the course was
drastically redesigned in 2010. It was not possible to test our hypothesis.
We have open questions about this craftsmanship-based approach to
education involving authoring tools. It would be interesting to investigate if

(1) Understanding of a complex software tool can be developed by a
community of learners .

(2) what such understanding consists of, and
(3) is it reasonable to expect transfer of understanding to other

scripting languages / authoring tools?

10.4.2 RECOMMENDATIONS

We warn against too enthusiastic expectations about the role of
communities as autonomous supports for learning activities concerning
complex software.

10.5 RESEARCH QUESTIONS RQ6, RQ7
RQ6 Which subject-specific strategies were recommended in the past?

Overall Conclusions and Recommendations

185

RQ7 Which subject-specific strategies can we recommend?

10.5.1 PART I

RQ6 Which subject-specific strategies were recommended in the past?

The first Task Force on the Core of Computing recommended an inquiry-
based approach to education. Rather than lectures presenting answers, the
Task Force recommended acquaintance with the computing literature and
with the related research methods. But according to Tedre and Apiola, the
three cultural styles have fundamentally different approaches to research.
Up-to-date knowledge of one of the sub disciplines of computing and
acquaintance with the related research methods is more likely to point
towards a specialist career path than towards overview of the discipline. We
doubt that an inquiry-based approach in the undergraduate curriculum can
be combined both with the Task Forces’ aim to foster discipline oriented
thinking and its goal to train students to access the labor market.

The Task Force also recommended using differences between
programming languages (or programming paradigms) as a vehicle to
discuss differences between approaches to computing.

Tedre and Apiola recommend aligning learning objectives with the
cultural style because a mix would not result in successful educational
interventions.

RQ7 Which subject-specific strategies can we recommend?

At course level, we endorse Tedre and Apiola’s recommendation to align
learning objectives with the cultural style, but we also recommend to
cultivate awareness for differences in cultural style in computing curricula.

The fundamental question “how can claims, concerning abstraction, be
sustained?” also applies to digital technology itself, and can be approached
in different ways: matching a theoretical, engineering or scientific approach.
In line with this, we recommend all computing curricula, and the HBO-ICT
curricula in particular, to address the problems behind the development of
technologies, rather than focusing on knowledge of state-of-the-art
technology. Approaching technology as an illustration of more general
principles will support the graduates’ future understanding of the discipline.

10.5.2 PART II
RQ7 Which subject-specific strategies can we recommend?

Computing Education in a Hybrid World

186

We recommend all computing curricula to explicitly address the
question, “how can claims, concerning abstraction, be sustained?”

We recommend educators and practitioners to establish and use a
refined terminology for the notion of “object”, in order to improve
recognition of different mental models.

We recommend all computing curricula to explicitly cultivate awareness
for possible different conceptualizations of abstract concepts.

10.5.3 PART III
RQ6 Which subject-specific strategies were recommended in the past?

We have explored the effects of an educational approach that was
common in Dutch undergraduate Multimedia education in 2008-2009.
Students with little background in computing were exposed to advanced
technology as authoring tools with minimal (if any) support. Lecturers
assumed that learning communities would emerge, where students would
share knowledge of specific, cutting-edge technology. Together, they would
develop a professional approach to specific computing topics as 3D
scripting.

RQ7 Which subject-specific strategies can we recommend?

To support each other in their learning process, the members of a
learning community should agree with each other (and with their the
lecturers) upon the objectives that are pursued. The course objectives
should be aligned with the challenges, students face while using technology.

If the use of advanced technology is meant to illustrate concepts, instead
of making working products, the students should be enabled to devote their
attention to design challenges. They should be supported when facing
challenges concerning the implementation of their prototypes. In such
courses, solutions to implementation problems (scripting) will not be
assessed. Further development of the prototypes, made by students, is not
expected. In section 10.1.2, we have argued, that this course should not be
typed as “computing education”.
If the course’s learning objectives are: translating innovative ideas in
working products, or minimum viable products, solutions to
implementation problems should be assessed. The course should introduce
guidelines for coding, as guidelines aiming at improve the lifetime
expectancy of software, or its flexibility. The reasons for these guidelines
should be stated. For such courses, more generally for courses in in hybrid
setting pursuing the objective to translate ideas in working digital products,
we recommend approaching computing from a mixed engineering/scientific

Overall Conclusions and Recommendations

187

point of view. We recommend to align educational design to the engineering
cultural style for software development, and to the scientific cultural style
when discussing software validation. Educational resources and assessment
policy should be aligned with the related cultural style. Students should be
aware that they are trained to make (minimum viable) software products.
The technology itself should be introduced by stating its cultural approach
to computing, which enables a discussion about its scope. In all cases, we
recommend to discuss the scope of the students’ future expertise in class.

10.5.4 PART IV
RQ7 Which subject-specific strategies can we recommend?

In the context of this dissertation, chapter 0 provides an example of an
inquiry-based course targeting a hybrid audience in academic setting. The
course treated basic notions of HCI, applied to User Interface design. It
targeted an academic audience, and strived at engaging students in research
activities. Computing was approached from a point of view compatible with
the content: a discussion of general notions of HCI was combined with a
scientific approach to research.

Part of the students consisted of freshmen, enrolled in a computing
program. These students were better acquainted with an engineering
approach to computing than with the scientific approach. The alignment
between content and cultural style illustrates how scientific knowledge is
generated. It paves the way for a discussion of its values, its possible
shortcomings and the comparison with other kinds of knowledge.

The course illustrates that alignment of course content and cultural style
can be achieved in many circumstances. There are trade-offs, though. As we
argued in section 3.4.1, an inquiry-based approach is likely to direct
students’ understanding of the discipline towards values, consistent with
one of the three traditions. In this case, towards the scientific tradition’s
values (putting accuracy above utility) rather than the engineering
tradition’s values (putting utility above accuracy). Lecturers should be
aware of the issue, and address it on request.

This strategy requests the lecturer(s) to be actively engaged in research
in the topic they are lecturing.

The course, described in chapter 0, introduced Web technology by
describing its history and its principles. Today, we would also point at two
main aspects of W3C ‘standards’. The - formal - definition of languages as
HTML describes (in an unambiguous way) how browsers should work. W3C
guidelines for correct semantic use of tags embody an engineering

Computing Education in a Hybrid World

188

approach. Applying those guidelines will enhance the quality of Websites
and increase their lifetime expectancy. Those guidelines are not
unambiguous; lively discussions do occur among Web developers upon how
to apply them. Language definitions and W3C guidelines both support
interoperability of software. They also have different aims and respect
different values. Stating this would allow us to address the problems behind
the development of Web technology, as recommended in section 10.5.1, and
to point at differences between cultural styles.

10.5.5 RECOMMENDATIONS
The combination of the first ACM/IEEE Task Forces’ aim to foster

discipline oriented thinking, the curricular goal to train students for
entering the labor market, and the recommended instructional strategy
(inquiry-based) ought to be reconsidered.

We endorse the first ACM/IEEE Task Force’s recommendation to use
programming languages, programming paradigms or technology, as a
vehicle to discuss differences between approaches to computing. In line
with this, we recommend HBO-ICT to address the problems behind the
development of technologies rather than focusing on knowledge of state-of-
the-art technology. Approaching technology as an illustration of more
general principles, including its cultural approach to computing will support
the graduates’ future understanding of the discipline.

As for hybrid computing curricula, we recommend that lecturers of
computing topics (1) should have a CS degree or equivalent, (2) discuss
aims and boundaries of hybrid programs with their students and (3) refer to
technology as a vehicle for that discussion.

10.6 WHICH LESSONS CAN WE LEARN THAT CAN BE
APPLIED?

Our main research question was:

Which lessons can be learned from past and present undergraduate
computing education, which can be applied in the design of future
undergraduate computing curricula and hybrid undergraduate computing
curricula in particular?

Which lessons can be learned? In a few words: not to underestimate the

consequences of computing related education. Abstraction is a key concept
in computing. Leaving the understanding of abstractions to history, the

Overall Conclusions and Recommendations

189

market or emerging professional communities seems not to result in
compatible abstractions. Neglecting this aspect of computing will result in a
professional Tower of Babel. In a world, which is rapidly embracing the
“computing for all” credo, it would be interesting to agree upon what we are
talking about.

We have drawn attention towards factors that can augment the
probability of a divergent scenario. Some of them directly relate to the way
computing is taught. Their impact can be softened with training and
certification programs for lecturers. But other factors are more difficult to
deal with, because they involve many actors. We refer to the definition of
professional roles, or the design of educational systems.

Two international professional organizations, ACM and IEEE, have
identified this problem decades ago. They started a program that aims at
supporting the development of one, unified discipline. This program has
defined a list of topics that every graduate in computing should be
acquainted with: the core of computing. To ACM / IEEE we would say: to
foster discipline oriented thinking, understanding of the differences
between possible approaches to research might be more important than the
content. We called these possible approaches: the three cultural styles of
computing. We stress the importance of discussing differences between
cultural styles of computing more explicitly, because that discussion will
foster awareness of computing’s complex nature, both of scholars and
professionals.

We are concerned about the education of computing practitioners.
Besides being equipped with a Body of Knowledge and Skills, practitioners
should be able to perform (applied) research. But acquaintance with
methods for applied research, related to a specific professional situation, is
likely to point towards a specialist career path rather than towards
overview of the discipline. Is it still realistic to aim at fostering discipline
oriented thinking in the undergraduate computing curricula? If it is not,
what does it mean to be a “computing professional”? These questions ought
to be addressed.

Academic and applied education are separated in the Netherlands. A too
strict separation seems not fruitful to us in the domain of computing. In
today’s world, preparing students to find a job does not necessarily mean
preparing them to keep up with their profession, or to design the future of
their profession. We recommend Dutch Universities of Applied Sciences and
Dutch Universities offering computing programs, to enhance their
cooperation, in order to define the theoretical base of applied computing

Computing Education in a Hybrid World

190

curricula. We recommend the Dutch public authorities to sustain that
cooperation.

As for hybrid computing curricula: it is inevitable to make choices while
designing a hybrid curriculum. We recommend referring to the cultural
styles of computing to type hybrid curricula. We also saw that defining and
tuning undergraduate computing curricula is not only a matter of training
manpower requested by industry. We saw that the field of computing was
shaped by a joint effort of industry, Academia and governmental
institutions, and urge designers of hybrid curricula to take responsibility for
the definition of new disciplines. Trade-offs, involved by curricular choices
define the boundaries of new professional roles. They should be discussed
explicitly in broad communities including: related computing disciplines in
Academia, the industry and the public authorities

This thesis concerns undergraduate computing education, in all its
variants. Lecturing technology without referring to its philosophical
background, lecturing computing without addressing the complexity of
handling abstraction, would mean not taking students seriously enough to
invite them to join the conversation about their own professional future. We
have warned against a sloppy approach to the discipline.

References

191

REFERENCES
ACM / AIS. (2010). Curriculum Guidelines for the Undergraduate Degree Programs in

Information Systems. ACM.
ACM / IEEE. (2004). SE 2004: Software Engineering 2004, curriculum Guidelines for

Undergraduate Degree Programs in Software Engineeri. ACM / IEEE.
ACM / IEEE. (2005). Computing Curricula 2005, the Overview Report. ACM/IEEE. Retrieved 6 10,

2016, from https://www.acm.org/education/curricula-recommendations
ACM / IEEE. (2008). CS 2008: Computer Science Curriculum 2008: An interim revision of CS2001.

ACM / IEEE.
ACM / IEEE. (2013). CS 2013: Computer Science Curricula 2013: Curriculum Guidelines for

Undergraduate Degree Programs in Computer Science. ACM/IEEE.
ACM / IEEE. (2017). IT 2017: Curriculum Guidelines for Undergraduate Degree Programs in

Information Technology. ACM/IEEE.
ACM/IEEE. (2014). SE 2014: curriculum guidelines for undergraduate degree programs in

software engineering. . ACM/IEEE.
ACM/IEEE Task Force on Computing Curricula. (2014). Software Engineering 2014, curriculum

guidelines for undergraduate degree programs in SE (draft). Retrieved 06 20, 2015,
from https://www.acm.org/education/curricula-recommendations

Adobe Systems. (n.d.). Acrobat Connect. Retrieved may 28, 2008, from
http://www.adobe.com/products/acrobatconnectpro/

Alexander, C. (1977). A pattern language: towns, building, constructions. Oxford: Oxford
University press.

Antonacci, D., & Modaress, N. (2008). Envisioning the Educational Possibilities of User-Created
Virtual Worlds. AACE Journal, 16(2), 115-126.

Baddeley, A., Eysenck, M., & Anderson, M. (2009). Memory. Psychology Press.
Bakker, G., Meulenberg, F., & de Rode, J. (2003). Truth and Credibility as a Double Ambition:

Reconstructions of the Built Past, Experiences and Dilemmas. The Journal of
Visualisation and Computr Animation, 14, 159-167.

Benvenuti, L., & van der Veer, G. (2011). Practice what you preach: experiences with teaching
3D concepts in a virtual world. In S. H.-J. (ed.), Virtual Immersive and 3D Learning
Spaces: Emerging Technologies and Trends (p. Ch. 3). IGI-global.

Benvenuti, L., & van der Veer, G. (2014). The Object Relational impedance mismatch from a
cognitive point of view. In B. du Boulay, & J. Good (Ed.), Psichology of Programming
2014.

Benvenuti, L., & van der Veer, G. (2014). The Object Relational impedance mismatch from a
cognitive point of view. In B. du Boulay, & J. Good (Ed.), Psichology of Programming
2014.

Benvenuti, L., & van der Veer, G.C. (2009). Multimedia design kan je leren. Kunnen we het ook
doceren? In D. L. F.J. Verbeek (Ed.), Change! - Proiceedings CHI-NL 2009 (pp. 39-41).
Leiden, NL: CHI-NL.

Benvenuti, L., Barendsen, E., van der Veer, G. C., & Versendaal, J. (2018). Understanding
computing in a hybrid world, on the undergraduate curriculum Front End
Development. SIGCSE2018 / CS for All. Baltimore: ACM.

Benvenuti, L., Hennipman, E., Oppelaar, E. R., van der Veer, G. C., Cruijsberg, R., & Bakker, G.
(2010). Experiencing and learning with 3D virtual worlds. In J. M. Spector, D.
Ifenthaler, P. Isaias, & D. G. Kinshuk, Learning and instruction in the digital age (p. CH
12). NewYork, NY, USA: Springer Science+Business Media, inc.

Computing Education in a Hybrid World

192

Benvenuti, L., Hennipman, E., Oppelaar, E., van der Veer, G., Cruijsberg, R. '., & Bakker, G. (2008).
Experiencing Education with 3D virtual worlds. In D. Kinshuk, D. Sampson, J. Spector,
P. Isaias, & D. Ifenthaler (Ed.), Proceedings of the IADIS International Conference on
Cognition and Exploratory Learning in the Digital Age (pp. 295-300). Freiburg,
Germany: IADIS.

Benvenuti, L., Louwe Kooijmans, C.F., Versendaal, J., & van der Veer, G.C. (2015).
Representations of abstract concepts, differences across computing disciplines.
Frontiers in Education 2015. El Paso, TX: IEEE.

Benvenuti, L., Rogier, E., & van der Veer, G. (2012). E-learning in a distance learning
curriculum:a workplace approach. Proceedings of the 2012 conference on Cognitive
Ergonomics. Edinburgh.

Booch, G., Rumbaugh, J., & Jacobson, I. (2005). The Unified Modeling Language, User Guide (2nd
ed.).

Bruce, K., Cupper, R., & Drysdale, R. (2010). A history of the Liberal Arts and Computer Science
consortium and its model curricula. ACM Transaction on Computing Education, 10(1),
3.

Bryman, A. (2012). Social Research methods (4th ed.). New York: Oxford University press.
Cañas, J. &. (1998). The role of working memory in measuring mental models. Ninth European

Conference on Cognitive Ergonomics. EACE.
Cassel, L. (2007). Understanding the entirety of modern Informatics. Innovations in teaching

and learning in computer science, 6(3), 3-11.
CEN. (n.d.). ICT Profiles. Retrieved March 29, 2018, from European e-Competence Framework:

http://www.ecompetences.eu/ict-professional-profiles/
Centrum Hoger Onderwijs Informatie. (2012). Keuzegids Deeltijd & Duaal 2009, 2010, 2011,

2012. Leiden, the Netherlands.
Chan, H., Wei, K., & Siau, K. (1993). User-database interface: the effect of abstraction levels on

query performance. MIS quarterly, 17(4), 441-464.
Cobol. (2014, 05 25). Retrieved from Wikipedia: http://en.wikipedia.org/wiki/COBOL
Comité de Suivie de la Licence. (2010, 12 29). Recommendations Annee 2007-2008. Retrieved

from http://www.enseignementsup-recherche.gouv.fr/cid21521/remise-du-
rapport-dizambourg-a-valerie-pecresse.htm

Commissie Accreditatie Hoger Onderwijs. (2011). Prikkelen, presteren profileren. the Hague, NL.
Commission des Titres d'Ingénieur. (n.d.). Higher Education in France. Retrieved 12 28, 2010,

from http://www.cti-commission.fr/The-French-higher-education-system
Commission des Titres d'Ingénieur. (n.d.). Les Écoles françaises d’ingénieurs (the French

engineering schools). Retrieved 12 28, 2010, from http://www.cti-
commission.fr/IMG/pdf/GrandesEcoles.pdf

Conklin, M. (2007). 101 Uses of Second Life in the College Classroom. Retrieved may 28, 2008,
from http://facstaff.elon.edu/mconklin/pubs/glshandout.pdf

Cortesi, A., & Nardelli, E. (2007). Towards an European Certification of Computer Science
Curricula. Innovtions in teaching and learning in computer science, 6(3), 79-86.

Cowling, A. (2006). A system model for the field of Informatics. Retrieved 12 24, 2020, from
http://www.ics.heacademy.ac.uk/education_europe/programme.htm

Cross, J., O'Driscoll, T., & Trondsen, E. (2007). Another Life: Virtual Worlds as Tools for
Learning. eLearn 2007, 3(2).

Dael, R. (2001). Iets met computers: over de beroepsvorming van de informaticus. Delft: Eburon.
de Haan, L., & Koppelaars, T. (2007). Applied mathematics for database professionals. (Apress,

Ed.)
Dede, C. (1995). The Evolution of Constructivist Learning Environments: Immersion in

Distributed, Virtual Worl. Educational Technology, 35(5), 46-52.

References

193

Denning, P. (2007, July). Computing is a Natural Science. Communications of the ACM, 50(7).
Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, A., & Young, P. (1989).

Computing as a discipline. Communications of the ACM, 32(1), pp. 9-23.
Denning, P., Feigenbaum, E., Gilmore, P., Hearn, A., Ritchie, R., & Traub, J. (1981). A discipline in

crisis. Communications of the ACM, 24(6), 370-374.
Detienne, F. (1997). Assessing the cognitive consequences of the object-oriented approach: A

survey of empirical research on object-oriented design by individuals and teams.
Interacting with computers, 9(1), 47-72.

Dialogic & Matchcare. (2016, 3). Digitaal Vakmanschap, van de ICT arbeidsmarkt naar de
arbeidsmarkt voor ICT'ers. Retrieved 11 02, 2016, from
https://www.nederlandict.nl/news/tekort-aan-developers-neemt-toe/

Dickey, M. (2005). Three-dimensional virtual worlds and distance learning: two case studies of
Active Worlds as a medium for distance education. British Journal of Educational
Technology, 36(3), 439-451.

Dijkstra, E. (1973, may 23). Programming as a discipline of mathematical nature. Retrieved
september 28, 2015, from
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD03xx/EWD361.html

Dijkstra, E. (1988). On the cruelty of really teaching computing science. Retrieved 4 16, 2009,
from
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1036.html

Domein Creative Technologies. (2014). Bachelor of Creative Technologies- beroeps en
competentieprofiel domein Creative Technologies. Vereniging van Hogescholen.
Vereniging van Hogescholen.

du Boulay, B., O'Shea, T., & Monk, J. (1989). The black box inside the glass box; presenting
computing concepts to novices. Internationl journal of man-machine study, 14, 237-
249.

Educause Learning Initiative. (2006, june). 7 things you should know about Virtual Worlds.
Retrieved may 28, 2008, from
http://www.educause.edu/ir/library/pdf/ELI7015.pdf

EduTech Wiki. (n.d.). Constructivism. (U. o. Geneva, Producer) Retrieved december 12, 2008,
from EduTech Wiki of the University of Geneva:
http://edutechwiki.unige.ch/en/Constructivism

EHEA. (n.d.). Retrieved 12 29, 2010, from Bologna Process: http://www.ehea.info/
Eliëns, A., Feldberg, F., Konijn, F., & Compter, F. (2007). VU @ Second Life: Creating a (Virtual)

Community of Learners. proceedings EUROMEDIA. Delft, the Netherlands.
European Commission. (2005, May). Descriptors defining levels in the European Qualifications

Framework (EQF). Retrieved March 29, 2018, from Learning opportunities and
Qualifications in Europe: https://ec.europa.eu/ploteus/en/content/descriptors-
page

European Committee for Standardisation (2). (n.d.). eCF founding principles. Retrieved 6 22,
2016, from European eCompetence Framework: http://www.ecompetences.eu/e-cf-
founding-principles/

European Committee for Standardisation. (2014). Context. Retrieved 6 22, 2016, from
European e-Competence framework: http://www.ecompetences.eu/context/

European Committee for Standardization. (2014). European e-Competence Framework v 3.0.
European Committee for Standardization. Retrieved 06 22, 2016, from European e
Competence Framework v 3.0: http://www.ecompetences.eu/

Food and Drug Administration. (2002, 01 11). General Principles of Software validation; Final
Guidance for Industry and FDA Staf. Retrieved 09 18, 2010, from

Computing Education in a Hybrid World

194

http://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/Gu
idanceDocuments/ucm085371.pdf

Formal Sciences. (n.d.). Retrieved 03 18, 2011, from Wikipedia:
http://en.wikipedia.org/wiki/Formal_sciences

Freelon, D. (2013). ReCal OIR: Ordinal, interval, and ratio intercoder reliability as a web service.
International Journal of Internet Science, 8(1), 10-16.

Gaming Today. (2007). Scientists Call WoW Corrupted Blood Epidemic a Disease Mode. Retrieved
may 28, 2008, from http://news.filefront.com/scientists-call-wow-corrupted-blood-
epidemic-a-diseasemodel/

Genova, G. (2010, July). Is Computer Science truly Scientific? Communications of the ACM, 53(7).
Hannafin, M., & Land, S. (1997). The foundations and assumptions of technology-enhanced

student-centered learning environments. Instructional Science, 25, 167-202.
Hayes, E. (2006). Situated Learning in Virtual Worlds: The Learning Ecology of Second Life.

47th anual Adult Education Resarch conference. Minneapolis, US.
HBO-Raad. (2009). Kwaliteit als Opdracht. The Hague, NL: HBO-Raad.
Hilbert. (n.d.). Retrieved 11 2010, 2010, from Wikipedia: http://en.wikipedia.org/wiki/Hilbert
Hogeschool Utrecht. (2012). Studiegids Bacheloropleidingen institute of ICT 2012-2013. Utrecht,

the Netherlands.
Hogeschool Utrecht. (2013). Studiegids Bacheloropleidingen Business IT & Management voltijd

2013-2014. Utrecht, the Netherlands: Hogeschool utrecht.
Hogeschool Utrecht. (2016). EXIN en HU koplopers toepassing e-CF. Retrieved 3 22, 2018, from

Hogeschool utrecht: https://www.hu.nl/overdehu/nieuws/EXIN-en-HU-koplopers-
toepassing-e-CF

Hubwieser, P. (2013). The darmstadt model, a first step towards a research framework for
computer science education in schools. International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives (pp. 1-14). Berlin, Heidelberg:
Springer.

Hubwieser, P., Armoni, M., Brinda, T., Dagiene, V., Diethelm, I., Giannakos, M. N., . . . Schubert, S.
(2011). Computer science/informatics in secondary education. In ACM (Ed.),
In Proceedings of the 16th annual conference reports on Innovation and technology in
computer science education-working group reports, (pp. pp. 19-38).

IEEE, A. /. (2013). Computer Science Curricula 2013: Curriculum Guidelines for Undergraduate
Degree Programs in Computer Science. ACM/ IEEE.

Informatics Europe. (n.d.). Retrieved 12 28, 2010, from Informatics Europe:
http://www.informatics-europe.org/about.php

Ireland, C. (2011). Exploring the Essence of an Object-Relational Impedance Mismatch-A novel
technique based on Equivalence in the context of a Framework. The Third
International Conference on Advances in Databases, Knowledge, and Data
Applications, (pp. 65-70).

Johnson-Laird, P. (1989). Mental Models. In M. Posner, The foundations of Cognitive Science.
Cambridge, MA, USA: MIT Press.

Johnson-Laird, P., & Byrne, R. (n.d.). Mental models, a gentle introduction. Retrieved 02 8, 2014,
from Mental models website: http://mentalmodelsblog.wordpress.com/mental-
models-a-gentle-introduction/

Joint Computer Conferences. (n.d.). Retrieved 3 18, 2016, from
https://en.wikipedia.org/wiki/Joint_Computer_Conference

Jonassen, D., & Roher-Murphy, L. (1999). Activity Theory as a Framework for Designing
Constructivist Learning Environments. Educational Technology Research and
Development, 47(1), 61-79.

References

195

Kamel Boulos, M., Hetherington, L., & Wheeler, S. (2007). Second Life: an Overview of the
Potential of 3-D Virtual Worlds in Medical and Health Education. Health information
and Libraries Journal, 24(4), 223-245.

Kemmis, S., & McTaggart, R. (1988). The action research planner, (3rd ed). Victoria, Australia:
Deakin University press.

Kirriemuir, J. (2008, March). Measuring the Impact of Second Life for Educational Purposes.
Retrieved may 28, 2008, from Virtual World Watch: http://virtualworldwatch.
net/snapshots/measuring-the-impactof-sl-in-educationmarch-2008/

Lakoff, G. &. (2000). Where mathematics comes from: How the embodied mind brings
mathematics into being. . (B. Books, Ed.)

Lamont, I. (2007). Harvard's Virtual Education Experiment in Second Life. Retrieved may 28,
2008, from http://blogs.computerworld.com/node/5553

Langley, G., & Sheppeard, H. (1985). The visual analogue scale: its use in pain measurement.
Rheumatology International, 5(4), 145-148.

Larman, C. (2005). Applying UML and patterns: an introduction to object-oriented analysis and
design and iterative development (3rd ed.). India: Pearson Education.

Larsen, V., & Lubbe, M. (2008). Quick Scan jong talent en de Wetenschap. VSNU.
Lewis, C., Jackson, M., & Waite, W. (2010, May). Student and Faculty Attitudes and Beliefs About

Computer Science. Communications of the ACM, 53(5), pp. 77-85.
Liberal Arts and Computer Science Consortium. (2007). A 2007 model curriculum for a Liberal

Arts degree in Computer Science. Journal on Educational Resources in Computing,
7(2), 2.

Linden Lab. (2003). Retrieved may 28, 2008, from Second Life: https://www.lindenlab.com/
Livingstone, D., & Kemp, J. (2006). Massively Multi-Learner: Recent Advances in 3D Social

Environments. Computing and Inforomation Systems Journal, 10(2).
Loftus, T. (2005, 2 25). Virtual World taches Real World skills. Retrieved may 26, 2008, from

NBC News: http://www.msnbc.msn.com/id/7012645/
Lolli, G. (2006). La questione dei fondamenti fra matematica e filosofia. (S. Albeverio, & F.

Minazzi, Eds.) Note di matematica, storia, cultura, 14-15, 17-35.
Magnusson, S., Krajcik, J., & Borko, H. (1999). Nature, sources, and development of pedagogical

content knowledge for science teaching. In Examining pedagogical content knowledge
(pp. 95-132). Dordrecht, the Netherlands: Springer.

Martinez, L. M., Martinez, P., & Warkentin, G. (2007). A First Experience on Implementing a
Lecture on Second Life. Second Life Education Workshop, (pp. 52-55). Chicago, USA.

Mason, H. (2007). Experiential Education in Second Life. Second Life Educational Eorkshop
2007, (pp. 14-18). Chicago, US.

Mayer, R. (1989). The psychology of how novices learn computer programming. In E. Soloway,
& J. Sphorer, Studying the novice programmer. Hillsdale, NJ: Lawrence Erlbaum.

Menendez Blanco, M., van der Veer, G., Benvenuti, L., & Kirschner, P. (2012). Design Guidelines
for Self-assessment Support for Adult Academic Distance Learning. In S. Hai-Jew
(Ed.), Constructing self-discovery Learning Spaces online: Scaffolding and Decision
making Technologies (pp. 169-198). IGI-global.

Ministero dell'Istruzione, dell'Universita' e della Ricerca. (2000, 10 19). Decreto Ministeriale 4
agosto 2000: Determinazione delle classi delle lauree universitarie, . Gazzetta
Ufficiale, 245. Retrieved from MIUR - Atti ministeriali: Decreto Ministeriale 4 agosto
2000: Determinazione delle classi delle lauree universitarie, Gazzetta Ufficiale 19
ottobre 2000 n.245 - Supplemento Ordinario n.170

Moore School lectures. (n.d.). Retrieved 01 12, 2016, from
https://en.wikipedia.org/wiki/Moore_School_Lectures

Computing Education in a Hybrid World

196

Moray, N. (1998). Identifying mental models of complex human-machine systems. International
Journal of Industrial Ergonomics, 22(4), 293-297.

Norman, D. (1983). Some observations on mental models. In D. S. Gentner, Mental Models.
Psychology Press.

NVAO. (2008). Nederlands kwalificatieraamwerk Hoger Onderwijs. NVAO.
NVAO. (n.d.). Higher Education Systems in Flanders. Retrieved 12 28, 2010, from

http://www.nvao.net/higher-education-system-in-flanders
NVAO. (n.d.). Higher Education Systems in the Netherlands. Retrieved 12 28, 2010, from

http://www.nvao.net/higher-education-system-in-the-netherlands
NWO. (2011, 1 5). Exacte Wetenschappen. Retrieved from

http://www.nwo.nl/nwohome.nsf/pages/NWOP_5S7CLQ
Object-Relational impedance mismatch, philosophical differences. (n.d.). Retrieved 11 4, 2013,

from http://en.wikipedia.org/wiki/Object-
relational_impedance_mismatch#Philosophical_differences

Open Universiteit. (2012). Webcultuur. Heerlen: Open Universiteit.
Orey, M. (2001). Emerging perspectives on learning, teaching, and technology. Retrieved

december 13, 2008, from http://projects.coe.uga.edu/epltt/
Pair, C. (1993). Programming, programming languages and programming methods. Psychology

of Programming, (pp. 9-19).
Payne, S. (2009). Mental models in human computer interaction. In A. Sears, & J. Jacko, The

human-computer interaction handbook: fundamentals, evolving technologies and
emerging applications (pp. 39-52). CRC Press.

Pennington, N. (1987). Stimulus structures and mental representations in expert
comprehension of computer programs. Cognitive psychology, 19(3), 295-341.

Plessius, H., & Ravesteyn, P. (2016). Mapping the European e-Competence framework on the
domain of Information Technology: a comparatie study. 29th Bled eConference -
Digital Economy. Bled.

Polvinen, E. (2007). Educational Simulations in Second Life for Fashion Technology Students.
Second Life Education Workshop 2007, (pp. 56-60). Chicago, US.

Putnam, H. (1975). What is mathematical truth? In H. Putnam, Mathematics, Matter, and Method
(2nd ed., pp. 60-78). Cambridge: Cambridge University Press.

QANU. (2007). Informatica. Quality Assurance Netherlands Universities (QANU). QANU.
QANU. (2014). Informaticaonderwijs aan de Nederlandse Universiteiten in 2013 - state of the art.

Quality Assurance Netherlands Universities (QANU). Utrecht: QANU.
Ralston, A. (1981). Computer Science, Mathematics and the undergraduate curriculum in both.

Amerian Mathematical Monthly, 88(7), 472-485.
Ralston, A., & Shaw, M. (1980). Curriculum '78 is Computer Science really that unmathematical?

Communications of the ACM, 23(2), pp. 67-70.
Reilly, E. (2004). Concise Encyclopedia of Computer Science (4th ed.). Jphan Wiley & Sons.
Reisner, P. (1981). Human factors studies of database query languages: A survey and

assessment. ACM computing surveys, 13(1), 13-31.
Rijks Universiteit Groningen, Faculty of Arts. (n.d.). Retrieved 3 13, 2011, from Curriculum

Informatiekunde: http://www.rug.nl/let/onderwijs/Bachelor/Informatiekunde
Rist, R. (1995). Program Structure and design. Cognitive science, 19(4), 507-561.
Ritzema, T., & Harris, B. (2008). The use of Second Life for distance education. Retrieved may 28,

2008, from Nineteenth Annual CCSC South Central Conference:
http://vhil.stanford.edu

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teachting programming: a review
and discussion. Computer Science Education, 13, 137-172.

References

197

Rovai, A. (2002). Development of an instrument to measure classroom community. The Internet
and Higher Education, 5(3), 197-211.

Sahami, M., Danyluk, A., Fincher, S., Fisher, K., Grossman, D., Hawthorne, E., . . . Cuadros-Vargas,
E. (2013). Computer Science Curricula 2013, curriculum guidelines for undergraduate
degree programs in Computer Science. ACM/IEEE.

Schagen, J., Kwaal, W. v., Leenstra, E., Smit, W., & Vonken, F. (2009). Bachelor of ICT
domeinbeschrijving. HBO-I stichting.

Schwank, I. (1993). Cognitive structures and cognitive strategies in algorithmic thinking. In E.
Lemut, B. du Boulay, & G. Dettori, Cognitive models and intelligent environments for
learning programming (Vols. , NATO ASI series F, pp. 249-259). Berlin, Germany:
Springer.

Schwank, I. (1996). Zur Konzeption prädikativer versus funktionaler kognitiver Strukturen und
ihrer Anwendung. ZDM-Analysenheft "Deutsche psychologische Forschung in der
Mathematikdidaktik". Zentralblatt für Didaktik der Mathematik(6), 168-183.

Schwank, I. (2002). Analysis of eye-movements during functional versus predicative problem
solving. European Research in Mathematics Education II. Selected papers from the 2nd
Conference of the European Society for Research in Mathematics Education (pp. 489-
498). Prag: Charles University.

Sjoer, E., Veeningen, C., Jacobs, F., & de Jong, K. (2008). Lifelong learning in the digital age.
Proceedings of CELDA 2008. Freiburg, Germany.

Skilledup. (2016, 5 25). Retrieved from http://www.skilledup.com/articles/web-developer-job-
descriptions-skills-they-require

Soloway, E., Jackson, S., Klein, J., Quintana, C., Reed, J., Spitulnik, J., . . . Scala, N. (1997). Learning
theory in practice, Case studies of learner-centred Design. Proceedings of the SIGCHI
conference on Human facors in Computing (pp. 189-196). Vancouver, CND: ACM.

Soper, D. (n.d.). Fisher's Exact Test Calculator for a 3X3 Contingency Table. Retrieved 01 10,
2015, from http://www.danielsoper.com/statcalc

Stanford University. (2001). Retrieved may 28, 2008, from Virtual Human Interaction lab:
http://vhil.stanford.edu

Steinkuehler, C. (2004). Learning in Massively Multiplayer Online Games. In I. S. Sciences (Ed.),
6th International Conference on Learning Sciences, (pp. 521-528). Santa Monica, CA,
USA.

Tartar, J., Arden, B., Booth, T., Denning, P., Miller, R., & van Dam, A. (1984, 5 101-105). 1984
Snowbird Report, Future Issues in Computer Science. Computer1985.

Tedre. (2007). Lecture Notes in the Philosophy of Computer Science. Retrieved 9 3, 2015, from
http://cs.joensuu.fi/~mmeri/teaching/2007/philcs/

Tedre, M., & Apiola, M. (2013). Three computing traditions in school computing education. In D.
M. Kadijevich, C. Angeli, C. Schulte, & Routledge (Ed.), Inproving Computer Science
Education (pp. 100-16).

UK, e.-S. (n.d.). The Tech Partnership. Retrieved february 26, 2018, from
https://www.thetechpartnership.com/about/

UNESCO. (2018). Curricular Aims/Goals. Retrieved March 15, 2018, from Unesco International
Bureau of Education: http://www.ibe.unesco.org/en/glossary-curriculum-
terminology/c/curriculum-aims-goals

Valkenburg, M., B. B., Eekhout, M. v., Haperen, M. v., Lousberg-Orbons, A., & Vonken, F. V.
(2014). Domeinbeschriijving Bachelor-ICT. HBO-I stichting.

van den Akker, J. (2004). Curriculum perspectives, an introduction. In J. v. Akker, W. Kuiper, &
U. Hameyer, Curriculum landscapes and trends (pp. 1-10). the Netherlands: Springer.

van den Akker, J. (2010). Building bridges - how research may improve curriculum policies and
classroom practices. In S. M. (ed.), Beyond Lisbon, 201(0), Perspectives from research

Computing Education in a Hybrid World

198

and development for educational policy in Europe (pp. 175-195). Sint-Katelijne-
Waver, Belgium: CIDREE.

van der Heide, D. (2002, march 8). Passen en meten. inaugurele rede Faculteit Geneeskunde.
Universiteit van Maastricht, NL.

van der Veer, G. (1990). Learning, individual differences and design recommendations.
Alblasserdam, the Netherlands: Haveka b.v.

van der Veer, G., & Puerta Melguizo, M. (2002). Mental Models. In The human–computer
interaction handbook: Fundamentals, evolving technologies and emerging applications
(pp. 52-80).

van Roy, P. (2008). The principal programming paradigms. Retrieved 11 03, 2013, from
http://www.info.ucl.ac.be/~pvr/paradigmsDIAGRAMeng108.pdf

Verifications and Validation of software. (n.d.). Retrieved from Wikipedia.
Vivendi. (2004). World of Warcraft. Retrieved may 28, 2008, from

http://www.worldofwarcraft.com/index.xml
Vlaamse overheid. (n.d.). Retrieved 12 28, 2010, from Het Hoger Onderwijsregister:

http://www.hogeronderwijsregister.be/advanced-search
Vyas, D., & van der Veer, G. (2006). Rich evaluations of entertainment experience: bridging the

interpretational gap. 13th European Conference on Cognitive Ergonomics, (pp. 137-
144). Zuroch, Switzerland.

Wages, R., Grünvogel, M., & Grützmacher, B. (2004). How Realistic is Realism? Considerations
on the Aesthetics of Computer Games. In M. Rauterberg (Ed.), Entertainment
Computing - Third International Conference. 3166, pp. 216-225. Heidelberg: Springer.

Wegner, P. (1970). Three computer traditions: Computer technology, computer mathematics
and computer science. Advances in computers, 10, 7-78.

Wegner, P. (1970). Three computer traditions: Computer technology, computer mathematics
and computer science. Advances in computers, 10, 7-78.

Wegner, P., & Goldin, D. (2006, July). Principles of problem solving. Communications of the ACM,
49(7).

Wiedenbeck, S., Ramalingam, V., Sarasamma, S., & Corritore, C. (1999). A comparison of the
comprehension of object-oriented and procedural programs by novice
programmers. Ineracting with comuters, 11(3), 255-282.

Wing, J. (2006, March). Computational Thinking. Communications of the ACM, 49(3), pp. 33-35.
Yau, S., Ritchie, R., Semon, W., Traub, J., van Dam, A., & Winkler, S. (1983). Meeting the crisis in

Computer Science. Communications of the ACM, 26(12), 1046-1050.
Zicari, R. (2012). Do we still have an impedance mismatch problem?, interview José A. Blakeley

and Rowan Miller. Retrieved 11 17, 2012, from
http://www.odbms.org/blog/2012/05/do-we-still-have-an-impedance-mismatch-
problem-interview-with-jose-a-blakeley-and-rowan-miller/

Summary

199

Summary
Computing is a discipline that is still evolving rapidly. Hybrid professions
have emerged, such as medical information systems specialist or specialist
in bio informatics; an new curricula have emerged to train these
professionals. Should we consider these curricula as computing curricula?
Our answer is: partially. We consider some of them as hybrid computing
curricula. We consider “hybrid” those curricula that train professionals for a
computing-related field, but devote less than 50% of its education to
computing. This thesis is a reflection on computing curricula and the
computing content of hybrid computing curricula.

In this thesis, we reflect on the education of computing professionals in
general and of professionals in hybrid professions in particular. Taking a
historical perspective, we describe the origins of the ACM/IEEE Curriculum
Recommendation series and comment on it aims. Computing can be
approached from different points of view (formal, scientific and design)
respecting different epistemological values. The ACM/IEEE Curriculum
Recommendation endeavor has a twofold ambition: to train the skilled
workforce requested by industry, while supporting the development of one
unified discipline of computing. These ambitions are separated in the Dutch
system for tertiary education, where responsibility lies with Universities of
Applied Sciences and Universities, respectively. To better understand Dutch
applied undergraduate computing curricula, we investigate similarities and
differences between the Dutch framework for computing education at the
Universities of Applied Sciences (HBO-ICT) and international frameworks
that were designed to scaffold the design of computing curricula: the
ACM/IEEE curriculum recommendation series and the European e-
Competence Framework.

We investigate the understanding of abstract concepts by students
enrolled in different computing curricula, and find indications for
discrepancies. We investigate students’ perception of learning in a hybrid
curriculum, and find differences between the results as reported by the
lecturers and perceived by the students. Finally, we reflect on the design of a
course we have developed for a hybrid audience.

We argue that the curricular ambitions to prepare students for the labor
market while supporting the development of one unified discipline of
computing, might be incompatible. But separating professional and
academic education, as in the Netherlands, also presents unexpected
difficulties and pitfalls. We invite national and international organizations to
further explore the question of how the three styles of computing relate to

Computing Education in a Hybrid World

200

the education of computing practitioners. We urge designers of hybrid
curricula to take responsibility for the delimitation of new professions, in
collaboration with the academic community, the industry, and the public
authorities.

We formulate recommendations for undergraduate computing curricula
aiming to support conceptualization of knowledge underlying software
development skills in a way that (1) prepares graduates to enter the labor
market; (2) allows them to keep up with a turbulent profession; and (3)
delimits these professions. In doing so, we focus on hybrid curricula in
particular.

Samenvatting

201

Samenvatting
De Informatica, die in dit proefschrift wordt aangeduid met de term

‘Computing’, is een vakgebied dat nog altijd snel in ontwikkeling is. Er
ontstaan hybride deelgebieden als medische informatiesystemen of bio-
informatica. Nieuwe bachelor-curricula ontstaan om professionals op te
leiden in deze deelgebieden. In hoeverre zouden deze moeten worden
gerekend tot de Informatica-curricula? Ons antwoord is: ten dele. Sommige
daarvan zullen wij ‘hybride’ noemen. Dat zijn die curricula die bedoeld zijn
om professionals op te leiden in Informatica-gerelateerde vakgebieden,
terwijl zij minder dan 50% van hun ruimte (studiepunten) wijden aan de
Informatica. Dit proefschrift is een beschouwing over Informatica-curricula
en het Informaticagedeelte van hybride curricula.

Vanuit een historisch perspectief, beschrijven wij het ontstaan van de
ACM/IEEE Curriculum Recommendations Series en bespreken wij hun
doelstellingen. De Informatica blijkt te kunnen worden benaderd vanuit drie
verschillende invalshoeken (formeel, empirisch-wetenschappelijk en vanuit
een ontwerpperspectief), die verschillende epistemologische waarden
respecteren. ACM/IEEE heeft zich met de Curriculum Recommendations
Series een dubbel doel gesteld: professionals opleiden voor de arbeidsmarkt
èn de eenheid van het vakgebied bewaken. In Nederland zijn deze ambities
respectievelijk ondergebracht bij het HBO en de Universiteiten. Om het
Nederlandse systeem beter te begrijpen, brengen wij overeenkomsten en
verschillen in kaart tussen de Nederlandse Domeinbeschrijving HBO-
Bachelor of ICT en internationale frameworks, die zijn bedoeld om
curriculaire keuzes te onderbouwen: de ACM/IEEE curriculum
Recommendations series en het Europese e-Competence framework e-CF
3.0.

Wij onderzoeken hoe studenten omgaan met abstracte begrippen.
Daarbij vinden wij aanwijzingen voor verschillende conceptualisaties van
hetzelfde begrip bij studenten die verschillende programma’s hebben
gevolgd binnen HBO-ICT. Bij studenten in een hybride curriculum vinden
wij een andere perceptie over de leeropbrengsten van een succesvolle
cursus, dan wat hun docenten hadden gerapporteerd. Tot slot reflecteren
wij over het ontwerp van een cursus over het Web voor een gemengd
publiek, bestaande uit eerstejaars studenten Informatica en ouderejaars
studenten Cultuurwetenschappen.

Wij concluderen dat de ambities van de ACM/IEEE Curriculum
Recommendations series wel eens strijdig zouden kunnen blijken. Maar ook
de scheiding van de professionele en de academische variant van het Hoger

Computing Education in a Hybrid World

202

Onderwijs, zoals in het Nederlandse systeem, kent onverwachte
moeilijkheden en valkuilen. Het vraagstuk, wat een solide Informatica-
curriculum is in het Hoger Onderwijs, is er een die op dit moment geen
pasklare antwoorden kent.

Wij nodigen nationale en internationale organisaties uit om nader te
onderzoeken wat de drie invalshoeken betekenen voor de opleiding van
Informatica-professionals. Wij dringen er bij ontwerpers van hybride
curricula op aan, dat zij verantwoordelijkheid nemen voor de afbakening
van de nieuwe deelgebieden van de Informatica waar zij voor opleiden, in
samenspraak met de academische gemeenschap, het bedrijfsleven en de
overheid.

Tot slot geven wij aanbevelingen voor het ontwerpen van bachelor-
curricula in de Informatica, zodanig dat (1) afgestudeerden worden
voorbereid op deelname aan de arbeidsmarkt; (2) zij hun turbulente
vakgebied kunnen bijhouden; en (3) het deelgebied waarin zij competent
zijn is afgebakend. Daarbij richten wij onze aandacht in het bijzonder op
hybride curricula.

203

Curriculum Vitae Laura Benvenuti

2013-now
Lecturer at Hogeschool van Amsterdam (University of Applied Sciences in
Amsterdam, NL), Faculty of Digital Media and Creative Industries, bachelor
program Communication and Multimedia Design.

2006-2012
Assistant Professor at Open Universiteit Nederland, Faculty of Computer
Science.

2003-2006
Lecturer at Hogeschool Utrecht (University of Applied Sciences in Utrecht,
NL), bachelor program Digital Communication (successor of the bachelor
program Communication Systems - see earlier). The Multimedia studio
developed into a specialization program Communication and Multimedia
Design. Responsible for the Computing part of this program.

1995-2006
Lecturer at Hogeschool Utrecht, (University of Applied Sciences in Utrecht,
NL), Faculty of Communication and Journalism, bachelor in Communication
Systems. Responsible for the Computing program until 1999. Later: project
manager of a pilot Multimedia studio.

1991 -1993
Trainer/consultant at Remmen & de Brock, Eindhoven (NL), a company
specializing in semantic models for relational databases.

1987-1990
Project manager at the Delegation of Italian Central Bank in Brussels (B),
pilot office automation.

1986
Master’s degree in Mathematics, Mathematical Logic, Dept. of Computer
Science, Universitá degli Studi di Pisa (I).

	ComputingEduCover
	ComputingEduHybridWorldDef
	1 Introduction
	1.1 Main research question
	1.2 Readers’ Road Map
	1.3 Decomposed research questions

	Part I—What Is Taught And Why?
	Research questions RQ1, RQ2, RQ3, RQ6, RQ7

	2 Preliminary Study0F
	2.1 Introduction
	2.2 Computing curricula
	2.3 Is computing a science?
	2.4 Mathematical intermezzo
	2.5 Verification and validation
	2.6 Software Engineering
	2.7 Two interpretations of validation in Software Engineering
	2.8 Information Systems
	2.9 One interpretation of validation in Information Systems
	2.10 The nature of guidelines and recommendations
	2.11 Discussion
	2.12 So what?

	3 Historical Review And Epistemological Considerations1F
	3.1 Introduction
	3.2 Computing curriculum guidelines
	3.2.1 A theoretical approach
	3.2.2 The software crisis
	3.2.3 The Snowbird conferences in the 1980s
	3.2.4 The ACM/IEEE curriculum reports
	3.2.5 Hybrid computing curricula

	3.3 Cultural styles in computing
	3.4 Discussion: curricular trade-offs
	3.4.1 Incorporation of the three cultural styles
	3.4.2 Fostering discipline oriented thinking
	3.4.3 The role of mathematics

	3.5 Hybrid curricula: two cases
	3.5.1 Liberal Arts and Computer Science
	3.5.2 Front End Development

	3.6 Conclusions

	4 Computing Curricula in Dutch Universities of Applied Sciences
	4.1 Introduction
	4.2 Frameworks for curriculum recommendations
	4.2.1 ACM/IEEE series
	4.2.2 e-CF
	4.2.3 Dutch Bachelor of ICT frameworks
	4.2.3.1 Similarities and differences HBO-ICT 2009 & 2014

	4.2.4 HBO Creative Technologies

	4.3 Models for comparison
	4.3.1 The Darmstadt model
	4.3.1.1 Discussion

	4.3.2 Van den Akker’s curricular spider web
	4.3.3 5 aspects

	4.4 Curricular frameworks compared
	4.4.1 Rationale
	4.4.1.1 ACM/IEEE series
	4.4.1.2 e-CF
	4.4.1.3 HBO-ICT 2009
	4.4.1.4 HBO-ICT 2014
	4.4.1.5 HBO-Creative Technologies

	4.4.2 Intentions: Learning Objectives
	4.4.2.1 ACM/IEEE series
	4.4.2.2 e-CF
	4.4.2.3 HBO-ICT 2009
	4.4.2.4 HBO-ICT 2014
	4.4.2.5 HBO-Creative Technologies

	4.4.3 Intentions: Competencies
	4.4.3.1 ACM/IEEE series
	4.4.3.2 e-CF
	4.4.3.3 HBO-ICT 2009
	4.4.3.4 HBO-ICT 2014
	4.4.3.5 HBO-Creative Technologies

	4.4.4 Intentions: educational standards
	4.4.4.1 ACM/IEEE series
	4.4.4.2 e-CF
	4.4.4.3 HBO-ICT 2009
	4.4.4.4 HBO-ICT 2014
	4.4.4.5 HBO-Creative Technologies

	4.4.5 Knowledge
	4.4.5.1 ACM/IEEE series
	4.4.5.2 e-CF
	4.4.5.3 HBO-ICT 2009
	4.4.5.4 HBO-ICT 2014
	4.4.5.5 HBO-Creative Technologies

	4.5 Discussion
	4.5.1 The aims of undergraduate computing education
	4.5.2 Hybrid curricula and new professional roles

	4.6 Conclusions and recommendations

	PART I - Conclusions
	Research question RQ1
	Recommendations
	Research questions RQ2, RQ3
	Recommendations
	Research questions RQ6, RQ7
	Recommendations:

	Part II—How Do Students Understand The Subject
	Research questions RQ4, RQ6, RQ7

	5 Cognitive Aspects of Software Development2F
	5.1 Introduction
	5.2 Background
	5.2.1 Mental models
	5.2.2 Individual preferences
	5.2.3 Assessing mental models: the teach-back protocol

	5.3 Literature review
	5.3.1 Cognitive aspects of (OO) programming
	5.3.2 Cognitive aspects of user-database interaction

	5.4 A need for empirical study
	5.5 A first experiment: how do professionals understand their systems?
	5.5.1 Questions
	5.5.2 Scoring categories
	5.5.3 Participants
	5.5.4 Hypotheses
	5.5.5 Preliminary Results

	5.6 Preliminary conclusions
	5.7 Acknowledgements

	6 Conceptualizations of the Notion of an Object3F
	6.1 Introduction
	6.2 Backgrounds
	6.2.1 Mental models
	6.2.2 Individual preferences
	6.2.3 Assessing mental models: the teach-back protocol

	6.3 Literature Review
	6.3.1 Objects
	6.3.2 Cognitive aspects of (OO) programming
	6.3.3 Cognitive aspects of user-database interaction

	6.4 A need for empirical study
	6.5 Experiment design
	6.5.1 Context
	6.5.2 Questionnaire
	6.5.3 Research questions and scoring categories
	6.5.4 Reliability
	6.5.5 Participants
	6.5.6 Hypotheses

	6.6 Results
	6.6.1 Ha: amounts of different objects reported
	6.6.2 Hb: mental models across the disciplines
	6.6.3 Hc: problem solving preferences

	6.7 Lessons learned
	6.8 Conclusions
	6.9 Our message for education

	PART II – Conclusions
	Research question RQ4
	Research questions RQ6, RQ7
	Recommendations
	Further Research

	Part III—Case Studies In A Hybrid Curriculum
	Research questions RQ5, RQ6, RQ7

	7 A Craftsmanship-Based Approach (1)4F
	7.1 IntroductioN
	7.2 New technology, new paradigm
	7.2.1 Constructivist learning
	7.2.2 Why 3D virtual worlds afford constructivist learning
	7.2.3 Downsides of constructivist learning
	7.2.4 Do 3D virtual worlds always support constructivist learning?
	7.2.5 how to assess subjective impressions
	7.2.6 Measuring experience

	7.3 Observations in theory and practice
	7.4 A course on 3D virtual worlds
	7.4.1 Course structure
	7.4.2 A virtual world as an educational tool
	7.4.2.1 What does not work

	7.5 Assessment
	7.5.1 The survey
	7.5.2 Results

	7.6 Conclusions and future works

	8 A Craftsmanship-Based Approach (2)5F
	8.1 Introduction
	8.2 A virtual village as a community of learners
	8.3 Measuring experienced connectedness and learning
	8.4 The asterix village
	8.5 What’s new, what’s next?
	8.6 Perceived connectedness and learning
	8.7 Conclusions

	Part III - Conclusions
	Research question RQ5
	Research questions RQ6, RQ7
	Recommendations
	Further research

	Part IV—HCI In A Hybrid Curriculum: Research In Action
	Research question RQ7

	9 HCI in a Hybrid Curriculum: Research in Action6F
	9.1 Introduction
	9.1.1 An excellent curriculum
	9.1.2 Success factors
	9.1.3 Corporate guidelines for the e-learning environment
	9.1.4 Discussion

	9.2 A workplace online
	9.2.1 Actual experiment (Blackboard course site)

	9.3 Design issues and solutions
	9.3.1 Context and content both central
	9.3.2 Encourage student participation in research
	9.3.3 Share results
	9.3.4 Practice what you preach and ask for feedback
	9.3.5 Apply new concepts while adapting to organisational constraints

	9.4 Preliminary evaluation
	9.4.1 Conclusion

	PART IV - Conclusions
	Research question RQ7
	Recommendations
	Further research

	10 Overall Conclusions and Recommendations
	10.1 Research question RQ1
	10.1.1 Part I
	10.1.2 Part III
	10.1.3 Recommendations

	10.2 Research questions RQ2, RQ3
	10.2.1 Part I
	10.2.2 Part III
	10.2.3 recommendations

	10.3 Research question RQ4
	10.3.1 Part II
	10.3.1.1 The differences we had expected
	10.3.1.2 The differences we found
	10.3.1.3 A possible explanation
	10.3.1.4 Hypothesis and further research

	10.3.2 Recommendations

	10.4 Research question RQ5
	10.4.1 Part III
	10.4.2 Recommendations

	10.5 Research questions RQ6, RQ7
	10.5.1 Part I
	10.5.2 Part II
	10.5.3 Part III
	10.5.4 Part IV
	10.5.5 Recommendations

	10.6 Which lessons can we learn that can be applied?

	REFERENCES
	Summary
	Samenvatting
	Curriculum Vitae Laura Benvenuti

