
Automated feedback for intelligent

tutoring systems

Bastiaan Heeren

Informatica studiedag, 6-9-2019, Utrecht

2

www.numworx.nl

3

www.numworx.nl

4

www.numworx.nl

5

www.numworx.nl

6

www.numworx.nl

7

www.numworx.nl

8

www.numworx.nl

9

Overview of this talk

1. Intelligent Tutoring Systems (ITS)

‒ Domain reasoners

‒ Feedback services

2. Expert domain knowledge

‒ Problem-solving procedures

‒ Granularity (step-size)

3. Examples of domain reasoners

Motivation:

1. Simplify construction of ITSs (which are complex software systems)

2. Represent expert domain knowledge explicitly (for better feedback)

3. Apply approach to a wide range of problem domains

10

Research team

Many more scientists

collaborate

Started around 2006

>20 BSc students

>20 MSc students

13,269 SVN commits,

by 52 authors

11

Intelligent Tutoring Systems (ITS)

Part 1:

12

Inner and outer loops (VanLehn 2006)

 Outer loop: solving one task after another

 Inner loop: the steps for solving one complex, multi-step problem

13

Four component ITS architecture

 Classical structure of an ITS (with four components)

 In practice, often one monolithic system

14

Domain reasoner

A domain reasoner is the part of the system that can ‘reason about the

problems’:

 the objects in a domain (e.g. expressions, equations)

 how these objects can be manipulated

 how to guide manipulation to reach a certain goal

 For math, computer algebra systems (CAS) can do part of the job:

‒ they are great in evaluating expressions, but

‒ built-in equality can be very subtle

‒ not designed for providing feedback

15

Providing feedback

Narciss (2008) distinguishes the following feedback types:

 Knowledge of performance

→ E.g. percentage of correctly solved tasks

 Knowledge of result/response (KR)

→ Correct/incorrect

 Knowledge of the correct response (KCR)

→ Provides the correct answer

 Elaborated feedback

→ Additional information besides KR and KCR

 Answer-until-correct and Multiple-try feedback

16

Feedback services

 A domain reasoner provides feedback services:

‒ Intuitively, just request-response communication

‒ Services are derived from the feedback types

‒ Services for the inner loop and for the outer loop

Examples of services:

 Am I finished?

 Give me a next-step hint

 Give me a worked-out solution

 Is my step correct (step diagnosis)?

‒ If yes: does the step bring me closer to a solution?

‒ If no: is it a common mistake?

17

Expert domain knowledge

Part 2:

18

Ideas framework

Generic framework for constructing

domain reasoners

 Developed in Haskell

 Size: 12,397 LOC

 Open source

 Independent of problem domain

 http://ideas.cs.uu.nl/tutorial/

Interactive Domain-specific Exercise

Assistants

19

Interactive explorer for domain reasoners

20

Rules

 Rules specify the steps (manipulations) that are allowed

‒ rewriting steps

‒ refinement steps

Distributivity rule: Ɐabc . a(b + c) → ab + ac

Example: 5(x + 2) → 5x + 10

Preferably specified as a rewrite rule (for further analysis):

distr = rule “distr” $ \a b c -> a*(b+c) :~> a*b + a*c

Rules are used for:

‒ recognizing steps

‒ suggesting possible next steps

21

Implementing rewrite rules

distr :: Rule Expr

distr = rule “distr” $ \a b c -> a*(b+c) :~> a*b + a*c

 Meta-variables are introduced by a

lambda abstraction?

Type-index datatypes approach supports:

 Knuth-Bendix completion (analysis)

 AC-rewriting

 Rule inversion

 Automated testing

 Documentation (pretty-printing)

22

Problem-solving procedures

Problem-solving procedures describe sequences of rule applications that

solve a particular task

Example procedure for adding two fractions:

1. find the lowest common denominator (LCD)

2. convert fractions to LCD as denominator

3. add the resulting fractions

4. simplify the result

Problem-solving procedures are used for:

‒ recognizing the strategy

‒ detecting detours

‒ providing next-step hints

‒ providing worked-out examples

23

Problem-solving procedures

We have developed a domain-specific language for specifying

procedures: sequence, choice, repeat, try, prefer, somewhere, etc.

Resulting in:

24

Theoretical foundations

25

Problem-solving procedures:

 are inspired by context-free grammars

 have been formalized by a trace-based semantics (CSP)

 allow new composition operators (interleaving, topological sorts)

 enable various tree traversal strategies (topdown, outermost)

Normal forms (equivalence classes)

Normal forms define classes of expressions that are treated the same, and

select one canonical element for such a class

Example: 10 + 5x ≈ 5x + 10 ≈ 5x + 5∙2

 In math: associativity, commutativity, calculations, simplifications, etc.

 Used for relations such as equal, equivalent, similar, indistinguishable

 The granularity (step size) of a task is often left implicit

Normal forms are used for:

‒ recognizing steps

‒ rewriting atypical expressions, e.g. 4 + (-5)

‒ deciding whether finished or not

26

Buggy rules

Buggy rules describe common mistakes and enable specialized feedback

messages when detected

Buggy distribution: Ɐabc . a(b + c) → ab + c

Example: 5(x + 3) → 5x + 3

Sign mistake: 5x = 2x + 3 → 7x = 3

 Buggy rules are often associated with a sound rule

Buggy rules are used for:

‒ detecting common mistakes

27

Constraints

Constraints have a relevance condition and a satisfaction condition: on

violation, a special message can be reported

Example: if the equation is linear (relevance), then the equation’s right-

hand side should not contain x (satisfaction)

Constraint message: the equation is not yet solved

 Based on theory of learning from performance errors (Ohlsson 1992)

Constraints are used for:

‒ checking properties or attributes

‒ reporting violations

28

Feedback on the structure of hypothesis tests

Sietske Tacoma et al., Automated Feedback on the Structure of Hypothesis Tests, AIED 2019

Step construction area

Step selection drop-down

Domain reasoner feedback

Final answer area
29

Feedback on the structure of hypothesis tests

The tutor’s diagnose feedback service combines several

knowledge components:

30

Examples of domain reasoners

Part 3:

31

Advise-Me: project goal

 Automatic Diagnostics with Intermediate Steps in Mathematics Education

 Assessment of free-text input for math story problems:

‒ Set up algebraic expressions and simplify them

‒ Set up equations and inequalities and solve them

 Task design resources:

‒ Pépite materials (Paris)

‒ CITO (Arnhem)

‒ Freudenthal Institute (Utrecht)

‒ USAAR (Saarbrucken)

This project has received funding from the European Union’s ERASMUS+ Programme, Strategic Partnerships for

school education for the development of innovation, under grant agreement number 2016-1-NL01-KA201-023022. 32

Domain reasoner for axiomatic proofs

Josje Lodder et al., Generating Hints and Feedback for Hilbert-style Axiomatic Proofs, SIGCSE 2017

Complete the proof in

two directions Fill in the template, then the rule

is applied automatically

33

Domain reasoner for functional programming

Alex Gerdes et al., Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated Feedback, IJAIED 2017

Holes for unfinished

parts in the program

Hint sequences

34

Tutoring system to learn code refactoring

 Tool based on rules extracted from input by 30 experienced teachers

Hieke Keuning et al., How Teachers Would Help Students to Improve Their Code, ITiCSE 2019

== trueforeach

>= 0

duplication

35

Domain reasoners for communication skills

Johan Jeuring et al., Communicate! - A Serious Game for Communication Skills, EC-TEL 2015 36

OU Master theses about domain reasoners

Tim Olmer (2014, TFPIE), Hieke Keuning (2014, CSERC), Stéphane Thibaud (2017), Hugo Arends (2017, Koli Calling) 37

OU Master theses about ITSs

1. Gideon Teeuwen (2016). Comparing architectural styles for distributed expert

knowledge modules in intelligent tutoring systems

2. Johan Eikelboom (2017), Towards lightweight student modelling for

Functional Programming Tutors

3. Niels Kolthoff (2019). ITS Authoring ‒ Integrating a distributed expert

knowledge module into existing authoring tools

4. Rob Smit (in progress). A domain-specific language for generating feedback

in Intelligent Tutoring Systems

5. Cor Zijlstra (in progress). Student interaction module ‒ Architecture trade-offs

for a logic student interaction module

38

1 3

2

4

5

Trends and challenges

 Authoring intelligent tutoring system

‒ Literature reports 200-300 authoring hours for 1 hour of instruction

‒ We believe software technology can help

 Data-driven intelligent tutoring system

‒ Use AI techniques to generate feedback from collected data

‒ Raises questions about the role of expert domain knowledge

 Further adaptation and personalization

‒ Models for mastery learning (e.g. Bayesian knowledge tracing)

 Designing tools for less-structured problem domains

‒ For example, domains of software design and learning languages

39

Take-home messages

1. Domain reasoners with feedback services simplify the construction of ITSs

– Services result in loosely coupled, reusable software components

– Services can be derived from popular feedback types

2. Represent expert domain knowledge explicitly (for better feedback)

– Rules, problem-solving procedures, normal forms, buggy rules,

constraints

– The step-size of a task matters

3. The presented approach can be applied to a wide range of problem domains

Websites:

 http://ideas.cs.uu.nl/

 http://advise-me.ou.nl/

 Bastiaan.Heeren@ou.nl

40

