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Abstract. Interactive exercise assistants support students in practicing
exercises, and acquiring procedural skills. Many mathematical topics can
be practiced in such assistants. Ideally, an interactive exercise assistant
not only validates final answers, but also comments on intermediate steps
submitted by a student, provides hints on how to proceed, and presents
worked-out examples. For these purposes, fine control over the symbolic
simplification procedures of the underlying mathematical machinery is
needed.
In this paper, we introduce views for mathematical expressions. A view
defines an equivalence relation by choosing a canonical form of mathe-
matical expressions. We use views to track and recognize intermediate
answers, to help in presenting expressions to a user, and to control the
granularity of the steps in worked-out examples. We develop the concept
of a view, discuss the laws it satisfies, and show how views are composed,
which means that they can be used for multiple exercise classes.

1 Introduction

An interactive exercise assistant supports a student who stepwise solves an ex-
ercise. A student gets an exercise, for example about solving a system of linear
equations, and takes steps towards the solution. Examples of interactive exercise
assistants for mathematics are the Digital Mathematics Environment (DWO) of
the Freudenthal Institute [5], MathDox [7], Aplusix [6], MathPert [3], WIMS [8],
ActiveMath [9], and many more. Here is an example of a series of (correct) steps
a student makes when solving a linear equation:

1− 4x + 2
3 = 3x − 5x − 1

4
⇐⇒ 12− 4(4x + 2) = 36x − 3(5x − 1) times 12
⇐⇒ 12− 16x − 8 = 36x − 3(5x − 1) distribution
⇐⇒ 12− 16x − 8 = 36x − 15x + 3 distribution
⇐⇒ 4− 16x = 21x + 3 merging
⇐⇒ 4− 37x = 3 minus 21x
⇐⇒ −37x = −1 minus 4
⇐⇒ x = 1

37 divide by −37



Most interactive exercise assistants would accept this derivation: they check
that each step is correct by calculating that the solution of the equation has not
changed. The comments on the right-hand side suggest that a single rewrite rule
is applied at each step. However, simplification steps are silently performed at
all these steps. For instance, unraveling the simplification of the left-hand side
after the first step (multiply both sides by 12) gives:

(1− 4·x + 2
3 )·12

⇐⇒ 1·12− 4·x + 2
3 ·12 (a − b)·c = a·c − b·c

⇐⇒ 12− 4·x + 2
3 ·12 constant folding

⇐⇒ 12− (4·x + 2)·12
3

a
b ·c = a·c

b
⇐⇒ 12− 12·(4·x + 2)

3 a·b = b·a
⇐⇒ 12− 12

3 ·(4·x + 2) a·c
b = a

b ·c
⇐⇒ 12− 4·(4·x + 2) constant folding

The single step in the first derivation actually consists of around 15 basic rewrite
steps. Expanding the steps in this derivation would make it very lengthy.

The first derivation shows a sequence of simplified terms that are in some
canonical form. A canonical form of a mathematical expression is a standard
way of (re)presenting that expression. These canonical forms play an important
role in interactive exercise assistants, for instance for simplifying terms. The
exercise assistants we have tested all have some notion of canonical forms, but
their application is often rather subtle.

Most of the exercise assistants mentioned earlier can perform rewrite steps,
followed by automatic simplification to some canonical form, and they can check
that a student has not changed the solution of the exercise, which would indicate
an error. These tools do not have explicit knowledge about strategies for solving
the exercise, however. Therefore, they do not check whether the step made by
the student is on the optimal path to the solution, whether the student makes
progress, or give hints to students that are stuck. For these purposes we use
strategies [10] in our feedback services. A strategy for an exercise describes ex-
actly how to stepwise obtain a solution to an exercise. Strategies can be used to
monitor progress, to check whether or not a step submitted by a student follows
the strategy, to give hints, and to generate worked-out solutions.

Strategies have to include knowledge about canonical forms of expressions:
we do not want to show the basic simplification steps in our hints or worked-out
solutions, and we also do not want to force students to perform these simple
rewriting steps. In this paper, we investigate the following research questions:

– Economy of rules (Section 2). How can we describe rewrite rules on a mathe-
matical domain using a limited set of rules? For example, we want the rewrite
rule a

b + c
b = a + c

b , but not also −a
b + c

b = −a + c
b and a

b −
c
b = a − c

b .
– Canonical form (Section 2). How can we ensure that we only show intuitive

representations of expressions to users in worked-out examples? For example,
a + (−b) should be presented as a − b. And we should never show −0.



– Granularity (Section 3). How can we describe rewrite steps of different granu-
larity, to mimic the typical steps users take? Users with different backgrounds
will take steps of different granularity: a university student will usually take
fewer steps in a calculation than a 10-year old.

– Recognizing strategy steps (Section 4). How can we determine that a student
has performed a step that matches the step prescribed by the strategy? A
user might have performed a step, but forgotten some of the simplification
steps we assume. We want to accept automatic simplification, but we also
want to accept partly simplified steps.

In this paper we present so-called views [18] to address these questions. Views
are used to describe and calculate canonical forms, at each step. Our main con-
tributions are the development of views, and the description of a derivation step
in terms of a rewrite rule and a view in which the rule is applied. We use the
functional programming language Haskell [14] to explain our ideas, and to show
some actual code snippets of our implementation.

2 Views

In this section, we gradually explore the concepts of views and canonical forms.
Our views are based on the views proposed by Wadler [18]. His views make
it possible to combine pattern matching with abstract data types, and have
their origin in research on programming languages. We use views for a very
different purpose, namely for rewriting in the context of an interactive exercise
assistant. Our views abstract over algebraic laws, and help to hide the underlying
representation of mathematical objects.

We start by introducing a representation for mathematical expressions in
Section 2.1, which we use in an exercise to perform some basic calculations with
fractions. This will be our running example throughout this section. We discuss
a number of definitions for matching expressions (Section 2.2), and show how
these functions can be combined in Section 2.3. In the last two sections we make
the concept of a view more precise with some definitions and properties, and we
focus on choosing the canonical form of a view.

2.1 Abstract syntax

We use the following abstract syntax to represent mathematical expressions.
Abstract syntax is represented by a data type in Haskell, the programming
language in which we have implemented our exercise assistants.

data Expr = Nat Integer | Var String | Negate Expr
| Expr :+: Expr | Expr :?: Expr | Expr :−: Expr | Expr :/: Expr

Expressions are constructed from the natural numbers (Nat) and variables (Var),
and can be combined into larger expressions using unary negation and the bi-
nary operators for addition, multiplication, subtraction, and division. The Nat



constructor can only have a non-negative number, and we will maintain this
invariant. Hence, the constant value −5 is represented by Negate (Nat 5). This
data type is close to the concrete syntax of mathematical expressions, which
makes it suitable for interactive exercise assistants since we can truthfully repre-
sent terms that are entered by users of the exercise assistants. The disadvantage
of this representation is that it complicates the formulation of rules and strate-
gies. We have to deal with atypical expressions, such as x + (−2) or −0, and we
want to avoid reporting these to our users.

In the remainder of the paper, we use the infix constructors surrounded by
colons for the abstract representation of mathematical objects. Other represen-
tations, such as OpenMath [15] and MathML [17], are quite similar, be it more
verbose.

2.2 Matching with views

Consider the exercise of adding two fractions, targeted at primary school pupils.
A first step would be to let the fractions have the same denominator, and for
this one typically computes the lowest common denominator (lcd). Given an
expression of type Expr , the following function returns its lcd :

lcd :: Expr → Maybe Integer
lcd ((a :/: Nat b) :+: (c :/: Nat d)) = Just (lcm b d)
lcd = Nothing

where lcm is a predefined function which calculates the lowest common multiple
of two integers. The function lcd is partial, which is reflected by the Maybe
type constructor. The function only works for expressions of the same form as
the left-hand side pattern: for all other values, the function fails in computing
the lcd (that is, Nothing is returned). In fact, our intuitive definition of lcd is
unsuitable for our Expr data type:

– Suppose we also want to use lcd when subtracting one fraction from another,
e.g., 2

3 −
1
4 . This requires an extra case for our definition, in which we match

on the constructor :−: at top-level.
– What if the first fraction is negative, as in −1

4 + 2
3? In combination with

support for subtraction, this requires a substantial number of new cases.
– The denominator can also be negative ( 1

−4 + 2
3), leading to even more com-

binations that have to be considered.

In this scenario, pattern matching is not going to work because the number of
cases will grow rapidly. Instead, we introduce views [18] to gain the flexibility we
are searching for, without obscuring lcd ’s definition. A view allows us to represent
a collection of expressions by means of expressions of a particular canonical form.
A view consists of two components: a function for mapping an expression to a
canonical form, and a function mapping a canonical form back to an expression.
We now introduce the former component, and defer the latter to Section 2.4.



Addition :
[A1] a + (b + c) = (a + b) + c
[A2] a + b = b + a
[A3] 0 + a = a

Multiplication :
[M1] a·(b·c) = (a·b)·c
[M2] a·b = b·a
[M3] 0·a = 0
[M4] 1·a = a
[M5] a·(b + c) = (a·b) + (a·c)

Equation :
[E1] (a = b) = (a + c = b + c)
[E2] (a = b) = (a·c = b·c) (c 6= 0)

Negation :
[N1] − (−a) = a
[N2] a − a = 0
[N3] a − b = a + (−b)
[N4] − (a + b) = (−a) + (−b)
[N5] − (a·b) = (−a)·b
[N6] − (a / b) = (−a) / b

Division :
[D1] a / a = 1 (a 6= 0)
[D2] a / 1 = a
[D3] a / (b / c) = a·(c / b) (c 6= 0)
[D4] (a / b) / c = a / (b·c)
[D5] a·(b / c) = (a·b) / c
[D6] (a + b) / c = (a / c) + (b / c)

Fig. 1. Basic algebraic laws

Let the type Match a b be an abbreviation for a partial function from type
a to type b:

type Match a b = a → Maybe b

The intuition is that we view a value of type a in some specific way, and possibly
as a value of a different type.

At top-level, lcd is expecting an addition, and we can apply some algebraic
laws to put an expression into the expected form (if possible). Figure 1 lists a
number of basic algebraic laws. The function matchPlus tries to match a plus at
top-level, and uses laws [N3] and [N4] to do so. If it succeeds, it returns a pair
containing the operands of the addition.

matchPlus :: Match Expr (Expr ,Expr)
matchPlus (a :+: b) = Just (a, b)
matchPlus (a :−: b) = Just (a,Negate b) -- law [N3]
matchPlus (Negate a) = do (x , y)← matchPlus a

Just (Negate x ,Negate y) -- law [N4]
matchPlus = Nothing

In the case for negation, we call the function recursively on the negated term.
If the call succeeds with a pair (x , y), both operands are negated. Preferably, a
helper-function is used (instead of the constructor Negate) that removes double
negations (law [N1]). More laws could be used in the above definition, such as
the distribution rule [M5]. The challenge was to define lcd for adding fractions.
Given our targeted audience, we want this distribution to be performed by the
user prior to the addition. Therefore, we do not incorporate the law in matchPlus.



In the same fashion, we introduce a function to match a division. Here, we
only push negations into the numerator.

matchDiv :: Match Expr (Expr ,Expr)
matchDiv (a :/: b) = Just (a, b)
matchDiv (Negate a) = do (x , y)← matchDiv a

Just (Negate x , y) -- law [N6]
matchDiv = Nothing

The third match-function alleviates the problems caused by the Nat constructor
only accepting non-negative constants. This function matches a natural number
preceded by one or more negations, and returns an integer value.

matchCon :: Match Expr Integer
matchCon (Nat n) = Just n
matchCon (Negate e) = do c ← matchCon e

Just (−c) -- constant folding
matchCon = Nothing

Note that (−c) is the primitive negation operation applied to integer c.

2.3 Composing match-functions

With the helper-functions for matching expressions, we can define lcd . With
some “plumbing” in the Maybe monad, this is not too difficult. However, we
first present a number of combinators for composing match-functions, which
will make it even more straightforward to write lcd .

The type constructor Match precisely fits the Arrow interface [13], which
is a general interface to computation. In our case, we modeled partiality by
introducing the Maybe monad, which turns Match into a Kleisli arrow: an arrow
of type a → m b for some monad m. The advantage of turning Match into an
arrow is that this gives us a set of combinators, without too much effort. The
combinator (>>>), for example, has type Match a b → Match b c → Match a c,
and allows us to sequentially combine two matches: m >>> n first matches
with m and then with n. Other arrow combinators are (∗∗∗), which performs
two matches in parallel, and second , which performs a match on the second
component of a pair.

With the arrow combinators, we define matchTwoFractions, which views an
expression as the sum of two fractions with constants in the denominators.

matchTwoFractions :: Match Expr ((Expr , Integer), (Expr , Integer))
matchTwoFractions = matchPlus >>> (matchFraction ∗∗∗ matchFraction)

where
matchFraction :: Match Expr (Expr , Integer)
matchFraction = matchDiv >>> second matchCon



For each match-function we have made explicit the laws on which it is based.
Therefore, it is easy to determine the laws involved in combinations of match-
functions such as matchTwoFractions. We give an improved definition for lcd :

lcd :: Expr → Maybe Integer
lcd e = do ((a, b), (c, d))← matchTwoFractions e

Just (lcm b d)

2.4 Defining views

This section defines views. We explain how views are used to calculate canonical
forms, and which properties they satisfy. The definitions are given in Haskell.

So far, only functions for matching have been considered. With each partial
function from a to b, we associate a build function which returns a value in the
original domain. A view pairs a match and build function.

data View a b = View{match :: Match a b, build :: b → a }

For each view we assume that the two functions define a canonical form. We
make this idea more precise in the definition of the function canonical , which
returns the canonical form of an element under a given view:

canonical :: View a b → a → Maybe a
canonical view a = do b ← match view a

Just (build view b)

We apply the match function of the view on an element, and on a successful
match, we use the build function to return to the original domain. For conve-
nience, we also define a simplification function, which returns the value at hand
on a failing match:

simplify :: View a b → a → a
simplify view a = fromMaybe a (canonical view a)

The following properties of the simplify function should hold for all views, es-
tablishing a property for match and build pairs.

Property 1 (Idempotence). For every view v , simplify v is expected to be an
idempotent function. If this is not the case, we say that view v is improper.

Property 2 (Soundness). Simplification with a view v should preserve the se-
mantics of an object. Let a be some element in the domain of view v , and let
J · K denote the semantics of that domain. Then JaK = Jsimplify v aK.

Because each proper view defines a canonical form, it also defines an equiv-
alence relation. Two elements can be tested for equivalence under a view by
comparing their canonical forms. We use simplify to do the job:



viewEquivalent :: Eq a ⇒ View a b → a → a → Bool
viewEquivalent view x y = simplify view x ≡ simplify view y

The overloaded equality operator ≡ belongs to the Eq type class, and is normally
implemented as equality on the abstract syntax. Hence, if view does not apply
to x nor y , viewEquivalent tests for syntactic equality of x and y .

The functions for matching can be composed using the arrow interface, and
likewise, we can compose views. In fact, we use the same interface for the View
type constructor, which enables us to combine views. The build operation is also
an arrow since it is an ordinary function, except in the opposite direction. As
a consequence, we cannot implement the pure function for a view because we
cannot automatically compute the inverse of a function. Views are closely related
to the bidirectional arrows proposed by Alimarine et al. [1].

2.5 Choosing the canonical form

We continue the example of adding two fractions. Now that we can determine
the lowest common denominator of two fractions (lcd), we need a rule to scale
one of these fractions accordingly. For this purpose, we define build functions
for matchCon, matchPlus, and matchDiv . The view for positive and negative
constants (conView) pairs matchCon with a function that turns an integer value
back into an Expr value.

conView :: View Expr Integer
conView = View{match = matchCon, build = buildCon }

buildCon :: Integer → Expr
buildCon n | n > 0 = Nat n

| otherwise = Negate (Nat (abs n))

This definition results in a proper view, and it respects the invariant imposed by
the Nat constructor. When defining the builder for the plus view (the counterpart
of matchPlus), we have another look at the algebraic laws in Figure 1. The
matching function maps each of the expressions 3 + (−5), 3− 5, and −(−3 + 5)
to the pair (3,−5). In the definition of the builder, we choose 3 − 5 as the
canonical representation for this pair.

(.+.) :: Expr → Expr → Expr
Nat 0 .+. b = b -- law [A3]
a .+. Nat 0 = a -- law [A3] (and [A2])
a .+. Negate b = a :−: b -- law [N3]
a .+. b = a :+: b

Here, we write the builder as the infix function .+., which should not be confused
with the constructor function :+:. With the function uncurry , we turn .+. into
a function of type (Expr ,Expr)→ Expr , which we use in the plus view.



plusView :: View Expr (Expr ,Expr)
plusView = View{match = matchPlus, build = uncurry (.+.)}

The builder function of the division view uses law [N6]: we omit its definition.
We conclude this section with a definition for the rule that scales a fraction to

a certain denominator, in which we use a composed view both for matching and
for building. For this occasion, we make a view that constrains the numerator
and the denominator to be constant.

fractionView :: View Expr (Integer , Integer)
fractionView = divView >>> (conView ∗∗∗ conView)

The rule that scales a fraction can then be defined as follows:

scaleFraction :: Integer → Expr → Maybe Expr
scaleFraction n e = do (a, b)← match fractionView e

let (c, zero) = n ‘divMod ‘ b
guard (zero ≡ 0)
Just (build fractionView (c ∗ a,n))

We calculate the scale factor (c), and test whether the target value of the de-
nominator (n) is a multiple of the old value (b). Then, we build an expression
from the scaled fraction using the same view.

3 Granularity of rewrite steps

In this section, we return to the example of the introduction, and we take a
closer look at the size (or granularity) of the rewrite steps in the derivation.
For some exercises, the steps that a student is expected to take correspond
exactly to the laws that are known for that domain. This is, for instance, the
case in most exercise assistants in the area of logic, where propositions have to
be manipulated using only a handful of rules, typically the ones appearing in
textbooks on this subject. In such a scenario, the granularity of user steps is not
an issue. In other cases, terms can be simplified automatically without an interest
in intermediate values. For example, when performing Gaussian elimination, the
focus of the student should be on applying the elementary row operations, not
on simplifying the elements appearing in the matrix. It seems reasonable that a
tool performs these simplifications automatically.

In the example of solving a linear equation, we are interested in intermediate
results, but the steps should be at a conceptually higher level than the alge-
braic laws listed in Figure 1. Worked-out examples that are generated by the
system should be at the right conceptual level (like the derivation in the intro-
duction), just as hints about the direction to go. We start by making some of
our assumptions explicit before we discuss the conceptual level of this exercise.

– Associativity of operators is implicit, meaning that a user cannot and should
not distinguish a+(b+c) from (a+b)+c. The system can thus minimize the



view view type description

plusView (Expr , Expr) match an addition (:+:) at top-level
divView (Expr , Expr) match a division (:/:) at top-level
conView Integer match a natural number, possibly preceded by

some negations
sumView [Expr ] order preserving summation (e1+ . . . +en)
productView (Bool , [Expr ]) order preserving multiplication (e1· . . . ·en):

the Bool indicates negation of the product
rationalView Rational reduce by folding constants recursively
linearView (Rational , Rational) normalize a linear expression in x : use all laws

to turn the expression into the form a·x + b

Fig. 2. Summary of views on expressions

use of parentheses in presenting terms. Commutativity, on the other hand,
should be used with care. We want to respect the order in which terms
appear as much as possible for a better user experience.

– Constant terms are normalized aggressively: the skills to manipulate frac-
tions and integers are assumed to be present.

– The distribution of multiplication over addition (law [M5]) is an explicit step
in the derivation. Laws to manipulate the sign of a term (laws [N1] up to
[N6]) can be performed automatically.

Keeping the assumptions above in mind we define four operations to rewrite
an equation until it is in a solved form. In an exercise assistant, these operations
could be offered to a user as buttons, allowing the student to focus on the
strategy, while the tool is doing the calculations. The operations are:

1. Add a term to both sides of the equation ([E1]). The term can be negative,
in which case we are actually performing a subtraction.

2. Multiply both sides by a non-zero constant factor ([E2]): since this exercise is
restricted to linear equations there is no point in allowing variables to appear
in this factor. Division can be mimicked by multiplying by a fraction.

3. Remove parentheses, i.e., apply the distribution law ([M5]). In the remaining
part of this section we make more precise where and how this is done.

4. Merge “similar” terms: this too will be made more precise.

3.1 Sum view and product view

We define more views that help to implement the operations on an equation.
Figure 2 gives a summary of the views on expressions in this paper. The sum view
is similar to the plus view defined earlier, except that we now take associativity
of the addition operator into account. The sum view converts an expression
to a list of terms. Like the plus view, we push negations inside. For example,



3x − (1 − 2x
5 ) is viewed as a list of three elements, namely [3x ,−1, 2x

5 ]. The
function for matching can be defined as1:

matchSum :: Match Expr [Expr ]
matchSum = Just ◦ f False -- laws [A1], [N1], [N3], [N4]

where f n (a :+: b) = f n a ++ f n b
f n (a :−: b) = f n a ++ f (¬ n) b
f n (Negate a) = f (¬ n) a
f n a = [if n then Negate a else a ]

The first parameter of the helper-function f is a boolean indicating whether
or not the expression has to be negated. The function matchSum is total: for
an expression without top-level additions, such as 3(x + 1), a singleton list is
returned. For the builder of the sum view, we pass (.+.) and addition’s neutral
element to the foldl function, which constructs a left-biased tree.

sumView :: View Expr [Expr ]
sumView = View matchSum (foldl (.+.) (Nat 0)) -- laws [A1], [A3]

A list is a natural data structure for viewing associative operators. If we also
take commutativity into account, we can sort the list, or use the bag (multi-set)
data structure. If the operator is also idempotent, such as logical conjunction,
we can turn to sets.

We define the product view similarly. Contrary to the sum view, we propagate
negations upwards such that we find negations that cancel each other out (law
[N1]). The type signature of the product view is View Expr (Bool , [Expr ]). The
boolean in the pair indicates whether or not the product has to be negated:
we omit its definition, but give some examples instead. Matching the expression
3·(−x ·15) gives the pair (True, [3, x , 1

5 ]). Although there is no special notation for
the reciprocal function, we can also decompose divisors (but we don’t have to),
thereby also using law [D3] and taking care of its side-condition. The reciprocal
function is its own inverse, and plays the same role as negation did for the sum
view. The expression (1 + 1)· x

4 / 7 could then be viewed as the pair (False, [1 +

1, x , 1
4 , 7]). The builder of the product view takes care of neutral elements (law

[M4]) and absorbing elements (law [M3]).

3.2 Normalizing sums and products

We discuss a normalization procedure for a list of expressions produced by the
product view. Constant expressions (i.e., terms without variables) can be re-
duced to a rational number using constant folding techniques. Let us assume
that the rational view (of type View Expr Rational) takes care of this. Products
are normalized as follows: combine all constant rational numbers, even if they are
1 Although intuitive, a more efficient definition would avoid having to concatenate

lists (++) from recursive calls, especially for left-biased abstract syntax trees.



not adjacent in the list. This operation is sound because multiplication is com-
mutative. The order of the other, non-constant elements is left unchanged. The
first occurrence of a constant rational number is replaced by the new, combined
constant. Let this procedure be:

normalizeProduct :: [Expr ]→ [Expr ]

For instance, consider the list [1 + 1, x , 2
8 , 7]. The rational view is applied to

each element, giving [Just 2,Nothing , Just (1 / 4), Just 7]. The product of the
constants is 7 / 2 of type Rational . We use the rational view to turn this into an
expression. This expression is placed in a list before the variable x .

When normalizing sums, we combine constants (using the rational view),
but we also merge terms that are “similar”. For example, 2x and 3x should be
turned into 5x by using the commutative variant of [M5] (from right to left) and
constant folding. Product normalization is used for finding similar terms.

Constant folding in sums and products seems straightforward, but preserving
the order makes it more involved. We want to emphasize that this is necessary
for a tool in order to react naturally on user requests. For example, adding 3 to
both sides of the equation 1+x = 2x −1 would (ideally) result in 4+x = 2x +2,
even though the constants appear at different sides of the addition operator.

3.3 A strategy for solving linear equations

We briefly sketch a strategy for solving linear equations using our strategy com-
binators [10]. A strategy prescribes the order of rewrite steps in a derivation. If
both sides of the equation have the form a·x +b, then we are done in three steps:
move x to the left (law [E1]), move the constant to the right (again law [E1]),
and finally scale the equation such that the a on the left-hand side becomes one
(law [E2]). Each step can be skipped under certain circumstances. Let this be
the basic strategy:

basicEquation = try varToLeft <∗> try conToRight <∗> try scaleToOne

Views are used to implement the rewrite steps of the strategy, i.e., varToLeft ,
conToRight , and scaleToOne, in the same way as scaleFraction was defined in
Section 2.5. For more involved equations, we first have to apply the distribu-
tion rule (law [M5]), after which we merge “similar” terms, and multiply both
sides (law [E2]) to get rid of divisions. The overall strategy, which produces the
derivation shown in the introduction, is:

solveEquation = repeat (merge <|> distribute <|> removeDivision)
<∗> basicEquation

4 Recognizing strategy steps

In this section, we briefly discuss how interactive exercise assistants can deal
with formulas entered by a student. Such a submitted expression can be an



intermediate answer in a larger derivation. We do not only want to validate that
the intermediate term is correct, but we also want to recognize which rewrite
rule has been applied. Three terms are involved in such a diagnosis: the term
submitted by the student, the previous term in the derivation, and the term that
was expected at this point. We use a strategy definition, such as solveEquation,
to predicted the expected term (possibly more than one).

On a submission, we use an equivalence relation to compare the submitted
term with both the previous term and the expected term. We could use the
semantic interpretation for checking equivalence, but this only establishes the
soundness of the step, and ignores the direction in which the student continues
the derivation. Using syntactic equality is also not an option since this test does
not take minor differences in representation into account.

The equivalence relation should preferably be congruent, that is, compatible
with the semantic interpretation of the symbols [2]. If not, it will be hard to
predict whether or not two terms belong to the same equivalence class. The views
we have seen operate at top-level: they are shallow. As a result, an equivalence
relation that belongs to a view (defined in Section 2.4) is often not congruent.
For example, the equivalence relations derived from the plus view and the div
view are not congruent. To define a congruence relation using views, we have to
recursively apply views.

We return to our running example of solving a linear equation. Each linear
expression in x can be written as a·x +b, where a and b are expressions in which
x does not occur. In the remainder we assume that a and b are both constant
rational numbers. We introduce two new views:

linearView :: View Expr (Rational ,Rational)
equationView :: View (Equation Expr) Rational

The linear view returns a pair containing the a and b values. This view can easily
be extended to the equation view, which first subtracts one side of the equation
from the other, then applies the linear view, and finally divides the b value by
−a. In fact, the equation view can be used as the semantic interpretation of our
exercise. The view is not applicable to non-linear terms, or to terms that are not
well-formed (e.g., division by zero).

With the equation view, we check whether or not a submitted term is correct.
The linear view is used to test if the two sides of the equation still have the same
meaning: if this is the case, we can exclude application of an equation rule ([E1]
and [E2]). The derivation in the introduction is correct, and indeed, all equations
in the derivation are equivalent under the equation view. In the middle part of the
derivation, merging and distribution operations are performed. These operations
work on expressions, not on equations. The left-hand sides of these equations
(12−4(4x +2), 12−16x−8, and 4−16x ) and the right-hand sides (36x−3(5x−1),
36x − 15x + 3, and 21x + 3) are equivalent under the linear view.

However, if we want to recognize distributions of multiplication over addition
(law [M5]), then we need to distinguish 12− 4(4x + 2) from 12− 16x − 8. These
expressions are equivalent under the linear view. With the help of the sum and



product views, and the normalization functions for sums and products, we can
define a congruence relation that distinguishes these terms. The details of this
relation are omitted from this paper. Merging alike terms, such as 12− 16x − 8
becoming 4− 16x , results in an expression from the same equivalence class.

We want some congruence relation for recognizing the steps of a user, but
which? From a theoretic point of view, this relation should come from an equa-
tional theory based on a collection of laws or axioms. This way, we know which
laws are available for testing equivalence. Unfortunately, it is not feasible to au-
tomatically derive an equivalence relation from a set of laws. Consequently, we
have to restrict ourselves to certain collections.

5 Related work

A popular approach in constructing computer aided assessment (CAA) systems
is to delegate all calculations to a computer algebra system (CAS). This ap-
proach will give good instant results, since CAS typically have advanced built-in
algorithms, and are very good in simplifying complex formulas. These systems
are, however, not designed for interaction with a CAA system, and they cannot
be configured easily for a finer control of the simplification procedure [11]. This
becomes even more of a problem when dealing with interactive exercises.

The purpose of views is related to the design principles of MathPert [3, 4].
We follow the guidelines for cognitive fidelity (the software solves the problem
as a student does), glassbox computation (you can see how the software solves
the problem), and customization of the software to the level of a user.

Beeson [4] claims that rewriting technology [2] is not enough to implement
interactive systems that satisfy the above principles. He concludes that every
operation has to be implemented as a function in the underlying programming
language. We agree with his claim that rewriting alone is insufficient, however, we
believe that a function implementing an operation can be given more structure:
it is a rewriting step in the context of a view. The advantage of this separation
is that we can still see operations as rewrite steps, but in the context of a view.
Views can be reused for different exercise classes, and rewrite rules stay simple.

Interactive exercise assistants like the DWO [5] can be used to stepwise solve
exercises. Most of these tools have no knowledge of strategies for solving exer-
cises. As a consequence, intermediate steps are only compared against the final
solution, and no hints or worked-out examples can be calculated. Most of these
tools perform simplifications automatically, with similar results as we obtain.
We have not found descriptions of how these tools implement canonical forms.

Proof planners that use computer algebra systems in their proofs run into
similar problems as exercise assistants do: the form of the expression returned
by the CAS might not coincide with the canonical form expected by the proof
assistant. For example, Sorge [16] uses similar techniques as we do in the proof
planner Ωmega. No concept of views is introduced though.



6 Conclusions and future work

In this paper, we have introduced views for specifying canonical forms. A view
consists of a function for matching and one for reconstructing. Reconstruction
after matching maps an expression to its canonical form, and matching after
reconstruction is the identity function. The arrow combinators can be used to
compose views, which makes them reusable for multiple exercise classes.

We have proposed views as a solution to the research questions posed in
the introduction. A view defines a canonical form, which is used to show intu-
itive representations to users. It abstracts over a set of algebraic laws, which we
have made explicit for the views introduced in this paper. This is helpful for
determining the granularity of a rewrite step, which should correspond to the
background of the student, but also for describing rewrite rules without having
to worry about slightly different representations. Views help us to recognize ex-
pressions entered by students, provide helpful hints on how to proceed with the
exercise, and generate worked-out examples with the right level of detail.

Views are useful in any situation where we need canonical forms of expres-
sions: if for some reason a + (−b) is to be preferred over a − b, we can define a
view that calculates such a canonical form. In a strategy for solving an exercise,
multiple views can coexist, for instance to show more detail at the start of a
calculation.

The examples presented in this paper are exercises in calculating with frac-
tions, and solving a linear equation. Views are also applicable to exercises outside
the domain of mathematics. We are working on interactive exercises assistants
for relation algebra and for an introductory programming course, and we believe
that views will play a fundamental role within these exercise classes too.

We will proceed our research in the following directions. Multiple domain
reasoners for classes of mathematical exercises are to be investigated for the
upcoming European MathBridge project. Views will be used for implementing
these reasoners. We have integrated our tools with the DWO, such that our
step recognition technology can be used. The results are promising, and are
expected to be used in mathematics courses in Dutch high schools next year.
Further investigation is needed to understand how views can be incorporated
in our generalized rewriting framework, in which we use generic programming
techniques [12]. More information about our tools can be found on http://
ideas.cs.uu.nl/.
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