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Abstract. We describe an approach to using ICT for assessing math-
ematics achievement of pupils using learning environments for mathe-
matics. In particular, we look at fine-grained cognitive assessment of
free-form answers to math story problems, which requires determining
the steps a pupil takes towards a solution, together with the high-level
solution approach used by the pupil. We recognise steps and solution ap-
proaches in free-form answers and use this information to update a user
model of mathematical competencies. We use the user model to find out
for which student competencies we need more evidence of mastery, and
determine which next problem to offer to a pupil. We describe the re-
sults of our fine-grained cognitive assessment on a large dataset for one
problem, and report the results of two pilot studies in different European
countries.

Keywords: Math story problems · Step-based assessment · Free-form
input · Solution strategies · User modelling

1 Introduction

Competence in mathematics has been identified at EU level as one of the key
competencies for personal fulfilment, active citizenship, social inclusion, and em-
ployability in the knowledge society of the 21st century.7 In 2009, concerns about
low student performance led to the adoption of an EU-wide benchmark in basic
skills, which states that ‘by 2020 the share of 15-year-olds with insufficient abili-
ties in reading, mathematics and science should be less than 15%’.8 An extensive

7 Mathematics Education in Europe: Common Challenges and National Policies, 2011.
8 Strategic Framework for European Cooperation in Education and Training, ET 2020.
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review of research evidence on ‘what works for children with mathematical diffi-
culties’ has concluded that ‘interventions should ideally be targeted towards an
individual child’s particular difficulties’ [4].

In a time where many European countries face shortages of teachers,9 it is not
to be expected that time of teachers available for assessment and determining
competencies will increase. ICT can be of help here. The actions of a pupil
when working in a digital environment can be collected in, and interpreted by,
a so-called user model. The model describes the current level of mathematics
achievement of a pupil. It is essential that this model not only analyses final
answers, but also intermediate steps [13]. Intermediate steps contain essential
information about how a pupil arrived at an answer (the method that was used),
and can be used to identify misconceptions and pinpoint errors. We thus want
to analyse intermediate steps to get precise diagnostic information.

This paper describes an approach to fine-grained cognitive assessment, in-
cluding information about steps, of free-form input to math story problems on
the domain of ‘Relationships’ targeting 15-year-olds. Figure 1 shows such a prob-
lem in Numworx, which we use as our digital assessment environment. We recog-
nise steps and solution approaches in free-form input and use this information
to update a user model of mathematical competencies. We use the user model
to find out for which competencies we need more evidence of mastery, or proof
of absence of mastery, and determine which next problem to offer to a pupil. We
describe the results of our fine-grained cognitive assessment on a large dataset
for one problem, and report the results of two pilot studies in different European
countries. The contributions of this paper are:

– a novel approach to fine-grained cognitive assessment of free-form solutions
to math story problems;

– a novel user modelling approach that uses the results from the fine-grained
assessment;

– the results of applying our fine-grained assessment to a large data set
for a single task, and for several smaller datasets containing solutions for
multiple tasks.

This paper is organized as follows. In Section 2 we review several cognitive as-
sessment methods, and motivate our focus on free-form input. Section 3 describes
a high-level architecture for our approach. Section 4 gives the competencies we
assess, and illustrates these with one particular task: the ‘Magical trick’. Sec-
tion 5 illustrates the various components of our architecture with instances for
this task, and Section 6 discusses the results of applying our components to a
large dataset for the magical trick task, and the results of two small-scale pilots
with multiple tasks. Section 7 concludes the paper and discusses future work.

2 Supporting fine-grained cognitive assessment

Conventional assessment tests developed in the traditions of psychometrics aim
at supporting high-stakes decisions such as selection, placement, or licensing.

9 Key Data on Education in Europe 2012.
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Fig. 1. The ‘Magical trick’ math story problem in a digital assessment environment

In these circumstances, the focus of the test design is made on characteristics
such as validity and reliability. The results of such assessment tests are usually
unidimensional: a single value on a single scale [1]. While reliable ranking of test
takers is important, a single score provides little information about the source
of potential learning problems that have prevented a test taker from scoring
high on the test. In this paper, the focus is made less on the absolute reliability
of the test, and more on obtaining the detailed picture of a student’s strengths
and weaknesses. As we will explain later, such a fine-grained cognitive assessment
needs to be organized on the basis of free-form answers students give to algebraic
story problems, which adds another layer of complexity. While the inference of
user knowledge based on the evidence produced by the result of solution analysis
is rather straightforward, it is the analysis of the free-form student input that
poses the biggest challenge for the cognitive assessment mechanism.

A direct way to facilitate fine-grained cognitive assessment at the solution
analysis phase is to use plain assessment exercises that solicit easily verifiable
input from students, such as multiple-choice questions. In this case, the potential
uncertainty at the analysis phase is minimal: a student answer is either correct or
not, and it is clear which concept is responsible for the outcome. One example of
building an adaptive cognitive assessment based on such exercises is SIETTE [3].

However, it is often the case that the underlying assessment method requires
a more advanced type of exercises that engages students in complex tasks and
requires application of multiple concepts over several solution steps. One way to
address this problem is to keep the solution analysis phase simple by allowing
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students to do all the intermediate computations outside the system, and requir-
ing only the final answer. The uncertainty is then transferred to the part of the
system intelligence that defines the concepts responsible for student mistakes.
Often, the ‘blame’ is simply shared among the related concepts. For example, a
single self-assessment exercise may involve more than a dozen of concepts [11].

A more reliably way to detect the concept(s) responsible for a mistake made
in multi-step exercises is to structure the interaction between the student and
the system. In this case, a student is restricted by the interface in what she can
enter, and the source of a mistake is easier to identify. Narciss et al. [9] provide
one example of such an approach based on a dedicated interface element, where
a student chooses the type of the operation before performing it. The Andes
system structures the entire student solution so that at every step the operation,
its operands, and the purpose of the operation is known to the system [2].

Finally, a system can ask additional follow-up questions that address inter-
mediate steps of the student solution, thus identifying the source of a possible
mistake. ASSISTment is one of the systems that employ this approach [5].

Unfortunately, neither of the listed methods is fully suitable. ‘Sharing the
blame’ between potentially responsible concepts does not necessarily guarantee
modelling accuracy. Structuring and restricting interaction inescapably provides
scaffolding to a student, which is fine for a tutoring system, but is less desirable
in an assessment scenario. Finally, follow-up questions unnecessarily extend the
assessment session, and can also potentially reveal knowledge to test takers. Our
research attempts to go beyond the state of the art by employing a range of AI
techniques for analysing free-form student input to math story problems in an
assessment setting.

3 A high-level architecture

Our goal is to support fine-grained cognitive assessment based on free-form input
for math story problems. For this purpose, we analyse free-form student input
to find out which steps a student takes when solving a task, and we use the
information we find to update the user model, and to determine which next
task to offer to the student. This section introduces the main components of the
pipeline we use for assessment.

Tutoring systems consist of an outer loop and an inner loop [12]. The inner
loop supports a pupil solving a task by taking steps to reach a solution. In the
setting of assessing competencies in mathematics, the inner loop is responsible
for analysing the steps that a pupil takes, and recognising the high-level solu-
tion approach used by the pupil. Giving hints and feedback, thereby providing
opportunities for learning, is not part of an assessment system. The outer loop
selects the next task to offer to a pupil. This selection is based on information
that is stored in a user model. In the case of assessment, the goal is to quickly
find out competencies and misconceptions from a pupil by collecting evidence of
mastery, or absence of mastery. Figure 2 identifies the main components needed
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Fig. 2. Information flow in the outer loop

for assessment, and the flow of information between these components. Next, we
describe each of the components.

The assessment environment is the user interface responsible for offering the
tasks to pupils. Such an environment manages user accounts for teachers and
pupils, and may offer a teacher area with access to student and class work.
For tasks in mathematics, some special tools are needed, for example a formula
editor, a calculator, and a graphing tool.

The domain reasoner component (also known as the expert knowledge mod-
ule [10]) contains expert knowledge in the task domain (i.e., the domain of rela-
tionships) and uses this knowledge for reasoning about the steps that together
form the answer. Input is analysed at different levels of granularity, in particular
at the fine-grained step level at which the use of variables, calculational mistakes,
sloppy notation, and precedence errors can be detected (among other types of
steps), and the high-level solution approach, which may be algebraic, numeri-
cal, only partially correct, etc. The parts that are recognised are translated to
evidence for the competencies in which we are interested.

The user and task models are responsible for the inference, storage and up-
date of student knowledge based on the evidence collected by the domain rea-
soner. To help manage the potential uncertainty of the diagnosis produced by
the domain reasoners, these models are represented as Bayesian Networks (BNs).
The user model structures concepts and competencies into a hierarchy, and the
task models relate concepts and competencies involved in a particular assessment
task to its solutions steps and the characteristics of the final answer.

The task sequencer determines which task should be used next in the assess-
ment. For this, information from the user model is used to calculate which task
can best be used to remove uncertainties (in the user model) about competencies.
At its simplest, a task sequencer offers tasks in a predetermined order.
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The reporting module presents the skill levels of individuals in an easy-to-
understand way (such as a skill-meter), targeting both teachers and pupils. The
module can aggregate information and display information about groups.

A learning environment is a highly complex educational software applica-
tions [8]. The technology for calculating diagnostics and building a detailed user
model is offered as an open set of services that can be used by multiple learning
systems. A service-oriented approach promotes large-scale reuse and counter-
acts the complexity found in educational software applications [7]. The service-
oriented approach, and the integration of these services into existing systems, is
one of the innovative aspects of our approach.

4 Tasks and competencies

Our assessment is based on the answers of a pupil on a set of tasks. The tasks con-
cern the domain of Relationships and target 12-15 years old pupils. In particular,
the tasks involve setting up algebraic expressions, equations, and inequalities,
as well as simplifying and solving them. The tasks require multi-step solutions,
and usually there are multiple ways to solve these tasks. The assessment pre-
sented here consists of ten tasks in the domain of Relationships. In this section
we introduce the tasks, the competencies they address, and the ways they can
be solved by means of an example.

We want to assess the learning goals R1–R3 in the domain of Relationships
listed in Table 1. The diagnostic assessment analyses each pupil’s answer on the
three dimensions described above, but not only by means of correct/incorrect.
The diagnostic system provides a set of codes that characterize the answer ac-
cording to an a priori analysis.

Next, for each of the tasks, the possible solution steps and alternative routes
are described, as well as the mistakes students might make. Consider, for exam-
ple, the ‘Magical trick’ task, which is also shown in Figure 1:

A student says to her peer: ‘Choose a number, add 8, multiply the result
by 3, subtract 4, add the initial number, divide by 4, add 2, and subtract
the initial number. You will end up with 7.’
Is this true for any starting number? Explain your answer.

The magical trick task is a rich task from a diagnostic point of view. Its goal
is to identify whether or not a student is able to generalize and prove a property
(R1 and R3) with algebraic strategies. It also provides information about the
types of connections (R2) between two representations (in this case a numerical
and an algebraic representation), and about the arguments used by a student.

There are (at least) two strategies to solve this task: an arithmetic strategy
using a particular number (Table 2), and an algebraic strategy that involves a
variable (Table 3). For both strategies, we distinguish between a global approach
(first set up the complete expression, then perform the simplifications) and a
step-by-step approach (set up the expression for the next step and simplify).
The tables also present some mistakes that illustrate incorrect techniques.
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Table 1. Codes for characterizing answers in the domain of Relationships [6]

R1: Construct algebraic objects, e.g., set up expressions, formulas, equations
– Correct global (R11), or step-by-step (R12) algebraization
– Incorrect algebraization (R13)
– Numerical solution (R14), either global (R141) or step-by-step (R142)

R2: Recognise and relate different representations of a mathematical relationship
– Correct relation between two representations with congruent rules (R21)
– Incorrect relation between two representations without reformulation (when

non-congruent) (R23)
– Incorrect relation between two representations with schematization (R24)

R3: Calculate and simplify, e.g., expand/factor algebraic expressions, solve equations
– Correct calculation with argumentation and correct semantic and syntactic

rules (R31), or without argumentation (R32)
– Incorrect with false rules (R33): errors of parentheses (R332), errors of

signs (R333)
– Incorrect with operator priority or concatenation (R34)

5 Components

This section discusses two components for assessing solutions in more detail.

5.1 Domain reasoner

The domain reasoner receives free-form input, determines which steps are taken,
and tries to recognise the solution strategy. Based on this analysis, competencies
and misconceptions are determined. The analysis proceeds in three phases:

1. Extract mathematical expressions from the textual input, ignoring most of
the natural language;

2. Parse the extracted expressions and equations into (structured) mathemat-
ical objects;

3. Recognise the solution strategy by parsing the sequence of mathematical
objects (i.e., approach strategy recognition as a parsing problem).

Numworx has a formula editor for entering mathematical content. Pupils are
allowed to use this editor, which is particularly useful for entering square roots,
powers, and other operations that do not have an obvious textual equivalent.
Each phase will be described in more detail below.

Math extraction (phase 1). A pupil enters input as free text and may use a
formula editor that contains mathematical symbols. Learning environments have
precise information of what a pupil wrote. We use the MathML standard for
transferring the semantics of these graphical mathematical representations from
the learning environment to the services.
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Table 2. Arithmetic strategy (for number 5) and possible mistakes

Solution Reasoning Coding

((5+8)*3-4+5)/4+2-5 = 7 Correct arithmetic strategy with global ex-
pression, but with a missing generalization
for any starting number

R141,
R21, R31

5+8 = 13; 13*3 = 39;

39-4 = 35; 35+5 = 40;

40/4 = 10; 10+2 = 12;

12-5 = 7

Correct arithmetic strategy with step-by-
step approach, but with a missing gener-
alization for any starting number

R142,
R22, R31

5+8*3-4+5/4+2-5 = 7 Erroneous arithmetic strategy with global
expression without parentheses

R14, R23,
R33

5+8 = 13*3 = 39-4 = 35+5

= 40/4 = 10+2 = 12-5 = 7

Erroneous arithmetic strategy with step-
by-step calculations

R14, R24

Since the input from a pupil may contain malformed mathematical expres-
sions, it is not always possible to represent the pupil’s input in a standard math-
ematical representation such as MathML Content. Thus, we allow a learning
environment to send input following a subset of the MathML Presentation lan-
guage. Lexical analysis converts MathML code back to plain text. In this way, a
pupil can use specialized symbols such as the root symbol in expressions, while
we handle everything as plain text during the recognition phase.

For each task, parts of the math extraction phase can be specialized. For
example, some tasks suggest the use of multi-letter variables such as dist and
cost: these variables can be whitelisted. In other tasks there is no distinction
between uppercase and lowercase characters, hence we allow both. Furthermore,
depending on the language specified in the request, some pre-processing is per-
formed. For example, German words such as mal, plus, quadrat, and hoch are
converted to their mathematical representations (*, +, ^2, and ^, respectively).
Currently, we support English, German, French, and Dutch.

Certain symbols have multiple interpretations. For instance, compare x+3

(x is a variable) with 3x5=15, in which x is probably used to denote multiplica-
tion. Similar ambiguities arise for certain punctuation symbols. We are careful
not to blow up the search space by considering all interpretations, but instead
use heuristics to resolve most of the ambiguous interpretations. For example, any
use of x surrounded by numbers is interpreted as multiplication. This approach
seems to work quite well, but does not prevent misinterpreting expressions such
as 1/2 x a x b. Tasks for which variable x has no obvious meaning can be
configured to always interpret it as multiplication.

Parsing expressions (phase 2). Parsing expressions is rather straightforward,
although we do have to take care of equations that are incorrectly chained, such
as 5+8 = 13*3 = 39 (see the possible mistakes in Table 2), which we split into
two equations with an annotation for the incorrect chaining. Parsed equations are
particularly helpful, because they can be checked for equality to spot mistakes
(e.g., 5+8 = 40).
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Table 3. Algebraic strategy and possible mistakes

Solution Reasoning Coding

((x+8)*3-4+x)/4+2-x

= (3x+24-4+x)/4+2-x

= (4x+20)/4+2-x

= x+5+2-x

= 7

Algebraic proof with global expression R11, R21,
R31

(x+8)*3 = 3x+24

3x+24-4 = 3x+20

3x+20+x = 4x+20

(4x+20)/4 = x+5

x+5+2 = x+7

x+7-x = 7

Algebraic proof with step-by-step
approach

R12, R31

(x+8)*3-4+x/4+2-x

or (x+8*3-4+x)/4+2-x

or x+8*3-4+x/4+2-x

Order or priority of operations is missed R13, R23

x+8*3-4+x/4+2-x

= 2x+20/4+2-x

= 2x+5+2-x

= x+7

Simplification mistakes, such as ignoring
parentheses or priority rules

R13, R23,
R33

(x+8)*3 = 3x+24 = 27x

27x-4+x = 24x

24x+2-x = 23x+2 = 25x

Simplification mistakes, such as dilemma
process-product:
a+b → ab

R13, R21,
R341

Strategy recognition (phase 3). In the third phase we try to recognise solution
strategies. The general approach is to consider recognition as a parsing problem,
and to express the solution strategies as context-free grammars. During the
parsing, we keep track of variables that are introduced, numbers that are chosen,
and definitions that can be propagated (e.g. d = a^2+14, followed by 4*d).

The recogniser must be flexible enough to recover from different types of
mistakes and imperfections by providing some error correction, for example steps
that are taken implicitly, (basic) calculation mistakes, algebraic misconceptions,
missing parentheses or incorrect options when modelling, and so on. See Table 2
and Table 3 for more mistakes that are recognised during this phase. Note that
there is a trade-off between flexibility and computation time: we use real data,
collected from earlier user studies and pilots, to calibrate the recogniser.

5.2 Task model and user model

Not every student answer provides high-quality input for the domain reasoner to
analyse. Hence, the evidence produced by the analysis step can be scattered. It
is often clear whether or not a student has given a correct final answer and which
strategy a student has applied. Sometimes, individual steps are clearly indicated
in the solution and can be easily diagnosed. However, as a rule, we have assumed
(and the following evaluation confirms this) that the diagnosis evidence is not
guaranteed for any step of the solution, nor for the overall answer. Yet, the
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Fig. 3. Part of the user model

implemented solution has to produce a detailed cognitive assessment under such
uncertainty. Due to these consideration, we have decided to employ BNs as a
well-known mechanism to support inference under uncertainty.

BNs are widely used for modelling students’ knowledge based on students’
responses to multi-step learning exercises [2, 1]. We follow this tradition by repre-
senting both the model of student knowledge and the task models as probabilistic
networks. However, the fact that users in the assessment environment produce
unrestricted, unstructured, unscaffolded input, adds another layer of uncertainty
into our inference pipeline and reflects on the design of the task modelling BNs.

Figure 3 visualizes the upper-level structure of a first version of the user
model. At the top of the hierarchy, we have three learning goals (R1–R3, see
Table 1). They are further categorized into smaller competencies and concepts
that participate in individual models of tasks. For example, Figure 4 represents
a tentative BN for the ‘Magical trick’ exercise. The top nodes represent com-
petencies corresponding to setting up a solution (R1): these nodes connect the
task model with the user model. The top nodes in Figure 4 are connected to
more general characteristics of the solution (correctness and properties of the
chosen strategy). These characteristics are more likely to be diagnosed. At the
same time, every combination of these characteristics is probabilistically related
to a certain sequence of solutions steps (there are four possible strategies to
solve the ‘Magical trick’ exercise, corresponding to four such sequences of steps).
Within each sequence, the probability of a next step to be applied correctly de-
pends on the previous step and the corresponding concept nodes that model the
probability that a student has mastered these concepts. When a student starts
working on a task, the prior probabilities for all concept and competency nodes
are copied from this student’s user model. Once a student submits a solution,
some of the nodes are set to 1 or 0 in the task model, depending on the results
of the analysis phase. This triggers the probability update of the concept and
competency nodes given the new evidence. Finally, the updated probabilities
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Fig. 4. Magical trick task model

are carried over to the user model; they will inform the task model of the next
assessment task the student will attempt.

6 Evaluation

We have evaluated our assessment technology in two ways. First, we tested the
domain reasoner on a large collection of free-form answers for the Magical trick
task, which we describe in Section 6.1. Second, we conducted two small-scale
pilot studies in 2018, and report about these pilots in Section 6.2.

6.1 Magical trick dataset

Between 2011 and 2015, several experiments were conducted on the LaboMep
platform, which was developed by Sésamath, a French maths’ teachers associa-
tion.10 The goal of these experiments was to study the integration of automated
diagnosis tools in the usual teaching practices, and to study the evolution of

10 http://www.labomep.net
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students’ cognitive profiles in algebra during several years [6]. This has resulted
in a large collection of student responses (grade 8-10). From the dataset, we
analysed 2956 free-form answers for the Magical trick task with the domain rea-
soner. Running the analysis took 155 seconds, which is fast enough for online
assessment. From the 2956 answers, we extracted 18,302 mathematical expres-
sions: 99.2% of these expressions could be parsed. Most of the parse errors are
caused by unbalanced parentheses, for example [(x+8)*3-4+x)]/4+2-x = 7.

The results of recognising the solution strategy are as follows: 115 answers
(3.89%) only contain natural language, and no mathematical content; 677 an-
swers (22.90%) follow the algebraic strategy; 1527 answers (51.66%) follow the
arithmetic strategy; 637 answers (21.55%) could not be recognised.

We also found combinations of solution strategies, e.g. the arithmetic strategy
with different numbers, or the algebraic strategy followed by the arithmetic
strategy. Some analysis results were checked ad hoc, but since we do not have
a golden standard to compare against, we cannot rule out false positives or
true negatives. Nevertheless, the results indicate that a substantial part of the
free-form input could be analysed automatically, including the assessment of
high-level learning goals based on the solution strategy that was followed.

6.2 Analysis of pilots

In the context of the Erasmus+ Advise-Me project, we organized two small-scale
pilots to test our assessment method and the free-form input for math story prob-
lems. The first pilot (N=19) was organized on March 15, 2018, in Germany, and
the second pilot (N=22) was organized on April 9, 2018, in the Netherlands.
Pupils were asked to solve ten math story problems, and to answer eight state-
ments about the tasks, the software, and their attitude towards mathematics in
a questionnaire. The experiments were carried out in 90 minutes: 10 minutes for
logging-in, briefing, and the first questionnaire, 70 minutes for doing the tasks,
and 10 minutes for the final survey. Some tasks have multiple parts (a–c). All
interactions with the assessment environment were logged for further analysis.

From the questionnaires, we learned that pupils found the tasks clear and
that they think they did well in the test. Doing well typically improves the
experience. They found it relatively easy to use the assessment software and the
text editing field. They do not often do math tasks on the computer.

Table 4 summarizes how often the algebraic or arithmetic solution strategy
was recognised for the pilot studies. The ‘graphical’ strategy corresponds to
approximating the solution directly from a graph. Task 7a (Theatre rate) and
task 8 (Area and expression) are omitted: the former requires an answer in
natural language, and for the latter, pupils have to click areas instead of writing
mathematical expressions. Overall, the solution strategy could be recognised for
nearly 80% of the answers. For the remaining 20%, recognised steps and the
final answer can still provide valuable information. A closer inspection of the
unrecognised answers resulted in the following categorization of difficulties in
recognising answers: unclear or ambiguous notation, use of natural language,
and unanticipated errors.
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Table 4. Recognising solution strategies in pilots (Al=Algebraic, Ar=Arithmetic,
Gr=Graphical, all as proportions); we also report the proportion of empty answers
(Em) and unrecognised answers (Un).

German pilot Dutch pilot

Task N Al Ar Gr Em Un N Al Ar Em Un

1. Making a square 19 .53 .05 .42 22 .55 .45
2. Matryoshka 17 .76 .06 .18 12 .17 .33 .50
3. Car rental 18 .39 .39 .06 .17 22 .82 .18
4. Pattern 18 .11 .67 .22 19 .11 .53 .37
5. Magical trick 18 .06 .11 .56 .28 20 .70 .30

6a. Rectangle area 18 .94 .06 22 .95 .05
6b. Rectangle area 18 .67 .06 .28 22 .77 .23
6c. Rectangle area 18 .67 .33 22 .36 .55 .09
7b. Theatre rate 18 .33 .11 .50 .06 21 .76 .05 .19
9a. Area of triangle 15 .33 .47 .20 22 .77 .05 .18
9b. Area of triangle 15 .20 .60 .20 22 .73 .05 .23
9c. Area of triangle 15 .13 .73 .13 22 .77 .23
10. V-pattern 15 .53 .27 .20 22 .73 .05 .23

Overall 222 .33 .12 .04 .30 .21 270 .59 .04 .14 .22

7 Conclusion and future work

We have developed a framework for fine-grained cognitive assessment of free-
form solutions to math story problems for pupils of around 15 years old. The
framework uses a domain reasoner to analyse the input from pupils. The do-
main reasoner extracts the mathematics from the free-form input, parses the
mathematical expressions, and then tries to recognise a solution strategy in the
solution. The diagnosis from the domain reasoner is taken as input by a Bayesian
task model, which in its turn is used to populate a user model.

We have evaluated our framework in various ways. We have tested that one
of our domain reasoners for a particular task can analyse more than 80% of pupil
solutions in a dataset of almost 3000 solutions. In a number of small pilots we
determined the main causes for our domain reasoner to fail to recognise pupil
solutions. Some of the main causes are pupils using only natural language, or
mixing up notation. In a qualitative evaluation, pupils were mildly positive about
solving this kind of tasks in an online assessment system.

In the future, we want to analyse the quality of the user models result-
ing from our analyses. We want to determine ways to deal with situations in
which we do not recognise a solution from a pupil. Here we envisage several
approaches: we might ask a pupil simpler questions, or we might combine our
analysis with natural language processing software for recognising mathematical
language. Furthermore, we want to perform more extensive evaluations with our
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framework and compare the fine-grained cognitive assessments with a manual
analysis produced by experts.
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