
An extensible domain-specific language for
describing problem-solving procedures

Bastiaan Heeren1 Johan Jeuring1,2

1 Open University of the Netherlands
2 Utrecht University

July 1, AIED 2017, Wuhan

2[An extensible domain-specific language for describing problem-solving procedures]

Problem-solving procedures

I Inner loop of ITS supports solving tasks step by step
– inner loop services of ITSs are very similar (VanLehn 2006)
– . . . but their internal structures and representations are not

I Various approaches and paradigms for intelligent tutoring
– model-tracing, constraint-based, data-driven, etc.

I Many domains have problem-solving procedures expressing
how to solve a task by applying rules in a controlled way

– procedures can be used for providing hints and feedback

1
2x − 4 = 1

4(x − 3) multiply by 4
2x − 16 = x − 3 variable x to the left
x − 16 = −3 constants to the right

x = 13 X

2[An extensible domain-specific language for describing problem-solving procedures]

Problem-solving procedures

I Inner loop of ITS supports solving tasks step by step
– inner loop services of ITSs are very similar (VanLehn 2006)
– . . . but their internal structures and representations are not

I Various approaches and paradigms for intelligent tutoring
– model-tracing, constraint-based, data-driven, etc.

I Many domains have problem-solving procedures expressing
how to solve a task by applying rules in a controlled way

– procedures can be used for providing hints and feedback

1
2x − 4 = 1

4(x − 3) multiply by 4
2x − 16 = x − 3 variable x to the left
x − 16 = −3 constants to the right

x = 13 X

3[An extensible domain-specific language for describing problem-solving procedures]

Contributions

1. We evaluate how problem-solving procedures are specified
in ITS paradigms, based on reported design principles

These principles include:
– explicit knowledge representation for procedures
– representation should be modular and reusable

2. We propose an extensible domain-specific language (DSL)
for describing problem-solving procedures

– the DSL provides a rich vocabulary for common patterns
– we discuss how the DSL has been used for different task

domains

4[An extensible domain-specific language for describing problem-solving procedures]

Design principles for inner loop

We collected 17 principles from five papers: Anderson et al. (1995),
Beeson (1998), Murray (1998), Murray (2003), and Aleven et al. (2009).

Beeson’s principles for MathPert (algebra and calculus tutor)
– cognitive fidelity
– glass box computation
– customize step size to individual user

Important qualities:

I Expressive representation: repetitive and template-like
content should be avoided

I Customizable/extensible: for example, change step size
I Cost-effective: proven tactics are authoring tools and reuse

4[An extensible domain-specific language for describing problem-solving procedures]

Design principles for inner loop

We collected 17 principles from five papers: Anderson et al. (1995),
Beeson (1998), Murray (1998), Murray (2003), and Aleven et al. (2009).

Beeson’s principles for MathPert (algebra and calculus tutor)
– cognitive fidelity
– glass box computation
– customize step size to individual user

Important qualities:

I Expressive representation: repetitive and template-like
content should be avoided

I Customizable/extensible: for example, change step size
I Cost-effective: proven tactics are authoring tools and reuse

5[An extensible domain-specific language for describing problem-solving procedures]

ITS paradigms

In our paper, we discuss:

I Cognitive tutors (based on production rules)
I Model-tracing tutors (based on procedures)

– xPST: procedures are specified in a ‘sequence section’,
based on 4 operators (Gilbert et al. 2015)

– ASTUS: hierarchical procedure knowledge is represented as
a graph (Paquette et al. 2015)

I Constraint-based tutors
I Example-tracing tutors
I Data-driven tutors

Observation: in most paradigms, an explicit description of a
problem-solving procedure is missing

6[An extensible domain-specific language for describing problem-solving procedures]

Problem-solving procedures

I Basic operators for combining procedures
– Sequence (A ; B): first do A, then B
– Choice (A | B): do A or B
– Fixed-point: for expressing recursive procedures

I Special procedures succeed and fail
I Primitive procedures are the steps or rules

Realized qualities (by design):
– representation is explicit
– procedures are modular

7[An extensible domain-specific language for describing problem-solving procedures]

Trace-based semantics

I Trace-based semantics for step-wise execution
I Traces are inspired by the CSP calculus (Hoare 1985)
I Sequence:

T (s ; t) = {x | x ∈ T (s),X /∈ x }
∪ {xy | xX ∈ T (s), y ∈ T (t)}

I Choice:

T (s | t) = T (s) ∪ T (t)

Extensible: new composition operators can be added
– by using existing operators: many s = µx .(s ; x) | succeed
– or by defining its trace-based semantics

8[An extensible domain-specific language for describing problem-solving procedures]

Domain-specific language for procedures

I The composition operators are a simple DSL
I DSL helps authors to articulate procedures

– generic traversal operators (for domains with sub-terms)
– variations for choice (e.g., left-biased, preference)
– interleaving (or permuting) procedures

I It captures common patterns and provides a rich
vocabulary, which make the language expressive

s ; t first s, then t
s | t either s or t
succeed succeeding procedure
fail failing procedure
µx .f (x) fixed point operator
label ` s attach label ` to s
many s apply s 0 or more times
many1 s apply s 1 or more times
option s either apply s or not

not s succeeds if procedure s is
not applicable

repeat s apply s as long as possible
repeat1 s as repeat, but at least once
try s apply s once if possible
s . t apply s, or else t
somewhere s apply s at some location
bottomup s search location bottom-up
topdown s search location top-down

8[An extensible domain-specific language for describing problem-solving procedures]

Domain-specific language for procedures

I The composition operators are a simple DSL
I DSL helps authors to articulate procedures

– generic traversal operators (for domains with sub-terms)
– variations for choice (e.g., left-biased, preference)
– interleaving (or permuting) procedures

I It captures common patterns and provides a rich
vocabulary, which make the language expressive

s ; t first s, then t
s | t either s or t
succeed succeeding procedure
fail failing procedure
µx .f (x) fixed point operator
label ` s attach label ` to s
many s apply s 0 or more times
many1 s apply s 1 or more times
option s either apply s or not

not s succeeds if procedure s is
not applicable

repeat s apply s as long as possible
repeat1 s as repeat, but at least once
try s apply s once if possible
s . t apply s, or else t
somewhere s apply s at some location
bottomup s search location bottom-up
topdown s search location top-down

9[An extensible domain-specific language for describing problem-solving procedures]

I Develop programs by step-wise refining holes (?)
I Feedback and hints calculated with procedures generated

from annotated model solutions (Gerdes et al. 2016)

10[An extensible domain-specific language for describing problem-solving procedures]

I Communicate! is a serious game for practicing
interpersonal communication skills

I Final score and feedback are calculated afterwards
I It has a specialized scenario editor (Jeuring et al. 2015)

11[An extensible domain-specific language for describing problem-solving procedures]

I Domain-specific features for consultations in the scenario
editor:

– conditions under which certain options are offered or not
– (parts of) consultations may be interleaved in any order
– (parts of) consultations may be stopped at any point

12[An extensible domain-specific language for describing problem-solving procedures]

I Construct Hilbert-style axiomatic proofs by applying rules,
forward and backward (Lodder et al. 2017)

I Feedback, hints, and worked-out solutions are available
I Procedure is captured in a graph-like structure

13[An extensible domain-specific language for describing problem-solving procedures]

Conclusion
We presented a DSL for problem-solving procedures that:

– is compositional/modular
– is extensible (with new patterns)
– has a precise trace-based semantics (with laws)
– works for many domains

I Our approach positioned more towards productivity and
expressiveness than learnability (Murray 2003)

I The trend is away from having explicit procedures; the DSL
can help to make authoring procedures more cost-effective

I For more information, contact me at bhr@ou.nl,
or see the project website http://ideas.cs.uu.nl/

http://ideas.cs.uu.nl/

14[An extensible domain-specific language for describing problem-solving procedures]

References

– V. Aleven, B.M. McLaren, J. Sewall, and K.R. Koedinger. A new paradigm for intelligent tutoring
systems: Example-tracing tutors. Journal of AIED, 19(2):105–154, 2009.

– J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier. Cognitive tutors: lessons learned.
Journal of the Learning Sciences, 4(2):167–207, 1995.

– M.J. Beeson. Design principles of MathPert: Software to support education in algebra and calculus.
In Computer-Human Interaction in Symbolic Computation, pages 89–115. Springer, 1998.

– A. Gerdes, B. Heeren, J. Jeuring, and L.T. van Binsbergen. Ask-Elle: an adaptable programming
tutor for Haskell giving automated feedback. Journal of AIED, pages 1–36, 2016.

– S.B. Gilbert, S.B. Blessing, and E. Guo. Authoring effective embedded tutors: An overview of the
extensible problem specific tutor (xPST) system. Journal of AIED, 25(3):428–454, 2015.

– C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.
– J. Jeuring, F. Grosfeld, B. Heeren, M. Hulsbergen, R. IJntema, V. Jonker, N. Mastenbroek, M. van

der Smagt, F. Wijmans, M. Wolters, and H. van Zeijts. Communicate! – a serious game for
communication skills. In EC-TEL 2015, volume 9307 of LNCS, pages 513–517. Springer, 2015.

– J. Lodder, B. Heeren, and J. Jeuring. Generating hints and feedback for Hilbert-style axiomatic
proofs. In SIGCSE 2017, pages 387–392, 2017.

– T. Murray. Authoring knowledge-based tutors: Tools for content, instructional strategy, student
model, and interface design. Journal of the Learning Sciences, 7(1):5–64, 1998.

– T. Murray. An overview of intelligent tutoring system authoring tools: Updated analysis of the state
of the art. In Authoring Tools for Advanced Technology Learning Environments, pages 491–544.
Springer, 2003.

– L. Paquette, J.-F. Lebeau, G. Beaulieu, and A. Mayers. Designing a knowledge representation
approach for the generation of pedagogical interventions by MTTs. Journal of AIED, 25(1):118–156,
2015.

– K. VanLehn. The behavior of tutoring systems. Journal of AIED, 16(3):227–265, 2006.

