An extensible domain-specific language for
describing problem-solving procedures
Bastiaan Heeren! Johan Jeuring!?

! Open University of the Netherlands
2 Utrecht University

July 1, AIED 2017, Wuhan

8 Open Universiteit
www.ou.nl

Problem-solving procedures

» Inner loop of ITS supports solving tasks step by step

— inner loop services of ITSs are very similar (VanLehn 2006)
— ... but their internal structures and representations are not

» Various approaches and paradigms for intelligent tutoring

— model-tracing, constraint-based, data-driven, etc.

8 [An extensible domain-specific language for describing problem-solving procedures]

Problem-solving procedures

» Inner loop of ITS supports solving tasks step by step

— inner loop services of ITSs are very similar (VanLehn 2006)
— ... but their internal structures and representations are not

» Various approaches and paradigms for intelligent tutoring
— model-tracing, constraint-based, data-driven, etc.

» Many domains have problem-solving procedures expressing
how to solve a task by applying rules in a controlled way
— procedures can be used for providing hints and feedback

%X —4 = l(X = 3) multiply by 4

4
2x —16 = x—3 variable x to the left
x—16 = -3 constants to the right
x =13 v

8 [An extensible domain-specific language for describing problem-solving procedures]

Contributions

1. We evaluate how problem-solving procedures are specified
in ITS paradigms, based on reported design principles

These principles include:

— explicit knowledge representation for procedures
— representation should be modular and reusable

2. We propose an extensible domain-specific language (DSL)
for describing problem-solving procedures

— the DSL provides a rich vocabulary for common patterns
— we discuss how the DSL has been used for different task
domains

8 [An extensible domain-specific language for describing problem-solving procedures]

Design principles for inner loop

We collected 17 principles from five papers: Anderson et al. (1995),
Beeson (1998), Murray (1998), Murray (2003), and Aleven et al. (2009).

Beeson's principles for MathPert (algebra and calculus tutor)
— cognitive fidelity
— glass box computation

— customize step size to individual user

8 [An extensible domain-specific language for describing problem-solving procedures]

Design principles for inner loop

We collected 17 principles from five papers: Anderson et al. (1995),
Beeson (1998), Murray (1998), Murray (2003), and Aleven et al. (2009).

Beeson's principles for MathPert (algebra and calculus tutor)
— cognitive fidelity
— glass box computation

— customize step size to individual user

Important qualities:

» Expressive representation: repetitive and template-like
content should be avoided

» Customizable/extensible: for example, change step size

> Cost-effective: proven tactics are authoring tools and reuse

8 [An extensible domain-specific language for describing problem-solving procedures]

ITS paradigms

In our paper, we discuss:

» Cognitive tutors (based on production rules)
» Model-tracing tutors (based on procedures)
— xPST: procedures are specified in a ‘sequence section’,
based on 4 operators (Gilbert et al. 2015)
— ASTUS: hierarchical procedure knowledge is represented as
a graph (Paquette et al. 2015)
» Constraint-based tutors
» Example-tracing tutors
» Data-driven tutors

Observation: in most paradigms, an explicit description of a
problem-solving procedure is missing

8 [An extensible domain-specific language for describing problem-solving procedures]

Problem-solving procedures

» Basic operators for combining procedures
— Sequence (A ; B): first do A, then B
— Choice (A| B): do Aor B
— Fixed-point: for expressing recursive procedures

» Special procedures succeed and fail

» Primitive procedures are the steps or rules

Realized qualities (by design):
— representation is explicit

— procedures are modular

8 [An extensible domain-specific language for describing problem-solving procedures]

Trace-based semantics

v

Trace-based semantics for step-wise execution

v

Traces are inspired by the CSP calculus (Hoare 1985)

v

Sequence:

T(sit)={x|xeT(s) ¢x)
U{xy|xv €T (s),yeT(t)}

Choice:

v

T(s|t)=T (s)UT(t)

Extensible: new composition operators can be added
— by using existing operators: many s = ux.(s ; x) | succeed
8 — or by defining its trace-based semantics

[An extensible domain-specific language for describing problem-solving procedures]

Domain-specific language for procedures

» The composition operators are a simple DSL
» DSL helps authors to articulate procedures

— generic traversal operators (for domains with sub-terms)
— variations for choice (e.g., left-biased, preference)
— interleaving (or permuting) procedures

» It captures common patterns and provides a rich
vocabulary, which make the language expressive

8 [An extensible domain-specific language for describing problem-solving procedures]

Domain-specific language for procedures

» The composition operators are a simple DSL

» DSL helps authors to articulate procedures

— generic traversal operators (for domains with sub-terms)
— variations for choice (e.g., left-biased, preference)
— interleaving (or permuting) procedures

» It captures common patterns and provides a rich
vocabulary, which make the language expressive

s;t
s|t
succeed
fail
px.f(x)
label ¢ s
many s
manyl s

first s, then t

either s or t
succeeding procedure
failing procedure

fixed point operator
attach label ¢ to s
apply s 0 or more times
apply s 1 or more times
either apply s or not

not s

repeat s
repeatl s
try s

s>t
somewhere s
bottomup s
topdown s

succeeds if procedure s is
not applicable

apply s as long as possible
as repeat, but at least once
apply s once if possible
apply s, or else t

apply s at some location
search location bottom-up
search location top-down

option s
8 [An extensible domain-specific language for describing problem-solving procedures]

All Exercises
= haskell
=3 encoding
=] frombin
253 lst
=] butlast
=] compress
=] dropevery
=] dupli
=] elementat
=] encode

=] palindrome
=] primes

=] range

=] removeat
=] repli

=] rotate

Ask-Elle =

<« Description Al | Help »

You can follow one of the following strategies:
Write a function that converts a list of bits to the corresponding integer

value: fromBin :: [Int] -> Int. For example: Implement fromBin using the foldi Prelude function. -
> fromBin [1,0,1,0,1,0] Explanation
)
Multiply n by two and add b.

> fromBin [1,0,1] -
5 Hint

Introduce the integer 2.

More Help 2
. Editor A Refine the current term to

fromBin = ? frompin =

where « 2 »
opnb=?*%2+7?
P where
opn b
2% 242

» Develop programs by step-wise refining holes (?)

» Feedback and hints calculated with procedures generated
from annotated model solutions (Gerdes et al. 2016)

[An extensible domain-specific language for describing problem-solving procedures]

umoet het natuuriijk ook nog lerent.

Jezelf voorstellen ' contact maken | informatie verzamelen | procedure uileggen | reactie geven

» Communicate! is a serious game for practicing
interpersonal communication skills

» Final score and feedback are calculated afterwards

» It has a specialized scenario editor (Jeuring et al. 2015)

[An extensible domain-specific language for describing problem-solving procedures] 10

File.. Scenario. Scenario: Negotiate Sz =

® o oni Ammlzols ol EDPlayer

Subject Player Computer Siuation Chid Notepad Copy ~ Cut Paste Delete | Amange| Parents Validate Save Play

[-] Holidays 1 0 Preconditions

Empty group
Add precondition

Add group
8] @ Effects

User-defined

»

Goal vis=v 5 [-}
a

Relation v ls

Add effect

\ Character
b oy Voo pane
wouldyou ndyouve n‘ vo visted @ sounds sad Y=t -]
M Orsay again (i Add effect
ghts Or ma
Soneunarsonbe
msﬁ coast

1 :/ Properties

Iwould ke 10 goto Yes, Iviould like Intent: Express wishes
Wedera e heard s 901o Hadera

its nice to walk or rdlike Feedback: Good to express 7
tesiand nere v|4 D

» Domain-specific features for consultations in the scenario
editor:
— conditions under which certain options are offered or not
(parts of) consultations may be interleaved in any order
— (parts of) consultations may be stopped at any point

[An extensible domain-specific language for describing problem-solving procedures]

11

9

Axiomatic

= o -

Rule | Modus Ponens

1 prp Assumption

2 p—qrp-q Assumption Crs®Brsd—9)=TuArsy
98 pp—aq-rer Sred 1 stepnr
99 poqaorepor Deduction 998 Arso—w 2 stepnr
1000 q—r-P—ag—E—n Deduction 999 Subrew stopr

©Hint Next step Apply

® Show complete derivation @ Gomplete my derivation

» Construct Hilbert-style axiomatic proofs by applying rules,
forward and backward (Lodder et al. 2017)

» Feedback, hints, and worked-out solutions are available

» Procedure is captured in a graph-like structure

[An extensible domain-specific language for describing problem-solving procedures] 12

Conclusion

We presented a DSL for problem-solving procedures that:
— is compositional /modular
— is extensible (with new patterns)
— has a precise trace-based semantics (with laws)

— works for many domains

» Our approach positioned more towards productivity and
expressiveness than learnability (Murray 2003)

» The trend is away from having explicit procedures; the DSL
can help to make authoring procedures more cost-effective

» For more information, contact me at bhr@ou.nl,
or see the project website http://ideas.cs.uu.nl/

8 [An extensible domain-specific language for describing problem-solving procedures] 13

http://ideas.cs.uu.nl/

References

[An

V. Aleven, B.M. McLaren, J. Sewall, and K.R. Koedinger. A new paradigm for intelligent tutoring
systems: Example-tracing tutors. Journal of AIED, 19(2):105-154, 2009.

J.R. Anderson, A.T. Corbett, K.R. Koedinger, and R. Pelletier. Cognitive tutors: lessons learned.
Journal of the Learning Sciences, 4(2):167-207, 1995.

M.J. Beeson. Design principles of MathPert: Software to support education in algebra and calculus.
In Computer-Human Interaction in Symbolic Computation, pages 89-115. Springer, 1998.

A. Gerdes, B. Heeren, J. Jeuring, and L.T. van Binsbergen. Ask-Elle: an adaptable programming
tutor for Haskell giving automated feedback. Journal of AIED, pages 1-36, 2016.

S.B. Gilbert, S.B. Blessing, and E. Guo. Authoring effective embedded tutors: An overview of the
extensible problem specific tutor (xPST) system. Journal of AIED, 25(3):428-454, 2015.

C.A.R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.

J. Jeuring, F. Grosfeld, B. Heeren, M. Hulsbergen, R. |Jntema, V. Jonker, N. Mastenbroek, M. van
der Smagt, F. Wijmans, M. Wolters, and H. van Zeijts. Communicate! — a serious game for
communication skills. In EC-TEL 2015, volume 9307 of LNCS, pages 513-517. Springer, 2015.

J. Lodder, B. Heeren, and J. Jeuring. Generating hints and feedback for Hilbert-style axiomatic
proofs. In SIGCSE 2017, pages 387-392, 2017.

T. Murray. Authoring knowledge-based tutors: Tools for content, instructional strategy, student
model, and interface design. Journal of the Learning Sciences, 7(1):5-64, 1998.

T. Murray. An overview of intelligent tutoring system authoring tools: Updated analysis of the state
of the art. In Authoring Tools for Advanced Technology Learning Environments, pages 491-544.
Springer, 2003.

L. Paquette, J.-F. Lebeau, G. Beaulieu, and A. Mayers. Designing a knowledge representation
approach for the generation of pedagogical interventions by MTTs. Journal of AIED, 25(1):118-156,
2015.

K. VanLehn. The behavior of tutoring systems. Journal of AIED, 16(3):227-265, 2006.

extensible domain-specific language for describing problem-solving procedures |

