
Software technology for learning and
teaching

Part 1: Introduction

Bastiaan Heeren1 and Johan Jeuring1,2

1 Open Univerity of the Netherlands
2 Utrecht University

26 January 2015, IPA course, Eindhoven

2[Software technology for learning and teaching]

ICT & Education §1

3[Software technology for learning and teaching]

Free input? §1

4[Software technology for learning and teaching]

Quality of feedback? §1

http://studio.code.org/hoc/2

http://studio.code.org/hoc/2

5[Software technology for learning and teaching]

Help! §1

6[Software technology for learning and teaching]

Problems §1

I Simplified tasks
I Bad feedback
I No feedback

7[Software technology for learning and teaching]

Goal §1

Use

I languages and grammars
I algebra’s

To

I determine what a student has done
I determine what a student should do
I explain instead of show why a student performs badly

8[Software technology for learning and teaching]

Resulting in §1

9[Software technology for learning and teaching]

Outline of presentation §1

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

10[Software technology for learning and teaching]

Outline of presentation §2

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

11[Software technology for learning and teaching]

Procedural skills §2

In many subjects students have to acquire procedural skills:

I Mathematics: find the derivative of a function
I Linear Algebra: solve a system of linear equations
I Logic: rewrite a proposition to disjunctive normal form
I Computer Science: construct a program from a

specification using Dijkstra’s calculus
I Physics: calculate the resistance of a circuit
I Biology: calculate inheritance values using Mendel’s laws
I . . .

12[Software technology for learning and teaching]

Example §2

13[Software technology for learning and teaching]

Tutoring tools for procedural skills §2

I Typical features of these tools:
• Generate exercises
• Stepwise construction of a solution
• Select rewriting rule or transformation
• Suggest how to continue
• Check correctness of a step/solution

I Such tools offer many advantages to users:
• User can work at any time
• User can select material and exercises
• Tool can select exercises based on a user-profile
• Mistakes can be logged, and reported back to teachers
• Tool can give immediate feedback

14[Software technology for learning and teaching]

Do they work? §2

I Tutoring systems
I Serious games

15[Software technology for learning and teaching]

Outline of presentation §3

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

16[Software technology for learning and teaching]

Logex §3

http://ideas.cs.uu.nl/logex/

http://ideas.cs.uu.nl/logex/

17[Software technology for learning and teaching]

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

17[Software technology for learning and teaching]

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

17[Software technology for learning and teaching]

Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

18[Software technology for learning and teaching]

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

18[Software technology for learning and teaching]

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

18[Software technology for learning and teaching]

Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

19[Software technology for learning and teaching]

Modelling intelligence §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions
3. Strategies guide that reasoning

19[Software technology for learning and teaching]

Modelling intelligence §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions
3. Strategies guide that reasoning

20[Software technology for learning and teaching]

A strategy specification language §3

We need the following concepts for specifying a strategy:

I apply a basic rewrite rule (”∧ distributes over ∨”)
I sequence (”first . . . then . . . ”)
I choice (”use one of the rules for ¬”)
I apply exhaustively (”repeat . . . as long as possible”)
I traversals (”apply . . . top down”)

The same concepts are found in:
I (program) transformation languages
I proof plans and tacticals
I workflow languages

21[Software technology for learning and teaching]

Strategy composition §3

I Basic strategy combinators:

1. Sequence s <?> t

2. Choice s <|> t

3. Unit elements succeed , fail

4. Labels label ` s

5. Recursion fix f

I Many more combinators can be added:

option s = s <|> succeed

many s = fix (λx → option (s <?> x))

repeat s = many s <?> not s

21[Software technology for learning and teaching]

Strategy composition §3

I Basic strategy combinators:

1. Sequence s <?> t

2. Choice s <|> t

3. Unit elements succeed , fail

4. Labels label ` s

5. Recursion fix f

I Many more combinators can be added:

option s = s <|> succeed

many s = fix (λx → option (s <?> x))

repeat s = many s <?> not s

22[Software technology for learning and teaching]

Outline of presentation §4

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

23[Software technology for learning and teaching]

Calculating feedback automatically §4

With a strategy, we can calculate several kinds of feedback:

I Feedback after a step by a user
I Hints on how to continue
I Worked-out solutions
I Strategy unfolding (problem decomposition)
I Completion problems
I Progress (number of steps remaining)
I Report common mistakes

I Most categories appear in the tutoring principles of
Anderson

I Offered as (web-)services to other learning environments

24[Software technology for learning and teaching]

Reporting common mistakes §4

I Formulate misconceptions as buggy rules:

¬(φ ∧ ψ) 6⇒ ¬φ ∧ ¬ψ
φ ∧ (ψ ∨ χ) 6⇒ (φ ∧ ψ) ∨ χ

I Buggy rules can be recognized and reported with a
specialized feedback text

I Also: buggy strategies to describe procedural mistakes

25[Software technology for learning and teaching]

Strategy unfolding §4

I Strategies have a hierarchical structure
I Use structure to decompose an exercise

• First ask for the final answer
• If the answer is incorrect, decompose the problem into

subparts and let the user try again
• Example from linear algebra: split the Gaussian Elimination

method into a forward and a backward pass

I The structure of a strategy and its labels also provide a
way to adapt and customize the strategy

26[Software technology for learning and teaching]

How feedback is calculated §4

The main idea:
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I This turns tracking intermediate steps into a parsing

problem

Feedback service Parsing problem

ready is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

after a step try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

26[Software technology for learning and teaching]

How feedback is calculated §4

The main idea:
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I This turns tracking intermediate steps into a parsing

problem

Feedback service Parsing problem

ready is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

after a step try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

27[Software technology for learning and teaching]

Outline of presentation §5

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

28[Software technology for learning and teaching]

Application domains §5

I Logic
I Mathematics
I Communication skills
I Infection and Immunology
I Programming

29[Software technology for learning and teaching]

Proving equivalences §5.1

I Use strategies to prove the equivalence of logical
propositions

I Allow student to make forward steps and backward steps
I Joint work with Josje Lodder

¬ ((p → q)→ (p ∧ q))
⇔ {implication elimination}
¬ (¬ (p → q) ∨ (p ∧ q))
⇔ {De Morgan}
¬¬(p → q) ∧ ¬ (p ∧ q)
⇔ {double negation}

(p → q) ∧ ¬ (p ∧ q)
⇔ {De Morgan}

(p → q) ∧ (¬ p ∨ ¬ q)

30[Software technology for learning and teaching]

Proving equivalences (how) §5.1

I The strategy rewrites a pair of propositions
I Rewrite both parts to disjunctive normal form, and then

towards equal forms
I Two simple techniques simplify the generated proofs:

• Try to decompose the proof into subproofs by inspecting
the top-level operators

• Search for common subformulas

¬ ((p → q) → (p ∧ q))

⇔ {. . .}

(p → q) ∧ (¬ p ∨ ¬ q)

31[Software technology for learning and teaching]

Mathematics §5.2

I We collaborate with the Freudenthal Institute to extend
their applets with our feedback facilities
• Covers most topics in secondary school mathematics:

polynomial equations, inequalities, calculating with powers,
derivatives, etc.

• Applets are used by many schools (and a popular textbook)

I We participated in the Math-Bridge project
• Large European consortium around the ActiveMath learning

environment
• Aims at providing a math bridging course to higher

education

I We try to apply our approach to different types of exercises

32[Software technology for learning and teaching]

DWO Math Environment (with feedback) §5.2

Tool by Peter Boon (Freudenthal Institute)

33[Software technology for learning and teaching]

Challenges in a math tutor §5.2

I Support for canonical forms
• To test for equality
• To control the granularity of steps
• To simplify terms

Examples:
• 2
√
2 versus

√
8, 3 1

2 versus 7
2 (or even 3.5)

• x + (−3) versus x − 3

• pattern ax + b versus 3− 5x

I Flexibility in strategies (customization)
I Parameterized rewrite steps (“divide both sides by 5”)

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3

⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3

⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3

⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3

⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3

⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)

⇒ 12 ∗ x + 0
⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0

⇒ 12 ∗ x

34[Software technology for learning and teaching]

What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x

35[Software technology for learning and teaching]

Similar problems §5.2

I Economy of rules: I want to describe
a ∗ (b + c) ⇒ a ∗ b + a ∗ c

but preferably not also:
a ∗ (b − c) ⇒ a ∗ b − a ∗ c
−a ∗ (b + c) ⇒ −a ∗ b − a ∗ c

I Canonical forms: a + (−b) should be presented as a − b
I Granularity: users at different levels need different

granularity of rules
I Recognizing user steps: when showing steps to users, we

want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not
obligatory

36[Software technology for learning and teaching]

Views §5.2

A view views an expression in a particular format:

I a match function returns an equivalent value in a different
format, for example:

match plusView (a − b) ⇒ a + (−b)
match plusView (−(a + b)) ⇒ −a +−b

I a build function to return to the original domain, for
example:

3 ∗ (4 ∗ x − 1)
⇒ { match plusView on 4 ∗ x − 1 }

3 ∗ (4 ∗ x + (−1))
⇒ { distribute ∗ over + }

3 ∗ 4 ∗ x + 3 ∗ (−1)
⇒ { simplify using rationalView }

12 ∗ x − 3

37[Software technology for learning and teaching]

Views and rules §5.2

I Many rules use one or more views for matching on the
left-hand side

I Many rules use one or more views to clean up a result
expression after rewriting

I Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit

38[Software technology for learning and teaching]

A communication skills game §5.3

39[Software technology for learning and teaching]

Editing scenario’s §5.3

40[Software technology for learning and teaching]

An infection and immunity game §5.3

41[Software technology for learning and teaching]

Programming §5.4

We have developed programming tutors for

I Evaluating functional expressions
I Learning functional programming
I Learning imperative programming

More about this in the last lecture.

42[Software technology for learning and teaching]

Outline of presentation §6

1. Introduction

2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains

Logic

Mathematics

Serious games

Programming

6. Concluding remarks

43[Software technology for learning and teaching]

Today §6

I 10:00 - 11:00 Lecture 1: Introduction & general overview
(Johan Jeuring)

I 11:00 - 11:15 Coffee
I 11:15 - 12:30 Lecture 2: Rewriting & strategies (Bastiaan

Heeren)
I 12:30 - 13:30 Lunch
I 13:30 - 14:45 Lab (Bastiaan Heeren and Johan Jeuring)
I 14:45 - 15:00 Tea/coffee
I 15:00 - 16:00 Lecture 3: Programming tutors (Johan

Jeuring)

44[Software technology for learning and teaching]

Concluding remarks §6

I We introduced a strategy language to make the procedure
for solving an exercise explicit

I This language is what differentiates us from other tools
I Feedback is calculated from the strategy by turning

feedback services into parsing problems
I Strategies can be used in many learning tools

45[Software technology for learning and teaching]

More information §6

Bastiaan Heeren and Johan Jeuring. Feedback services for
stepwise exercises. Science of Computer Programming Special
Issue on Software Development Concerns in the e-Learning
Domain, volume 88, 110 - 129, 2014.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying
rewrite strategies for interactive exercises. In Mathematics in
Computer Science 3(3), 349 - 370, 2010.

I Accessible via http://www.jeuring.net/homepage/
Publications/index.html

I Project webpage at http://ideas.cs.uu.nl/
I For more information, contact us at bhr@ou.nl,

J.T.Jeuring@uu.nl

http://www.jeuring.net/homepage/Publications/index.html
http://www.jeuring.net/homepage/Publications/index.html
http://ideas.cs.uu.nl/

	Introduction
	Procedural skills
	Strategy specification language
	Feedback services
	Application domains
	Logic
	Mathematics
	Serious games
	Programming

	Concluding remarks

