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ICT & Education §1
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Free input? §1
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Quality of feedback? §1

http://studio.code.org/hoc/2

http://studio.code.org/hoc/2
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Help! §1
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Problems §1

I Simplified tasks
I Bad feedback
I No feedback
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Goal §1

Use

I languages and grammars
I algebra’s

To

I determine what a student has done
I determine what a student should do
I explain instead of show why a student performs badly
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Resulting in §1
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Procedural skills §2

In many subjects students have to acquire procedural skills:

I Mathematics: find the derivative of a function
I Linear Algebra: solve a system of linear equations
I Logic: rewrite a proposition to disjunctive normal form
I Computer Science: construct a program from a

specification using Dijkstra’s calculus
I Physics: calculate the resistance of a circuit
I Biology: calculate inheritance values using Mendel’s laws
I . . .
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Example §2
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Tutoring tools for procedural skills §2

I Typical features of these tools:
• Generate exercises
• Stepwise construction of a solution
• Select rewriting rule or transformation
• Suggest how to continue
• Check correctness of a step/solution

I Such tools offer many advantages to users:
• User can work at any time
• User can select material and exercises
• Tool can select exercises based on a user-profile
• Mistakes can be logged, and reported back to teachers
• Tool can give immediate feedback
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Do they work? §2

I Tutoring systems
I Serious games
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Logex §3

http://ideas.cs.uu.nl/logex/

http://ideas.cs.uu.nl/logex/
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Rewriting to disjunctive normal form §3

I Rewrite rules for logical propositions:

¬¬φ ⇒ φ φ ∧ (ψ ∨ χ) ⇒ (φ ∧ ψ) ∨ (φ ∧ χ)
¬(φ ∧ ψ) ⇒ ¬φ ∨ ¬ψ (φ ∨ ψ) ∧ χ ⇒ (φ ∧ χ) ∨ (ψ ∧ χ)
¬(φ ∨ ψ) ⇒ ¬φ ∧ ¬ψ

I Exercise: bring ¬(¬(p ∨ q) ∧ r) to DNF

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r
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Strategies for reaching DNF §3

I Naive strategy:
Apply rewrite rules exhaustively

I Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

I Expert strategy:
Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible
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Modelling intelligence §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions
3. Strategies guide that reasoning
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A strategy specification language §3

We need the following concepts for specifying a strategy:

I apply a basic rewrite rule (”∧ distributes over ∨”)
I sequence (”first . . . then . . . ”)
I choice (”use one of the rules for ¬”)
I apply exhaustively (”repeat . . . as long as possible”)
I traversals (”apply . . . top down”)

The same concepts are found in:
I (program) transformation languages
I proof plans and tacticals
I workflow languages
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Strategy composition §3

I Basic strategy combinators:

1. Sequence s <?> t

2. Choice s <|> t

3. Unit elements succeed , fail

4. Labels label ` s

5. Recursion fix f

I Many more combinators can be added:

option s = s <|> succeed

many s = fix (λx → option (s <?> x))

repeat s = many s <?> not s
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Calculating feedback automatically §4

With a strategy, we can calculate several kinds of feedback:

I Feedback after a step by a user
I Hints on how to continue
I Worked-out solutions
I Strategy unfolding (problem decomposition)
I Completion problems
I Progress (number of steps remaining)
I Report common mistakes

I Most categories appear in the tutoring principles of
Anderson

I Offered as (web-)services to other learning environments
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Reporting common mistakes §4

I Formulate misconceptions as buggy rules:

¬(φ ∧ ψ) 6⇒ ¬φ ∧ ¬ψ
φ ∧ (ψ ∨ χ) 6⇒ (φ ∧ ψ) ∨ χ

I Buggy rules can be recognized and reported with a
specialized feedback text

I Also: buggy strategies to describe procedural mistakes
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Strategy unfolding §4

I Strategies have a hierarchical structure
I Use structure to decompose an exercise

• First ask for the final answer
• If the answer is incorrect, decompose the problem into

subparts and let the user try again
• Example from linear algebra: split the Gaussian Elimination

method into a forward and a backward pass

I The structure of a strategy and its labels also provide a
way to adapt and customize the strategy
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How feedback is calculated §4

The main idea:
I A strategy describes valid sequences of rules
I View a strategy specification as a context-free grammar
I This turns tracking intermediate steps into a parsing

problem

Feedback service Parsing problem

ready is the empty sentence (ε) accepted?

provide hint compute the “first set”

worked-out solution construct a sentence

after a step try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input
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Application domains §5

I Logic
I Mathematics
I Communication skills
I Infection and Immunology
I Programming
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Proving equivalences §5.1

I Use strategies to prove the equivalence of logical
propositions

I Allow student to make forward steps and backward steps
I Joint work with Josje Lodder

¬ ((p → q)→ (p ∧ q))
⇔ {implication elimination}
¬ (¬ (p → q) ∨ (p ∧ q))
⇔ {De Morgan}
¬¬(p → q) ∧ ¬ (p ∧ q)
⇔ {double negation}

(p → q) ∧ ¬ (p ∧ q)
⇔ {De Morgan}

(p → q) ∧ (¬ p ∨ ¬ q)
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Proving equivalences (how) §5.1

I The strategy rewrites a pair of propositions
I Rewrite both parts to disjunctive normal form, and then

towards equal forms
I Two simple techniques simplify the generated proofs:

• Try to decompose the proof into subproofs by inspecting
the top-level operators

• Search for common subformulas

¬ ( (p → q) → (p ∧ q))

⇔ {. . .}

(p → q) ∧ (¬ p ∨ ¬ q)
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Mathematics §5.2

I We collaborate with the Freudenthal Institute to extend
their applets with our feedback facilities
• Covers most topics in secondary school mathematics:

polynomial equations, inequalities, calculating with powers,
derivatives, etc.

• Applets are used by many schools (and a popular textbook)

I We participated in the Math-Bridge project
• Large European consortium around the ActiveMath learning

environment
• Aims at providing a math bridging course to higher

education

I We try to apply our approach to different types of exercises
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DWO Math Environment (with feedback) §5.2

Tool by Peter Boon (Freudenthal Institute)
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Challenges in a math tutor §5.2

I Support for canonical forms
• To test for equality
• To control the granularity of steps
• To simplify terms

Examples:
• 2
√
2 versus

√
8, 3 1

2 versus 7
2 (or even 3.5)

• x + (−3) versus x − 3

• pattern ax + b versus 3− 5x

I Flexibility in strategies (customization)
I Parameterized rewrite steps (“divide both sides by 5”)
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What does a step look like? §5.2

3 ∗ (4 ∗ x − 1) + 3 = 7 ∗ x − 14⇒ 12 ∗ x = 7 ∗ x − 14?

You are doing a lot in this step!

3 ∗ (4 ∗ x − 1) + 3
⇒ (3 ∗ 4 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3 ∗ 1) + 3
⇒ (12 ∗ x − 3) + 3
⇒ (12 ∗ x + (−3)) + 3
⇒ 12 ∗ x + (−3 + 3)
⇒ 12 ∗ x + 0
⇒ 12 ∗ x
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Similar problems §5.2

I Economy of rules: I want to describe
a ∗ (b + c) ⇒ a ∗ b + a ∗ c

but preferably not also:
a ∗ (b − c) ⇒ a ∗ b − a ∗ c
−a ∗ (b + c) ⇒ −a ∗ b − a ∗ c

I Canonical forms: a + (−b) should be presented as a − b
I Granularity: users at different levels need different

granularity of rules
I Recognizing user steps: when showing steps to users, we

want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not
obligatory
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Views §5.2

A view views an expression in a particular format:

I a match function returns an equivalent value in a different
format, for example:

match plusView (a − b) ⇒ a + (−b)
match plusView (−(a + b)) ⇒ −a +−b

I a build function to return to the original domain, for
example:

3 ∗ (4 ∗ x − 1)
⇒ { match plusView on 4 ∗ x − 1 }

3 ∗ (4 ∗ x + (−1))
⇒ { distribute ∗ over + }

3 ∗ 4 ∗ x + 3 ∗ (−1)
⇒ { simplify using rationalView }

12 ∗ x − 3
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Views and rules §5.2

I Many rules use one or more views for matching on the
left-hand side

I Many rules use one or more views to clean up a result
expression after rewriting

I Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit
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A communication skills game §5.3



39[ Software technology for learning and teaching ]

Editing scenario’s §5.3
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An infection and immunity game §5.3
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Programming §5.4

We have developed programming tutors for

I Evaluating functional expressions
I Learning functional programming
I Learning imperative programming

More about this in the last lecture.
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Today §6

I 10:00 - 11:00 Lecture 1: Introduction & general overview
(Johan Jeuring)

I 11:00 - 11:15 Coffee
I 11:15 - 12:30 Lecture 2: Rewriting & strategies (Bastiaan

Heeren)
I 12:30 - 13:30 Lunch
I 13:30 - 14:45 Lab (Bastiaan Heeren and Johan Jeuring)
I 14:45 - 15:00 Tea/coffee
I 15:00 - 16:00 Lecture 3: Programming tutors (Johan

Jeuring)
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Concluding remarks §6

I We introduced a strategy language to make the procedure
for solving an exercise explicit

I This language is what differentiates us from other tools
I Feedback is calculated from the strategy by turning

feedback services into parsing problems
I Strategies can be used in many learning tools
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More information §6

Bastiaan Heeren and Johan Jeuring. Feedback services for
stepwise exercises. Science of Computer Programming Special
Issue on Software Development Concerns in the e-Learning
Domain, volume 88, 110 - 129, 2014.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying
rewrite strategies for interactive exercises. In Mathematics in
Computer Science 3(3), 349 - 370, 2010.

I Accessible via http://www.jeuring.net/homepage/
Publications/index.html

I Project webpage at http://ideas.cs.uu.nl/
I For more information, contact us at bhr@ou.nl,

J.T.Jeuring@uu.nl

http://www.jeuring.net/homepage/Publications/index.html
http://www.jeuring.net/homepage/Publications/index.html
http://ideas.cs.uu.nl/
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