Software technology for learning and
teaching

Part 1: Introduction

Bastiaan Heeren! and Johan Jeuring!?

! Open Univerity of the Netherlands
2 Utrecht University

26 January 2015, IPA course, Eindhoven

8 Open Universiteit
www.ou.nl

ICT & Education §1

& o T
MathMatch Practice Session - Nocreditawarded MathMatch DU
V Viewtrate ot

Question 9: Score 0/1

2_ g2
Vereenvouig zoveel mogeic =48
T

Zoek een

Comment:

i weblecture

&2
ETE

[Software technology for learning and teaching]

Free input? §1

Understanding the process for solving quadratic equations | Dashboard | The World of Math | Khan Academy
niips & www khanacademy.org
Buienradar YouTube Wikipedia NS StatCounter Facebook dub Johan Jeuring Googles maps.google.com _Get access

KHANACADEMY LEARN v COACH A v /) JOHANTIEURING v

x

Understanding the process for solving
quadratic equations

Create a list of steps, in order, that will solve the following equation.

5(z-3)'+4=129 Drag and drop the steps to describe the
solution path
Solution steps

Add 3 to both sides Subtract 4 from both sides [et]

Add 4 to both sides Divide both sides by 5

Show me how

Divide both sides by 5
— d ke another hint (3 hints el

Stuck? Watch a video.
Subtract 4 from both sides

Square both sides

Take the square root of both sides

[Software technology for learning and teaching]

Quality of feedback?

http://studio.code.org/hoc/2

learn.code.org

You are using all of the necessary
types of blocks but not in the right
way.

8 [Software technology for learning and teaching]

§1

http://studio.code.org/hoc/2

Help!

Enercities

[Software technology for learning and teaching]

§1

Problems

» Simplified tasks
» Bad feedback
» No feedback

8 [Software technology for learning and teaching]

§1

Goal

Use

» languages and grammars

> algebra’s
To

» determine what a student has done
» determine what a student should do

> explain instead of show why a student performs badly

[Software technology for learning and teaching]

§1

Resulting in

00 0% o?)| B[(M| meer Tip Help
ol =
x°+20=9x oY
]
S K
X -9x+20=0 oY
]
K
x| (x-5)(x+4)=0
Tip: X
drieterm ontbinden
¥2-0x+20=0
wordt dan:

(x-4)(x-5)=0

8 [Software technology for learning and teaching]

abe lT

§1

Outline of presentation
1. Introduction
2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains
Logic
Mathematics
Serious games
Programming

8 6. Concluding remarks

[Software technology for learning and teaching]

§1

ne of presentation
1. Introduction
2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains
Logic
Mathematics
Serious games
Programming

6. Concluding remarks

[Software technology for learning and teaching |

§2

10

Procedural skills §2

In many subjects students have to acquire procedural skills:

vV v.v'Y

v

Mathematics: find the derivative of a function
Linear Algebra: solve a system of linear equations
Logic: rewrite a proposition to disjunctive normal form

Computer Science: construct a program from a
specification using Dijkstra’s calculus

Physics: calculate the resistance of a circuit

» Biology: calculate inheritance values using Mendel's laws

[Software technology for learning and teaching]

11

Example §2

Thecrie B
Het oplossen van kwadratische vergelijkingen
Om de vergelijking x> — 7x — 18 =0 op te lossen,

ontbind je eerst het linkerlid in factoren. Hetteken v hetekent of

Vervolgenspasjetoe|A-B:0 geeft A=0 v B=0. |

Je krijgt
¥—Tx—18=0 Ontbind in factoren.
x—9x+2)=0 Pastoe A-B=0 geeft A=0 v B=0.

x—9=0wv x+2=0
x=9 v x=-2

Bij het oplossen van een kwadratische vergelijking gebruik je het
volgende werkschema.

Werkschema: zo los je een kwadratische vergelijking op
1 Maak het rechterlid nul.

2 Ontbind het linkerlid in factoren.

3 Gebruik: uit A-B=0 volgt A=0 v B=0.

8 [Software technology for learning and teaching] 12

Tutoring tools for procedural skills

» Typical features of these tools:

Generate exercises

Stepwise construction of a solution
Select rewriting rule or transformation
Suggest how to continue

Check correctness of a step/solution

> Such tools offer many advantages to users:

User can work at any time

User can select material and exercises

Tool can select exercises based on a user-profile
Mistakes can be logged, and reported back to teachers
Tool can give immediate feedback

[Software technology for learning and teaching]

§2

13

ey work?

» Tutoring systems

» Serious games

[Software technology for learning and teaching |

§2

14

ne of presentation
1. Introduction
2. Procedural skills
3. Strategy specification language
4. Feedback services

5. Application domains
Logic
Mathematics
Serious games

Programming

6. Concluding remarks

[Software technology for learning and teaching |

§3

15

Logex §3

http://ideas.cs.uu.nl/logex/

Gonvert to disjunctive normal form

Gonvert to conjunctive normal form

= New exercise Rule Justification

Proof Iogical equivalence

Gorrection per step

~lanprv-p)
De Morgan
< -aapa-p
Double negation
« ~@sp)ap
S |sanrpap

Rule. .

v Gheck If derivation is complete

[Software technology for learning and teaching] 16

http://ideas.cs.uu.nl/logex/

Rewriting to disjunctive normal form §3

» Rewrite rules for logical propositions:

-—¢ = ¢ dANWVX) = (9AY)V(PAX)
(pAY) = dpVp (dVY)AX = (@A X)V (P AX)
—(¢pVY) = =dp A

» Exercise: bring =(=(pV gq) A r) to DNF

8 [Software technology for learning and teaching]

17

Rewriting to disjunctive normal form §3

» Rewrite rules for logical propositions:

-—¢ = ¢ dANWVX) = (9AY)V(PAX)
(pAY) = dpVp (dVY)AX = (@A X)V (P AX)
—(¢pVY) = =dp A

» Exercise: bring =(=(pV gq) A r) to DNF
~(=(pVag)Ar)

= —(pVvq)V-r
= pVvqgV-r

8 [Software technology for learning and teaching]

17

Rewriting to disjunctive normal form §3

» Rewrite rules for logical propositions:

-—¢ = ¢ dANWVX) = (9AY)V(PAX)
(pAY) = dpVp (dVY)AX = (@A X)V (P AX)
—(¢pVY) = =dp A

» Exercise: bring =(=(pV gq) A r) to DNF

=(=(pVva)Ar) =(=(pVva)Ar)
= —=(pVa)V-r = ((=pA—q) AT)
= pVvaqgV-r = =(-pA-q)V-r
= —=pV-omgVoor
= pV-oqVor
= pVqgVv-r

8 [Software technology for learning and teaching] 17

Strategies for reaching DNF

> Naive strategy:

Apply rewrite rules exhaustively

8 [Software technology for learning and teaching]

§3

18

Strategies for reaching DNF §3

> Naive strategy:

Apply rewrite rules exhaustively

» Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

8 [Software technology for learning and teaching]

18

Strategies for reaching DNF §3

> Naive strategy:

Apply rewrite rules exhaustively

» Algorithmic strategy:
(1) Remove constants
(2) Unfold definitions of implication/equivalence
(3) Push negations inside (top-down)
(4) Then use the distribution rule

> Expert strategy:

Apply the algorithmic strategy, but use rules for
tautologies and contradictions whenever possible

8 [Software technology for learning and teaching]

18

Modelling intelligence §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge

3. The need for knowledge about how to direct or guide that
reasoning

8 [Software technology for learning and teaching]

19

Modelling intelligence §3

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge

3. The need for knowledge about how to direct or guide that
reasoning

In our running example:

1. The domain consists of logical propositions
2. Reasoning uses rewrite rules for logical propositions

3. Strategies guide that reasoning

8 [Software technology for learning and teaching]

19

A strategy specification language §3

We need the following concepts for specifying a strategy:

» apply a basic rewrite rule ("A distributes over /")
> sequence ("first ... then ...")
» choice ("use one of the rules for —")
» apply exhaustively ("repeat ... as long as possible”)
> traversals ("apply ... top down")

The same concepts are found in:
» (program) transformation languages
» proof plans and tacticals

» workflow languages

8 [Software technology for learning and teaching] 20

Strategy composition
» Basic strategy combinators:

Sequence

Choice

1.

2.

3. Unit elements
4. Labels

5.

Recursion

8 [Software technology for learning and teaching]

§3

s <>t
s<>t
succeed, fail
label ¢ s

fix f

21

Strategy composition §3

» Basic strategy combinators:

1. Sequence s>t
2. Choice s<>t
3. Unit elements succeed, fail
4. Labels label ¢ s
5. Recursion fix f

» Many more combinators can be added:
option s = s <[> succeed
many s = fix (Ax — option (s <> x))
repeat s = many s <x> not s

8 [Software technology for learning and teaching]

21

ne of presentation
1. Introduction
2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains
Logic
Mathematics
Serious games

Programming

6. Concluding remarks

[Software technology for learning and teaching |

§4

22

Calculating feedback automatically §4

With a strategy, we can calculate several kinds of feedback:

vV V. vV v VvV Vv Y

Feedback after a step by a user

Hints on how to continue

Worked-out solutions

Strategy unfolding (problem decomposition)
Completion problems

Progress (number of steps remaining)

Report common mistakes

Most categories appear in the tutoring principles of
Anderson

Offered as (web-)services to other learning environments

[Software technology for learning and teaching]

23

Reporting common mistakes §4

» Formulate misconceptions as buggy rules:

“(pAY) A ~p Ny
dANWVX) A (DAY VX

» Buggy rules can be recognized and reported with a
specialized feedback text

» Also: buggy strategies to describe procedural mistakes

8 [Software technology for learning and teaching]

24

Strategy unfolding §4

> Strategies have a hierarchical structure
» Use structure to decompose an exercise

e First ask for the final answer

e If the answer is incorrect, decompose the problem into
subparts and let the user try again

e Example from linear algebra: split the Gaussian Elimination
method into a forward and a backward pass

» The structure of a strategy and its labels also provide a
way to adapt and customize the strategy

8 [Software technology for learning and teaching]

25

How feedback is calculated §4

The main idea:
> A strategy describes valid sequences of rules
» View a strategy specification as a context-free grammar

» This turns tracking intermediate steps into a parsing
problem

8 [Software technology for learning and teaching] 26

How feedback is calculated §4

The main idea:

> A strategy describes valid sequences of rules

» View a strategy specification as a context-free grammar

» This turns tracking intermediate steps into a parsing

problem

Feedback service

Parsing problem

ready

is the empty sentence (¢) accepted?

provide hint

compute the “first set”

worked-out solution

construct a sentence

after a step

try to recognize the rewrite rule that
was used, and parse this rule as the
next symbol of the input

8 [Software technology for learning and teaching] 26

Outline of presentation

5. Application domains
Logic
Mathematics
Serious games

Programming

8 [Software technology for learning and teaching]

§5

27

Application domains

Logic
Mathematics
Communication skills

Infection and Immunology

vV V. v v Vv

Programming

8 [Software technology for learning and teaching]

§5

28

Proving equivalences §5.1

> Use strategies to prove the equivalence of logical
propositions
» Allow student to make forward steps and backward steps

» Joint work with Josje Lodder

~((p=4q) = (pAq))

< {implication elimination}
“(=(p—=qVipAa)

< {De Morgan}
~(p—=q) A= (pAQq)

< {double negation}
(p—=a)A=(pAq)

< {De Morgan}

8 (p=a)A(=pV—q)

[Software technology for learning and teaching]

29

Proving equivalences (how) §5.1

» The strategy rewrites a pair of propositions

» Rewrite both parts to disjunctive normal form, and then
towards equal forms

» Two simple techniques simplify the generated proofs:

e Try to decompose the proof into subproofs by inspecting
the top-level operators
e Search for common subformulas

- ([(p—=q)| = (pAQq))
<{...}

(p=a)|A(=pV—q)

8 [Software technology for learning and teaching]

30

Mathematics §5.2

» We collaborate with the Freudenthal Institute to extend
their applets with our feedback facilities
e Covers most topics in secondary school mathematics:
polynomial equations, inequalities, calculating with powers,
derivatives, etc.
e Applets are used by many schools (and a popular textbook)

» We participated in the Math-Bridge project

e Large European consortium around the ActiveMath learning
environment

e Aims at providing a math bridging course to higher
education

» We try to apply our approach to different types of exercises

8 [Software technology for learning and teaching] 31

DWO Math Environment (with feedback)

) DWO Math Enviroment - Mozilla Firefox.

Bestand Bewetken Besld Geschisdenis Bladwigers Extra Help

fi DWOMath Enviroment B
@ T >> B: Examples quadreq &
; E 4. quadreq 3
Los d wergelijking op. VT 00 7 8 me

tip solve T

x2x=4)=0

x=0of 22—4=0

) de factoren op 0 stellen

constante termen naar rechts
brengen

F=0ef =4 variabele vrijmalcen door beide kanten
te delen
x=0af x=2
o=t @ OO OOOOOOD fi
Score: 10 totaal: 10

§5.2

Tool by Peter Boon (Freudenthal Institute)

[Software technology for learning and teaching]

32

Challenges in a math tutor

» Support for canonical forms

e To test for equality
e To control the granularity of steps
e To simplify terms

Examples:

e 2/2 versus /8, 3% versus % (or even 3.5)

x + (—3) versus x — 3

e pattern ax + b versus 3 — bx

v

Flexibility in strategies (customization)

v

Parameterized rewrite steps (“divide both sides by 5")

8 [Software technology for learning and teaching]

§5.2

33

What does a step look like?

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

8 [Software technology for learning and teaching]

§5.2

34

What does a step look like?

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3

8 [Software technology for learning and teaching]

§5.2

34

What does a step look like?

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
= (Bxdxx—3x1)+3

8 [Software technology for learning and teaching]

§5.2

34

What does a step look like?

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
= (Bxdxx—3x1)+3
= (12xx—3%1)+3

8 [Software technology for learning and teaching]

§5.2

34

What does a step look like?

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
= (Bx4xx—-3%x1)+3
= (12%x-3%1)+3
= (12xx—-3)+3

8 [Software technology for learning and teaching]

§5.2

34

What does a step look like? §5.2

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
(3x4xx—3x1)+3
(12%xx —3%1)+3
(12xx —3)+3
(12xx+4(-3))+3

P4

8 [Software technology for learning and teaching] 34

What does a step look like? §5.2

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
(3x4xx—3x1)+3
(12%xx —3%1)+3
(12xx —3)+3
(12xx+4(-3))+3
12+ x4 (=3 +3)

L

8 [Software technology for learning and teaching] 34

What does a step look like? §5.2

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3
(3x4xx—3x1)+3
(12%xx —3%1)+3
(12xx —3)+3
(12xx+4(-3))+3
12+ x4 (=3 +3)
12xx+0

S

8 [Software technology for learning and teaching] 34

What does a step look like? §5.2

3k (dxx—1)+3=Txx—14=12%xx=Txx — 147

You are doing a lot in this step!

3x(4xx—1)+3

= (Bx4xx—-3%x1)+3
= (12%x-3%1)+3
= (12xx—-3)+3

= (12xx+(-3))+3
= 12%xx+(—3+3)

= 12xx+0

= 12xx

8 [Software technology for learning and teaching] 34

Similar problems §5.2

» Economy of rules: | want to describe
ax(b+c) = axb+axc
but preferably not also:
ax(b—c) = axb—axc
—ax(b+c) = —axb—axc
» Canonical forms: a + (—b) should be presented as a — b

» Granularity: users at different levels need different
granularity of rules

» Recognizing user steps: when showing steps to users, we
want to apply some simplifications automatically. When
recognising steps, however, such simplifications are not
obligatory

8 [Software technology for learning and teaching]

35

Views §5.2

A view views an expression in a particular format:

» a match function returns an equivalent value in a different
format, for example:

match plusView (a — b) = a+(—b)
match plusView (—(a+ b)) = —a+ —b
» a build function to return to the original domain, for
example:
3x(4xx—1)
= { match plusView on 4% x — 1 }
3x(4xx+(—1))
= { distribute * over + }
3x4xx+3x*(—1)
= { simplify using rationalView }

8 12xx —3
[Software technology for learning and teaching] 36

Views and rules §5.2

» Many rules use one or more views for matching on the
left-hand side

» Many rules use one or more views to clean up a result
expression after rewriting

> Views and parametrized rules solve the problem of making
all steps in solving an exercise explicit

8 [Software technology for learning and teaching]

37

A communication skills game §5.3

Communicate! x

< C' | [} science-vs75.science.uu.nl/backend/index.php/scenario/index/scenarios.18 W =

Uitioggen

n Ja, helemaal.

Toestemming vragen om advies te geven reflectie geven doorvragen om advies te kunnen geven | voo|

1. Zal ik u een advies geven wat u het beste kan doen?

[Software technology for learning and teaching]

38

Editing scenario’s §5.3

Editor - Communicate!

+ | @ science-vs75.science.uu.nl/backend 1 [L+

Buienradar YouTube Wikipedia NS StatCounter Facebook dub Johan Jeuring Google+ maps.google.com

m ¢ T Pioos @b

Scriptbeheer Kenmerken Kladblad Opslaan Medla Speler Patiént Gesprek Onderwerp
-

Emot

D D .

* ~] *
Rt - - 5 Parameter:
Intenties Ouders Ordenen Valideer Scenario: baliegesprek demo Contact

[~] Naam onderwerp

%
- , Intenties

=

onhandig

hardpen. Dus u vrasgt zich af
it u s st Beata kan doan. Kopt
dat?

[ook ovaboss
@& Commentaar

1 loop ook cp ar
maar it mt
P

X Einde gesprek

Kiadblok | Validatierapport x
& Eindknoop
Nieuw item Alles naar nodes Alles verwijderen
S/P Zin Intentie Emotie Feedback
s = (geen) =

[Software technology for learning and teaching] 39

An infection and immunity game

I OFF scenario: 1

{(H)C | [AB.HID }

8 [Software technology for learning and teaching]

Actions

§5.3

A: Opsonisation
B: Chemotaxis

C: Lysis

D: Neutrophil

E: Macrophage

F: Monocyte

G: Cytokine

H: Pre-existing antibodies
I: Produced antibodies

J: B-cell

K: T-Helper

il

40

Programming §5.4

We have developed programming tutors for

» Evaluating functional expressions
> Learning functional programming

» Learning imperative programming

More about this in the last lecture.

8 [Software technology for learning and teaching] 41

ne of presentation
1. Introduction
2. Procedural skills

3. Strategy specification language

4. Feedback services

5. Application domains
Logic
Mathematics
Serious games

Programming

6. Concluding remarks

[Software technology for learning and teaching |

§6

42

Today

§6

10:00 - 11:00 Lecture 1: Introduction & general overview
(Johan Jeuring)

» 11:00 - 11:15 Coffee

v

vV v.v Vv

11:15 - 12:30 Lecture 2: Rewriting & strategies (Bastiaan
Heeren)

12:30 - 13:30 Lunch
13:30 - 14:45 Lab (Bastiaan Heeren and Johan Jeuring)
14:45 - 15:00 Tea/coffee

15:00 - 16:00 Lecture 3: Programming tutors (Johan
Jeuring)

[Software technology for learning and teaching]

43

Concluding remarks §6

» We introduced a strategy language to make the procedure
for solving an exercise explicit

» This language is what differentiates us from other tools

» Feedback is calculated from the strategy by turning
feedback services into parsing problems

> Strategies can be used in many learning tools

8 [Software technology for learning and teaching] 44

More information §6

Bastiaan Heeren and Johan Jeuring. Feedback services for
stepwise exercises. Science of Computer Programming Special
Issue on Software Development Concerns in the e-Learning
Domain, volume 88, 110 - 129, 2014.

Bastiaan Heeren, Johan Jeuring, and Alex Gerdes. Specifying
rewrite strategies for interactive exercises. In Mathematics in
Computer Science 3(3), 349 - 370, 2010.

> Accessible via http://www.jeuring.net/homepage/
Publications/index.html

» Project webpage at http://ideas.cs.uu.nl/

» For more information, contact us at bhr@ou.nl,
J.T.Jeuring@uu.nl

8 [Software technology for learning and teaching] 45

http://www.jeuring.net/homepage/Publications/index.html
http://www.jeuring.net/homepage/Publications/index.html
http://ideas.cs.uu.nl/

	Introduction
	Procedural skills
	Strategy specification language
	Feedback services
	Application domains
	Logic
	Mathematics
	Serious games
	Programming

	Concluding remarks

