
Software technology for learning and
teaching

Part 2: Rewriting and strategies

Bastiaan Heeren1 and Johan Jeuring1,2

1 Open Univerity of the Netherlands
2 Utrecht University

26 January 2015, IPA course, Eindhoven

2[Software technology for learning and teaching]

Outline of presentation

1. Strategy language

2. Sequential composition

3. Language extensions

Initial prefixes

Interleaving

Left-biased choice

Labels

Traversals

4. Designing domain reasoners

3[Software technology for learning and teaching]

Outline of presentation §1

1. Strategy language

2. Sequential composition

3. Language extensions

Initial prefixes

Interleaving

Left-biased choice

Labels

Traversals

4. Designing domain reasoners

4[Software technology for learning and teaching]

Strategy language §1

Our approach: to develop a strategy language for expressing cog-
nitive skills for many domains, used to give feedback, hints, and
worked-out solutions.

Strategy language with basic rules (r), sequences, and choices:

s, t ::= succeed | fail | single r | s <|> t | s <?> t

Very similar to (but slightly different from):

I Context-free grammars and their corresponding parsers
I Rewrite strategies
I Communicating sequential processes
I Proof tactics
I Workflows

5[Software technology for learning and teaching]

Requirements for the strategy language §1

1. Easy to extend the language
2. Give feedback or hints at any time, also for partial solutions
3. Strategies should be compositional
4. Feedback and hints are calculated reasonably efficient
5. Easy to adapt a strategy, or the feedback constructed from

a strategy

We need a clear semantics for our strategy language

6[Software technology for learning and teaching]

The language of a strategy §1

Similar to context-free grammars, we generate the language of a
strategy (a set of sentences)

L(succeed) = {ε}
L(fail) = ∅
L(single r) = {r }
L(s <|> t) = L(s) ∪ L(t)
L(s <?> t) = {xy | x ∈ L(s), y ∈ L(t)}

I Compositional and extensible
I Abstract away from rewrite rules as symbols
I Useful as specification?

7[Software technology for learning and teaching]

Strategy application §1

Rules and strategies have an effect on the underlying object; they
rewrite a term

succeed(a) = {a}
fail(a) = ∅
(single r)(a) = r(a)
(s <|> t)(a) = s(a) ∪ t(a)
(s <?> t)(a) = {c | b ∈ s(a), c ∈ t(b)}

I Rule application returns a set of results (compositionality)
I What about intermediate terms and the used rules?

8[Software technology for learning and teaching]

Observations §1

Simplicity of L(·) is attractive, but:

I Sequences introduce back-tracking
• Remember that L(s <?> t) = {xy | x ∈ L(s), y ∈ L(t)}
• Not desirable in tutor (limited look-ahead)

I No easy way to calculate intermediate terms and rules
I Some strategy combinators depend on the current object

• E.g. s . t: first try s, and only if this fails, use t.

Instead, we use a trace semantics based on firsts and empty.

9[Software technology for learning and teaching]

Firsts set §1

firsts(succeed , a) = ∅
firsts(fail , a) = ∅
firsts(single r , a) = {r 7→ succeed }
firsts(s <|> t, a) = firsts(s, a)] firsts(t, a)
firsts(s <?> t, a) = {r 7→ s ′ <?> t | r 7→ s ′ ∈ firsts(s, a)}

] {r 7→ t ′ | empty(s, a), r 7→ t ′ ∈ firsts(t, a)}

I firsts takes a strategy and the current object
I] returns the union of two finite maps
I r 7→ s and r 7→ t are merged to form r 7→ (s <|> t)

10[Software technology for learning and teaching]

Empty property §1

empty(succeed , a) = true
empty(fail , a) = false
empty(single r , a) = false
empty(s <|> t, a) = empty(s, a) ∨ empty(t, a)
empty(s <?> t, a) = empty(s, a) ∧ empty(t, a)

I empty checks for successful termination

11[Software technology for learning and teaching]

Traces §1

Traces can represent unfinished and unsuccessful sequences of
steps, for example:

I a0
r1−→ a1

r2−→ a2
I a0

r1−→ a1 X

steps(s, a) = {(r , b, t) | r 7→ t ∈ firsts(s, a), b ∈ r(a)}

traces(s, a) = {a} ∪ {a X | empty(s, a)}
∪ {a r−→ x | (r , b, t) ∈ steps(s, a), x ∈ traces(t, b)}

12[Software technology for learning and teaching]

Algebraic laws §1

Equality:

(s = t) = ∀a : traces(s, a) = traces(t, a)

Laws:

I Choice is associative, commutative, and idempotent
I Choice has fail as its unit element
I Sequence is associative
I Sequence has succeed as its unit element
I Sequence has fail as its left zero (but not right zero)
I Sequence distributes over choice

13[Software technology for learning and teaching]

Outline of presentation §2

1. Strategy language

2. Sequential composition

3. Language extensions

Initial prefixes

Interleaving

Left-biased choice

Labels

Traversals

4. Designing domain reasoners

14[Software technology for learning and teaching]

Sequential composition revisited §2

Calculating firsts for sequences is not efficient

I Calculating firsts for (s1 <?> s2) <?> s3 requires:
• firsts for s1
• firsts for s2, if empty s1
• firsts for s3, if empty s1 and empty s2

I We introduce prefix combinator r → s
I Bring strategies to prefix-form
I Use algebraic laws to guide transformation

15[Software technology for learning and teaching]

Prefix combinator §2

Specification:

firsts(r → s, a) = {r 7→ s }

empty(r → s, a) = false

Laws:

I prefix is left-distributive over choice
r → (s <|> t) = (r → s) <|> (r → t)

I single r = r → succeed

We show how to transform sequences into prefix-form

16[Software technology for learning and teaching]

Transforming sequence §2

We can systematically remove sequences:

succeed <?> t = t
fail <?> t = fail
(s1 <|> s2) <?> t = (s1 <?> t) <|> (s2 <?> t)
(r → s) <?> t = r → (s <?> t)

(s1 <?> s2) <?> t = s1 <?> (s2 <?> t)

Core grammar for strategies:

s, t ::= succeed | fail | s <|> t | r → s

17[Software technology for learning and teaching]

Outline of presentation §3

1. Strategy language

2. Sequential composition

3. Language extensions

Initial prefixes

Interleaving

Left-biased choice

Labels

Traversals

4. Designing domain reasoners

18[Software technology for learning and teaching]

Language extensions §3

How to extend the strategy language with new combinators?

1. Define in terms of existing combinators:

options s = s <|> succeed

2. Specify its firsts set and empty property
3. Transform combinator to core language

Some combinators require extensions to the presented trace
semantics

19[Software technology for learning and teaching]

Extension 1 §3.1

Domain: Communication skills

Extension: A player holds a discussion with a patient, possibly about
various topic. Players can perform only an initial part of a
discussion, and then jump to another discussion.

Combinator: initial prefixes (inits s)

Example: If (a0
r1−→ a1

r2−→ a2) ∈ traces(s, a0)

then {a0 X, a0
r1−→ a1 X, a0

r1−→ a1
r2−→ a2 X}

⊆ traces(inits s, a0)

20[Software technology for learning and teaching]

Initial prefixes §3.1

Specification:

firsts(inits s, a) =

empty(inits s, a) =

Transformation:

inits succeed =
inits fail =
inits (s <|> t) =
inits (r → s) =

20[Software technology for learning and teaching]

Initial prefixes §3.1

Specification:

firsts(inits s, a) = {r 7→ inits t | r 7→ t ∈ firsts(s, a)}

empty(inits s, a) = true

Transformation:

inits succeed =
inits fail =
inits (s <|> t) =
inits (r → s) =

20[Software technology for learning and teaching]

Initial prefixes §3.1

Specification:

firsts(inits s, a) = {r 7→ inits t | r 7→ t ∈ firsts(s, a)}

empty(inits s, a) = true

Transformation:

inits succeed = succeed
inits fail = succeed
inits (s <|> t) = inits s <|> inits t
inits (r → s) = succeed <|> (r → inits s)

21[Software technology for learning and teaching]

Extension 2 §3.2

Domain: Math

Extension: Some higher-degree equations can be solved by:
AC = BC ⇒ A = B ∨ C = 0. A student may switch
between the two equations.

Combinator: interleaving (s <%> t)

Example:
If [ra, rb] is a sentence of s
and [rx , ry , rz] is a sentence of t
then s <%> t contains [ra, rb, rx , ry , rz], [ra, rx , rb, ry , rz],

[ra, rx , ry , rb, rz], [ra, rx , ry , rz , rb], [rx , ra, rb, ry , rz],
. . .

22[Software technology for learning and teaching]

Interleaving §3.2

Specification:

firsts(s <%> t, a) =

empty(s <%> t, a) =

Transformation:

succeed <%> t =
fail <%> t =
(s1 <|> s2) <%> t =
(r → s) <%> t =

22[Software technology for learning and teaching]

Interleaving §3.2

Specification:

firsts(s <%> t, a) = {r 7→ s ′ <%> t | r 7→ s ′ ∈ firsts(s, a)}
] {r 7→ s <%> t ′ | r 7→ t ′ ∈ firsts(t, a)}

empty(s <%> t, a) = empty(s, a) ∧ empty(t, a)

Transformation:

succeed <%> t =
fail <%> t =
(s1 <|> s2) <%> t =
(r → s) <%> t =

22[Software technology for learning and teaching]

Interleaving §3.2

Specification:

firsts(s <%> t, a) = {r 7→ s ′ <%> t | r 7→ s ′ ∈ firsts(s, a)}
] {r 7→ s <%> t ′ | r 7→ t ′ ∈ firsts(t, a)}

empty(s <%> t, a) = empty(s, a) ∧ empty(t, a)

Transformation:

succeed <%> t = t
fail <%> t = . . .

(s1 <|> s2) <%> t = (s1 <%> t) <|> (s2 <%> t)
(r → s) <%> t = . . .

Solution: introduce left-interleave s %> t

23[Software technology for learning and teaching]

Left-interleave §3.2

Specification:

firsts(s %> t, a) = {r 7→ s ′ <%> t | r 7→ s ′ ∈ firsts(s, a)}

empty(s %> t, a) = false

Transformation:

succeed %> t =
fail %> t =
(s1 <|> s2) %> t =
(r → s) %> t =

23[Software technology for learning and teaching]

Left-interleave §3.2

Specification:

firsts(s %> t, a) = {r 7→ s ′ <%> t | r 7→ s ′ ∈ firsts(s, a)}

empty(s %> t, a) = false

Transformation:

succeed %> t = fail
fail %> t = fail
(s1 <|> s2) %> t = (s1 %> t) <|> (s2 %> t)
(r → s) %> t = r → (s <%> t)

24[Software technology for learning and teaching]

Extension 3 §3.3

Domain: Propositional logic

Extension: If possible, we use the rewrite rule φ ∧ T ⇒ φ. If not, we
succeed.

Combinator: left-biased choice (s . t)

Example: If traces(s, a0) = {a0}
then traces(s . t, a0) = traces(t, a0)

25[Software technology for learning and teaching]

Left-biased choice §3.3

Use a strategy predicate to specify left-biased choice:
I active s: strategy s is empty or offers steps (local)

• Opposite of active s is stopped s
I test s: strategy s can finish successfully (global)

• Opposite of test s is not s

Specification:

firsts(stopped s, a) = ∅

empty(stopped s, a) = ¬empty(s, a) ∧ steps(s, a) = ∅

Then:

s . t = s <|> (stopped s <?> t)

26[Software technology for learning and teaching]

Transforming left-biased choice §3.3

I Left-biased choice depends on the current object
I In some cases, we can transform strategies with a

left-biased choice:

(s1 . s2) <?> t = (s1 <?> t) . (s2 <?> t)
provided that ∀a : ¬empty(s, a)

s . t = s provided that ∀a : empty(s, a)

27[Software technology for learning and teaching]

Labelled strategies §3.4

Labels mark a position in a strategy

label ` s = Enter ` <?> s <?> Exit `

I Labels show up in traces
I Customize reported feedback for a label
I Labels can be used to identify subtasks
I We can collapse, hide, or remove a labelled substrategy

(adaptability)

28[Software technology for learning and teaching]

Traversal combinators §3.5

Use navigation rules Left, Right, Up, and Down for defining all
kinds of generic traversals

somewhere s = s <|> layerOne (somewhere s)

layerOne s = Down <?> visitOne s <?> Up

visitOne s = s <|> (Right <?> visitOne s)

Many more variations:

I left-to-right, right-to-left
I top-down, bottom-up
I full, spine, stop, once

29[Software technology for learning and teaching]

Outline of presentation §4

1. Strategy language

2. Sequential composition

3. Language extensions

Initial prefixes

Interleaving

Left-biased choice

Labels

Traversals

4. Designing domain reasoners

30[Software technology for learning and teaching]

Four component ITS architecture §4

Expert knowledge
module

Student model
module

Tutoring
module

User interface
moduleStudent

ITS

I Traditionally, an ITS is described by four components
I Also: monitoring module for teachers, authoring

environment, etc.
I We focus on the expert knowledge module

31[Software technology for learning and teaching]

Designing domain reasoners §4

I Following Goguadze, we use the term domain reasoner
I Design goals:

• External, separate component reusable by other learning
environments

• Feedback-oriented (e.g., not a CAS)
• Support for an exercise class (not one exercise)
• Calculating feedback is not tied to a particular domain

Ideas is a generic framework for developing domain-specific rea-
soners that offer feedback services to external learning environ-
ments: the feedback services are based on the stateless client-
server architecture

32[Software technology for learning and teaching]

Proposed design §4

MathDox

DME

Math-Bridge

Logic tool

LinAlg

Math

Logic

XML over HTTP

JSON over HTTP

client server

feedback scriptlearning environment
domain reasoner

domain-specific
knowledge

generic
framework

33[Software technology for learning and teaching]

List of feedback services §4

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty

inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task
meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

33[Software technology for learning and teaching]

List of feedback services §4

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty
inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task

meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

33[Software technology for learning and teaching]

List of feedback services §4

outer loop
– examples predefined example exercises of a certain difficulty
– generate makes a new exercise of a specified difficulty
inner loop
– allfirsts all possible next steps (based on the strategy)
– apply application of a rewrite rule to a selected term
– diagnose analyze a student step
– finished checks whether response is accepted as an answer
– onefirst one possible next step (based on the strategy)
– solution worked-out solution for the current exercise
– stepsremaining number of remaining steps (based on the strategy)
– subtasks returns a list of subtasks of the current task
meta-information
– exerciselist all supported exercise classes
– rulelist all rules in an exercise class
– rulesinfo detailed information about rules in an exercise class
– strategyinfo information about the strategy of an exercise class

34[Software technology for learning and teaching]

A domain reasoner (for quadratic equations) §4

We have to decide on:

1. A rewrite strategy
2. Rules and buggy rules

• (x + y)2 6⇒ x2 + y2

3. Equivalence relation
• x2 − 4x + 3 = 0, (x − 3)(x − 1) = 0, and x = 3 ∨ x = 1

4. Similarity relation (determines granularity of steps)
• x2 − x = 0 ≈ −x + x · x = 0

5. Solved form
• does

√
8 require further simplification?

35[Software technology for learning and teaching]

Diagnose feedback service §4

All these exercise components are used by the diagnose feedback
service

equivalent? buggy rule?

similar? expected by
strategy?

discover
rule?

Unknown mistake

Common mistake
with buggy rule

Small rewrite step,
not recognized

Rewrite step follows
expert strategy

Correct rewrite step,
but unknown

Correct step, but
detour from strategy

no no

no no no

yes

yesyes yes

yes

diagnose
feedback service

36[Software technology for learning and teaching]

List of exercise components §4

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form

exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used
examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

36[Software technology for learning and teaching]

List of exercise components §4

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form
exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used

examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

36[Software technology for learning and teaching]

List of exercise components §4

component description
strategy rewrite strategy that specifies how to solve an exercise
rules possible rewrite steps (including buggy rules)
equivalence tests whether two terms are semantically equivalent
similarity tests whether two terms are (nearly) the same
suitable identifies which terms can be solved by the strategy
finished checks whether a term is in a solved form
exercise id identifier that uniquely determines the exercise class
status stability of the exercise class
parser parser for terms
pretty-printer pretty-printer for terms (inverse of parsing)
navigation supports traversals over terms
rule ordering tiebreaker when more than one rule can be used
examples list of examples, each with an assigned difficulty
random generator generates random terms of a certain difficulty
test generator generates random test cases (including corner cases)

37[Software technology for learning and teaching]

About the Ideas framework §4

I Latest release: version 1.2 (May 2014)
I Just over 10,000 lines of Haskell code (in 110 modules)
I http://hackage.haskell.org/package/ideas

How to interact with a domain reasoner?

I Use the Haskell interpreter (ghci)
I Compile to a cgi binary (with support for HTML) and

deploy on your localhost; use a browser
I Compile and send a request from the command-line (file)

http://hackage.haskell.org/package/ideas

38[Software technology for learning and teaching]

Domain reasoner in browser §4

39[Software technology for learning and teaching]

Ideas tutorial §4

Visit http://ideas.cs.uu.nl/tutorial/

http://ideas.cs.uu.nl/tutorial/

40[Software technology for learning and teaching]

Lab assignment §4

Start version has:

I Simple arithmetic expression language
I Two evaluation rules

data Expr = Add Expr Expr | Negate Expr | Con Int

Exercises:

1. Add multiplication to the expression language (and extend
the evaluation strategy)

2. Add distribution rules to the strategy
3. Add support for calculating with fractions (e.g. 5

7 + 1
2)

• Find the least common multiple of the denominators
• Rewrite top-heavy fractions to mixed fractions (e.g. 1 3

14)

	Strategy language
	Sequential composition
	Language extensions
	Initial prefixes
	Interleaving
	Left-biased choice
	Labels
	Traversals

	Designing domain reasoners

