
Software technology for learning and
teaching

Part 3: Programming tutors

Tim Olmer, Alex Gerdes, and Hieke Keuning

Bastiaan Heeren1 and Johan Jeuring1,2

1 Open Univerity of the Netherlands
2 Utrecht University

26 January 2015, IPA course, Eindhoven

2[Software technology for learning and teaching]

Overview

1. Introduction

2. Haskell Expression Evaluator

3. Ask-Elle

4. A tutor for imperative programming

3[Software technology for learning and teaching]

Learning programming §1

I Programming is difficult
I Individual support for students in large classes is hard
I Can programming tutors help?

4[Software technology for learning and teaching]

Programming tutors §1

We have developed three tools supporting learning
programming:

I Haskell Expression Evaluator
I Ask-Elle
I Imperative Programming Tutor

5[Software technology for learning and teaching]

Outline of presentation §2

1. Introduction

2. Haskell Expression Evaluator

3. Ask-Elle

4. A tutor for imperative programming

6[Software technology for learning and teaching]

Haskell Expression Evaluator §2

7[Software technology for learning and teaching]

Frontend §2

http://ideas.cs.uu.nl/HEE/index.html

http://ideas.cs.uu.nl/HEE/index.html

8[Software technology for learning and teaching]

Architecture §2

9[Software technology for learning and teaching]

Calculating sums §2

10[Software technology for learning and teaching]

Step-wise evaluation example §2

11[Software technology for learning and teaching]

Datatype for expressions §2

data Expr = App Expr Expr
| Abs String Expr
| Var String
| Con Int

appN :: Expr → [Expr]→ Expr
appN = foldl app

12[Software technology for learning and teaching]

Rewrite strategy outermost §2

I Descend to function until node is not an App
I Try to apply beta reduction

• If current node lambda abstraction App (Abs x e) a,
substitute variable x by a in expression e

I Or try to apply one of the evaluation strategies for
definitions
• Check function name and number of arguments
• If needed bring argument(s) in WHNF (apply outermost

strategy recursively)
• Apply rewrite rule

13[Software technology for learning and teaching]

Example outermost rewriting §2

13[Software technology for learning and teaching]

Example outermost rewriting §2

13[Software technology for learning and teaching]

Example outermost rewriting §2

14[Software technology for learning and teaching]

User-defined function definitions §2

sum = foldl (+) 0

Var "sum" 7→ appN (Var "foldl") [Var "(+)",Con 0]

I Wish:
• Easily add support for new functions
• Rewrite rules and evaluation strategies are very similar

I Possible solution:
• One configuration file on the server
• Use annotations to add a description
• Let the evaluator generate rewrite rules and strategies

I Future: determine from function definition
• Number of arguments
• Which argument(s) must be in WHNF

15[Software technology for learning and teaching]

Future work §2

I Support user-defined function definitions
I Configure the step size of a function
I Lazy evaluation

• Can be supported by introducing let expressions to label
arguments

• Place arguments in a heap and make the heap visible

16[Software technology for learning and teaching]

Conclusions §2

I Prototype to support students in better understanding
• How Haskell expressions evaluate
• Programming concepts (recursion, higher-order functions,

pattern-matching)
• Evaluation strategies (innermost and outermost evaluation)

I Prototype uses rewrite rules and rewrite strategies
I Evaluation process is driven by

• Rewrite rules
• Evaluation strategy (multiple variants)

I Feedback uses Ideas services
I User defined function definitions can be supported by

• Parsing function definitions
• Generate rewrite rules/evaluation strategy

17[Software technology for learning and teaching]

Outline of presentation §3

1. Introduction

2. Haskell Expression Evaluator

3. Ask-Elle

4. A tutor for imperative programming

18[Software technology for learning and teaching]

Ask-Elle: basic ideas §3

I Incrementally construct a program
I Get feedback on each intermediate step:

• syntax, dependencies, types (Helium)
• equal to, or transformable to, part of a model solution

(Ideas/Ask-Elle)
• property testing (QuickCheck)

I Ask for a hint

19[Software technology for learning and teaching]

Ask-Elle: demo §3

20[Software technology for learning and teaching]

Ask-Elle for assessment §3

I We used Ask-Elle to assess a lab assignment in 2009
I 94 submissions

• 72 correct (sometimes with superfluous input checks)
• 64 recognised (89%) from 4 model solutions
• improved on hand-grading

21[Software technology for learning and teaching]

Ask-Elle for tutoring §3

I We used Ask-Elle for tutoring in 2013
I 83% of the 3.500 submitted programs were correctly

diagnosed as right or wrong
I 56% of the ‘correct’ programs are recognised as parts of

model solutions
I With better program transformations: 81%

22[Software technology for learning and teaching]

Underlying technologies §3

I Model solutions
I Program annotations
I Program refinements
I Programming strategies
I Program transformations
I Deep search

23[Software technology for learning and teaching]

Model solutions §3

For each task, Ask-Elle uses one or more model solutions:

myreverse = reverse []
where

reverse acc [] = acc
reverse acc (x : xs) = reverse (x : acc) xs

myreverse = foldl (flip (:)) []

24[Software technology for learning and teaching]

Program annotations §3

{-# DESC Use the prelude function foldl #-}
myreverse =
{-# FEEDBACK foldl takes an operator and a ... #-}
(foldl {-# FEEDBACK Use flip and (:) #-}

(flip (:))
[]

)

25[Software technology for learning and teaching]

Program refinements §3

In Ask-Elle, a student refines a program:

myreverse = reverse []
where reverse ? ? = ?

can be refined to

myreverse = reverse []
where reverse acc [] = ?

26[Software technology for learning and teaching]

Refinement rules §3

Each (combination of) abstract syntax construct(s) leading to a
visible change of a program gives rise to a refinement rule

? 7→ if ? then ? else ?

27[Software technology for learning and teaching]

Programming strategies §3

A programming strategy specifies how a program

myreverse = foldl (flip (:)) []

is constructed using refinement rules:

Introduce a pattern binding
<?> Introduce the pattern var "myreverse"
<?> Introduce an application
<?> Introduce the var "foldl"
<?> ([...Introduce the first argument of foldl ...]

<%>

Introduce con [])

28[Software technology for learning and teaching]

Constructing programming strategies §3

I Turn library functions into strategies
• choice between name and definition

I Turn model solutions into strategies
• top-down using <?>, arguments and list of declarations

using <%>, annotations are included as labels
I Take the <|> of the model strategies

29[Software technology for learning and teaching]

Analysing student programs §3

I Parse a student program
I Normalise it
I Use the programming strategy to construct a tree of ‘all’

intermediate programs
I Check that the student program occurs somewhere in this

tree
I ‘Parallel’ Tomita-like parsing

30[Software technology for learning and teaching]

Program transformations §3

I Desugaring
I Inlining
I Constant arguments
I Alpha, beta, eta

31[Software technology for learning and teaching]

Example transformations §3

encode :: Eq a ⇒ [a]→ [(Int, a)]

> encode [1, 2, 2, 3, 2, 4]
[(1, 1), (2, 2), (1, 3), (1, 2), (1, 4)]

32[Software technology for learning and teaching]

Example transformations model solution §3

encode [] = []
encode (x : xs) = (n + 1, x) : encode (drop n xs)
where n = length (takeWhile (== x) xs)

encode [] = []
encode (x : xs) = ((length (takeWhile (== x) xs) + 1, x)

: encode (drop (length (takeWhile (== x) xs)) xs)

encode [] = []
encode (x : xs) = (1 + (length (takeWhile (== x) xs), x)

: encode (drop (length (takeWhile (== x) xs)) xs)

33[Software technology for learning and teaching]

Example transformations student solution §3

encode [] = []
encode (x : xs) = (length $ x : takeWhile (== x) xs, x)

: encode (dropWhile (== x) xs)

encode [] = []
encode (x : xs) = (1 + length (takeWhile (== x) xs), x)

: encode (dropWhile (== x) xs)

{-# ALT dropWhile p xs = drop (length (takeWhile p xs)) xs #-}

34[Software technology for learning and teaching]

Deep search §3

I Diagnose a single step, multiple steps, or a complete
program

I Huge search space!
I Using that the order of refinements does not matter makes

the problem tractable

35[Software technology for learning and teaching]

Future work §3

I More transformations
I Contracts
I Refactoring

36[Software technology for learning and teaching]

Outline of presentation §4

1. Introduction

2. Haskell Expression Evaluator

3. Ask-Elle

4. A tutor for imperative programming

37[Software technology for learning and teaching]

A tutor for imperative programming §4

38[Software technology for learning and teaching]

A tutoring session I §4

39[Software technology for learning and teaching]

A tutoring session I §4

40[Software technology for learning and teaching]

A tutoring session II §4

41[Software technology for learning and teaching]

A tutoring session II §4

42[Software technology for learning and teaching]

A tutoring session II §4

43[Software technology for learning and teaching]

A tutoring session II §4

44[Software technology for learning and teaching]

Components §4

I Abstract syntax, parser and pretty-printer
I A strategy generator
I Feedback services
I Annotations

45[Software technology for learning and teaching]

Abstract syntax §4

data Stat = Block [Stat]
| If Expr Stat
| IfElse Expr Stat Stat
| While Expr Stat
| For [Expr] [Expr] [Expr] Stat
| Print Expr
| VarDecls DataType [Expr]
| ExprStat Expr
| Empty
| Break
| Continue

46[Software technology for learning and teaching]

Strategies for imperative programming §4

Rules (steps) and a strategy that combines rules.

47[Software technology for learning and teaching]

Append rule §4

48[Software technology for learning and teaching]

Refinement rule §4

49[Software technology for learning and teaching]

Strategy for if §4

genStrat loc pref (If cond body) = do
(hole, cond ′) ← genStratWithLoc pref cond
(block, body ′)← genStratWithLoc pref body
app ← appRule (If hole block)
return $ app <?> cond ′ <?> body ′

50[Software technology for learning and teaching]

Strategy for Block §4

a = 1;
b = 2;
c = 3;
d = a + b;
e = b + c;
f = d + e;

51[Software technology for learning and teaching]

Topological sort §4

(a <?> ((b <?> ((c <?> (
(d <?> e <?> f)

<|> (e <?> d <?> f)))
<|> (d <?> c <?> e <?> f)))

<|> (c <?> . .)))
<|> (b <?> . .)
<|> (c <?> . .)

52[Software technology for learning and teaching]

Semantics-preserving Variations §4

Xu & Chee 2003:

53[Software technology for learning and teaching]

Semantics-preserving Variations §4

Xu & Chee 2003:

54[Software technology for learning and teaching]

Normalisation §4

Transforming a program into a canonical form:

I Syntax desugaring
I Renaming variables
I Rewriting expressions
I ...

55[Software technology for learning and teaching]

Feedback services §4

DeepDiagnose from Ask-Elle:

data Diagnosis a = Buggy . . .

| NotEquivalent . . .

| Similar . . .

| WrongRule . . .

| Expected . . .

| Detour . . .

| Correct . . .

| Unknown . . .

56[Software technology for learning and teaching]

Feedback services §4

AllHints from Ask-Elle:

Introduce a loop statement:

I Introduce a for statement
• Type code for (?; ?; ?)

I Initialise a variable for a while statement
• Expand ? to a variable assignment

I Type code i = ?;

57[Software technology for learning and teaching]

Labels §4

return $ app
<?> label "if-condition" cond ′

<?> label "if-true" body ′

feedback if-condition =
What do you want to check?

feedback if-true =
What do you want to do if the condition is true?

58[Software technology for learning and teaching]

Adapting feedback §4

/* DESC Implement the Quicksort algorithm */

/* PREF 2 DIFF Hard */

/* FEEDBACK Calculate the average of the two results */
double avg = (x + y) / 2;

/* ALT x = Math.max(a,b); */
if (a > b) x = a;
else x = b;
/* MUSTUSE */for (int i = 1; i 6 10; i ++);

59[Software technology for learning and teaching]

Conclusions §4

I Rewriting strategies, feedback services, and domain
reasoners can be used to develop various programming
tutors

I The development of programming tutors is still quite a lot
of work

I Lots of opportunities to use software technology to
improve the tutors

	Introduction
	Haskell Expression Evaluator
	Ask-Elle
	A tutor for imperative programming

