Software technology for learningand
teaching

Part 3: Programming tutors

Tim Olmer, Alex Gerdes, and Hieke Keuning

Bastiaan Heeren® and Johan Jeuring!?

! Open Univerity of the Netherlands
2 Utrecht University

26 January 2015, IPA course, Eindhoven

8 Open Universiteit
www.ou.nl

view

1. Introduction

2. Haskell Expression Evaluator

3. Ask-Elle

4. A tutor for imperative programming

[Software technology for learning and teaching |

Learning programming

» Programming is difficult
» Individual support for students in large classes is hard

» Can programming tutors help?

8 [Software technology for learning and teaching]

§1

Programming tutors §1

We have developed three tools supporting learning
programming:

» Haskell Expression Evaluator
> Ask-Elle

» Imperative Programming Tutor

8 [Software technology for learning and teaching]

of presentation

. Introduction

. Haskell Expression Evaluator

. Ask-Elle

. A tutor for imperative programming

[Software technology for learning and teaching |

§2

Haskell Expression Evaluator §2

wWhat needs to be

sum (3,71 ++ [5D Eiarteln 22
foldl (+> 0 (3,71 ++ [5D
fold >0+ 3 +— > —

foldl (+) 0 (3 : ([7] ++ [5D g
foidl (+) (0 + 3) ([7] ++ [5D
foidl (+) (0 + 3) (7 : ([1 ++ [5D
foldl (+) O + 3) + ¥ (1 ++ [5D

8 [Software technology for learning and teaching] 6

Frontend §2

http://ideas.cs.uu.nl/HEE/index.html

Practice with the evaluation of a Haskell Expression

Haskell Expression [output |
Start | sum ([3.7] ++ [5]) Select v Steps remaining: 11
[options | Rules that can be applied independent of strategy
Apply the append rule to concatenate two lists
@® Outermost evaluation strategy Apply the sum rule to sum up all elements of a list

Next rule that should be applied according the strategy.
Apply the sum rule to sum up all elements of a list
Next derivation step:
foldl (+) 0 (3 - ([7] ++ [5])) foldl (+) O ([3,7] ++ [5])
3 Next rule that should be applied according the strategy
Apply the append rule to concatenate two lists
Show number of steps left Show all rules that can be applied

© Innermost evaluation strategy

Show next rule Show next step Do next step

 Derivation|
sum ([3.7] ++ [5])
= {Apply the sum rule to sum up all elements of a list }
foldl (+) 0 ([3,7] ++ [5])
= {Apply the append rule to concatenate two lists }
foldl (+) 0 (3 - ([7] ++ [5]))

[Software technology for learning and teaching]

http://ideas.cs.uu.nl/HEE/index.html

Architecture

§2

HASKELL EXPRESSION EVALUATOR

STRATEGY

X Helium

PRETTY-PRINT

PARSER

8 [Software technology for learning and teaching]

lating sums

sum = foldl (+) 0
 foldl _v I v

[Software technology for learning and teaching |

§2

Step-wise evaluation example

sum ([3,7] ++ [5])
{ definition sum }
Sfoldl (+) 0 ([3,7] ++ [5])
{ definition ++ }
foldl (+) 0 (3 : ([7]) ++[5]))
{ definition foldl }
foldl (+) (0+3) ([7] ++[5])
{ definition ++ }
foldl (+) (0+3) (7 : ([] ++ [5]))
{ definition foldl }
foldl (+) ((0+3) +7) ([] ++ [5])
{ definition ++ }
foldl (+) ((0+3) +7) [5]
{ definition foldl }
Sfoldl (+) (((0+3)+7)+5) [|
{ definition foldl
(((0+3)+7)+5)
{ applying + |
((3+7)+5)
{ applying + }
(10+5)
{ applying + }
15

sum ([3,7] ++ [5])

{ definition sum }
Sfoldl (+) 0 ([3,7] ++ [5])

{ definition ++ }
foldl (+) 0 (3 : ([7] ++[5]))

{ definition ++ }
foldl (+) 0 (3 : 7 : ([] ++[5]))

{ definition ++ }
foldl (+) 0(3,7,5]

{ definition foldl }
foldl (+) (0+3) [7,5]

{ applying + }
foldl (+) 3(7,5]

{ definition foldl }
foldl (+) (3+7) [5]

{ applying + |
foldl (+) 10 [5]

{ definition foldl }
foldl (+) (10+5) []

{ applying + }
foldl (+) 15 ||

{ definition foldl }
15

[Software technology for learning and teaching]

Datatype for expressions §2

data Expr = App Expr Expr
| Abs String Expr
| Var String
| Con Int

appN :: Expr — [Expr] — Expr
appN = foldl app

sum ([] ++[5])

8 [Software technology for learning and teaching]

11

Rewrite strategy outermost §2

» Descend to function until node is not an App
» Try to apply beta reduction
e If current node lambda abstraction App (Abs x €) a,
substitute variable x by a in expression e
> Or try to apply one of the evaluation strategies for
definitions
e Check function name and number of arguments
e If needed bring argument(s) in WHNF (apply outermost

strategy recursively)
e Apply rewrite rule

8 [Software technology for learning and teaching]

12

Example outermost rewriting

§2
foldl _v] =t
foldl f v (x : xs) = foldl f (f v x) xs

[} ++ys =ys
(x: x8) ++ys = x 1 (x5 ++ys)

13

Example outermost rewriting §2

foldl _v (] =0
foldl f v (x : xs) = foldl f (f v x) xs
[} ++ys =ys

(x:xs) ++ys =x: (x5 ++ys)

8 foldl (+) 0 [5]

[Software technology for learning and teaching] 13

Example outermost rewriting §2

foldl _v] =t
foldl f v (x : xs) = foldl f (f v x) xs
[} ++ys =ys

(x: x8) ++ys = x 1 (x5 ++ys)

8 [Software technology for learning and teaching] 13

User-defined function definitions §2

sum = foldl (+) 0
Var "sum" +— appN (Var "foldl") [Var "(+)", Con 0]

» Wish:
e Easily add support for new functions
e Rewrite rules and evaluation strategies are very similar

» Possible solution:

e One configuration file on the server
e Use annotations to add a description
e Let the evaluator generate rewrite rules and strategies

» Future: determine from function definition

e Number of arguments
e Which argument(s) must be in WHNF

[Software technology for learning and teaching] 14

Future work

» Support user-defined function definitions
» Configure the step size of a function
» Lazy evaluation

e Can be supported by introducing let expressions to label
arguments
e Place arguments in a heap and make the heap visible

8 [Software technology for learning and teaching]

§2

15

Conclusions §2

v

v

v

v

v

Prototype to support students in better understanding

e How Haskell expressions evaluate

e Programming concepts (recursion, higher-order functions,

pattern-matching)

e Evaluation strategies (innermost and outermost evaluation)
Prototype uses rewrite rules and rewrite strategies
Evaluation process is driven by

e Rewrite rules

e Evaluation strategy (multiple variants)

Feedback uses IDEAS services
User defined function definitions can be supported by

e Parsing function definitions
e Generate rewrite rules/evaluation strategy

[Software technology for learning and teaching]

16

of presentation

. Introduction

. Haskell Expression Evaluator

. Ask-Elle

. A tutor for imperative programming

[Software technology for learning and teaching |

§3

17

Ask-Elle: basic ideas

> Incrementally construct a program
> Get feedback on each intermediate step:

e syntax, dependencies, types (Helium)

e equal to, or transformable to, part of a model solution
(IpEAS/Ask-Elle)

e property testing (QuickCheck)

» Ask for a hint

8 [Software technology for learning and teaching]

§3

18

Ask-Elle: demo

806 ASK-Elle
\d
SK-clie -
AllExercises <« Description 21 | Help »|
=3 programming Write a function that reverses a list: myreverse :: [a] -> [2]. For example: You can follow one of the following strategi
a8 ist
3y aeation DataLit> myreverse *A man, 2 pln, 3 cana, panamal® Introduce a helper function that uses an accumulating paramete —

manap ,lanac a nalp a nam A'

Hint 1 B
Data.List> myreverse [1,2,3,4]
43,211 Introduce the constructer pattern [].
Editor — =

omera Refine the current temn to
reverse’ ace 2 = 7

myreverse =
2

8 where
reverse' acc [] =
?

rotate
split
=3 projection
butlast
=] elementat
mylast
=] slice
5E3 properties
=] mylength

[Software technology for learning and teaching]

Ask-Elle for assessment

» We used Ask-Elle to assess a lab assignment in 2009
» 94 submissions

e 72 correct (sometimes with superfluous input checks)
e 64 recognised (89%) from 4 model solutions
e improved on hand-grading

8 [Software technology for learning and teaching]

§3

20

Ask-Elle for tutoring §3

» We used Ask-Elle for tutoring in 2013

> 83% of the 3.500 submitted programs were correctly
diagnosed as right or wrong

» 56% of the ‘correct’ programs are recognised as parts of
model solutions

» With better program transformations: 81%

8 [Software technology for learning and teaching]

21

Underlying technologies

vV vV.v. v v VY

Model solutions
Program annotations
Program refinements
Programming strategies
Program transformations

Deep search

[Software technology for learning and teaching]

§3

22

Model solutions

For each task, Ask-Elle uses

myreverse = reverse |]
where

reverse acc [] = acc

reverse acc (x :xs) = reverse (x:acc) xs

myreverse = foldl (flip (:)) []

[Software technology for learning and teaching]

one or more model solutions:

§3

23

Program annotations

{-# DESC Use the prelude function foldl #-}
myreverse =

{-# FEEDBACK foldl takes an operator and a ...

(fold! {-# FEEDBACK Use flip and (:) #-}
ﬁ‘/ip ()

8 [Software technology for learning and teaching]

§3

24

Program refinements §3

In Ask-Elle, a student refines a program:

myreverse = reverse |]
where reverse 7?7 =7

can be refined to

myreverse = reverse |]
where reverse acc [| =7

8 [Software technology for learning and teaching] 25

Refinement rules §3

Each (combination of) abstract syntax construct(s) leading to a
visible change of a program gives rise to a refinement rule

?— if 7then ? else ?

8 [Software technology for learning and teaching]

26

Programming strategies §3

A programming strategy specifies how a program
myreverse = foldl (flip (:)) []
is constructed using refinement rules:

Introduce a pattern binding
<> Introduce the pattern var "myreverse"
<*> Introduce an application
<> Introduce the var "foldl"
<> ([...Introduce the first argument of foldl...]
<Yo>

Introduce con [])

8 [Software technology for learning and teaching] 27

Constructing programming strategies

» Turn library functions into strategies
e choice between name and definition
» Turn model solutions into strategies

e top-down using <%>, arguments and list of declarations
using <%>, annotations are included as labels

» Take the <[> of the model strategies

8 [Software technology for learning and teaching]

§3

28

Analysing student programs §3

» Parse a student program
» Normalise it

» Use the programming strategy to construct a tree of ‘all’
intermediate programs

» Check that the student program occurs somewhere in this
tree

» ‘Parallel’ Tomita-like parsing

8 [Software technology for learning and teaching]

29

Program transformations

Desugaring

Inlining

Constant arguments
Alpha, beta, eta

vV v v v

8 [Software technology for learning and teaching]

§3

30

Example transformations

encode :: Eq a = [a] — [(Int,a)]

> encode [1,2,2,3,2,4]
[(1,1),(2,2),(1,3),(1,2),(1,4)]

8 [Software technology for learning and teaching]

§3

31

Example transformations model solution §3

encode [] =]
encode (x : xs) = (n+ 1, x) : encode (drop n xs)
where n = length (takeWhile (== x) xs)

encode [] =]
encode (x : xs) = ((length (takeWhile (== x) xs) + 1, x)
: encode (drop (length (takeWhile (== x) xs)) xs)

encode [] []
encode (x : xs) = (1 + (length (takeWhile (== x) xs), x)
: encode (drop (length (takeWhile (== x) xs)) xs)

[Software technology for learning and teaching]

32

Example transformations student solution §3

encode [] =]
encode (x : xs) = (length $ x : takeWhile (== x) xs, x)
: encode (dropWhile (== x) xs)

encode || =]
encode (x : xs) = (1 + length (takeWhile (== x) xs), x)
: encode (dropWhile (== x) xs)

{-# ALT dropWhile p xs = drop (length (takeWhile p xs)) xs #-}

8 [Software technology for learning and teaching] 33

Deep search §3

» Diagnose a single step, multiple steps, or a complete
program

» Huge search space!

» Using that the order of refinements does not matter makes
the problem tractable

8 [Software technology for learning and teaching] 34

Future work

» More transformations
» Contracts

» Refactoring

8 [Software technology for learning and teaching]

§3

35

ne

N

of presentation

. Introduction

. Haskell Expression Evaluator

. Ask-Elle

. A tutor for imperative programming

[Software technology for learning and teaching |

§4

36

A tutor for imperative programming

3 Programming Tutor

Choose exercise: Type code here:
java.sumoddnrsunder100 v For | If || If-else || While | Clear
1 int sum H

2
Description: Calculate and print the sum of all s ¥
odd positive numbers under 100

O check | @@ Alints

Hint
= Options
= Create a loop that increments with 2
= loop from 1 to 3 to 5. stopping at 100
= When to continue looping? Expand @
= Create a loop and test for odd numbers with % Expand @

[Software technology for learning and teaching]

A tutoring session |

Choose exercise:

java.sumoddnrsunder100

Start exercise

Description: Calculate and print the sum of all odd
positive numbers under 100.

8 [Software technology for learning and teaching]

§4

38

A tutoring session |

Options:
= Create a loop that increments with 2
= Introduce a variable declaration.
= Type code int ?;
= Create a loop and test for odd numbers with % Expand @
= Perform a smart calculation Expand @

[Software technology for learning and teaching]

§4

39

A tutoring session Il

Choose exercise:

java_arraysum E|

L

Description: Calculate the sum of the array:

{22,33 55 66,99}

8 [Software technology for learning and teaching]

§4

40

A tutoring session Il

1 int [] numbers = {22, 33, 55, 66, 99};
2 int sum = 8;

O check | ©© Allhints

= Loop through all indices of the array
= Choose between a for or a while loop
= Introduce a for statement. Expand @
= Initialise a variable for a while statement Expand @

8 [Software technology for learning and teaching]

§4

41

A tutoring session Il §4

e A= IV I = VY I)

int [] numbers = {22, 33, 55, 66, 99};
int sum = 8;
for (int i = @; i < numbers.length; i++)

-{
sum = sum + numbers[i];
}
5

ystem.out.println("sum");

m? © O Al hints

Error: The output is incorrect

8 [Software technology for learning and teaching]

42

A tutoring session Il §4

1 int [] numbers = {22, 33, 55, 66, 99};
2 int sum = @;

3 for (int i = @; i < numbers.length; i++)
4-{

5 sum = sum + numbers[i];

6 }

7 System.out.println(sum);

00 ninms

i You are done!

Feedback: Correct.

8 [Software technology for learning and teaching]

Components

Abstract syntax, parser and pretty-printer
A strategy generator

Feedback services

vV v v.v

Annotations

8 [Software technology for learning and teaching]

§4

44

Abstract syntax

data Stat = Block [Stat]
| If Expr Stat
| IfElse Expr Stat Stat
| While Expr Stat
| For [Expr] [Expr] [Expr] Stat
| Print Expr
| VarDecls DataType [Expr]
| ExprStat Expr
| Empty
| Break
| Continue

8 [Software technology for learning and teaching]

§4

45

Strategies for imperative programming

Rules (steps) and a strategy that combines rules.

models

Java

8 [Software technology for learning and teaching]

strategies

L.

R TR

L

R & R & N

L

TR L U 5 SN

<[> ..

strategy

stratl
<|> strat2
<|> strat3

;4

46

Append rule

§4

[Software technology for learning and teaching]

47

Refinement rule

8 [Software technology for learning and teaching]

§4

48

Strategy for if §4

genStrat loc pref (If cond body) = do
(hole, cond’) <« genStratWithLoc pref cond
(block, body’) + genStratWithLoc pref body
app < appRule (If hole block)
return $ app <*> cond’ <> body’

= RN

8 [Software technology for learning and teaching]

49

egy for Block

a=1;
b=2;
c=3;
d=a+ b;
e=b+c;
f=d+e

Ooiob

[Software technology for learning and teaching |

§4

50

Topological sort §4

(a<> (b ((e (
(d <> e <> f)
<[> (e v d <> f)))
<> (d <> ¢ <> e <> 1))
<> (c <> .)))
<> (b <> ..)
<> (c <> .)

8 [Software technology for learning and teaching]

51

Semantics-preserving Variations
Xu & Chee 2003:

e

DESCRIPTION AST STRATEGY
SPVM Differant algorithms v
SPV2 Different source coda formals *
5PV Differant syntax forms ” v
SPV4 Differant variable declarations v

SPVS Different algebraic expression forms

SPVE Differant control structures >

..,..
s+

SPVY Different Boolean expression forms
SPVE Different temporary variables

[|sPV8 Different redundant statemants

EPV1I0 Different statement orders ”
SPVY11 Different variable namas

SPVi2 Different program logical struclures

.
e FYET) ad

8 SPY13 Different statements "

[Software technology for learning and teaching]

§4

52

Semantics-preserving Variations

Xu & Chee 2003:

]

DESCRIPTION AST STRATEGY NORMALISATION
PV Different algorithms >
SPV2 Differant source coda formats ”
SPV3 Different syntax forms v v ¢
SPVA Differant variable declarations v v
SPVE Differant algebraic expression forms "
.|SPVE Different control structures v
i SPVT Differant Boolean expression farms "
SPVE Different temporary varfables
SPVS Differan redundant statements
SPVAD Differant statement orders v
SPV11 Diffsrant variable namas "
SPV12 Different program logical structures
SPV13 Differant statements v

8 [Software technology for learning and teaching]

§4

53

Normalisation

Transforming a program into a canonical form:

> Syntax desugaring
» Renaming variables
» Rewriting expressions

> ...

8 [Software technology for learning and teaching]

§4

54

Feedback services

DeepDiagnose from Ask-Elle:

data Diagnosis a = Buggy

| NotEquivalent ...

| Similar

| WrongRule
| Expected
| Detour

| Correct

| Unknown

8 [Software technology for learning and teaching]

§4

55

Feedback services §4

AllHints from Ask-Elle:

Introduce a loop statement:

» Introduce a for statement
e Type code for (?; 7; ?)
» Initialise a variable for a while statement
e Expand 7 to a variable assignment
» Type codei =7,

8 [Software technology for learning and teaching]

56

Labels

§4

return $ app
<> label "if-condition" cond’
<> label "if-true" body’

feedback if-condition =
What do you want to check?
feedback if-true =
What do you want to do if the condition is true?

[Software technology for learning and teaching]

57

Adapting feedback §4

/* DESC Implement the Quicksort algorithm */

/* PREF 2 DIFF Hard */

/* FEEDBACK Calculate the average of the two results */
double avg = (x +y) / 2;

/* ALT x = Math.max(a,b); */

if (a>b) x = a;

else x = b;

/* MUSTUSE */for (int i =1;i < 10;i ++);

8 [Software technology for learning and teaching]

58

Conclusions §4

» Rewriting strategies, feedback services, and domain
reasoners can be used to develop various programming
tutors

» The development of programming tutors is still quite a lot
of work

> Lots of opportunities to use software technology to
improve the tutors

8 [Software technology for learning and teaching]

59

	Introduction
	Haskell Expression Evaluator
	Ask-Elle
	A tutor for imperative programming

