
An Interactive Functional Programming Tutor

Alex Gerdes
School of Computer Science,
Open Universiteit Nederland

alex.gerdes@ou.nl

Johan Jeuring
Department of Information and

Computing Sciences,
Utrecht University

J.T.Jeuring@uu.nl

Bastiaan Heeren
School of Computer Science,
Open Universiteit Nederland
bastiaan.heeren@ou.nl

ABSTRACT
We introduce an interactive tutor that supports the step-
wise development of simple functional programs. Using this
tutor, students receive feedback about whether or not they
are on the right track, can ask for a hint when they are
stuck, and get suggestions about how to refactor their pro-
gram. Our tutor generates this semantically rich feedback
from model solutions, using advanced concepts from soft-
ware technology. We show how a teacher can add an exer-
cise to the tutor, and fine-tune feedback. We report on an
experiment in which we used our tutor.

Categories and Subject Descriptors
K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI); K.3.2 [Computer and Information
Science Education]: Computer science education

General Terms
Languages, Human Factors, Measurement

Keywords
Functional programming, Haskell, tutoring

1. INTRODUCTION
Introductory functional programming courses often start

with distinguishing the various steps a student has to take to
write a program. A teacher usually explains by example how
to develop a program: give the main function a name; if the
function takes an argument, give the argument a name; if the
value of the argument determines the action to be taken sub-
sequently, analyse the argument, and depending on the form
of the argument, develop the appropriate right-hand sides,
etc. Once a student starts developing a program herself, in a
lab session or at home, this kind of explanatory help is usu-
ally not present. Moreover, giving immediate help to large
classes of students is almost always impossible. Especially

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ITiCSE’12, July 3–5, 2012, Haifa, Israel.
Copyright 2012 ACM 978-1-4503-1246-2/12/07 ...$10.00.

beginning programmers are often at a loss about how to pro-
ceed when developing a program. We introduce an interact-
ive tutor that supports the stepwise development of simple
functional programs in the lazy, pure, higher-order func-
tional programming language Haskell [19]. Using this tu-
tor, students learning functional programming develop their
programs incrementally, receive feedback about whether or
not they are on the right track, can ask for a hint when they
are stuck, and get suggestions about how to refactor their
program. The interactive tutor gives hints at each step,
generates worked-out solutions for exercises, and recognises
common errors made by students. All of this functionality
is calculated automatically from the teacher-specified annot-
ated solutions and non-solutions for a problem.

To support learning programming, many intelligent tu-
toring programs have been developed. There exist intelli-
gent tutors for Prolog [11], Lisp [1], Pascal [13], Java [23],
Haskell [15], and many more programming languages. Eval-
uation studies have indicated that

– working with an intelligent tutor supporting the con-
struction of programs is more effective when learning
how to program than doing the same exercise “on your
own” using only a compiler, or just pen-and-paper [5],

– using intelligent tutors requires less help from a teacher
while showing the same performance on tests [18],

– using such tutors increases the self-confidence of female
students [14],

– the immediate feedback given by many of the tutors is
to be preferred over the delayed feedback common in
classroom settings [17].

Despite the evidence for positive effects of using intelli-
gent programming tutors, they are not widely used. An
important reason is that building an intelligent tutor for a
programming language is difficult and a substantial amount
of work [20]. Some of these tutors are well-developed and
extensively tested in classrooms, but most haven’t outgrown
the research prototype phase, and are not maintained any-
more. Furthermore, deploying an intelligent tutor in a course
is often hard for a teacher [2]. Most teachers want to adapt
or extend an intelligent programming tutor to their needs.
Adding an exercise to a tutor requires investigating which
strategies can be used to solve the exercise, what the possible
solutions are, and how the tutor should react to behaviour
that doesn’t follow the desired path. All this knowledge then
has to be translated into the internals of the tutor, which

250

implies a substantial amount of work. Other tutors have a
fixed set of exercises, or enforce a strict order in which a
program is constructed.

Our tutor is built on top of the Helium compiler for Has-
kell [10], which gives excellent syntax-error and type-error
messages, and reports dependency analysis problems in a
clear way. The most interesting feature of our tutor is that
the hints and feedback given at intermediate steps are de-
rived automatically from teacher-specified annotated solu-
tions and non-solutions for a problem. This reduces the work
required for using the tutor, and allows a teacher to use her
favourite exercises. Furthermore, the order in which a stu-
dent constructs a program using our tutor is quite flexible.
The tutor is offered as a web application1, which further
reduces the burden to use it.

This paper describes a tutor that supports the step-wise,
flexible development of simple functional programs, giving
feedback and hints at intermediate steps, and showing worked-
out examples. We make the following contributions:

– The feedback and hints are calculated automatically
from teacher-specified annotated solutions for a prob-
lem.

– It discusses results of an experiment in which we used
the tutor in a class-room setting.

This paper is organised as follows. Section 2 introduces
our interactive functional programming tutor by means of
an example session. Section 3 shows what a teacher has to
do to add a programming exercises to the tutor. Section 4
discusses the result of using our tutor with a class of begin-
ning functional programming students. Related and future
work is discussed in Section 5, and Section 6 concludes.

2. AN INTERACTIVE SESSION
This section introduces our intelligent functional program-

ming tutor by means of some interactions of a hypothetical
student with the tutor. We assume that the student has
visited lectures on how to write simple functional programs
on lists.

The teacher has set a couple of exercises from the Ninety-
nine Haskell Problems2, in particular problem 22: Create
a list containing all integers within a given range. We now
show a couple of possible scenarios in which a student inter-
acts with the tutor to solve this problem. At the start of a
tutoring session the tutor gives a problem description:

Write a function that creates a list with all

integers between a given range:

range :: Int → Int → [Int]

For example:

> range 4 9

[4, 5, 6, 7, 8, 9]

and displays the name of the function to be defined, along
with its parameters:

range x y = •
1
http://ideas.cs.uu.nl/ProgTutor/

2
http://www.haskell.org/haskellwiki/99_Haskell_exercises

The task of a student is to refine the holes, denoted by •,
of the program. A student can use such holes to defer the
refinement of parts of the program. After each refinement,
a student can ask the tutor whether or not the refinement is
bringing him or her closer to a correct solution, or, if the stu-
dent doesn’t know how to proceed, ask the tutor for a hint.
Besides holes, a student can also introduce new declarations,
function bindings, and alternatives.

Suppose the student has no idea where to start and asks
the tutor for help. The tutor offers several ways to help. For
example, it can list all possible ways to proceed solving an
exercise. In this case, the tutor would respond with:

You can proceed in several ways:

- Implement range using the unfoldr function.

- Use the enumeration function from the

prelude3.

- Use the prelude functions take and iterate.

We assume a student has some means to obtain informa-
tion about functions and concepts that are mentioned in the
feedback given by the tutor. This information might be ob-
tained via lectures, an assistant, lecture notes, or even via
the tutor at some later stage. The tutor can make a choice
between the different possibilities, so if the student doesn’t
want to choose, and just wants a single hint, she gets:

Implement range using the unfoldr function.

Here we assume that the teacher has set up the tutor to
prefer the solution that uses unfoldr , defined by:

unfoldr :: (b → Maybe (a, b))→ b → [a]
unfoldr f b = case f b of

Just (a, b′)→ a : unfoldr f b′

Nothing → []

The higher-order function unfoldr builds a list from a seed
value, the second argument b. The first argument f is
a producer function that takes the seed element and re-
turns Nothing if it is done producing the list, or returns
Just (a, b′), in which case, a is prepended to the output list
and b′ is used as the argument in the recursive call.

The student can ask for more detailed information at this
point, and the tutor responds with increasing detail:

Define function range in terms of unfoldr,
which takes two arguments: a seed value, and

a function that produces a new value.

with the final bottom-out hint:

Define: range x y = unfoldr • •

At this point, the student can refine the function at two po-
sitions. In this exercise we do not impose an order on the
sequence of refinements. However, the tutor offers a teacher
the possibility to enforce a particular order of refinements.
Suppose that the student chooses to first implement the pro-
ducer function:

range x y = unfoldr f •
where f i | • = •

3The prelude is the standard library for Haskell containing
many useful functions.

251

Note that the student has started to define the producer
function in a where clause. She continues with the intro-
duction of the stop criterion:

range x y = unfoldr f •
where f i | i y + 1 = •

There are several ways in Haskell to implement a condition.
Here the student has chosen to define the function f with a
so-called guarded expression; the predicate after the vertical
bar acts as a guard. The student continues with:

range x y = unfoldr f •
where f i | i y + 1 = Just •

The tutor responds with:

Unexpected right hand side of f on line 3

Here the tutor indicates that the partial definition of f does
not match any of the model solutions. Correcting the error,
the student enters:

range x y = unfoldr f •
where f i | i y + 1 = Nothing

which is accepted by the tutor. If the student now asks for
a hint, the tutor responds with:

Introduce a guarded expression that gives the

output value and the value for the next

iteration.

She continues with

range x y = unfoldr f •
where f i | i y + 1 = Nothing

| otherwise = Just •

which is accepted, and then

range x y = unfoldr f •
where f i | i y + 1 = Nothing

| otherwise = Just (n, i + 1)

which gives:

Error: undefined variable n

This is an error message generated by the compiler. Our
tutor displays the syntax and type errors messages generated
by Helium. The student continues with:

range x y = unfoldr f x
where f i | i y + 1 = Nothing

| otherwise = Just (i , i + 1)

which completes the exercise:

You have correctly solved the exercise.

A student can develop a program in any order, as long as
all variables are bound. For example, a student can write

range x y = •
where f i | • = •

and then proceed with defining f . This way, bottom-up
developing a program is supported to some extent.

These interactions show that our tutor can:

– give hints about which step to take next, in various
levels of detail,

– list all possible ways in which to proceed,

– point out errors, and where the error appears to be,

– show a complete worked-out example.

The next section shows what a teacher has to do to achieve
the functionality of the tutor as described in this section.

3. SPECIFYING EXERCISES
The interactions of the tutor are based on model solutions

to programming problems. A model solution is a program
that an expert writes, using good programming practices.
A teacher adds a programming exercise to the tutor by spe-
cifying such model solutions. For our running example of
calculating a range, we have specified three model solutions.
The first model solution uses the enumeration notation from
Haskell’s prelude:

range x y = [x . . y]

The second model solution uses the prelude functions take
and iterate:

range x y = take (y − x + 1) (iterate (+1) x)

The prelude function iterate returns an infinite list in which
the next element is calculated by applying a given function,
in this case a function that increases its argument by one, to
the previous element, starting with a given value (x). The
function take n returns the first n elements of a list. The
last model solution uses the higher-order function unfoldr
introduced in Section 2:

range x y = unfoldr f x
where f i | i y + 1 = Nothing

| otherwise = Just (i , i + 1)

The tutor uses these model solutions to generate feedback.
We not only recognise the exact specified model solution, but
many variants. For example, although it appears entirely
different, the following solution:

range x y =
let f = λa → if a y + 1

then Nothing
else Just (a, a + 1)

g = λf x → case f x of
Just (r , b)→ r : g f b
Nothing → []

in g f x

is recognised from the third model solution. To achieve this,
we not only recognise the usage of a prelude function, such
as unfoldr , but also its definition.

We use techniques and concepts from software technology,
such as parsing, rewriting, and program transformations, to
calculate semantically rich feedback [9]. In a nutshell, our
approach is as follows [12]: we derive a programming strategy
from the set of model solutions. This programming strategy
is used to generate many variants of the model solutions.
Before we compare a student solution to the solutions from
the strategy, we normalise all solutions using program trans-
formations. In this normalisation procedure we, for example,
rewrite a where-clause into a let-expression.

252

3.1 Adapting feedback
It is important that a teacher can easily adapt the feed-

back given to a student. Our tutor offers the possibility
to fine-tune the generated feedback by means of annotating
model solutions. The remainder of this section shows a num-
ber of such annotations, accompanied with an explanation.

A description of a particular model solution can be added
to the source code using the following construction:

{−# DESC Implement range using the unfoldr ... #−}

The first hint in Section 2 gives the descriptions for the three
model solutions for the range exercise. Next to a description
for a single model solution, we can also give a description of
the entire exercise. This description is given together with
the model solutions in a configuration file for the exercise.

Another way to adapt the feedback is by specifying an
alternative implementation for a prelude function. For ex-
ample, the specification below shows how to give an altern-
ative implementation for the iterate prelude function:

{−# ALT
iterate f = unfoldr (λx → Just (x , f x)) #−}

Using this annotation we not only recognise the prelude
definition (iterate f x = x : iterate f (f x)), but also the
alternative implementation given here. By adding an al-
ternative a teacher expands the number of accepted solu-
tions and therefore changes the way in which the tutor gives
feedback. Alternatives give the teacher partial control over
which program variants are allowed.

Besides adding alternatives to expand the number of ac-
cepted solutions, a teacher may want to emphasise one par-
ticular implementation method. For example, a teacher may
want to enforce the use of higher-order functions and pro-
hibit their explicit recursive definitions. The MUSTUSE
construction allows a teacher to disable the recognition of
the definition of a prelude function:

range x y = {−# MUSTUSE #−} unfoldr f x

Another way to modify the response of the tutor is to add
specific feedback messages at particular locations in the source
code. For example:

range x y =
{−# FEEDBACK Note... #−} take (y − x + 1) $

iterate (+1) x

Thus we give a detailed description of the take function.
These feedback messages are organised in a hierarchy based
on the abstract syntax tree of the model solution. This
enables the teacher to configure the tutor to give feedback
messages with an increasing level of detail.

Adding an exercise to our tutor is relatively easy. To sup-
port managing exercises, they can be arranged in classes.
Using a class a teacher groups together exercises, for ex-
ample for practicing list problems, collecting exercises of the
same difficulty, or exercises from a particular textbook.

4. EXPERIMENTAL RESULTS
We have used our functional programming tutor in a course

on functional programming for bachelor students at Utrecht
University in September 2011. The course attracted more
than 200 students. Around a hundred of these students have
used our tutor in two sessions in the second week of the

course after three lectures. 40 students filled out a question-
naire about the tutor, and we collected remarks at the lab
session in which the students used the tutor. Table 1 shows
the questions and the average of the answers on a Likert
scale from 1 to 5. The first seven questions are related and
indicate how satisfied a student is with the tutor. The last
question addresses how students value the difficulty of the
offered exercises.

The goal of the experiment is to analyse if students appre-
ciate our approach, such as giving feedback on intermediate
answers. The experiment does not check whether or not the
tutor is more effective or efficient from a learning point of
view. We hope to study this in the future.

Reflection on the scores.
The scoring shows that the students particularly like the

worked-out solution feedback. A worked-out solution pre-
sents a complete, step-wise, construction of a program. Fur-
thermore, the kind of exercises are as expected by the stu-
dents. The results also show that the step-size used by the
tutor does not correspond to the intuition of the student.
We noticed this already during the experiment. The stu-
dents often took larger steps than that the tutor was able
to handle.

The average of the first seven question gives an overall
score of the tutor of 3,4 out of 5. This is maybe sufficient,
but there clearly is room for improvement.

4.1 Evaluation
In addition to questions about the usage of the tutor, the

questionnaire contained a number of general questions, such
as

1. We offer the feedback services: strategy hint, step hint,
step, all steps, solution, and we check the program sub-
mitted by the student. Do you think we should offer
more or different feedback services?

2. Do you have any other remarks, concerns, or ideas
about our programming tutor?

The answers from the students to the first question indicate
that the current services are adequate. We received some
interesting suggestions on how to improve our tutor in re-
sponse to the second open question. The remarks that ap-
pear most are:

– Some solutions are not recognised by the tutor

– The response of the tutor is sometimes too slow

The first remark may indicate that a student believes her
own solution is correct, where in fact this might not be true.
It could well be that the program is incorrect or contains
imperfections, such as being inefficient, and hence is rejec-
ted by our tutor. This remark addresses the fact that we
cannot give feedback on a student program that deviates
from a path towards one of the model solutions. When
a student program deviates from a path towards a model
solution there are three possibilities. First, the student pro-
gram is incorrect. We should be able to detect this and
give a counterexample. At the moment our tutor cannot do
this, but we are working onincorporating testing, based on
the QuickCheck [3] library. Second, the student program
is correct and uses desirable programming techniques, but

253

Question Score

1 The tutor helped me to understand how to write simple functional programs 3,15

2 I found the high-level hints about how to solve a programming problem useful 3,43

3 I found the hints about the next step to take useful 3,05

4 The step-size of the tutor corresponded to my intuition 2,85

5 I found the possibility to see the complete solution useful 4,25

6 The worked-out solutions helped me to understand how to construct programs 3,55

7 The feedback texts are easy to understand 3,25

8 The kind of exercises offered are suitable for a first functional programming course 3,90

Table 1: Questionnaire: questions and scores.

our tutor rejects it. In this case the set of model solutions
should be extended with this solution. Third, the student
program is functionally correct but contains some imper-
fections, such as, for example, a clumsy way of calculating
the length of a list xs: length (x : xs) − 1. The tutor can-
not conclude that a student program contains imperfections
when it passes the tests but deviates from the strategy, so
it cannot give a definitive judgement. However, after using
an exercise in the tutor for a while, and updating the tutor
whenever we find an improvement, it is likely that the set
of model solutions is complete, and therefore unlikely that
a student comes up with a new model solution. Therefore,
in this particular case we can give feedback that a student
program probably has some undesired properties. We have
used our approach for assessment of functional programming
exercises [7], in which we could recognise almost 90% of the
correct solutions based on only five model solutions. All of
the other 10% of the correct solutions had some imperfec-
tions.

The second remark is related to the step-size supported
by the tutor. When a student takes a large step, the tutor
has to check many possibilities, due to the flexibility that
our tutor offers. We have already addressed this problem
and in the current version of the tutor it is not an issue
anymore. We solved this problem by introducing a special
search mode when recognising large steps.

In addition to the above experiment, we also asked a num-
ber of functional programming experts from the IFIP WG
2.1 group4 and student participants of the Central Euro-
pean Functional Programming (CEFP 2011) summer school
to fill out a questionnaire. We asked for input about some
of the design choices we made in our tutor, such as giving
hints in three levels of increasing specificity. Both the ex-
perts as well as the students support most of the choices
we made. The main suggestion we got for adding extra
services/functionality was to give concrete counterexamples
using testing for semantically incorrect solutions. This sug-
gestion corresponds to our own interpretation of the results
from the experiment, and will be addressed in future work.

5. RELATED AND FUTURE WORK
There is a wealth of related work on intelligent program-

ming tutors. We have not found other tutors that support
the step-wise development of programs, automatically cal-

4
http://www.cs.uu.nl/wiki/bin/view/IFIP21/WebHome

culating feedback based on teacher-specified annotated solu-
tions and non-solutions.

If ever the computer science education research field [6]
finds an answer to the question of what makes program-
ming hard, and how programming environments can support
learning how to program, it is likely to depend on the age,
interests, major subject, motivation, and background know-
ledge of a student. Programming environments for novices
come in many variants, and for many programming lan-
guages or paradigms [8]. Programming environments like
Scratch [21] and Alice [4] target younger students than we
do, and emphasise the importance of constructing software
with a strong visual component, with which students can
develop software to which they can relate. We target begin-
ning computer science students, who expect to work with
real-life programming languages.

The Lisp tutor [1] is an intelligent tutoring system that
supports the incremental construction of Lisp programs. At
any point in the development a student can only take a single
next step, which makes the interaction style of the tutor a bit
restrictive. Furthermore, adding new material to the tutor
is still quite some work. Using our approach, the interac-
tion style becomes flexible, and adding exercises becomes
relatively easy. Soloway [22] describes programming plans
for constructing Lisp programs. These plans are instances
of the higher-order function foldr and its companions. Our
work structures the plans described by Soloway.

In tutoring systems for Prolog, a number of strategies for
Prolog programming have been developed [11]. Strategies
are matched against complete student solutions, and feed-
back is given after solving the exercise. We expect that
these strategies can be translated to our situation, and can
be reused for a programming language like Haskell.

Our work resembles the top-down Pascal editors developed
in the Genie project [16]. These series of editors provide
structure editing support, so that a student does not have
to remember the particular syntax of a programming lan-
guage. In our case students do have to write programs using
the syntax of Haskell, but the intermediate steps are com-
parable. The Genie editors did not offer strategical support.

Our functional programming tutor grew out of a program
assessment tool, which automatically assesses student pro-
grams based on model solutions [7] and program transform-
ations to rewrite programs to normal form. Similar trans-
formations have been developed for C++-like languages [24].

In the next couple of months we will add testing capabil-
ities to our tutor. In addition to testing the student solution

254

against a model solution, we plan to offer the possibility to
specify properties. A property is a statement that should
always hold, and allows us to validate model solutions. For
our running example, the following property states that the
size of the generated list by range x y is equal to y − x + 1:

{−# PROP
prop range x y =

x 6 y =⇒ length (range x y) y − x + 1 #−}

Furthermore, we will extend the set of supported exercises.
Once the tutor is sufficiently mature, we will add a service
for teachers to upload their own annotated solutions and
non-solutions.

6. CONCLUSIONS
We have introduced an intelligent tutor that supports the

step-wise development of simple functional programs. A stu-
dent can develop a program in many different ways. Our
tutor automatically calculates hints and feedback at inter-
mediate development steps from teacher-specified annotated
solutions and non-solutions for a problem. This reduces the
work required for using the tutor, and allows a teacher to
use her favourite exercises.

We have conducted an experiment in which around a hun-
dred students worked with our functional programming tu-
tor. Furthermore, we asked functional programming experts
about the design choices we made. The main conclusions of
these two investigations are:

– Students appreciate worked-out solutions, and are mod-
erately positive about the tutor.

– We need to judge student programs even when a stu-
dent deviates from the model solutions. Therefore, we
need to extend our tutor with testing capabilities.

Acknowledgements.
We thank Andres Löh and Doaitse Swierstra for allowing
us to perform an experiment with our tutor in their classes.
Furthermore, we thank Bram Vaessen for analysing the scores
of our questionnaire.

References
[1] J. R. Anderson, F. G. Conrad, and A. T. Corbett. Skill

acquisition and the LISP tutor. Cognitive Science, 13:467–
505, 1986.

[2] J. R. Anderson, A. T. Corbett, K. R. Koedinger, and R. Pel-
letier. Cognitive tutors: lessons learned. The Journal of the
learning sciences, 4(2):167–207, 1995.

[3] K. Claessen and J. Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In Proceedings of
ICFP 2000: International Conference on Functional Pro-
gramming, 2000.

[4] M. J. Conway. Alice: Easy-To-Learn 3D Scripting For
Novices. PhD thesis, University of Virginia, 1997.

[5] A. T. Corbett, J. R. Anderson, and E. J. Patterson. Prob-
lem compilation and tutoring flexibility in the Lisp tutor.
In Proceedings ITS’88: Intelligent Tutoring Systems, pages
423–429, 1988.

[6] S. Fincher and M. Petre, editors. Computer Science Educa-
tion Research. Routledge Falmer, 2004.

[7] A. Gerdes, J. Jeuring, and B. Heeren. Using strategies for as-
sessment of programming exercises. In SIGCSE, pages 441–
445, 2010.

[8] M. Guzdial. Programming environments for novices. In
S. Fincher and M. Petre, editors, Computer Science Edu-
cation Research. Routledge Falmer, 2004.

[9] B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite
strategies for interactive exercises. Mathematics in Com-
puter Science, 3(3):349–370, 2010.

[10] B. Heeren, D. Leijen, and A. v. IJzendoorn. Helium, for
learning Haskell. In Haskell 2003: Proceedings of the 2003
ACM SIGPLAN workshop on Haskell, pages 62 – 71. ACM,
2003.

[11] J. Hong. Guided programming and automated error ana-
lysis in an intelligent Prolog tutor. International Journal on
Human-Computer Studies, 61(4):505–534, 2004.

[12] J. Jeuring, A. Gerdes, and B. Heeren. A programming tutor
for Haskell. In Proceedings of CEFP 2011: Lecture Notes of
the Central European School on Functional Programming,
LNCS. Springer, 2011.

[13] W. L. Johnson and E. Soloway. Proust: Knowledge-based
program understanding. IEEE Transactions on Software
Engineering, 11(3):267–275, 1985.

[14] A. N. Kumar. The effect of using problem-solving software
tutors on the self-confidence of female students. In SIGCSE
2008: Proceedings of the 39th SIGCSE technical symposium
on Computer science education, pages 523–527. ACM, 2008.

[15] N. López, M. Núñez, I. Rodŕıguez, and F. Rubio. WHAT:
Web-based Haskell adaptive tutor. In AIMSA 2002: Pro-
ceedings of the 10th International Conference on Artificial
Intelligence: Methodology, Systems, and Applications, pages
71–80. Springer-Verlag, 2002.

[16] P. Miller, J. Pane, G. Meter, and S. Vorthmann. Evolu-
tion of Novice Programming Environments: The Structure
Editors of Carnegie Mellon University. Interactive Learning
Environments, 4(2):140–158, 1994.

[17] E. Mory. Feedback research revisited. In D. Jonassen, editor,
Handbook of research for educational communications and
technology, 2003.

[18] E. Odekirk-Hash and J. L. Zachary. Automated feedback on
programs means students need less help from teachers. In
SIGCSE 2001: Proceedings of the 32nd SIGCSE technical
symposium on Computer Science Education, pages 55–59.
ACM, 2001.

[19] S. Peyton Jones et al. Haskell 98, Language and Libraries.
The Revised Report. Cambridge University Press, 2003. A
special issue of the Journal of Functional Programming.

[20] N. Pillay. Developing intelligent programming tutors for
novice programmers. SIGCSE Bull., 35(2):78–82, 2003.

[21] M. Resnick et al. Scratch: programming for all. Commun.
ACM, 52:60–67, Nov. 2009.

[22] E. Soloway. From problems to programs via plans: the
content and structure of knowledge for introductory LISP
programming. Journal of Educational Computing Research,
1(2):157–172, 1985.

[23] E. Sykes and F. Franek. A prototype for an intelligent tu-
toring system for students learning to program in Java. Ad-
vanced Technology for Learning, 1(1), 2004.

[24] S. Xu and Y. S. Chee. Transformation-based diagnosis of
student programs for programming tutoring systems. IEEE
Transansactions on Software Engineering, 29(4):360–384,
2003.

255

