A Teaching Tool for Proving Equivalences
between Logical Formulae

Josje Lodder and Bastiaan Heeren

School of Computer Science, Open Universiteit Nederland
P.O.Box 2960, 6401 DL Heerlen, The Netherlands

{josje.lodder, bastiaan.heeren}@ou.nl

Abstract. In this paper we describe a teaching tool for proving equiv-
alences between propositional logic formulae, using rewrite rules such as
De Morgan’s laws and double negation. This tool is based on an earlier
tool for rewriting logical formulae into disjunctive normal form (DNF).
Both tools make use of a rewrite strategy, which specifies how an exercise
can be solved stepwise. Different types of feedback can be calculated au-
tomatically from such a strategy specification. We describe a strategy for
constructing expert-like equivalence proofs, and present two techniques
for improving the proofs that are generated by the strategy.

Key words: propositional logic, equivalences, e-learning, feedback

1 Introduction

The construction of proofs is an important topic in logic courses. Several tools
have been developed in the last decades to help students in acquiring proving
skills [3,9, 10]. Most often, natural deduction is used as a proof system, but also
axiom systems are used. When students have to apply logic, they also have to
simplify and rewrite logical formulae, and this takes some practice. For instance,
a computer science student should be able to simplify a database query, or
recognize that two database queries are equivalent. A typical example of applying
logic is to simplify the following SQL query (using fewer negations):

SELECT s.name

FROM Students s

WHERE NOT (NOT (s.subject = math) OR s.startdate = 2010)
AND s.grade >= 8)

Other examples of rewriting logical formulae are the simplification of conditional
expressions found in most programming languages, specifying and reasoning with
business rules, and turning logical propositions into Prolog clauses.

At the Open Universiteit Nederland, we have been working on several inter-
active exercise assistants, including a tool to train students in transforming a
propositional formula into disjunctive normal form (DNF) [7]. These tools are
based on a strategy language [6], in which rewrite strategies for solving exercises

can be expressed (e.g., converting a formula into DNF). From such a strategy
specification, different types of feedback can be calculated automatically, such as
providing hints on how to continue, recognizing an intermediate step submitted
by the student, and generating worked-out solutions.

We recognize the importance for computer science students to be able to ma-
nipulate logical formulae using rewrite rules. In this paper we discuss how our
logic tool can be extended with exercises in proving the equivalence of proposi-
tional logic formulae. This paper makes the following contributions:

— We describe a strategy for constructing expert-like equivalence proofs (i.e.,
proofs that appear non-mechanical). The strategy is illustrated by a num-
ber of example proofs that are generated by the strategy. Our approach is
general, and therefore applicable to constructing proofs in other areas.

— Our claims are supported by a prototype implementation of the strategy for
constructing proofs. We highlight the changes that are needed to the tool
for rewriting formulae into DNF.

The remainder of this paper is structured as follows. We first introduce our
web-based exercise assistant for rewriting logical formulae into DNF in Section 2,
where we briefly discuss our approach for developing interactive exercise assis-
tants based on rewrite strategies. Section 3 then presents a strategy for proving
equivalences between formulae and two techniques for improving the proofs. Ex-
amples of proofs that are generated by our strategy are given in Section 4. The
last two sections discuss related work and draw conclusions.

2 Rewriting formulae into DNF

We start with an overview of our tool for rewriting arbitrary formulae into DNF.
Most of its functionality can be reused for exercises in proving equivalences.
Figure 1 shows a screenshot of the interactive exercise assistant!. Students have
to rewrite a formula into normal form, using a fixed set of allowed rewrite rules.
At each point, hints are available about the next step, or an example solution can
be shown. More importantly, students also receive feedback when they submit
intermediate answers. The tool identifies the rewrite rule that was used, or it
tries to recognize a common misconception (also known as buggy rule) in case the
answer is incorrect. For example, Figure 1 contains a feedback message about the
incorrect application of De Morgan (i.e., the buggy rule =(¢ V ¢) = —¢ V —)).

Feedback is derived automatically from a strategy specification. Such a strat-
egy describes the order in which rewrite rules have to be applied to solve a par-
ticular type of exercise. Strategies for reaching DNF have been reported in [6].
When a student deviates from the strategy, this can be detected and reported
by the tool. We currently allow these deviations, also because they may prove
to be clever shortcuts. For practical reasons, associativity of conjunction and
disjunction is silently performed by the tool. On the contrary, commutativity
requires an explicit step by the student.

! The DNF tool is available at: http://ideas.cs.uu.nl/genexas/

2 0U Exercise Assistant On-line - Mozilla Firefox

Bestand Bewerken Beeld Geschiedenis Bladwiizers Exbra Help
@ - (ar | hepiifideas s, nligenexas/index, phy 7 | M oo J| =

Ll OUExercise Assistant On-line

OpenUniversiteitiederland . .
- EXERCISE ASSlSTANT ONLI'NE\Q\\

Exercise Feedback

_|(r v q) v ﬂ(p . I’) You rewrote T(p v) into TRy
ar, This is incorrect. Did you try
to apply DeMorgan? Make sure
that you replace OR by AND.
Press the Back button and fry
again. You may ask for a hint.

Working area: rewrite and submit

=(rvoa) v (7op v) ‘

(Feo J [som
[Hint] [Step] [Auto step] [‘Warked-out exercise] A
i Last message only
[Shertkeys| ey Derivation

“'key o _IJJ_I_I (v ey p -1

;tz) Kl E1 K b1 S vV PV
'a' key W P q T 8
- key el

Fig. 1. Screenshot of the Exercise Assistant for rewriting formulae into DNF

The tool has been tested with bachelor’s students in a course on discrete
mathematics. The results of the test were very promising [8]. The tool helped the
students in understanding logical formulae and improving their rewriting skills.

3 Proving equivalences between formulae

We will now discuss the design of a tool for practicing the construction of equiv-
alence proofs: the DNF tool is a good starting point for this. The tools operate
on the same type of formula, and the same collection of rewrite rules (e.g., com-
mutativity, absorption, and the buggy rules) can be used. Because we base our
approach on rewrite strategies, the full machinery for analyzing steps, recogniz-
ing common misconceptions, generating hints, and providing feedback is readily
available. Changes to the following components are required:

— Modifications to the user interface are needed. Students should be allowed
to perform a forward step or a backward step, at all times. Suppose a proof
is asked for the equivalence ¢ < 1. Then ¢ can be rewritten to ¢’ (forward
step, giving the task of proving ¢’ < 1)), or ¢ to ¢’ (backward step, resulting
in ¢ < ¢'). The proof is completed when ¢ and ¢ have been rewritten to
the same formula. The user interface should accommodate for steps in both
directions.

— A strategy is needed for proving equivalences in an expert-like way. This is
the most significant extension to our tool. The strategy for reaching DNF
will play a prominent role in the strategy specification.

— Lastly, the creation of exercises is different. In the DNF tool, we use a random
formula generator. In the case of proving equivalences, we restrict ourselves
to a fixed set of exercises, such as the ones in Section 4.

3.1 A strategy for proving equivalences

The general idea for proving the equivalence ¢ < v is rather straightforward:
rewrite both ¢ and ¢ to DNF, and then rewrite these normal forms to equal
forms using a given set of rewrite rules. This approach results in proofs that
appear mechanical. For example, consider =(p A (¢ — 7)) & —((¢ — r) A p).
Suggesting to eliminate the implication, or to apply De Morgan’s law at one of
the sides, is not very reasonable. Therefore, we make several refinements to the
strategy. The strategy consists of two parts (explained in sections 3.2 and 3.3):

— Part 1: rewrite ¢ and 9 into normal forms, but search for parts that do not
have to be rewritten at each step.

— Part 2: to finish the proof, rewrite the normal forms into equal forms. This
is only needed when the normal forms are different.

The strategy is used by the tool to give hints and to provide sample solu-
tions, and these are available at each moment. The strategy alternates between
making forward and backward steps, just like a student. In fact, it rewrites a
pair (¢,1) by applying a rule either to ¢ or 1, leaving the other formula un-
changed. Whenever a hint is asked, the next step is computed from the strategy.
Although it might be feasible to calculate the shortest proof for simple exercises
(i.e., calculate the proof once, before a student starts with the exercise), such an
approach becomes impractical as soon as students are allowed to depart from
this proof. In such a scenario, a shortest proof has to be calculated repeatedly.
It is unclear how this can be done efficiently.

3.2 Towards disjunctive normal form (part 1)

The first part reuses the strategy for rewriting formulae into DNF (found in [6]).
Before each step, we first try to perform the following simplifications:

Proof decomposition. Assume we have to prove ¢ < 1. If ¢ and v are both
conjunctions, say ¢ = ¢1 A ¢2 and ¥ = 1 A Y9, then check whether ¢y < ¥
and ¢o < 1o holds, or ¢1 < 19 and ¢o < ;. If so, decompose the proof into
two subproofs. Truth tables are used to check the equivalences. In the latter
case, use commutativity to exchange s and ;. Note that this decomposition
is only a mental step, since in the end we are interested in constructing a
linearized proof. The effect of this step is that the conjunction will not be
rewritten, and that rewriting towards DNF takes place on ¢1, ¢2, 91, and .
Follow a similar procedure when ¢ and 1 are both disjunctions, implications,
equivalences, or negations. The subproofs can again be decomposed.

Common subformulas. Check whether ¢ and 1 share the same subformula
X (not a proposition letter). Substitute x in ¢ and ¢ by a new proposition
letter, and check whether the resulting formulae are still equivalent. If this is
the case, treat y as an atom. No rewriting takes place on such an atom. This
substitution is not visible for the student, except that these subformulas will
not be transformed by the strategy. Students are still allowed to rewrite it.

3.3 Towards equal forms (part 2)

In many cases the normal forms of ¢ and v will be equal up to associativity and
commutativity, and a simple reordering (applications of the commutative law)
completes the proof. Sometimes the differences are more fundamental. In those
cases the following steps are performed:

(a) If the set of proposition letters that occur in the normal forms of ¢ and %
are different, eliminate the letters that occur in only one of the normal forms
(by applying simplification rules).

(b) If ¢ contains (up to commutativity) a subformula of the form p V (=p A x)
and 1 contains p V x, rewrite p V (-p A x) into p V x, using distribution
and true/false rules.

(c) If no other simplifications are possible, extend the normal forms by using
true/false rules and distribution to a complete normal form. Each conjunc-
tion corresponds to a row of the truth table. A complete normal form is
unique (up to commutativity), and thus guarantees the completion of the
equivalence proof.

The main purpose of the tool is to improve the skills in applying rewrite rules,
and to learn how to recognize simple equivalences. We do not want students to
memorize the rewrite strategy, nor do we make it explicit. Its function is only to
provide sensible hints and worked-out examples.

4 Examples

We have tested the rewrite strategy for proving equivalences on a set of exercises.
We used exercises from textbooks [11, 4], and added some exercises to test special
cases. We discuss some of the proofs generated by the strategy. The order in
which the rules are applied is indicated by numbering the steps.

Ezample 1. Prove =(p V =(p V —¢q)) < —(p V q).

PRI (v (v 7)) De Morgan
2. ~(pV(=pA-mg)) .
— double negation
s, ~(pV(mpAg) o
— distribution
i ~(pVv-op)A(pVa)
—= complement
5. (TA(pVa)
= true/false rule
=(p V q)

Both starting formulae are negations: because of proof decomposition, the top-
level negation is kept throughout the proof. The strategy proceeds by rewriting
the subformula p V —=(p V —¢q) into DNF, resulting in two forward steps (1-2).
The right-hand side was already in DNF. The second part of the strategy then
rewrites p V (—p A ¢) into p V ¢. In this case, all proof steps are forward. Note
that swapping the starting propositions would give a completely backward proof.

Ezample 2. Prove =((p — q) = (p A q)) & (p — q) A (=p V —q).
1. (lp—q)—(pAq)

—= implication elimination
2. ~(lp—a)VipAg)
= De Morgan
5. = A=(pAg) :
S () A—(p A q) double negation
— -
PN b= b De Morgan

(p—q)A(=p Vg
Both propositions have the subformula p — ¢, and replacing this formula by a
new proposition letter (say a) results in propositions that are still equivalent.
Hence, the strategy constructs a proof for =(a — (p A q)) < a A (—p V —q).
More specifically, the common subformula p — ¢ should not be rewritten (by
the strategy). All steps are forward, and belong to part 1.

Ezample 3. Provep — (¢ > 1) & (p— q) — (p — 7).

— —r
PRI r—lg) implication elimination
2 pVI(g—r) L
implication elimination
-pV-ogVr
1, PV ogVr .
<~ commutativity
10, "gV-opVr
= true/false rule
o, (T'A(=qV-p)Vr
= (5 V =p) A (=g V =p)) V complement
-/ - - T
LN P P 1 P distributivity
7. PADQVopVT :
= double negation
6. (MmpA-QV-opVr
<~ De Morgan
5. ~(pVgVopvr L
= implication elimination
i, ~(pVaVip—r) L
<— implication elimination
3. p=aVvp—r) o
<— implication elimination

p—=aq—@—-r)
In this particular example, both forward and backward steps are used. The first
five steps consist of eliminating the implications. Note that the order of these
five elimination steps (two forward steps, and three backward steps) is not fixed
by the strategy. In this paper we only show the default order. After 5 steps we
have —=p V —¢ V r and —(-p V ¢) V —=p V r. From this point on, the proof
is decomposed into —p V =g < —(=p V ¢q) V =p and r < r. The latter holds
trivially. The remaining steps focus on the former equivalence. After 7 steps we
have —=p V —q and (p A —¢) V —p, which are both in DNF. From here on, part
2 of the strategy takes over and completes the proof (steps 8-11).

5 Related work

A nice overview of the differences between theorem provers, proof checkers, proof
assistants, and proof editors on the one hand, and tutorial systems on the other
hand, is given by Lukins et al. [9]. In this section we restrict ourselves to other
tutorial systems, but we also compare our tool with a computer algebra system.

There are several tools for teaching how to prove theorems in propositional
logic, but most teach natural deduction. These tools contain strategies for prov-
ing propositions, and use these strategies to provide hints or worked-out ex-
amples (e.g. Fitch [2], AProS [10], and Pandora [3]). There are also tools for
rewriting exercises in DNF and CNF, such as Organon [5]. Organon is a web
tutor for basic logic courses, and is used at a Czech university. A very simple
tool for checking equivalences is the Equivalency Checker [1] from Texas A&M
University: students can enter two formulae, and the tool checks equivalence
(yes/no). DC Proof 1.2 (http://www.dcproof.com/) allows students to prove
equivalences between formulas using a mix of rewrite rules (De Morgan, dou-
ble negation, implication and equivalence elimination), and a natural deduction
style of reasoning. The student has to choose a rule, which is executed by the
tool. Predefined hints and worked-out solutions are only available for a fixed set
of exercises. The tool does not contain a strategy to provide help.

The propositional theorem prover of the computer algebra system Yacas
(http://yacas.sourceforge.net/) uses rewrite rules to simplify a negation
of a theorem into false. Since Yacas is not meant for teaching logic, there is
no need for a sophisticated strategy. Because Yacas is not a specialized theo-
rem prover, this simple strategy is fast enough. In general, theorem provers are
designed to find proofs efficiently, and they typically do not use rewrite rules.
As far as we know, the implementation of an expert-like strategy for solving
equivalences with rewrite rules is new.

6 Conclusions

We have presented a strategy for proving equivalences between logical formulae.
This strategy is based on rewriting both formulae into DNF, with two exceptions:
decompose the proof and keep common subformulae, whenever possible. This
makes the generated proofs shorter. Afterwards, a strategy for rewriting the
normal forms into equal forms is used to complete the proof. The strategy that
generates the proofs has been implemented, and we have described how the web-
based exercise assistant should be changed to support interactive exercises on
the construction of equivalence proofs.

At this moment, the proof generator works as a stand alone application. We
intend to integrate it in our existing web-based tool. After that we can test the
tool with students: we hope to perform a first test during spring 2011. The DNF
tool gives feedback when a student takes a step that deviates from the standard
strategy. Since it is not our goal to teach the underlying strategy for proving
equivalences, this kind of feedback is no longer necessary. However, we could

compare the lengths of the student solution with the length of the generated
proof. If the student needs more steps, we could add a message explaining that
a shorter solution exists. Such a message could even be reported as soon as the
(possibly incomplete) solution exceeds the expected number of steps. The tool
could suggest to go back to the point where the detour started. Proofs that turn
out to be shorter than the generated proof are of special interest to us, since
they may suggest short-cuts that can be added to the strategy.

The approach followed is not restricted to proofs for logical formulae. Another
direction of future research is to apply our ideas to different domains, such as
equivalence proofs for relation algebra or set algebra.

Acknowledgements. The authors wish to thank Johan Jeuring, Alex Gerdes,
Sylvia Stuurman, and Harrie Passier for their contributions to the exercise assis-
tant. We thank the anonymous reviewers for their constructive comments. Dis-
cussions with Daniel Herding about searching proofs for set algebra are gratefully
acknowledged.

References

1. C. Allen and C. Menzel. The Logic Machine: Equivalency Checker, 2006. http:
//logic.tamu.edu/cgi-bin/equivalency.pl.

2. J. Barwise and J. Etchemendy. Language, Proof and Logic (Book €& CD-ROM).
Center for the Study of Language and Information, 1st edition, April 2002.

3. K. Broda, J. Ma, G. Sinnadurai, and A. Summers. Pandora: A Reasoning Toolbox
using Natural Deduction Style. Logic journal of the IGPL, 15(4):293-304, 2007.
http://www.doc.ic.ac.uk/pandora/runpandora.html.

4. S.N. Burris. Logic for Mathematics and Computer Science. Pearson Education,
1998.

5. L. Dostalovd and J. Lang. Organon - the web tutor for basic logic courses. Logic
journal of the IGPL, 15(4):305-311, August 2007.

6. B. Heeren, J. Jeuring, and A. Gerdes. Specifying rewrite strategies for interactive
exercises. Mathematics in Computer Science, 3(3):349-370, 2010.

7. J. Lodder, J. Jeuring, and H. Passier. An interactive tool for manipulating logical
formulae. In M. Manzano, B. Pérez Lancho, and A. Gil, editors, Proceedings of the
Second International Congress on Tools for Teaching Logic, 2006.

8. J. Lodder, H. Passier, and S. Stuurman. Using ideas in teaching logic, lessons
learned. International Conference on Computer Science and Software Engineering,
5:553-556, 2008.

9. S. Lukins, A. Levicki, and J. Burg. A tutorial program for propositional logic with
human/computer interactive learning. SIGCSE Bull., 34(1):381-385, February
2002.

10. W. Sieg. The AProS project: Strategic thinking & computational logic. Logic
journal of the IGPL, 15(4):359-368, August 2007.
11. E. Thijsse. Logica in de praktijk (in Dutch). Academic Service, April 2000.

