
Software technology for
automated feedback
generation
Bastiaan Heeren, ICS Colloquium December 17, 2020

Short bio

 Associate professor at the Open University of the Netherlands

 Head of OU’s Computer Science Department

 At Utrecht University:

‒ PhD in Software Technology (2000-2005)

‒ Lecturer (2005-2007)

‒ Guest researcher with the Software Technology for Learning
and Teaching research group

Software technology for automated feedback generation 2

Bastiaan Heeren

Intelligent Tutoring Systems

Intelligent Tutoring Systems (ITS): computer systems that provide
immediate and customized feedback to learners

Structure:

‒ Classical architecture with four components

Behaviour:

‒ Outer loop: solving one task after another

‒ Inner loop: the steps for solving one complex, multi-step problem

Software technology for automated feedback generation 3

Example: axiomatic proofs

Software technology for automated feedback generation 4

step-wise construction

feedback and hints

multiple solutions are accepted

Research motivation

1. Simplify construction of ITSs (which are complex software systems)

2. Represent expert domain knowledge explicitly (for better feedback)

3. Apply approach to a wide range of problem domains

Approach: use software technology for automated feedback generation

Techniques in this presentation (outline):

‒ Rewrite strategies for automated feedback (basics)

‒ Light-weight rewrite rules

‒ Generic traversals

Software technology for automated feedback generation 5

Problem domains

Software technology for automated feedback generation 6

Four recent PhD theses, for different problem domains, all based on the same approach

Ideas framework

Generic framework for constructing domain reasoners

 Developed in Haskell

 Size: 12,397 LOC

 Open source

 Independent of problem domain

 http://ideas.cs.uu.nl/tutorial/

Interactive Domain-specific Exercise Assistants

Software technology for automated feedback generation 7

http://ideas.cs.uu.nl/tutorial/

Rewrite strategies

Rewrite strategies for automated feedback

 Domain-specific language for specifying problem-solving procedures:

‒ describe sequences of rule applications that solve a particular task

‒ are formalized by a trace-based semantics (CSP)

‒ allow new composition operators (interleaving, topological sorts)

 Problem-solving procedures are used for feedback generation:

‒ recognizing the solution strategy

‒ detecting detours

‒ suggesting subgoals

‒ providing next-step hints

‒ providing worked-out examples

Software technology for automated feedback generation 9

Example

Goal: rewrite proposition into
negation normal form (NNF)

¬((p ∨ q) ∧ ¬(p ∧ r))

⇔ De Morgan

¬(p ∨ q) ∨ ¬¬(p ∧ r)

⇔ De Morgan

(¬p ∧ ¬q) ∨ ¬¬(p ∧ r)

⇔ Double Neg

(¬p ∧ ¬q) ∨ (p ∧ r)

Software technology for automated feedback generation 10

Rewrite strategy for NNF:

repeat (oncetd (doubleNeg .|. dmOr .|. dmAnd))

alternatives

top-down application

rewrite rule

Strategy combinators

Derived combinators:

try s = s |> succeed

repeat s = try (s .*. repeat s)

Software technology for automated feedback generation 11

p .*. q sequence: first p, then q

succeed always succeeds

p .|. q choice: p or q

p ./. q preference: p is preferred over q

p |> q left-biased choice: p or else q

fix fixed-point combinator

Finite representation with explicit
recursion:

repeat s = fix $ \x ->
try (s .*. x)

Advantages:
‒ Extract rules from strategy
‒ Customize strategy
‒ Document/visualise strategy

Light-weight rewrite rules

Proposition logic

data Logic = Logic :&&: Logic -- conjunction

| Logic :||: Logic -- disjunction

| Not Logic -- negation

| Var String -- variable

Representation can be more complex, with nested and
parameterised datatypes, e.g.:

3x + 9 = 0 ∨ x = 1

Software technology for automated feedback generation 13

Rewrite rules

doubleNeg = rewriteRule "doubleNeg" $

\phi -> Not (Not phi) :~> phi

dmAnd = rewriteRule "dmAnd" $

\phi psi -> Not (phi :&&: psi) :~> Not phi :||: Not psi

Software technology for automated feedback generation 14

meta-variables are
introduced by lambdas left-hand side right-hand side

¬¬φ ⇔ φ

¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ

¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ

How to use such rewrite rules?

Embedding-projection pair

Approach: conversion from/to a generic Term datatype with support for meta-variables

toTerm :: Logic -> Term

fromTerm :: Term -> Maybe Logic

 From/to should be inverse functions (intuitively)

 Conversion allows generic functions, such as unification and zippers

 Pair can be derived automatically from the datatype definition

Note: more powerful generic programming libraries exist that can guarantee more type
safety, with less overhead

Software technology for automated feedback generation 15

Compiling rewrite rules
\phi -> Not (Not phi) :~> phi

Step 1: use two different values (e.g. Var “p” and Var “q”):

Not (Not (Var “p”)) :~> Var “p”

Not (Not (Var “q”)) :~> Var “q”

Step 2: convert to Term datatype:

TCon “Not” [TCon “Not” [TVar “p”]] :~> TVar “p”

TCon “Not” [TCon “Not” [TVar “q”]] :~> TVar “q”

Step 3: find meta-variables by comparing left-hand sides and right-hand sides

TCon “Not” [TCon “Not” [TMeta 0]] :~> TMeta 0
Software technology for automated feedback generation 16

values provided by user
for problem domain

TCon, TVar, and TMeta
are constructors of Term

Applying rewrite rules
Not (Not (Var “p” :&&: Var “r”))

Step 1: convert to Term datatype:

TCon “Not” [TCon “Not” [TCon “And” [TVar “p”, TVar “q”]]]

Step 2: match with rule’s left-hand side:

0 = TCon “And” [TVar “p”, TVar “q”]

Step 3: substitute in rule’s right-hand side:

TCon “And” [TVar “p”, TVar “q”]

Step 4: convert back to Logic:

Var “p” :&&: Var “r” Software technology for automated feedback generation 17

Rewrite rule:

TCon “Not” [TCon “Not” [TMeta 0]]
:~> TMeta 0

Knuth-Bendix completion

Critical pair

¬¬(φ ∧ ψ)

Software technology for automated feedback generation 18

¬(¬φ ∨ ¬ψ)

⇔

¬¬φ ∧ ¬¬ψ

⇔

φ ∧ ψ

φ ∧ ψ

¬¬φ ⇔ φ

¬(φ ∧ ψ) ⇔ ¬φ ∨ ¬ψ

Use case for explicit representation: search for
missing rewrite rules (and reach confluence)

Missing rule:

¬(φ ∨ ψ) ⇔ ¬φ ∧ ¬ψ

Light-weight rewrite rules

Advantages of explicit representation:

 Knuth-Bendix completion (analysis)

 AC-rewriting

 Rule inversion

 Automated testing

 Documentation (pretty-printing)

Software technology for automated feedback generation 19

Summary for rewrite rules:

 Simplify construction (light-weight embedding)

 Explicit representation (for better feedback)

 Many problem domains

Generic traversals

Tree representation

¬((p ∨ q) ∧ ¬(p ∧ r))

21

¬

∧

∨ ¬

p q ∧

p r

Software technology for automated feedback generation

Point of focus

¬((p ∨ q) ∧ ¬(p ∧ r))

 Implemented as a so-called zipper
over the generic Term datatype

 Stored in a Context

22

¬

∧

∨ ¬

p q ∧

p r

Software technology for automated feedback generation

Navigation

Five navigational actions:

‒ up

‒ left

‒ right

‒ down

‒ downLast

 Actions may fail

 Many useful laws, e.g.:

left ◦ right ≈ id

up ◦ down ≈ id

23

¬

∧

∨ ¬

p q ∧

p r

Software technology for automated feedback generation

up

left right

down downLast

Navigation (extended)

24Software technology for automated feedback generation

From: Traversals with Class. In Jurriaan Hage and Atze Dijkstra, editors, Een Lawine
van Ontwortelde Bomen: Liber Amicorum voor Doaitse Swierstra, pages 62-75. 2013.

http://www.open.ou.nl/bhr/TraversalLiberAmicorum.html

Position

 Zippers keep a position for the
point of focus

 Position information is useful for
generating feedback

25

¬

∧

∨ ¬

p q ∧

p r

Software technology for automated feedback generation

[]

[0]

[0,0]

[0,0,0] [0,0,1]

[0,1]

[0,1,0]

[0,1,0,0] [0,1,0,1]

Horizontal visits

26Software technology for automated feedback generation

visitOne s = fix $ \x -> s .|. (right .*. x)

visitFirst s = fix $ \x -> s |> (right .*. x)

visitAll s = fix $ \x -> s .*. (not right |> (right .*. x))

 Approach: define traversals as (normal) strategy combinators

 Idea: also parameterize “next” function to also support right-to-left visits

X

q rp t
right right rightright

One-layer visits

27Software technology for automated feedback generation

layer s = down .*. s .*. up

layerOne s = layer (visitOne s)

X

q rp t

horizontal visit

updown

Traversals

28Software technology for automated feedback generation

somewhere s = fix $ \x -> s .|. layerOne x

oncetd s = fix $ \x -> s |> layerOne x -- top down

oncebu s = fix $ \x -> layerOne x |> s -- bottom up

 Also: full traversals, spine traversals, innermost, outermost, etc.

Example trace

29Software technology for automated feedback generation

Corresponding trace:

De Morgan at []

down

De Morgan at [0]

up

down

right

Double Neg at [1]

up

¬((p ∨ q) ∧ ¬(p ∧ r))

⇔ De Morgan

¬(p ∨ q) ∨ ¬¬(p ∧ r)

⇔ De Morgan

(¬p ∧ ¬q) ∨ ¬¬(p ∧ r)

⇔ Double Neg

(¬p ∧ ¬q) ∨ (p ∧ r)

Summary for traversals:

 Simplify construction
(traversals are first-class
strategy combinators)

 Explicit representation
(for better feedback)

 Many problem domains

Conclusion

Trends and challenges

31Software technology for automated feedback generation

 Authoring intelligent tutoring system

‒ Literature reports 200-300 authoring hours for 1 hour of instruction

‒ We believe software technology can help

 Data-driven intelligent tutoring system

‒ Use AI techniques to generate feedback from collected data

‒ Raises questions about the role of expert domain knowledge

 Further adaptation and personalization

‒ Models for mastery learning (e.g. Bayesian knowledge tracing)

 Designing tools for less-structured problem domains

‒ For example, domains of software design and learning languages

Conclusion

32Software technology for automated feedback generation

 Rewrite strategies are used for feedback generation

 Rewrite rules can be embedded by using datatype-generic programming techniques

 Generic traversals can be composed from navigational actions and strategy combinators

 The presented approach can be applied to a wide range of problem domains

 Bastiaan.Heeren@ou.nl

Project website: http://ideas.cs.uu.nl/

Related publications

33Software technology for automated feedback generation

 Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring, and Bastiaan Heeren. A Lightweight Approach to
Datatype-generic Rewriting. In Proceedings of the ACM SIGPLAN Workshop on Generic Programming, WGP '08, pages 13-
24, 2008. ACM.

 Johan Jeuring, José Pedro Magalhães, and Bastiaan Heeren. Generic Programming for Domain Reasoners. In Zoltán
Horváth, Viktória Zsók, Peter Achten, and Pieter W. M. Koopman, editors, Proceedings of the Tenth Symposium on Trends
in Functional Programming, TFP 2009, pages 113-128, 2009. Intellect.

 Thomas van Noort, Alexey Rodriguez yakushev, Stefan Holdermans, Johan Jeuring, Bastiaan Heeren, and José Pedro
Magalhães. A Lightweight Approach to Datatype-generic Rewriting. J. Funct. Program., 20(3-4):375-413, 2010.

 Bastiaan Heeren and Johan Jeuring. Feedback services for stepwise exercises . Science of Computer Programming ,
88:110-129, 2014. Software Development Concerns in the e-Learning Domain.

 Josje Lodder, Bastiaan Heeren and Johan Jeuring. A Domain Reasoner for Propositional Logic. Journal of Universal
Computer Science, 22(8):1097-1122, 2016.

 Bastiaan Heeren and Johan Jeuring. An Extensible Domain-Specific Language for Describing Problem-Solving Procedures.
In Elisabeth André, Ryan Baker, Xiangen Hu, Ma. Mercedes T. Rodrigo, and Benedict du Boulay, editors, Proceedings of
Artificial Intelligence in Education: 18th International Conference, AIED 2017, pages 77-89, 2017. Springer International
Publishing.

 Josje Lodder, Bastiaan Heeren, Johan Jeuring, and Wendy Neijenhuis. Generation and Use of Hints and Feedback in a
Hilbert-Style Axiomatic Proof Tutor. International Journal of Artificial Intelligence in Education, 2020.

http://www.open.ou.nl/bhr/DatatypeGenericRewriting.html
http://www.open.ou.nl/bhr/GenericProgrammingExperience.html
http://www.open.ou.nl/bhr/LightweightRewritingJournal.html
http://www.open.ou.nl/bhr/FeedbackServices.html
http://www.open.ou.nl/bhr/DomainReasonerForLogic.html
http://www.open.ou.nl/bhr/DSLForProblemSolving.html
http://www.open.ou.nl/bhr/AxiomaticProofsJournal.html

	Software technology for automated feedback generation
	Short bio
	Intelligent Tutoring Systems
	Example: axiomatic proofs
	Research motivation
	Problem domains
	Ideas framework
	Rewrite strategies
	Rewrite strategies for automated feedback
	Example
	Strategy combinators
	Light-weight rewrite rules
	Proposition logic
	Rewrite rules
	Embedding-projection pair
	Compiling rewrite rules
	Applying rewrite rules
	Knuth-Bendix completion
	Light-weight rewrite rules
	Generic traversals
	Tree representation
	Point of focus
	Navigation
	Navigation (extended)
	Position
	Horizontal visits
	One-layer visits
	Traversals
	Example trace
	Conclusion
	Trends and challenges
	Conclusion
	Related publications

