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Abstract. The Helium compiler implements a significant subset of the
functional programming language Haskell. One of the major motivations
for developing it was to yield understandable and appropriate type er-
ror messages. The separation between the generation, the ordering and
the solving of constraints on types has led to a flexible framework which
has been employed successfully in a classroom setting. Among its many
advantages are the possibility to plug in heuristics for deciding the most
likely source of a type error, the generation of multiple type error mes-
sages during a single compilation, and the possibility for programmers
to tune the type inference process and resulting messages to their own
needs without having to know any of the details of the implementation.

1 Introduction

At Universiteit Utrecht, the Helium compiler was developed with a special fo-
cus on generating understandable error messages for novice functional program-
mers [ILH]. The compiler implements a large subset of Haskell, the most serious
omission being that of type classes, an omission which is currently being dealt
with. The compiler has been succesfully employed in an educational setting and
the feedback obtained from the students is very positive.

The generation of “good” type error messages for higher-order functional
programming languages such as Haskell is a lively field, mainly because novice
users have a large problem understanding those generated by most exisiting
compilers [HW03,Chi01,YMT00,Sul,McA00]. However, too little of this research
has ended up in prominent compilers and interpreters available for the language.
In that sense, external tools have an advantage, because they do not have to be
built into a compiler.

Every programmer has his own style of programming, like top-down, bottom-
up or something in between. A programmer should be able to choose the style
of type inferencing which suits him best, based on his style of programming.
Therefore, we think that there is not a single deterministic type inference process
which works best in all cases for everybody, and advocate the use of a more
flexible system that can be tuned by the programmer. To make this workable,
some mechanism should be present to make this possible without having to delve
into the innards of the compiler. A drawback of existing compilers is that they
are rigid, i.e., it is not possible for a programmer to change the way the type



inference process works, unless he is willing to inspect and modify the compiler
itself; given the complexity of compilers, this is usually a very difficult task.

The flexibility we sought for has been obtained in the implementation of the
type inference process of Helium by taking a constraint based approach dividing
the process into three distinct phases:

1. the generation of constraints in the abstract syntax tree,
2. the ordering of constraints in the tree into a list, and
3. the solving of constraints.

For the latter phases, multiple instantiations are possible. This separation has
resulted in a flexible framework, which has been relatively easy to implement
using an attribute grammar system – an abstraction layer on top of Haskell –,
developed by Swierstra et al. [SBL]. In fact, we plan to show that the translation
of the type rules to an attribute grammar is quite straightforward.

The generality of our framework also allows the emulation of well-known
type inference algorithms such as W [DM82] and M [LY98], by choosing an
appropriate order in which the type constraints should be solved. This makes it
easy to compare these standard algorithms with type inference processes which
use global heuristics and elaborate data structures such as type graphs (see
Section 4.3). In this way we can gain insight into the computational penalties
to be paid, and it has the additional benefit that the standard ways of type
inferencing are available to those who have grown used to it.

The paper is organized as follows. After a short tutorial on type inferencing,
and introducing the sorts of constraints we need, we give the type inference rules
for our language in Section 3. After showing how these can be transformed into
an exectuable specification in the attribute grammar system in Section 4.1, we
consider ways of ordering the constraints in Section 4.2. Section 4.3 considers
various types of solvers, greedy ones which can act similar to algorithms like W
andM, and a more global one which tries to find a minimal set of errors based on
a global analysis of a type graph. We conclude in Section 5 by shortly discussing
type inference directives described in [HHS03]. This facility gives programmers,
and more specifically the developers of combinator libraries, the tool to control
the behaviour of the compiler by specifying how the type inference process should
behave on certain sets of expressions, and a way to provide tailormade error
messages for the combinator language. This, we feel, is an important innovation,
that has become feasible through the underlying constraint based approach.

2 Preliminaries

Types and substitutions

Many existing programming language have a type system,

a tractable syntactic method for proving the absence of certain program
behaviors by classifying phrases according to the kinds of values they
compute. Pierce [Pie02]



Reasons for having a type system are many: source documentation, generat-
ing more efficient code, and finding program errors early. Tractability is essential
for the usefulness of type systems within a compiler. Usually this is obtained by
ensuring that the method can be performed in a syntax directed manner, i.e.,
determined by the structure of the abstract syntax tree. In fact, we generate
constraints from our program in such a manner.

In many programming languages with such a type system, it is necessary
that the programmer annotates identifiers and procedures or methods with their
types. It is then the task of the compiler to verify that these types are consistent
and do not lead to run-time errors. The field which addresses this kind of problem
is called type checking.

In the case of a language like Haskell and ML, many of these annotations
can be dropped since Damas and Milner showed how to inference polymorphic
let expressions [DM82]. For some language constructs, polymorphic lambda ab-
stractions for instance, Haskell needs externally supplied types to make the
type inferencing process decidable. For more information, the reader might con-
sult Chapter 22 and 23 of Pierce [Pie02] for its constraint based development of
a type system for a polymorphic functional language.

The syntax of types and type schemes is given by:

(type) τ := α | T τ1 . . . τn where arity(T ) = n
(type scheme) σ := ∀~α.τ

A type can be either a type variable or a type constructor applied to a number
of types. The arity of each type constructor is fixed. Typical examples are →
Int Bool, and → a (→ b a), the function space constructor being a binary type
constructor. In the following, we use the standard infix notation τ1 → τ2 for
function types, and a special notation for list and product types. The set of type
constructors can be extended with user defined data types such as Maybe.

A type scheme ∀~α.τ is a type in which a number of type variables ~α =
α1, . . . , αn, the polymorphic type variables, are bound to a universal quantifier.
The free type variables are called monomorphic. Note that n may be zero, in
which case a type scheme is simply a type. Although the type variables have an
implicit order in any given type scheme, the order itself is not important. For
this reason we may view the vector ~α as a set when the need arises.

The set of free type variables of a type τ is denoted by ftv(τ) and simply
consists of all type variables in τ . Additionally, ftv(∀~α.τ) = ftv(τ)− ~α, where we
use − to denote set difference.

A substitution, usually denoted by S, is a mapping of type variables to types.
For type variables D = {α1, . . . , αn} and types τ1, . . . , τn the substitution map-
ping αi to τi is denoted by [α1 := τ1, . . . , αn := τn]. Implicitly we assume all
type variables not in D are mapped to themselves. As usual, a substitution only
replaces free type variables, so the quantified type variables in a type scheme are
not affected by a substitution.



Generalizing a type τ with respect to a set of type variables M entails the
quantification of the type variables in τ that do not occur in M .

generalize(M, τ) =def ∀~α.τ where ~α = ftv(τ)−M

An instantiation of a type scheme is obtained by replacing the quantified
type variables with fresh type variables.

instantiate(∀α1 . . . αn.τ) =def [α1 := β1, . . . , αn := βn]τ
where β1, . . . , βn are fresh

A type τ1 is a generic instance of a type scheme σ = ∀~α.τ2, denoted τ1 ≺ σ, if
there exists a substitution S with {β | β 6= S(β)} ⊆ ~α such that τ1 = Sτ2.

In the following we shall often encounter (finite) sets of pairs of the form
x : τ , where usually x is a variable and τ a type. For such a set X we define
dom(X) = {x | x :τ ∈ X} and ran(X) = {τ | x :τ ∈ X}.

Constraints

A constraint set, usually denoted by C, is a set of type constraints. We introduce
three forms of type constraint:

(constraint) C := τ1 ≡ τ2 | τ1 ≤M τ2 | τ � σ

An equality constraint (τ1 ≡ τ2) reflects that τ1 and τ2 should be unified at a
later stage of the type inference process. The other two kinds of constraints are
used to cope with the polymorphism introduced by let expressions. An explicit
instance constraint (τ � σ) states that τ has to be a generic instance of σ.
This constraint is convenient if we know the type scheme of a variable before
we start inferencing its definition; this occurs, for instance, when an explicit
type for the variable was given. In general, the (polymorphic) type of a variable
introduced by a let expression is unknown and must be inferred before it can
be instantiated. To overcome this problem we introduce an implicit instance
constraint (τ1 ≤M τ2), which expresses that τ1 should be an instance of the
type scheme that is obtained by generalizing type τ2 with respect to the set of
monomorphic type variables M , i.e., quantifying over the other type variables,
ftv(τ2)−M . We consider the necessity of the implicit instance constraint when
we consider the type rule of the let. Equality constraints on types can be lifted
to sets of pairs of types by (X ≡ Y ) = {τ1 ≡ τ2 | x : τ1 ∈ X, x : τ2 ∈ Y } and
similarly for ≤M and �.

Once a constraint set has been generated, we can look for the minimal sub-
stitution that satisfies each constraint in the set. In the compiler, when we en-
counter a constraint that cannot be satisfied (or, in general, raises a conflict), we
simply dismiss the constraint, and use it to generate an error message instead.
In much of the literature, the unification of two types which cannot be unified
results in the error substitution >. Needless to say, such a substitution never
arises in our case.



Satisfaction of a constraint by a substitution S is defined as follows:

S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

S satisfies (τ1 ≤M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)
S satisfies (τ � σ) =def Sτ ≺ Sσ

After substitution, the two types of an equality constraint should be syntac-
tically the same. The logical choice for S in this case is the most general unifier
of the two types. For an implicit instance constraint, the substitution is not only
applied to both types, but also to the set of monomorphic type variables M . The
substitution is applied to the type and the type scheme of an explicit instance
constraint, where the quantified type variables of the type scheme are, as usual,
untouched by the substitution. The distinction between the explicit and implicit
instance constraint is that type variables in the (right hand side of the) latter can
still become monomorphic. This information is known at the outset for explicit
instance constraints. We illustrate this by an example.

Example 1. Let c = α3 ≤{α5} α1 → α2 be a constraint. We want a substitution
S that satisfies c, i.e., Sα3 ≺ generalize(Sα5,S(α1 → α2)) where the latter is
equal to ∀β1β2.β1 → β2, if α1, α2 and α5 are not touched by S. A most general
substitution to satisfy this constraint is S = [α3 := α → β], where α and β are
fresh type variables.

But what happens if we later encounter c′ = α5 ≡ α1? We have already
chosen α1 to be polymorphic in c, although the constraint c′ now tells us that
α1 was in fact monomorphic. It seems then that we considered c too early and
should have waited until we were sure that α1 was polymorphic. A safe approach
in this case is to infer let definitions without an explicit type signature before
considering their occurrences in the body of the let.

To be more precise, an implicit instance constraint c = τ1 ≤M τ2 can be
solved when τ2 does not contain any active type variables beside those in M .
Activeness can be defined as follows.

activevars(τ1 ≡ τ2) =def ftv(τ1) ∪ ftv(τ2)
activevars(τ1 ≤M τ2) =def ftv(τ1) ∪ (ftv(M) ∩ ftv(τ2))
activevars(τ � σ) =def ftv(τ) ∪ ftv(σ)

The condition for the implicit instance constraint c to be solvable is then that

(ftv(τ2)−M) ∩ activevars(C) = ∅ . (1)

where activevars(C) =
⋃
{activevars(c) | c ∈ C}.

Let S be a substitution which satisfies the set of constraints C and was com-
puted without ever violating the condition (1) for an implicit instance constraint.
Lemma 3 of [HHS02] proves that solving C by considering the constraints of C in
any order (again, without ever violating the condition (1)) results in the same
substitution S (up to type variable renaming). Thus, it follows that there is a
lot of freedom when choosing an order, only restricted by the side condition (1).



expr = lit | var | constructor
| expr expr+

| if expr then expr else expr
| ’λ’ pat+ ’→’ expr
| case expr of alts

| let decls in expr

| ’(’ expr` ’)’ | ’[’ expr` ’]’
| expr ’::’ typescheme

pat = lit | var | constructor pat*

| ’(’ pat` ’)’ | ’[’ pat` ’]’
| var ’@’ pat | ’ ’

alt = pat ’→’ expr
decl = fbs | var ’::’ typescheme
fb = var pat* ’=’ rhs

rhs = expr (where decls)?

Fig. 1. Context-free grammar for the subset of Helium

As demonstrated in [HHS02] there are sets of constraints that contain only
implicit instance constraints for which the condition is not fulfilled. In the next
section we shall see that for sets of constraints generated from a Helium program
this situation never occurs.

3 The bottom-up type inference rules

In this section we give the type inference rules for a large part of Helium. It is
important to note that the notational similarity with the Hindley-Milner rules
is deceptive. The Hindley-Milner rules form a system of logical deduction which
formulate, for a lambda calculus enriched with a let construct, what the valid
typings of a given expression are. Constructing the principal type for a given
expression under these deduction rules is exactly what an algorithm such as W
does. In this and the next section we formulate a non-deterministic algorithm
which is a generalization of W, both by the introduction of more programming
constructs as well as by being less deterministic.

The rules given below are thus the first part of an algorithm. They specify for
a given abstract syntax tree what constraints should be constructed at various
nodes in the tree. In fact, the rules are close to an attribute grammar, and we
show later how they can transformed into executable code in the uu ag system.

The part of Helium we consider is given in Fig. 1 where we have concentrated
on expressions and patterns1. In addition, we have alternatives (for case expres-
sions), explicit types and where-clauses. The Helium language incorporates a few
more constructs such as data type declarations, type synonyms, list comprehen-
sion, monadic do-notation, guarded function definitions and a module system.
For the sake of brevity we omit these. Note that Helium uses the same layout rule
as Haskell, which implies that the semicolons between multiple declarations in
a let expression or where clause are not always necessary.

In general, our approach is to label a subexpression (node in the abstract
syntax tree) with a fresh type variable (usually called β in the type rules) and

1 For a non-terminal X we abbreviate ε | (X ′,′ )∗X, a comma separated, possibly
empty sequence of X’s, by X`. Similarly, Xs is equivalent to a semicolon separated
sequence of X’s: Xs = ε | (X ′;′ )∗X. Also, X? indicates optionality of X.



to generate constraints for the restrictions to be imposed in this node. Often the
type for an expression is simply a type variable (during the solving process we
discover exactly what type it represents), although in some cases it is advan-
tageous to return a type expression containing a sequence of new variables. A
sequence of such kind is denoted 〈β1, . . . , βn〉 (see for instance the [FB] type rule
in Fig. 4).

The judgements in the type rules for expressions are of the form

M, A, C `eBU e : τ .

Here C is a set of constraints, e is the expression, τ is the type of e, M is the
set of monomorphic type variables and A is the so-called assumption set. An
assumption set collects the type variables that are assigned to the free variables
of e. Contrary to the standard type environment used in the Hindley-Milner
inference rules, there can be multiple (different) assumptions for a given variable.
In fact, for every occurrence of a free variable there will be a different pair in A.
As can be seen from the expressions for A and C in the rules, there is implicitly
a flow of information from the bottom up.

The only piece of information that is passed downwards is the set of monomor-
phic variables M . An implicit instance constraint depends on the context of the
declaration. Every node in the abstract syntax tree has a set of monomorphic
type variables M . For an arbitrary subexpression, the set M contains exactly the
type variables that were introduced by lambda abstractions and other monomor-
phic binding constructs at a higher level in the abstract syntax tree.

Note that the rules allow for flexibility in coping with unbound identifiers. At
any point, those identifiers for which we still have assumptions in our assumption
set are unbound in the expression. Also, every assumption corresponds with a
unique use of this identifier within the expression. We shall now consider some
of the type rules in detail.

The type rule [Lit]eBU expresses that for every literal (such as 1, False, ’a’...)
we generate the constraint β ≡ τ , where τ is the fixed type of the literal (such as
Int, Bool, Char,...). For a variable we simply generate a fresh type variable, while
for constructors we have to instantiate the type scheme for that constructor. We
assume that the type of the constructor is already known.

The rule for application is a basic one. If we have types τ and τ1, . . . , τn for
the function and the list of n arguments respectively, then we have to impose the
constraint that τ is in fact a function type taking arguments τ1, . . . , τn giving
us a result of type β (β is as always fresh). The reason we have chosen for n-ary
instead of a binary application is to the stay as close as possible to the source
code.

A lambda abstraction abstracts over a number of patterns. These patterns
contain variables to which the variables in the body of the lambda can be bound.
Similar to assumption sets, each occurrence of such a pattern variable is paired
with a unique type variable in B. These type variables are then passed along in
M, so that the body of the abstraction is informed about which type variables are
definitely monomorphic. The constraints generated for the lambda abstraction



literal :τ

M, ∅, {β ≡ τ} `eBU literal : β
[Lit]

e
BU

M, {x :β}, ∅ `eBU x : β
[Var]

e
BU

C :σ

M, ∅, {β � σ} `eBU C : β
[Con]

e
BU

M, A, C `eBU f : τ M, Ai, Ci `
e
BU ai : τi for 1 ≤ i ≤ n

M, A ∪
⋃

i
Ai, C ∪

⋃
i
Ci ∪ {τ ≡ τ1 → . . .→ τn → β} `eBU f a1 . . . an : β

[App]
e
BU

M, A1, C1 `
e
BU e1 : τ1 M, A2, C2 `

e
BU e2 : τ2 M, A3, C3 `

e
BU e3 : τ3

M, A1 ∪ A2 ∪ A3, C1 ∪ C2 ∪ C3 ∪ {τ1 ≡ Bool, τ2 ≡ β, τ3 ≡ β}
`eBU if e1 then e2 else e3 : β

[If]
e
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n B =

⋃
i
Bi M ∪ ran(B), A, C `eBU e : τ

M, A\dom(B),
⋃

i
Ci ∪ C ∪ (B ≡ A) ∪ {β ≡ τ1 → . . .→ τn → τ}

`eBU (λp1 . . . pn → e) : β

[Abs]
e
BU

M, Bi, Ai, Ci `
d
BU di for 1 ≤ i ≤ n M, A, C `eBU e : τ

(A′, C′) = BindingGroupAnalysis(M, explicits, {(∅,A), (B1,A1), . . . , (Bn,An)})
M, A′,

⋃
i
Ci ∪ C ∪ C′ ∪ {β ≡ τ} `

e
BU let explicits; d1; . . . ; dn in e : β

[Let]
e
BU

M, A, C `eBU e : τ M, Ai, Ci `
a
BU ai : 〈φi, ψi〉 for 1 ≤ i ≤ n

M, A ∪
⋃

i
Ai, C ∪

⋃
i
Ci ∪ ({τ, φ1, . . . , φn} ≡ {β1}) ∪ ({ψ1, . . . , ψn} ≡ {β2})

`eBU (case e of a1; . . . ; an) : β2

[Case]
e
BU

M, Ai, Ci `
e
BU ei : τi for 1 ≤ i ≤ n

M,
⋃

i
Ai,

⋃
i
Ci ∪ {β ≡ (τ1, . . . , τn)} `eBU (e1, . . . , en) : β

[Tuple]
e
BU

M, Ai, Ci `
e
BU ei : τi for 1 ≤ i ≤ n

M,
⋃

i
Ai,

⋃
i
Ci ∪ ({τ1 . . . τn} ≡ {β1}) ∪ {β2 ≡ [β1]} `

e
BU [e1, . . . , en] : β2

[List]
e
BU

M, A, C `eBU e : τ

M, A, C ∪ {β � σ, τ � σ} `eBU (e :: σ) : β
[Typed]

e
BU

Fig. 2. The Bottom-Up type inference rules for expressions



itself specify that the type of each identifier is equal to the type of each of its
occurrences in the body (expressed by B ≡ A), and that the resulting type is an
appropriate function type.

For [Let]eBU we take into account that the types of some definitions are explic-
itly given. Essentially, a let expression can be used to introduce an abbreviation.
For instance, the let expression let i = \x -> x in i i has the same seman-
tics as the unfolded code (\x -> x)(\x -> x). Note that it is essential that
the type of both lambda abstractions should have a common form, ∀a. a → a,
but that the instances of this type may differ, e.g., b → b for the latter and
(b → b) → (b → b) for the former abstraction. It is possible to cope with let
expressions without resorting to constraints other than equality constraints, but
this has two significant drawbacks:

– The number of constraints increases, in fact it may explode exponentially,
because for every occurence of a definition an independent sets of constraints
is generated.

– If let definition contains an error, it is much more difficult to discover this
fact, because of the independence between the various set of constraints,
already mentioned in the previous point.

Since our focus is the generation of good error messages and efficiency is impor-
tant, we have chosen to introduce special constraints for the let construct (the
implicit instance constraints introduced in Section 2).

In Helium, the binding groups are determined in part by the given explicit
typings. It is the function BindingGroupAnalysis that generates the necessary
implicit and explicit instance constraints based on the sets of assumptions (the
As) and the variables introduced by the patterns occuring in the left-hand sides
(the Bs). Obviously, the function also needs to know the set of monomorphic
type variables at this point. In our formulation, the body of the let is considered
to be just another binding group that does not introduce new variables.

We explain the working of the function BindingGroupAnalysis by an exam-
ple. If we have two mutually recursive definitions in a let expression of the form
f = . . . g . . . and g = . . . f . . ., then without explicit types for f or g, the defi-
nitions belong to the same binding group and we generate equality constraints
between the type variables for the definition of g and every single use in f and
g. Consequently, all occurrences of f and g in these definitions are monomor-
phic. However, if the let expression includes an explicit polymorphic type for f ,
then f and g are no longer in the same binding group and f may be used poly-
morphically in g and vice versa. In that case, we generate an explicit instance
constraint, based on the explicit type of f , for each use of f in g, and if g is not
explicitly typed itself, we generate an implicit instance constraint for every use
of g in f . The same applies to uses of f in the body of f . In other words, if an
explicit type for f is given, then polymorphic recursion is allowed and we depart
from the type system of Hindley-Milner [DM82].

Helium expressions can be explicitly typed, in which case both the type τ of
the expression itself as well as the returned type have to be an instance of the



explicitly mentioned type σ. The check that σ is not more general than the type
τ is postponed until a later stage. We leave the remaining rules to the reader.

literal :τ

∅, {β ≡ τ} `pBU literal : β
[Lit]

p
BU

{x :β}, ∅ `pBU x : β
[Var]

p
BU

C :σ Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ {β1 � σ, β1 ≡ τ1 → . . .→ τn → β2} `

p
BU C p1 . . . pn : β2

[Con]
p
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ {β ≡ (τ1, . . . , τn)} `pBU (p1, . . . , pn) : β

[Tuple]
p
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n⋃

i
Bi,

⋃
i
Ci ∪ ({τ1 . . . τn} ≡ {β1}) ∪ {β2 ≡ [β1]} `

p
BU [p1, . . . , pn] : β2

[List]
p
BU

B, C `pBU p : τ

B ∪ {x :β}, C ∪ {τ ≡ β} `pBU x@p : β
[As]

p
BU

∅, ∅ `pBU : β
[Wc]

p
BU

Fig. 3. The Bottom-Up type inference rules for patterns

We now proceed with patterns in Helium, see Fig. 3. Patterns occur in left-
hand sides of function definitions, in lambda abstractions, and in the left-hand
sides of case alternatives. The variables introduced in a pattern are, together with
their fresh type variable, passed upwards in the set of bindings B. The rules for
literals, variables, lists, and tuples are the same as for expressions, except that
we do not need to pass a set of monomorphic variables down into the pattern.
The constructor rule combines the function application and constructor rules
for expressions into one. The as-pattern allows us to bind nontrivial patterns to
variables. The corresponding rule simply equates the type of the pattern with
the type of the variable using a fresh type variable. Wildcards do not introduce
new restrictions, so we only give them a dummy type β.

Finally, consider the rules in Fig. 4 for the remaining constructs that we deal
with in this paper. The rules for function bindings and declarations are rather
subtle. A declaration of a function consists of m functions bindings, all starting
with the same function identifier, here f . Each function binding consists of the
function name, a list of patterns pi (here numbered from 1 to n− 1 to fit better
with the [Decl]dBU rule) and a right-hand side. The rule is very similar to that
for the lambda abstraction except that we do not return a function type, but
construct a type sequence of n types (n−1 parameters plus the type of the right-
hand side). The type sequences for the various function bindings are collected
in [Decl]dBU. Now we can see the reason why we did not immediately construct a



B, C1 `
p
BU p : τ1 M ∪ ran(B), A, C2 `

e
BU e : τ2

M, A\dom(B), C1 ∪ C2 ∪ (B ≡ A) `aBU (p→ e) : 〈τ1, τ2〉
[Alt]

a
BU

M, A, C `eBU e : τ M, Bi, Ai, Ci `
d
BU di for 1 ≤ i ≤ n

(A′, C′) = BindingGroupAnalysis(M, explicits, {(∅,A), (B1,A1), . . . , (Bn,An)})
M, A′, C ∪

⋃
i
Ci ∪ C′ `

rhs
BU (e where explicits; d1; . . . ; dn) : τ

[RHS]
rhs
BU

M, Ai, Ci `
fb
BU fbi : 〈τ1,i, . . . , τn,i〉 for 1 ≤ i ≤ m

M, {f :β1 → . . .→ βn},
⋃

i
Ai,

⋃
i
Ci ∪

⋃
j
{βj ≡ τj,i | 1 ≤ i ≤ m} `

d
BU fb1; . . . ; fbm

where f is the single function being declared by the function bindings fbi

[Decl]
d
BU

Bi, Ci `
p
BU pi : τi for 1 ≤ i ≤ n− 1 B =

⋃
i
Bi M ∪ ran(B), A, C `rhs

BU rhs : τn

M, A\dom(B),
⋃

i
Ci ∪ C ∪ (B ≡ A) `fbBU (f p1 . . . pn−1 = rhs) : 〈τ1, . . . , τn〉

[FB]
fb
BU

Fig. 4. The remaining Bottom-Up type inference rules

function type: the types of the first pattern in each of the function bindings have
to be the same, and similar for the other patterns and the right-hand sides. Of
course, this could have been done by equating the function types, but our way
seems to us more intuitive and more amenable to generating good type error
messages.

Example 2. A small example is given in Figure 5 showing the constraints gen-
erated for the expression λf x → f (f x). If we assume the set of monomorphic
variables of the root to be empty, then the subexpressions of the body of the
lambda all have {τ0, τ1}. Note that below every node in the tree we have indi-
cated the fresh type variable introduced at that point.

4 The type inference process

The type inference process consists of three different phases. The first of these
generates constraints in the nodes of the abstract syntax tree (using the rules of
the previous section), generating a Rose tree2 where each node is labelled with
a collection of constraints.

The second phase consists of traversing the abstract syntax tree and ordering
the constraints found in the tree. Our implementation contains an infrastructure
for building traversals and the most important ones are predefined.

The final phase solves the flattened constraint tree. The solver may be a
greedy solver which continually updates a substitution, or a more global solver
which builds elaborate data structures such as type graphs in order to be able
to decide in a more global fashion which constraints are likely to be responsible
for the inconsistency. In both cases, the outcome includes a list of unsatisfiable
2 A tree datastructure where each node has an arbitrary number of children.
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Fig. 5. Constraints for the expression λf x→ f (f x)

constraints, each with a type error message which explains to the programmer
what the problem is.

4.1 Collecting the constraints using uu ag

In this section we explain how the type inference rules of the previous section
can be implemented easily in the uu ag system. We assume that the reader
is familiar with attribute grammars in general. For more information on the
uu ag system consult [SBL]. The main focus of this section is not to show how
it works exactly, but only to give the reader a flavour of what it looks like and to
highlight the correspondence between the type rules and the code. The advantage
of using attribute grammars at this point is that we only need to formulate how
values depend on each other, and the attribute grammar system automatically
determines how these values can actually be computed.

All fragments of code are shown in Fig. 6 (slightly modified from the actual
code). First we define the attributes of the non-terminals in the abstract syntax
tree, found in the ATTR section. Besides the top-down (inherited) and the
bottom-up (synthesized) aspects, there are chained attributes that are passed
along in both directions.

Note that all elements in a judgement for an expression turn up as attributes,
with M an i-attribute and the remaining ones (A, ....) s-attributes. Additionally,
the chained attribute unique provides a counter to generate fresh type variables.
Instead of using a list to collect the type constraints, a Rose tree that follows
the shape of the abstract syntax tree is constructed, in which the nodes are
decorated with any number of constraints. In this way we retain some flexibility
in the order in which the constraints will be considered later. Hence, this part



ATTR Expr [ mono : Types (inherited)
| unique : Int (chained)
| aset : Assumptions (synthesized)

ctree : ConstraintTree
beta : Type ]

SEM Expr
| If

lhs . aset = @guard.aset ++ @then.aset ++ @else.aset (1)
. ctree = Node [ [@guard.beta ≡ boolType] ‘add‘ @guard.ctree (2)

, [@then.beta ≡ @beta] ‘add‘ @then.ctree
, [@else.beta ≡ @beta] ‘add‘ @else.ctree ]

guard . unique = @lhs.unique + 1 (3)
loc . beta = TVar @lhs.unique (4)

SEM Expr
| Lambda

lhs . aset = removeKeys (map fst @pats.bset) @expr.aset
. ctree = [ beta ≡ foldr (→) @expr.beta @pats.betas ] ‘add‘

Node [ @pats.ctree, @binds ‘spread‘ @expr.ctree ]
pats . unique = @lhs.unique + 1
expr . mono = map snd @pats.bset ++ @lhs.mono
loc . beta = TVar @lhs.unique

. binds = [ τ1 ≡ τ2 | x1 == x2

, (x1,τ1) ← @pats.bset, (x2,τ2) ← @expr.aset ]

Fig. 6. Code fragments of the attribute grammar

of the code only generates the constraints, while fixing the order and actually
solving the constraints is considered later.

Due to space restrictions we limit ourselves to giving the semantic func-
tions for the conditional expression and the lambda abstraction. The three
sub-expressions of a conditional are referred to as guard, then and else. Consider
the attribute unique. We use it to generate a new variable in the local attribute
beta. Note that beta is also the name of a synthesized attribute of the if-node.
The reason we introduce it as a local attribute is because we also need it for
cset. The value of unique is threaded through the tree, incremented along the
way every time we introduce a new type variable.

The semantic rules are given in the SEM section of Fig. 6. Here, the syntax
for referring to an attribute is @child.attribute, where lhs and loc are special
keywords to refer to inherited attributes of the father node and attributes that
are defined locally, respectively. Obviously, the subtrees for the condition, the
then-part and the else-part will contain the constraints generated for those parts.
However, the if construct has some constraints of its own: the constraint that
the result of the condition is of type boolean, the constraint that the result of
the then-part is equal to the result of the conditional as a whole, and similarly
for the else-part. It would be quite natural to put these constraints into a set
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Fig. 7. Dependencies between the attributes for the conditional

of constraints attached to the if-node. However, to retain as much flexibility as
possible, we have chosen differently. In addition to being able to add a constraint
to the set of constraints of the if-node, it is also possible to add a constraint to one
of the subtrees, and this is what happens here. The three type constraints for a
conditional are added to the constraint trees of their corresponding subexpression
with the function add. We consider the uses of this facility in more detail in the
next section.

The dependencies between the various attributes for the conditional are made
more explicit in Fig. 7. The number following a semantic equation refers to the
correspondingly numbered dashed lines in Fig. 7; the dotted edges represent the
passing of unmodified attributes. For instance, mono is passed on unchanged to
all three children. We do not have to write the code for passing these attributes
ourselves. Instead, the compiler generates these copy rules automatically.

For lambda abstractions, the assumptions concerning the bound variables are
removed from the assumption set, and the type variables that are introduced in
the patterns are inserted into the set of monomorphic type variables that is
passed to the body. A constraint is constructed for each matching combination
of a tuple from the assumption set and from the binding set. This set of con-
straints, which is the local attribute binds, is added to the constraint tree with
the function spread.

4.2 Flattening the constraint tree

After the generation phase we have obtained a Rose tree in which a node contains
a set of constraints, and a list of children. Each child is a subtree containing its
own constraints as well as a separate collection of constraints put there by its
parent.

The location where most type inferencers detect an inconsistency for an ill-
typed expression strongly depends on the order in which types are unified. By
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Fig. 8. Spreading the constraints for λf x→ f (f x)

specifying how to flatten the constraint tree we can imitate several type inference
algorithms, each with its own properties and characteristics.

We flatten a constraint tree by defining a treewalk over it that puts the
constraints in a certain order. Besides the standard preorder and postorder tree-
walks, one can think of more experimental ones such as a right-to-left treewalk.
In our current implementation we use the same treewalking strategy in each
node of a constraint tree, in the sense that we cannot specify a treewalk going
left-to-right in application nodes and right-to-left in the case a list node; it is
a straightforward extension to use different strategies depending on the non-
terminal in the abstract syntax tree. A treewalk takes the various collections of
constraints available in a node: the constraints of the node itself, the collections
collected from the subtrees and the collections of constraints added (by means
of the function add, see Fig.6) to each of the substrees, and orders these collec-
tions in some fashion, usually without changing the order within the collections
themselves.

Special care is taken for inserting a constraint that corresponds to the bind-
ing of a variable to a pattern variable; these constraints are inserted with the
function spread. Instead of adding the constraint to the node where the actual
binding takes place, a constraint may be mapped onto the occurence of the bound
variable. Fig. 8 shows the spreading of three constraints. The constraint orders
of three treewalks are shown on the right: a postorder treewalk with spreading
(W), a preorder treewalk with spreading (M), and a postorder treewalk with-
out spreading. The main motivation for spreading is that the way the standard
algorithms W and M solve their constraints corresponds to spreading. To be
able to mimick these algorithms it has been included.

Finally, we want to point out that any treewalk for ordering the constraints
should adhere to the principle that it only generates of lists of constraints so that
when we encounter an implicit instance constraint, the condition (1) is satisfied.
This is guaranteed by solving the constraints arising from the definitions in a let,
before continuing with the constraints arising from the body. An implicit instance



constraints can only depend on definitions higher up in the tree. Remember that
we consider an entire binding group at the time and polymorphic recursion is
only allowed when explicit types are given.

4.3 Solving the constraints

In this section we consider a number of approaches to solving the collected
constraints. We describe the general characteristics of a constraint solver by
listing all the operations that it should be able to perform. We continue by
explaining how various greedy solving methods can be implemented within this
framework. These greedy algorithms can be tuned quite easily by specifying a
small number of parameters. Finally, we spend some time on discussing how the
constraints can be solved in a more global way using type graphs which enables
us to remove the left-to-right bias inherent in tree based online algorithms such
as W and M.

Note that “solving” in this context means that the constraint is taken from
the list of constraints and dealt with. Solving does not mean to imply that the
constraint is consistent with the information we have obtained so far. Directly,
or at some later point, we may decide that the constraint is a source of an
inconsistency and generate an appropriate error message for it.

A type class for solving constraints To pave the way for multiple imple-
mentations of a solver, we present a Haskell type class. Since it is convenient to
maintain a state while solving the constraints, we have implemented this class us-
ing a State monad that provides a counter for generating unique type variables,
a list of reported inconsistencies, and a substitution or something equivalent. A
type solver can solve a set of constraints, in which each constraint is carrying
additional info, if it is an instance of the following class.

class Solver solver info where
initialize :: State solver info ()
makeConsistent :: State solver info ()
unifyTypes :: info → Type → Type → State solver info ()
newVariables :: [Int] → State solver info ()
findSubstForVar :: Int → State solver info Type

By default, the functions initialize, makeConsistent, and newVariables do noth-
ing, that is, leave the state unchanged. If unifyTypes is called with two non-
unifiable types it can either deal with the inconsistency immediately, or post-
pone it and leave it to makeConsistent. The function applySubst, which performs
substitution on types, is defined in terms of a more primitive function called find-
SubstForVar. A function solve can now be defined which takes an initial value for
the type variable counter, and a collection of constraints, where each constraint
is labeled with info, and results in a State which describes the result of solving
the collection of constraints. After initialization, the constraints are solved one
after another resulting in a possibly inconsistent state. Calling makeConsistent



will remove possible inconsistencies and, as a side effect, add error messages to
the state.

We consider now how the three types of constraints may be solved. An equal-
ity constraint is solved by unification of the two types. The type scheme of an
explicit instance constraint is instantiated and the state is informed about the
fresh type variables that are introduced. An implicit instance constraint is solved
by first making the state consistent, and subsequently applying the substitution
to the type and the monomorphic type variables. Only then may we solve the
constraint by transforming it into an explicit instance constraint and solving it.

Note that due to the lazy semantics of Haskell the list of constraints gener-
ated by a treewalk is only constructed insofar we actually solve the constraints.
Whenever an error is encountered with the kind of solver that terminates once
it has seen a type error, the other constraints are not even computed. Needless
to say, laziness imposes its own penalties.

Greedy constraint solving The most obvious instance of the type class Solver
is a substitution. The implementation of unifyTypes then simply returns the
most general unifier of two types. The result of this unification is incorporated
into the substitution. When two types cannot be unified, we immediately deal
with the inconsistency. As a result, makeConsistent can be the default skip
function, because unifyTypes always results in a consistent state: if adding a
constraint results in an inconsistent state, then it is ignored instead, although
an appropriate error message is generated (and added to the state). After the dis-
covery of an error, we can choose to continue solving the remaining constraints,
which can lead to the detection of more type errors.

For efficiency reasons, we represent a substitution by a mutable array in a
strict state thread, also because the domain of the substitution is dense. Instead
of maintaining an idempotent substitution, we compute the fixpoint in case of a
type variable lookup.

Constraint solving with type graphs Because we are aiming for an unbiased
method to solve type constraints, we discuss an implementation which is based on
the construction of a type graph inspired by the path graphs described in [Por88].
The type graph allows us to perform a global analysis of a set of constraints,
which makes type inferencing a non-local operation. Because of its generality,
adding heuristics for determining the “correct” type error is much easier. It is
important to note that although the constraint solver based on type graphs does
consider the constraints in the order that the treewalk generated them, this does
not mean that an early constraint has a smaller chance of being held responsible
for an inconsistency. This is completely determined by a number of heuristics
which work on the type graph.

Each vertex in the type graph corresponds to a subterm of a type in the
constraint set. A composed type has an outgoing edge labelled with (i) to the
vertex that represents the ith subterm. For instance, a vertex that represents a
function type has two outgoing edges. All occurrences of a type variable in the



constraint set share the same vertex. Furthermore, we add undirected edges la-
belled with information about why two (sub)terms are unified. For each equality
constraint, an edge is added between the vertices that correspond to the types
in the constraint. Equivalence of two composed types propagates to equality of
the subterms. As a result, we add derived (or implied) edges between the sub-
terms in pairwise fashion. For example, the constraint τ1 → τ1 ≡ Bool → τ2

enforces an equality between τ1 and Bool, and between τ1 and τ2. Therefore, we
add a derived edge between the vertex of τ1 and the vertex of Bool, and similar
for τ1 and τ2. For each derived edge we can trace the constraints responsible
for its inclusion. Note that adding an edge can result in the connection of two
equivalence classes, and this might lead to the insertion of more derived edges.
Whenever a connected component of the type graph contains two or more dif-
ferent type constructors, we have encountered a type error. Infinite types can
also be detected, but we skip the details.

Example 3. Consider the following ill-typed program.

f 0 y = y
f x y = if y then x else f (x− 1) y

The set of type constraints that is collected for this program is as follows.

#1 τ0 ≡ τ2→τ3→τ1

#2 Int ≡ τ4 #3 τ4 ≡ τ2 #4 τ5 ≡ τ3

#5 τ5 ≡ τ6 #6 τ6 ≡ τ1 #7 τ7 ≡ τ2

#8 τ8 ≡ τ3 #9 τ8 ≡ τ10 #10 τ10 ≡ Bool
#11 τ7 ≡ τ11 #12 τ11 ≡ τ9 #13 τ0 ≡ τ13

#14 τ17 � Int → Int → Int #15 τ7 ≡ τ16 #16 Int ≡ τ18

#17 τ17 ≡ τ16→τ18→τ15 #18 τ15 ≡ τ14 #19 τ8 ≡ τ19

#20 τ13 ≡ τ14→τ19→τ12 #21 τ12 ≡ τ9 #22 τ9 ≡ τ1

Fig. 9 depicts the type graph for this set. The shaded area indicates a number
of type variables that are supposed to have the same type. The graph is clearly
inconsistent, because of the presence of both Int and Bool. Applying the heuris-
tic of Walz and Johnson [WJ86] to measure the proportion of each constant,
would result in cutting off the boolean. Cutting off the boolean removes the
inconsistency, but even then there are various constraints which can be removed
to obtain this effect. If #10 is chosen – this amounts to saying that the type of
y is not a boolean, then it would generate the following type error message.
(2,12): Type error in conditional

expression : if y then x else f (x - 1) y

term : y

type : Int

does not match : Bool

If instead #12 is chosen, which corresponds to the fact that the type of the
then-branch of a conditonal should have the same type as the conditional as
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whole, then the following message results:
(2,19): Type error in conditional

expression : if y then x else f (x - 1) y

term : x

type : Int

does not match : Bool

Constraints have been implemented in such a way in our compiler, that each
constraint carries all the information it needs, e.g. position information, to gen-
erate an appropriate error message.

We refer the reader to the Helium website [ILH] for a list of example programs
with the output as generated by the compiler. The type error messages were
all generated using the type graph data structure of this section guided by a
collection of heuristics. After an inconsistency is detected in the type graph, a
large repertoire of heuristics is applied resulting for each heuristic in two things:
a list of constraints contributing to an inconsistency and a score proportional to
the amount of trust the heuristic has in the result. These values are compared
for the various heuristics and the ’best’ one is chosen. The impact of a heuristic
can be changed by modifying the way the score is computed.

Heuristics fall into two natural classes: the ones which look for special mis-
takes programmers often make (the first two listed next), and a number of more
general ones (the others). The scoring in Helium is set up such that the latter
are used as tiebreakers in case none of the former return anything useful.

– If the permutation of arguments to a function resolves a type inconsistency,
and no other permutation does, then we assume that this is the problem and



generate an error message and a hint for improving the program. This is in
fact one example of a host of heuristics which result in easy fixes: forgotten
arguments, permuted elements in a pair, too many arguments, etcetera.

– If an integer is used where a float was expected or vice versa, then this is
a likely source of an error. Since we do not have for numerals as is the case
in Haskell, this is an error in Helium. Experienced Haskell programmers
are hence likely to make this type of mistake and we have included a special
heuristic to give a hint.

– The proportion of constants in an inconsistent part of the type graph deter-
mines which constant is considered to be the error (see the example earlier
on).

– Constraints which are part of a cycle are usually not chosen, because they
cannot by themselves resolve an inconsistency.

– Definitions from the Prelude are to be trusted more than definitions in the
program itself.

– The order in which the constraints were added to the type graph The later it
was added, the more likely it is to be considered a source of inconsistencies.

5 Type inference directives

In the previous sections we have already shown that an infrastructure is present
to be able to experiment with various type inference processes within the Helium
compiler. Some of these can be used by setting the appropriate parameters to
Helium, some can be used by small modifications to the compiler.

To improve the quality of type error messages in functional programming
languages, we proposed four techniques in [HHS03] to further influence the be-
haviour of the constraint based type inference process. These techniques take
the form of externally supplied type inference directives, precluding the need to
make any changes to the compiler. A second advantage is that the directives are
automatically checked for soundness with respect to the underlying type system.
These techniques can be used to improve the type error messages reported for a
combinator library. More specifically, they can help to generate error messages
which are conceptually closer to the domain for which the library was developed.

In [HHS03] we show how this can be obtained within Helium. The main
reason that this can done at all, is the separation between the generation, the
ordering and the solving of constraints. An additional necessity is that it should
be possible for type error messages to be overridden by messages supplied by the
user of the compiler. We conclude this section with a necessary limited example
to give a flavour of how this facility can be used.

Example 4. Novice programmers often have difficulty learning to use higher-
order functions such as map and filter. User-defined type rules can be used to
isolate expressions which use these functions and generate specific error messages
for them. In our setup this can be formulated in a .type file which accompanies
the usual .hs source file. We now give a much simplified type rule for expressions
in which map is applied to two parameters (which can be any expression).



f :: t1 ; xs :: t2 ;
--------------------------------

map f xs :: [b] ;;

t1 == t3 -> t4: The first argument to map should be a function
t4 == b : The result type of the function should match

the elements of the resulting list
t2 == [t3] : The second argument to map should be a list of @t3@s

By means of the notation @t3@, the programmer can refer to the type to which
the type variable t3 maps during execution. Similar expressions can be used to
refer to range information for expressions in occurring in the type rule and so on.
The main thing to note is that the list of constraints implies a preference from
the side of the programmer about the order in which they should be checked, in
the sense the error message for t4 == b can only be given, if t1 == t3 -> t4
was satisfied. Because of this, we can use the fact that t1 == t3 -> t4 is known
to hold when we consider t4 == b, so that referring to ’the function’ in the error
message is guaranteed to make sense. This allows for much more concrete error
messages. The impact of this is even more strongly felt when type rules are given
for expressions which include complex user defined datatypes.

6 Conclusion and future work

In this paper we have described the Helium compiler which deals with a large
subset of Haskell and can by virtue of a constraint based type inference process
generate understandable type error messages. The type inference process consists
of three distinct phases:

1. the generation of constraints,
2. the ordering of constraints and, finally,
3. the solving of constraints.

Extra flexibility is obtained by means of various tree walking algorithms and the
even more powerful feature of type inference directives which allow a programmer
to tune the type inference process to his liking. All of this has been made possible
by virtue of a constraint based type inference process, and the way it has been
implemented.

We are currently working on extending our type inferencer with type classes
and turning the solver into a general implementation for solving constraints. One
of the major challenges is to extend the type inference directives into an easy
to use programming language with which programmers can tailor a compiler to
their own needs. On the one hand we expect to include directives with which
one can specify the tree walk to be performed and which heuristics should be
applied. On the other hand, the addition of type classes shall give rise to a new
set of directives, e.g., specifying that two type classes have to be disjoint. This
can help giving good error messages in case of ambuigities that may arise.
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