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Abstract

To improve the quality of type error messages in functional pro-
gramming languages, we propose four techniques which influence
the behaviour of constraint-based type inference processes. These
techniques take the form of externally supplied type inference di-
rectives, precluding the need to make any changes to the compiler.
A second advantage is that the directives are automatically checked
for soundness with respect to the underlying type system. \We show
how the techniques can be used to improve the type error messages
reported for a combinator library. More specifically, how they can
help to generate error messages which are conceptually closer to the
domain for which the library was developed. The techniques have
all been incorporated in the Hel i umcompiler, which implements a
large subset of Haskel | .

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Applicative (Functional) Pro-
gramming; D.3.4 [Programming Languages]: Processors—de-
buggers; F.3.3 [Logics and Meanings of Programs]: Studies of
Program Constructs—type structure

General Terms

Languages

Keywords

constraints, type inference, type errors, directives, domain-specific
programming

1 Introduction

The important role of type systems in modern, higher-order, func-
tional languages such as Haskel | and M. is well-established. Type
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systems not only guide the novice programmer by pointing out er-
rors at compile-time, but they are equally indispensable to the ad-
vanced programmer, when writing complex programs.

Unfortunately, clarity and conciseness are often lacking in the type
errors reported by modern compilers. In addition, it is often not ap-
parent what modifications are needed to fix an ill-typed program.
For example, when using standard inference algorithms, the re-
ported error site and its actual source can be far apart. As a result,
the beginning programmer is likely to be discouraged from pro-
gramming in a functional language, and may see the rejection of
programs as a nuisance instead of a blessing. The experienced user
might not look at the messages at all.

The problem is exacerbated in the case of combinator languages.
Combinator languages are a means of defining domain specific lan-
guages embedded within an existing programming language, using
the abstraction facilities present in the latter. However, since the
domain specific extensions are mapped to constructs present in the
underlying language, all type errors are reported in terms of the host
language, and not in terms of concepts from the combinator library.
In addition, the developer of a combinator library may be aware
of various mistakes which users of the library can make, something
which he can explain in the documentation for the library, but which
he cannot make part of the library itself.

We have identified the following problems that are inherent to com-
monly used type inference algorithms.

i. Afixed order of unification: Typically, the type inferencer tra-
verses a program in a fixed order, and this order strongly in-
fluences the reported error site. Moreover, a type inferencer
checks type correctness for a given construct, say function ap-
plication, in a uniform way. However, for some function ap-
plications it might be worthwhile to be able to depart from this
fixed order. To overcome this problem, it should be possible
to override the order in which types are inferred by delaying
certain unifications or changing the order in which subexpres-
sions are visited.

ii. The size of the mentioned types: Often, a substantial part of
the types shown in a type error message is not relevant to the
actual problem. Instead, it only distracts the programmer and
makes the message unnecessarily verbose. The preservation
of type synonyms where possible reduces the impact of this
problem.

iii. The standard format of type error messages: Because of the
general format of type error messages, the content is often not
very poignant. Specialized explanations for type errors aris-
ing from specific functions would be an improvement for the



following reasons. Firstly, domain specific terms can be used
in explanations, increasing the level of abstraction. Secondly,
depending on the complexity of the problem and the expected
skills of the intended users, one could vary the verbosity of
the error message.

iv. No anticipation for common mistakes: Often, the designer of
a library is aware of the common mistakes and pitfalls that
occur when using the library. The inability to anticipate these
pitfalls is regretful. This might take the form of providing
additional hints, remarks and suggested fixes that come with
a type error.

By way of example, consider the set of parser combinators by
Swierstra [14], which we believe is representative for most (com-
binator) libraries. Figure 1 contains a type incorrect program frag-
ment to parse a lambda abstraction using the parser combinators
(see Section 2 for a description of the latter). In the example, an
expression is either an expression with operators which have the
same priority as the boolean and operator (pAndPr i oExpr ), or the
expression is a lambda abstraction which may abstract a number of
variables.l The most likely error is indicated in comments in the
example itself: the subexpression <x pExpr indicates that an ex-
pression, the body of the lambda, should be parsed at this point,
but that the result (in this case an Expr ) should immediately be dis-
carded (as is the case with the "\\" and the "->"). As a result, the
constructor Lanbda is only applied to a list of patterns, so that the
second alternative in pExpr has result type Expr -> Expr. How-
ever, the first alternative of pExpr yields a parser with result type
Expr and here the conflict surfaces.

Consider the type errors reported by Hugs in Figure 2, and by GHC
in Figure 3. Comparing the two messages with the third message
which was generated using our techniques, we note the following.

o |trefers to parsers and not to more general terms such as func-
tions or applications. It has become domain specific and can
solve problem (iii) to a large extent.

o It only refers to the incompatible result types.
e The third message includes precise location information.

In addition, Hugs displays the unfolded non-matching type, but it
does not unfold the type of pAndPri oExpr, which makes the dif-
ference between the two seem even larger. This is an instance
of problem (ii). Note that if the Parser type had been defined
using newt ype (or dat a), then this problem would not have oc-
curred. However, a consequence of such a definition is that wher-
ever parsers are used, the programmer has to pack and unpack them.
This effectively puts the burden on him and not on the compiler.

In the case of GHC, the error message explicitly states what the non-
matching parts in the types are. On the other hand, it is not evident
that the expected type originates from the explicit type signature
for pExpr. The expressions in the error message include paren-
theses which are not part of the original source. It is striking that
the same long expression is listed twice, which makes the message
more verbose without adding any information.

Note that if, instead of applying the constructor Lanbda to the result
of the parser, we immediately apply an arbitrary semantic function,
then the messages generated by Hugs and GHC become more com-
plex. Again, we see an instance of problem (ii).

1We assume here that we are dealing with a list of tokens, and
not characters, but this is no essential difference.

In Figure 5 we have shown the absolute extreme of concision: when
our facility for specifying so-called sibling functions is used, the in-
ferencer discovers that replacing <x by the similar combinator <>
yields a type correct program. The fact that <> and <x are sib-
lings is specified by the programmer of the library, usually because
his experiences are that these two are often mixed up. This kind of
facility helps to alleviate problem (iv). Please note that it is better
to generate a standard type error here, and to give the “probable fix”
as a hint. There is always the possibility that the probable fix is not
the correct one, and then the user needs more information.

In the light of the problems just described, we present an approach
that can be used to overcome the problems for a given library. An
important feature of our approach is that the programmer of a such
a library need not be familiar with the type inference process as
it is implemented in the compiler: everything can be specified by
means of a collection of type inference directives, which can then
be distributed as part of the combinator library. If necessary, a user
of such a library may adapt the directives to his own liking. An
additional benefit is that the type inference directives can be auto-
matically checked for soundness with respect to the type inference
algorithm present in the compiler.

We have implemented our techniques in the Helium compiler [8],
which implements a large subset of Haskel | ; the most notable
omission is that of type classes. This compiler was constructed
at Utrecht University with a focus on generating high quality er-
ror messages, and is used in an introductory course on functional
programming. We expect that our techniques can be quite easily in-
corporated into compilers which have a constraint-based type infer-
ence process with a clear separation between generating and solving
constraints.

The paper is structured as follows. After a minimal introduction to
the parser combinator library in Section 2, we propose solutions for
the four problems just identified (Section 3), and describe how to
specify the necessary type inference directives. In Section 4, we ex-
plain some technical details that are essential in making this work.
Finally, Section 5 discusses related work, and Section 6 concludes
this paper.

2 Preiminaries

In this section we briefly describe the parser combinators which
we use in our examples. Whenever necessary we explain why they
are defined as they are, especially where this departs from what
might be the more intuitive way of defining them. The parser com-
binators [14] were defined to correspond as closely as possible to
(E)BNF grammars, although the complete library provides combi-
nators for many other often occurring patterns.

Consider for the remainder of this section the Haskel | declarations
in Figure 6. The type Parser s a describes a parser which takes
a list of symbols of type s and delivers a list of possible results (to
cope with failing and ambiguous parsings). A result consists of (the
semantics of) whatever was parsed at this point, which is of type a,
and the remainder of the input.

The main combinators in our language are the operators <>, <|>
and <$>, and the parser sym The first of these is the sequential
composition of two parsers, the second denotes the choice between
two parsers. We may recognize terminal symbols by means of the
symparser, which takes the symbol to recognize as its parameter.
To be able to parse a symbol, we have to be able to test for equal-



data Expr = Lanbda Patterns Expr -- can contain nore alternatives
type Patterns = [Pattern]
type Pattern = String

pExpr :: Parser Token Expr
pExpr
= pAndPri oExpr
<|> Lanbda <$ pKey "\\"
<*> many pVarid
<t pKey "->"
<*  pExpr -- <* should be <*>

Figure 1. Typeincorrect program

ERROR "Exanpl e. hs":7 - Type error in application

*** Expression . pAndPri oExpr <|> Lanbda <$ pKey "\\" <*> many pVarid <* pKey "->" <* pExpr
*** Term : pAndPri oExpr
*** Type . Parser Token Expr

*** Does not match : [Token] -> [(Expr -> Expr,[Token])]

Figure 2. Hugs, version November 2002

Exanpl e. hs: 7:

Couldn’t match ‘Expr’ against ‘Expr -> Expr’
Expected type: [Token] -> [(Expr, [Token])]
Inferred type: [Token] -> [(Expr -> Expr, [Token])]

I'n the expression:
(((Lanbda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))
< pExpr

I'n the second argunent of ‘(<|>)', nanely
“(((Lanbda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))
< pExpr’

Figure 3. The Glasgow Haskell Compiler, version 5.04.3

Conpi | i ng Exanpl e. hs
(7,6): The result types of the parsers in the operands of <|> don't match
left parser : pAndPrioExpr
result type : Expr
right parser : Lanmbda <$ pKey "\\" <*> many pVarid <* pKey "->" <* pExpr
result type : Expr -> Expr

Figure4. Helium, version 1.1 (typerulesextension)

Conpi | i ng Exanpl e. hs
(11,13): Type error in the operator <*
probabl e fix: use <*> instead

Figure5. Helium, version 1.1 (typerules extension and sibling functions)



infixl 7 <$> <$
infixl 6 <*> <*
infixr 4 <>

type Parser s a = [s] -> [(a,[s])]

<$>:: (a->b) -> Parser s a -> Parser s b

<*>:: Parser s (a ->b) -> Parser s a -> Parser s b
<|>:: Parser s a -> Parser s a -> Parser s a
<$ ::a -> Parser s b -> Parser s a
<* . Parser s a -> Parser s b -> Parser s a
sym i (s ->s ->Bool) ->s ->Parser s s

t ok :0 (s ->s ->Bool) ->[s] -> Parser s [s]
option :: Parser s a->a -> Parser s a

many :: Parser s a -> Parser s [a]

synmbol :: Char -> Parser Char Char

token :: String -> Parser Char String

Figure 6. The parser combinators

ity. In Haskel | this is usually done by way of type classes, but
we have chosen to include the predicate explicitly. For the tech-
niques described in this paper, this makes no essential difference.
For notational convencience we introduce synbol which works on
characters.

We now have all we need to implement BNF grammars. For in-
stance the production P — QR | a might be transformed to the
Haskel | expression

pP = pQ <x> pR <|> synbol 'a’.

The type of each of the parsers pQ <+> pRand synbol 'a' must
of course be the same, as evidenced by the type of <|>. The type of
the combinator <x> specifies that the first of the two parsers in the
composition delivers a function which can be applied to the result
of the second parser. An alternative would be to return the tupled
results, but this has the drawback that, with a longer sequence of
parsers, we obtain deeply nested pairs which the semantic functions
have to unpack.

Usually, one uses the <$> combinator to deal with the results that
come from a sequence of parsers:

pP = f <$> pQ <x> pR <|> synbol 'a’,

where f is a function which takes a value of the result type of pQ
and a second parameter which has the result type of pR, delivering
a value which should have type Char (because of the synbol ’a’

parser). The operator <$> has a higher priority than <«>, which
means that the first alternative for <|> should be read as ((f <$>
pQ <> pR). A basic property of <$> is that it behaves like
function application, consuming its arguments one by one. How-
ever, this is generally not the way parser builders read their parsers.
Usually, the parser is constructed first, and the semantic functions
are added afterwards. This difference in perception is one of the
sources of confusion when people use the parser combinators. In
the following section we describe how our techniques can help to
alleviate this problem.

For <$> and <x>, we have variants <$ and <x, which discard the
result of their right operand. This is useful when what is parsed
needs only to be recognized, but is not used later on. An example
of this can be found in the code of Figure 1, which throws away
whatever comes out of either pKey application. This means that

we can simply apply the constructor Lanbda, instead of a function
which takes four parameters and throws two of them away.

In the same example, we see an application of the many combina-
tor which recognizes a list of things, in this case pVar | ds. Here,
pVar | d is a predefined parser which recognizes an identifier. The
pKey combinator is used to recognize keywords and reserved oper-
ators (which have been tokenized already so we do not have to deal
with whitespace). Finally, the t oken combinator is a combination
of many and synbol , and the opt i on combinator is used when a
parser can recognize the empty word. For example,

option (token "hello!") ""

either recognizes the string "hel | 0! " and returns it, or it succeeds
without consuming any input. In the latter case, the opti on parser
returns the empty string instead. Note that in Haskel | strings are
defined to be equivalent to lists of characters.

3 Typeinference directives

This section describes four techniques that help to improve the qual-
ity of type error messages. To start with, we present a notation to
define your own type rules with their specialized type error mes-
sages. Next we explain why flexibility in the order of unification
is absolutely necessary in order to get appropriate messages. The
final two examples deal with common mistakes.

We have implemented all four techniques in the Hel i um com-
piler [8]. In Hel i um the directives for a module Nane. hs are col-
lected in the file Nane. t ype, which is automatically loaded when
Nane. hs is imported.

3.1 Specialized typerules

This section describes how to write specialized type rules and ex-
plains how this influences the error reporting in case a type rule
fails. There are serious disadvantages to incorporating these rules
directly in a type inferencer. It requires training and experience to
extend an existing type inferencer, and it implies a loss of composi-
tionality and maintainability of the implemented type rule. Since
the correctness of a type inferencer is quite a subtle issue, it is
no longer possible to guarantee that the underlying type system re-
mains unchanged. Instead, we follow a different approach in which
the type rules can be specified externally. This makes it relatively
easy to specify a type rule and to experiment with it without having
to change any code of the type inference engine.

Soecializing a typerule

Let us take a closer look at a traditional type inference rule for infix
application. An infix application is type correct if the types of the
two operands fit the type of the operator. Clearly, infix application is
nothing but syntactic sugar for normal prefix function application.
Applying the type rule for function application twice in succession
results in the following.

MEmop:T — T2 — T3 [ X T1
MEmX‘op'y: T3

MY T2

Here, I' ,, € : T means that under the type environment I we can
assign type T to expression e [4]. Instead of using this general type
rule to deal with infix applications, one could come up with a more
specific type rule for a particular operator, for instance <$>. Let
<$> be part of the type environment I, and have type signature



(a — b) — Parser sa — Parser sb. Then we can write down the
following specialized type rule.

M X:T1—T [k, y:Parsertz1g
[ X <$> Y : Parser 13 Tp

If we encounter a local definition of <$>, then the above type rule
will not be used within the scope of that local definition, even if
the new definition of <$> has the same type as the old one. To
avoid confusion, we only want to use the type rule if the very same
operator, here <$>, is used.

The type rule does not adjust the scope, as can be concluded from
the fact that the same type environment I is used above and below
the line. In the rest of this paper we will only consider specialized
type rules with this property. This limitation is necessary to avoid
complications with monomorphic and polymorphic types. Since
the type environment remains unchanged, we will omit it from now
on.

In general, a type rule contains a number of constraints, on each of
which a type inferencer may fail. For instance, the inferred types
for the two operands of <$> are restricted to have a specific shape
(a function type and a Parser type), the relations between the three
type variables constrain the inferred types even further and, lastly,
the type in the conclusion must fit into its context. To obtain a
better understanding why some inferred types may be inconsistent
with this type rule, let us reformulate the type rule to make the type
constraints more explicit.

. . T = a—b
Xt T
l$7y_2 T, = Parsersa
X<9>y:13 T3 = Parsersb

An equality constraint, written T = 1/, can be thought of as the uni-
fication of two types. Algorithms that determine the most general
unifier of two types are well understood.

In addition to the type variables introduced in the type rule, three
more type variables are introduced in the constraint set, namely a,
b, and s. The order in which the constraints are solved is irrelevant
for the success or failure of the type inference process. However,
the order chosen does determine where the type inferencer first no-
tices an inconsistency. Typically, the order is determined by the
type inference algorithm that one prefers, e.g., the standard bottom-
up algorithm 9/ [4] or the folklore top-down algorithm 24 [10].
To acquire additional information, we split up each constraint in
a number of more basic type constraints. The idea of these small
unification-steps is the following: for a type constraint that cannot
be satisfied, the compiler can produce a more specific and detailed
error message. The example now becomes

X:Ty YiTy 1T = a— bl S1 = S
- c Tp = Parsers;ay a1 = a
X<$>y:13 13 = Parsers;by by = by

The definition of a type rule, as included in a . t ype file, consists
of two parts, namely a deduction rule and a list of constraints. The
deduction rule consists of premises, which occur above the line,
and a conclusion below the line. A premise consists of a single
meta-variable, which matches with every possible expression, and
a type. On the other hand, the conclusion may contain an arbitrary
expression, except that lambda abstractions and let expressions are
not allowed, because they modify the type environment. There is no
restriction on the types in the premises and the conclusion. Below
the deduction rule, the programmer can list a number of equality

constraints between types. Each of these is followed by a corre-
sponding error message.

Example 1. We present a special type rule for the <$> combinator.
Each of the constraints is specified with an error message that is
reported if the constraint cannot be satisfied. The order in which
the constraints are listed determines the order in which they shall
be considered during the type inference process.

tl ==al -> bl . left operand is not a function

t2 == Parser sl a2 : right operand is not a parser

t3 == Parser s2 b2 : result type is not a parser

sl == s2 : parser has an incorrect symbol type

al == a2 : function cannot be applied to parser’'s result
bl == b2 : parser has an incorrect result type

Now take a look at the following function definition, which is
clearly ill-typed.

test :: Parser Char String
test = map toUpper <$> "hello, world!"

Because it is pretty obvious which of the six constraints is vi-
olated here (the right operand of <$> is not a parser, hence,
t2 =Parser sl a2 cannot be satisfied), the following error is re-
ported.

Type error: right operand is not a parser

Note that this type error message is still not too helpful since impor-
tant context specific information is missing, such as the location of
the error, pretty-printed parts of the program, and conflicting types.
To overcome this problem, we use attributes in the specification of
error messages.

Error message attributes

A fixed error message for each constraint is too simplistic. The
main focus of a message should be the contradicting types that
caused the unification algorithm to fail. To construct a clear and
concise message, one typically needs the following information.

e The inferred types of the subexpressions: One should be able
to refer to the actual type of a type variable that is mentioned
in either the type rule or the constraint set. In the special case
that a subexpression is a single identifier which is assigned a
polymorphic type, then we prefer to display this generalized
type instead of simply using the instantiated type.

e A pretty-printed version of the expression and its sub-
expressions: This should resemble the actual code as closely
as possible, and should (preferably) fit on a single line.

e Position and range information: This also includes the name
and location of the source file at hand.

Example 2. To improve the error message of Example 1, we re-
place the annotation of the type constraint

t2 == Parser sl a2 : right operand is not a parser

by the following error message, which contains attributes.



t2 == Parser sl a2 :
@xpr.pos@ The right operand of <$> should be a parser

expression . @xpr.pp@
ri ght operand . @.pp@
type © @20

does not match : Parser @1@ @2@

In the error message, the expression in the conclusion is called
expr. We can access its attributes by using the familiar dot no-
tation, and surrounding it by @signs. For example, @xpr. pos@
refers to the position of expr in the program source. Similarly, pp
gives a pretty printed version of the code.

The specification of a type constraint and its type error message is
layout-sensitive: the first character of the error report (which is a
@’ in the example above) determines the level of indentation. The
definition of the error report stops at the first line which is indented
less. As a result, the error report for the definition of t est in Ex-
ample 1 now becomes:

(2,21): The right operand of <$> should be a parser

expression . map toUpper <$> "hello, world!"
right operand : "hello, world!"
type : String

does not match : Parser Char String

For a given expression (occurring in the conclusion of a type rule),
the number of type constraints can be quite large. We do not want
to force the user to write out all these constraints and give corre-
sponding type error messages. For this reason, the user is allowed
to move some constraints from the list below the type rule to the
type rule itself, as we illustrate in the next example.

Example 3. We continue with Example 1. Because we prefer not
to give special error messages for the case that the result type is not
a parser, we may as well give the following type rule.

tl==al->b : left operand is not a function
t2 == Parser s a2 : right operand is not a parser
al == a2 : function cannot be applied to parser’s result

At this point, only three of the original type constraints remain. If
any of the “removed” constraints contributes to an inconsistency,
then a standard error message will be generated. These constraints
will be considered before the explicitly listed constraints.

Order of the type constraints

In the type rule specifications we have so far only listed the con-
straints for that rule and the order in which they should be consid-
ered. In principle, we do not assume that we know anything about
how the type inferencer solves the constraints. The only thing a type
rule specifies is that if two of the constraints contribute to an incon-
sistency, then the first of these will be considered to be the source
of the error. An error report will be generated for this constraint,
after which the type inference process continues.

The situation is not as simple as this. Each of the meta-variables
in the rule corresponds to a subtree of the abstract syntax tree for
which sets of constraints are generated. How should the constraints
of the current type rule be ordered with respect to these constraints?

VAN
<> r <$>
VAN _—
<$> q f <>
f p p q r

Figure7. Abstract syntax tree (left) compared with the concep-
tual structure (right)

Example 4. If we want the constraints generated by the subexpres-
sion y to be considered after the constraint t1 == al -> b, then
we should change the type rule in Example 3 to the following.

constraints x
tl==al ->b
constraints y
t2 == Parser s a2 : right operand is not a parser

al == a2 : function cannot be applied to parser’'s result

. left operand is not a function

Note that in this rule we have now explicitly stated at which point
the constraints of x and y should be considered. By default, the
sets of constraints are considered in the order of the correspond-
ing meta-variables in the type rule, to be followed afterwards by
the constraints listed below the type rule. Hence, we could have
omitted constrai nts x.

By supplying type rules to the type inferencer we can adapt the
behaviour of the type inference process. It is fair to assume that the
extra type rules should not have an effect on the underlying type
system, especially since an error in the specification of a type rule
is easily made. We have made sure that user defined type rules
that conflict with the default type rules are automatically rejected at
compile time. A more elaborate discussion of this subject can be
found in Section 4.2.

3.2 Phasing

Recall the motivation for the chosen priority and associativity of
the <$> and <x> combinators: it allows us to combine the re-
sults of arbitrary many parsers with a single function in a way that
feels natural for functional programmers, and such that the number
of parentheses is minimized in a practical situation. However, the
abstract syntax tree that is a consequence of this design principle
differs considerably from the view that we suspect many users have
of such an expression. Unfortunately, the shape of the abstract syn-
tax tree strongly influences the type inference process. As a con-
sequence, the reported site of error for an ill-typed expression in-
volving these combinators can be counter-intuitive and misleading.
Ideally, the type inferencer should follow the conceptual perception
rather than the view according to the abstract syntax tree.

Phasing by example

Let f be a function, and let p, g, and r be parsers. Consider the
following expression.

f<$>p<x>q <>

Figure 7 illustrates the abstract syntax tree of this expression and
its conceptual view. How can we let the type inferencer behave



according to the conceptual structure? A reasonable choice would
be to treat it in a similar way as a non-curried function application,
that is, first infer a type for the function and all its arguments, and
then unify the function and argument types. We can identify four
steps if we apply the same idea to the parser combinators. Note that
the four step process applies to the program as a whole.

1 Infer the types of the expressions between the parser combi-
nators.

2 Check if the types inferred for the parser subexpressions are
indeed Parser types.

3 Verify that the parser types can agree upon a common symbol
type.

4 Determine whether the result types of the parser fit the func-
tion.

One way to view the four step approach is that all parser related
unifications are delayed. Consequently, if a parser related con-
straint is inconsistent with another constraint, then the former will
be blamed.

Example 5. The following example presents a type incorrect at-
tempt to parse a string followed by an exclamation mark.

test :: Parser Char String
test = (++) <$> token "hello world"
<*> synbol !
The type error message of Hugs is not too helpful here.

ERROR "Phasel. hs":4 - Type error in application
**% Expression o (++) <$> token "hello world" <*>

synbol "1’
**% Term © (++) <$> token "hello world"
*** Type : [Char] -> [([Char] -> [Char],[Char]

)1
*** Does not match : [Char] -> [(Char -> [Char],[Char])]

The four step approach might yield:

(1,7): The function argunment of <$> does not work on the
result types of the parser(s)
function C(+)
type el ->[a] ->[a]
does not match : String -> Char -> String

Observe the two major improvements. First of all, it focuses on the
problematic function, instead of mentioning an application. Sec-
ondly, the types do not involve the complex expanded Parser type
synonym, nor do they contain the symbol type of the parsers, which
in this example is irrelevant information.

Assigning phase numbers

Delaying the satisfaction of constraints can be achieved by annota-
tions with a phase number. This phase number influences the order
in which the constraints are solved. The constraints in phase num-
ber i are solved before the constraint solver continues with the con-
straints of phase i+ 1. Consequently, phasing has a global effect on
the type inference process.

Adding the keyword phase, followed by a phase number, will as-
sign the constraints after this directive to this phase. By default,
constraints are assigned to phase 5, leaving space to introduce new
phases. Of course, the constraints of a type rule can be assigned to
different phases.

Example 6. We introduce phases numbered from 6 to 8 for the
steps 2, 3, and 4 respectively. We assign those phase numbers to
the constraints in the specialized type rule for <$>. Note that step
1 takes place in phase 5, which is the default. No constraint gener-
ated by the following type rule will be solved in phase 5.

phase 6
t2 == Parser sl a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser

phase 7

sl == s2 : parser has an incorrect synbol type

phase 8

tl ==al -> bl . left operand is not a function

al == a2 : function cannot be applied to parser’'s result
bl == b2 : parser has an incorrect result type

One may wonder what happens when the sets constraints x and
constraints y areincluded among the listed constraints. Because
phasing is a global operation, the constraints in these sets continue
to keep their own assigned phase number.

Sometimes the opposite approach is desired: to verify the correct-
ness of the parser related unifications before continuing with the
rest of the program. This technique is similar to pushing down the
type of a type declaration as an expected type, a useful technique
applied by, for instance, the GHC compiler.

Example 7. Let us take another look at the ill-typed function defi-
nition t est in Example 1.

test :: Parser Char String
test = map toUpper <$> "hello, world!"

If the constraints introduced by the type rule for <$> are assigned
to an early phase, e.g. 3, then, effectively, the right operand is im-
posed to have a Parser type. Since "hello, world!" is of type
String, it is at the location of this literal that we report that a dif-
ferent type was expected by the enclosing context. By modifying
the . t ype file along these lines, we may obtain the following error
message.

(2,21): Type error in string literal
expression : "hello, world!™"
type . String
expected type : Parser Char String

3.3 Sibling functions

This section and the next one deal with anticipating common mis-
takes. Although some mistakes are made over and over again, the
quality of the produced error reports can be unsatisfactory. In some
cases it is possible to detect that a known pitfall resulted in a type
error message. If so, a more specific message than the standard one
should be presented, preferably with hints to solve the problem.

One typical mistake that leads to a type error is confusing two func-
tions that are somehow related. For example, novice functional pro-
grammers have a hard time remembering the difference between
inserting an element in front of a list (: ), and concatenating two
lists (++) . Even experienced programmers may mix up the types
of curry and uncurry now and then. Similar mistakes are likely
to occur in the context of a combinator language. We will refer to
such a pair of related functions as siblings. The idea is to suggest



replacing a function with a sibling function if this resolves the type
error. The types of two siblings should be distinct, since we cannot
distinguish the differences based on their semantics.

Example 8. Consider the parser combinators from Section 2, and,
in particular, the special variants that ignore the result of the right
operand parser. These combinators are clearly siblings of their basic
combinator. A closer look to the program in Figure 1 tells us that
the most likely source of error is the confusion over the combinators
<> and <x. The observation that replacing one < combinator by
<> results in a type correct program paves the way for a more
appropriate and considerably simpler error message.

A function can have multiple sibling functions, but the sibling re-
lation is not necessarily transitive. Furthermore, a sibling function
should only be suggested if replacement completely resolves a type
error. Moreover, the suggested function should not only match with
its arguments, but it should also fit the context to prevent misleading
hints. Implementing this in a traditional type inference algorithm
can be quite a challenge. A practical concern is the runtime be-
haviour of the type inferencer in the presence of sibling functions.
Ideally, the presence of sibling functions should not affect the type
inference process for type correct programs; only for type incor-
rect programs is some extra computation performed, and only for
operators that contribute directly to the type error. In Section 4.3
we discuss type graphs, a flexible data structure that is powerful
enough to handle sibling functions.

A set of sibling functions can be declared in the file containing the
type inference directives by giving a comma separated list of func-
tions.

siblings <$>, <$
siblings <*>, <*

The type error that is constructed for the program in Figure 1 can
be found in Figure 5. A more conservative approach would be to
show a standard type error message, and add the probable fix as a
hint.

3.4 Permuted arguments

Another class of problems is the improper use of a function, such
as supplying the arguments in a wrong order, or mistakenly pair-
ing arguments. McAdam discusses the implementation of a system
that tackles these problems by unifying types modulo linear iso-
morphism [12]. Although we are confident that these techniques
can be incorporated into our own system, we limit ourselves to a
small subset, that is, permuting the arguments of a function.

Example 9. The function opt i on expects a parser and a result that
should be returned if no input is consumed. But in which order
should the arguments be given? Consider the following program
and its type error message.

test :: Parser Char String
test = option "" (token "hello!")

ERROR " Swappi ng. hs":2 - Type error in application

*** Expression : option "" (token "hello!")
*** Term Lo
*** Type : String

*** Does not match : [a] -> [([Char] -> [(String,[Char])
1.1a])]

The error message does not guide the programmer in fixing his pro-
gram. In fact, it assumes the user knows that the non-matching type
is equal to Parser a (Parser Char String).

Instead of having to specify for each function, whether you want
the type inferencer to attempt to resolve an inconsistency by per-
muting the arguments to the function, our type inferencer does this
by default. A conservative type error message for the program of
Example 9 would now be:

(2,8): Type error in application

expression ; option "" (token "hello!")
term . option
type . Parser ab->Db->Parser ab

does not match : String -> Parser Char String -> ¢
probabl e fix . flip the arguments

If, for a given type error, both the method of sibling functions and
permuted arguments can be applied, then preference is given to the
former.

In a class room setting, we have seen that the permuted arguments
facility gives useful hints in many cases. However, we are aware
that sometimes it may result in misleading information from the
compiler. During a functional programming course we have col-
lected enough information to determine how often this occurs in a
practical setting. The data remains to be analyzed.

4 Technical details

In this section we briefly discuss the way in which our type rules are
applied, and the machinery that we use to test for sibling functions
and permuted function arguments.

4.1 Applying specialized type rules

In Section 3.1 we introduced notation to define specialized type
rules for combinator libraries. Typically, a set of type rules is given
to cover the existing combinators and possibly some more complex
combinations of these. Since we do not want to forbid overlapping
patterns in the conclusions of the type rules, we have to be more
specific about the way we apply type rules to a program.

The abstract syntax tree of the program is used to find matching
patterns. We look for fitting patterns starting at the root of this
tree, and continue in a top-down fashion. In case more than one
pattern can be applied at a given node, we select the type rule which
occurs first in the . t ype file. Consequently, nested patterns should
be given before patterns that are more general. This first-come first-
served way of dealing with type rules also takes place when two
combinator libraries are imported: the type rules of the combinator
library which is imported first have precedence.

Example 10. Matching the patterns on the abstract syntax tree of
the program involves one subtle issue. Consider the following pat-
terns, in the given order.

name pattern meta-variables

R1 f<$>p<x>q f,p,andq
R2 p<s>Q<s>r p,q,andr
R3 f<$>p fand p

What happens if we apply these rules to the code fragment

test = fun <$> a <x> b <> ¢



At first sight, rule R1 seems to be a possible candidate to match the
right-hand side of t est. However, following the chosen priority
and associativity of the operators, the second rule matches the top
node of the abstract syntax tree, which is the rightmost <x>. Meta-
variable p in R2 matches with the expression fun <$> a. Since
this subexpression matches rule R3, we apply another type rule.

4.2 Correctness of specialized typerules

In Heeren, Hage and Swierstra [7] we proved the correctness of the
underlying type system. Before using a specialized type rule, we
verify that it does not change the type system. We think that such a
feature is essential, because a mistake is easily made. We do this by
ensuring that for a given expression in the deduction rule, the con-
straints generated by the type system and the constraints generated
from the specialized type rule are equivalent.

A specialized type rule allows us to influence the order in which
constraints are solved. The order of solving constraints is irrelevant
except that the constraints for let definitions should be solved before
continuing with the body [7]. If we make sure that all our special-
ized type rules respect this fact, then the correctness of the new type
rules together with the underlying type system is guaranteed.

Validation of a specialized typerule

A type rule is validated in two steps. In the first step, a type rule is
checked for various restrictions. The (expression) variables that oc-
cur in the conclusion can be divided into two classes: the variables
that are present in a premise, which are the meta-variables, and the
variables that solely occur in the conclusion. Each meta-variable
should occur exactly once in the conclusion, and it should not be
part of more than one premise. Every non-meta-variable in the con-
clusion should correspond to a top-level function inside the scope
of the type rule’s module. The type signature of such a function
should be known a priori.

If none of the restrictions above is violated, then we continue with
the second step. Here, we test if the type rule is a specialized ver-
sion of the standard type rules present in the type system. Two types
are computed: one for which the type rule is completely ignored,
and one type according to the type rule. The type rule will be added
to the type system if and only if the types are equivalent (up to the
renaming of type variables). Before we discuss how to check the
soundness of a type rule, we present an example of an invalid type
rule.

Example 11. Take a look at the following type rule.

X tl y iit2
x <$>y Parser s b
tl==al->b : left operand is not a function

t2 == Parser s a2 : right operand is not a parser

Because the programmer forgot to specify that x should work on the
result type of y, the type rule above is not restrictive enough. Thus,
it is rejected by the type system with the following error message.

The type rule for "x <$> y" is not correct
the type according to the type rule is
(a ->b, Parser ¢ d, Parser c b)
whereas the standard type rules infer the type
(a ->b, Parser ¢ a, Parser c b)

Note that the 3-tuple in this error message lists the type of x, y and
X <$> y, which reflects the order in which they occur in the type
rule.

To determine this, we first ignore the type rule, and use the default
type inference algorithm. Let ' be the current type environment
to which we add all meta-variables from the type rule, each paired
with a fresh type variable. For the expression e in the conclusion,
the type inference algorithm will return a type T and a substitution
S such that STk, e : ST. Let @ be (SB1,...,SPn,ST), where B;
is the fresh type variable of the ith meta-variable. The order of the
meta-variables is irrelevant, but it should be consistent.

Example 11 (continued). Let e = x <$> v, and construct a type
environment

<$>:Vs,a,b. (a—b) — Parser sa — Parser sb
r=<¢ x:P1
y:B2

Given I and e, the default type inference algorithm returns a most
general unifier § and a type t.

S = [B1 1= Bg — Ba, B2 := Parser Bs B3]
T = Parser 35 B4

As a result we find that

@= (B3 — Pa,Parser Bs B3, Parser Bs B4)

Next, we use the type rule and ignore the standard type system. Let
I’ be the type environment containing all top-level definitions of
which the type is known at this point, and let C be the set of type
constraints given in the type rule. Compute a most general substi-
tution § that satisfies C, and let @ be (S14,...,5Tn, ST), where Tj is
the type of the ith meta-variable, and T is the type of the conclusion.
The type rule is consistent with the default type system if and only
if @and Y are equivalent up to variable renaming.

Example 11 (continued). Let I’ be a type environment that con-
tains <$> with its type scheme, and let C be the two constraints
specified in the type rule. Next, we compute

S= [tl:=al — b,t2:=Parser s a2]
and, consequently,
W= (al — b,Parser s a2,Parser s b).

Because @#q Y we reject the examined type rule.

In theory, there is no need to reject a type rule that is more specific
than the default type rules, since it will not make the type system
unsound. Our implementation of specialized type rules, however,
cannot cope with more specific type rules for the reason that the
constraints implied by the type rule replace the constraint collection
from the standard type system. Permitting a type rule that is too
restrictive can result in the rejection of type correct programs.

Example 12. Although the following specialized type rule is sound,
it is rejected because it is too restrictive in the symbol type. It is
important to realize that applying the type rule to expressions of the
form x <$> y is not influenced by the type mentioned in the type
rule, here Parser Char b. Note that this specialized type rule has
an empty set of type constraints.

.. Parser Char a



Phasing and let expressions

Phasing the type inference process gives a great degree of freedom
to order the constraints, because it is a global operation. How-
ever, this freedom is restricted by the correct treatment of let-
polymorphism. The type scheme of an identifier defined in a let
should be computed before it is instantiated for occurrences of that
identifier in the body. This imposes a restriction on the order since
the constraints corresponding to the let-definition should be solved
earlier than the constraints that originate from the body.

Example 13. Consider the following function.

maybeTwi ce =
let p = map toUpper <$> token "hello"
inoption ((++) <$> p <*> p) []

A type scheme should be inferred for p, before we start inferring a
type for maybeTwi ce. Therefore, all type constraints that are col-
lected for the right-hand side of p are considered before the con-
straints of the body of the let, thereby ignoring assigned phase num-
bers. Of course, phasing still has an effect inside the local definition
as well as inside the body. Note that if we provide an explicit type
declaration for p, then there is no reason to separate the constraint
sets of p and the body of the let.

4.3 Typegraphs

To conclude our technical discussion, we want to say something
about the use of type graphs which allowed us to easily implement
our scriptable type inferencer. The implementation is based on type
graphs which we describe in a technical report [7]. Essentially, a
type graph is an advanced data structure to represent substitutions,
which also keeps track of the reasons for a unification. Type graphs
allow us to solve the collected type constraints in a more global way,
so that we suffer less from the notorious left-to-right bias present in
most type inference algorithms. Type graphs have the following
advantages.

o All the justifications for a particular shape of an inferred type
remain available. Similarly, all the unification steps that con-
tribute to a type error are still accessible in a type graph. For
example, it is easy to compute a minimal set of program points
contributing to a given type error, or to trace the origin of a
type constructor.

e Since we solve a set of constraints at once, we can discover
global properties.

e Because a type graph can be in an inconsistent state, the con-
struction of a type graph is separated from the removal of in-
consistencies. This makes it easier to plug in heuristics, such
as the approach of Walz [15].

e Type graphs allow us to locally add and remove sets of con-
straints. If the use of (++) in an expression contributes to
an error, then we can remove the corresponding constraints
and add those of one of its siblings, e.g. (:), instead to see
whether this solves the problem. Permuted arguments can also
be implemented by local modifications to the type graph.

However, there is a tradeoff between quality and performance. Ob-
viously, the extra overhead caused by the type graph increases the
compile time of the system. For normal sized programs, the price to
be paid remains within reasonable proportions. For instance, type
graphs have been implemented successfully in a concrete educa-
tional setting, and are part of the Helium Compiler [8]. Although

benchmarks with up to 1400 lines of code have been typed within
reasonable time, it is unknown to us to what extent the overhead
becomes problematic for larger modules.

5 Redated work

The poor type error messages produced by most modern compil-
ers are still a serious obstacle to appreciate higher-order, functional
programming languages. Several approaches have been proposed
to improve the quality of type error messages. Because recent ex-
tensions to the type system appear to have a negative effect on the
clarity of the error reports, it is becoming more important to under-
stand the difficulties of type inference in full detail.

It is well understood that the reported site of error is greatly influ-
enced by the order in which types are unified. Several modifications
of the unification order in the standard algorithm 74/ [4] have been
presented, among which the top-down algorithm M [10]. General-
izations of these algorithms exist [7, 11]. To remove the left-to-right
bias, Yang [9] presents algorithm g, which unifies types in the
assumption environment. Nevertheless, an algorithm with a fixed
order of unification can never be satisfactory for all inputs.

A number of papers attempt to explain the type inference process by
tracing type unifications [2, 5]. Unfortunately, lots of type variables
are involved in the explanations, which tend to be lengthy and ver-
bose. Chitil [3] discusses a tool to navigate through an explanation
graph to inspect types.

Although it is generally impossible to blame a single location for a
type inconsistency, we believe that the most appropriate site should
be selected and reported, rather than enumerating all contributing
sites. For instance, this decision could be based on the number of
justifications for a particular type constant, as was suggested by
Walz [15]. Separating the collection of constraints and solving a set
of constraints allows us to perform a global analysis of a program.
Formulating the type inference process as a constraint problem is
not new [1, 13]. Recently, Haack and Wells [6] have shown how
to compute a minimal set of program locations that contributed to a
type inconsistency from a set of constraints. The type error slices in
this paper are a nice and compact notation to present the error paths
in our type graph.

The focus of most type error messages is to explain the conflicting
types in a program, but little attention has been devoted to include
suggestions on how to repair a type incorrect program. As a re-
sult, programmers have to extract the corrections that are required
to resolve a type error without any help. The only paper we are
aware of that addresses repairing type incorrect programs considers
unification of types modulo linear isomorphism [12].

6 Conclusion

We have shown how the four techniques for externally modifying
the behaviour of a constraint-based type inferencer can improve the
quality of type error messages. The major advantages of our ap-
proach can be summarized as follows.

e Type directives are supplied externally. As a result, no de-
tailed knowledge of how the type inference process is imple-
mented is necessary.

e Type directives can be concisely and easily specified by any-
one familiar with type systems. Consequently, experimenting
effectively with the type inference process becomes possible.



e The directives are automatically checked for soundness. The
major advantage here is that the underlying type system re-
mains unchanged, thus providing a firm basis for the exten-
sions.

e For combinator libraries in particular, it becomes possible to
report error messages which correspond more closely to the
conceptual domain for which the library was developed.

We have shown how our techniques can be applied to a parser com-
binator library. We think it is clear that our techniques can be ap-
plied equally well to other libraries, including the standard Haskel |
Prelude. In fact, we are currently in the process of constructing type
inference directives for the Hel i umPrelude.

Our techniques have all been implemented in the Hel i umcompiler,
but they can be applied in other compilers as well. We want to point
out that implementing our ideas was relatively easy, mainly as a
consequence of using a constraint-based approach to type inference.

It might seem that the directives we have discussed work only for
type graphs. This is not the case. Specialized type rules and phasing
both work equally well when using a greedy constraint solver (com-
parable in behaviour to, e.g., W and M). (This is in fact possible in
Hel i um) The sibling functions and permuted function arguments
were straightforwardly implemented using type graphs. We think
that implementing them for greedy solvers is a bigger challenge,
which probably involves some mechanism for backtracking.

Finally, our specialized type rules do not allow a change of scope.
We believe that an extension to allow this raises more complications
than it is worth.

There are still a number of possibilities to be examined in future
work. The first of these is to build backtracking into our type infer-
ence mechanism so that greedy constraint solvers can also benefit
from sibling functions and the permutation of function arguments.
As a second possibility, we expect to extend the facility for per-
muted function arguments to handle isomorphic types in general.
In the near future we shall extend Hel i umwith type classes. As a
result, we expect to be able to extend our framework along similar
lines. Two other extensions which we are taking into consideration
are adding flexibility in specifying the priority of specialized type
rules, and extending the facilities for phasing; at this point, phasing
is a purely global operation, which might be too coarse for some
applications.

By their nature, the specialized type rules follow the structure of the
abstract syntax tree. A different approach, is to include a facility to
discover whether changing the structure of an ill-typed expression,
e.g., by moving some of the parentheses of the expression, results
in a well-typed expression. This information can then be included
as a hint.
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