
Landelijke FP-dag 2004 JJ J I II J • ×

Helium and Type Inference Directives

Bastiaan Heeren (bastiaan@cs.uu.nl)

Utrecht University

Landelijke FP-dag 2004, January 9.

Overview 1 JJ J I II J • ×

Overview

I Part 1: The Helium compiler

• What changed since last year?

• What will we do next?

I Part 2: Type inference directives

• Introduction

• Specialized type rules

• Sibling functions

• Conclusion

What changed since last year? 2 JJ J I II J • ×

The Hint interpreter

(by Arie Middelkoop)

I A graphical interpreter (written in
Java).

I Jump to the error location in an
editor (line and column).

I Used in FP course
(>100 students).

What changed since last year? 3 JJ J I II J • ×

Documentation

I Tour of the Helium Prelude

I User Manuals for the compiler and for Hint

I Windows installer

I Overview of features in Haskell Workshop 2003 paper

I Addendum to use The Craft of Functional Programming
with Helium (by Thompson).

What changed since last year? 4 JJ J I II J • ×

More warnings

I Based on Thompson’s catalogue of error messages (Some common Hugs error
messages and their causes), we added more warnings to the compiler.

Fun x = 17

(1,1): Undefined constructor "Fun"

Hint: Use identifiers starting with a lower case letter to define a function

or a variable

x = sin .2

(1,9): Warning: Function composition (.) immediately followed by number

Hint: If a Float was meant, write "0.2"

Otherwise, insert a space for readability

(1,10): Type error in infix application

expression : sin . 2

operator : .

type : (a -> b) -> (c -> a) -> c -> b

right operand : 2

type : Int

does not match : c -> a

What changed since last year? 5 JJ J I II J • ×

Pattern match warnings

(by Maarten Löffler)

main :: Bool -> Bool -> ()
main False _ = ()
main _ True = ()

(2,1): Warning: Missing pattern in function bindings:
main True False = ...

I Similar warnings for:

• unreachable patterns

• possible fall throughs for guards

What changed since last year? 6 JJ J I II J • ×

Function Recognition

(by Christof Douma)

I Recognition of simple recursive functions in programs such as map, concat
and filter. Idea: stimulate students to use these higher-order functions.

zonder n | null n = []
| head n == 0 = zonder (tail n)
| True = head n : zonder (tail n)

I We used the data set collected with the logger to test the usefulness of this
feature. The number of recognized functions was substantial.

I Not (yet) part of the distribution.

What will we do next? 7 JJ J I II J • ×

Future work

I Test and release Helium with (simple) type classes (version 2.0).

• The set of type classes is fixed and closed.

• We keep supporting a Prelude without overloading.

I Write Hint interpreter with wxHaskell.

I Enhance Helium’s module system.

I A simple GUI library to support Hudak’s Haskell School of
Expression, and for more appealing demos and laboratory
exercises.

8 JJ J I II J • ×

Part 2:

Type Inference Directives

Introduction 9 JJ J I II J • ×

Introduction
.hs file

data Expr = Lambda [Pattern] Expr

type Patterns = [Pattern]

type Pattern = String

pExpr :: Parser Token Expr

pExpr

= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<*> many pVarid

<* pKey "->"

<* pExpr -- <* should be <*>

Error message by Hugs:

ERROR "Example.hs":7 - Type error in application

*** Expression : pAndPrioExpr <|> Lambda <$ pKey "\\" <*>

many pVarid <* pKey "->" <* pExpr

*** Term : pAndPrioExpr

*** Type : Parser Token Expr

*** Does not match : [Token] -> [(Expr -> Expr,[Token])]

Introduction 10 JJ J I II J • ×

Introduction
.hs file

data Expr = Lambda [Pattern] Expr

type Patterns = [Pattern]

type Pattern = String

pExpr :: Parser Token Expr

pExpr

= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<*> many pVarid

<* pKey "->"

<* pExpr -- <* should be <*>

Error message by GHC:

Example.hs:7:

Couldn’t match ‘Expr’ against ‘Expr -> Expr’

Expected type: [Token] -> [(Expr, [Token])]

Inferred type: [Token] -> [(Expr -> Expr, [Token])]

In the expression:

(((Lambda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))

<* pExpr

In the second argument of ‘(<|>)’, namely

‘(((Lambda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))

<* pExpr’

Introduction 11 JJ J I II J • ×

Problems

Type error messages suffer from the following problems.

1. A fixed order of unification. The order of traversal strongly influences the
reported error site, and there is no way to depart from it.

2. The size of the mentioned types. Irrelevant parts are shown, and type
synonyms are not always preserved.

3. The standard format of type error messages. Because of the general
format of type error messages, the content is often not very poignant. Domain
specific terms are not used.

4. No anticipation for common mistakes. Error messages focus on the
problem, and not on how to fix the program. It is impossible to anticipate
common pitfalls that exist.

Introduction 12 JJ J I II J • ×

Type inference directives

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Implemented for the Helium compiler

(http://www.cs.uu.nl/helium/)

Introduction 12 JJ J I II J • ×

Type inference directives

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Implemented for the Helium compiler

(http://www.cs.uu.nl/helium/)

I Examples:

• Type inference directives in Prelude.type can help the students of an
introductory course on functional programming

• The designer of a (combinator) library can supply directives so that type
error messages become domain-specific

I We use directives for a set of parser combinators as a running example

Type inference directives - Specialized type rules 13 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ ` x : a → b Γ ` y : Parser s a

Γ ` x <$> y : Parser s b

Type inference directives - Specialized type rules 13 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ ` x : a → b Γ ` y : Parser s a

Γ ` x <$> y : Parser s b

I ...with type constraints

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Type inference directives - Specialized type rules 13 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ ` x : a → b Γ ` y : Parser s a

Γ ` x <$> y : Parser s b

I ...with type constraints

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

I ...and “small” unification steps

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

Type inference directives - Specialized type rules 14 JJ J I II J • ×

Syntax for a specialized type rule

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

.type file

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1
t2 == Parser s1 a2
t3 == Parser s2 b2
s1 == s2
a1 == a2
b1 == b2

Type inference directives - Specialized type rules 14 JJ J I II J • ×

Syntax for a specialized type rule

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

.type file

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function
t2 == Parser s1 a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser
s1 == s2 : parser has an incorrect symbol type
a1 == a2 : function cannot be applied to result of parser
b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This message is reported if
the corresponding constraint cannot be satisfied.

Type inference directives - Specialized type rules 15 JJ J I II J • ×

Error message attributes

Type error messages can contain context specific information, such as:

I Inferred types for (sub-)expressions and intermediate type variables

I Pretty printed expressions from the program

I Position and range information

Type inference directives - Specialized type rules 15 JJ J I II J • ×

Error message attributes

Type error messages can contain context specific information, such as:

I Inferred types for (sub-)expressions and intermediate type variables

I Pretty printed expressions from the program

I Position and range information

.type file
...
t2 == Parser s1 a2 :
@expr.pos@: The right operand of <$> should be a parser
expression : @expr.pp@
right operand : @y.pp@

type : @t2@
does not match : Parser @s1@ @a2@

...

Type inference directives - Specialized type rules 16 JJ J I II J • ×

Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

Compiling this program results in the following type error message:

(2,21): The right operand of <$> should be a parser
expression : map toUpper <$> "hello, world!"
right operand : "hello, world!"

type : String
does not match : Parser Char String

Type inference directives - Specialized type rules 16 JJ J I II J • ×

Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

Compiling this program results in the following type error message:

(2,21): The right operand of <$> should be a parser
expression : map toUpper <$> "hello, world!"
right operand : "hello, world!"

type : String
does not match : Parser Char String

I By analyzing the specialized type rules we can reject unsound rules.

I Type safety can still be guaranteed at run-time

Type inference directives - Sibling functions 17 JJ J I II J • ×

Anticipating common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.

Type inference directives - Sibling functions 17 JJ J I II J • ×

Anticipating common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.

By declaring siblings in a .type file, the type inferencer will consider suggesting a
probable fix.

.type file

siblings <$> , <$
siblings <*> , <*

Type inference directives - Sibling functions 18 JJ J I II J • ×

Example (from introduction)
.hs file

data Expr = Lambda Patterns Expr
type Patterns = [Pattern]
type Pattern = String

pExpr :: Parser Token Expr
pExpr

= pAndPrioExpr
<|> Lambda <$ pKey "\\"

<*> many pVarid
<* pKey "->"
<* pExpr -- <* should be <*>

An extreme of concision:

(11,13): Type error in the operator <*
probable fix: use <*> instead

Conclusion 19 JJ J I II J • ×

Conclusion

The major advantages of our approach can be summarized as follows.

I Type directives are supplied externally. As a result, no detailed knowledge of
how the type inference process is implemented is necessary.

I Type directives can be concisely and easily specified by anyone familiar with
type inferencing. Consequently, experimenting effectively with the type
inference process becomes possible.

I The directives are automatically checked for soundness. The major advantage
here is that the underlying type system remains unchanged, thus providing a
firm basis for the extensions.

I It becomes possible to report error messages which correspond more closely to
the conceptual domain of a combinator library.

