
253

Type Class Directives

Bastiaan Heeren and Jurriaan Hage

Institute of Information and Computing Sciences, Utrecht University
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

{bastiaan,jur}@cs.uu.nl

Abstract. The goal of this paper is to improve the type error messages
in the presence of Haskell 98 type classes, in particular for the non-
expert user. As a language feature, type classes are very pervasive, and
strongly influence what is reported and when, even in relatively simple
programs. We propose four type class directives, and specialized type
rules, to lend high-level support to compilers to improve the type error
messages. Both have been implemented, and can be used to easily modify
the behavior of the type inference process.
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1 Introduction

Improving the type error messages for higher-order, polymorphic, functional
programming languages continues to be an area of activity [1–4]. Type classes
have been studied thoroughly, both in theory and practice. In spite of this, very
little attention has been devoted to compensate the effects type classes have on
the quality of type error messages. In this paper, we present a practical and
original solution to improve the quality of type error messages by scripting the
type inference process.

To illustrate the problem type classes introduce, consider the following at-
tempt to decrement the elements of a list.

f xs = map -1 xs

The parse tree for this expression does not correspond to what the spacing
suggests: the literal 1 is applied to xs, the result of which is subtracted from
map. Notwithstanding, GHC will infer the following type for f. (Hugs will reject f
because of an illegal Haskell 98 class constraint in the inferred type.)

f :: (Num (t -> (a -> b) -> [a] -> [b]),

Num ((a -> b) -> [a] -> [b])) => t -> (a -> b) -> [a] -> [b]

Both subtraction and the literal 1 are overloaded in f’s definition1. Although the
polymorphic type of 1 is constrained to the type class Num, this restriction does
1 In Haskell, we have 1 :: Num a => a and (-) :: Num a => a -> a -> a.
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not lead to a type error. Instead, the constraint is propagated into the type of f.
Moreover, unifications change the constrained type into a type which is unlikely
to be a member of Num. A compiler cannot reject f since the instances required
could be given later on. This open-world approach for type classes is likely to
cause problems at the site where f is used. One of our directives allows us to
specify that function types will never be part of the Num type class. With this
knowledge we can reject f at the site of definition.

In this paper, we will improve the type error messages for Haskell 98 type
classes [5], in particular for the non-expert user. (Extensions to the class sys-
tem, like multi-parameter type classes, are outside the scope of this paper.) Our
approach is to design a language for type inference directives to adapt the type
inference process, and, in particular, to influence the error message reporting
facility.

For a given module X.hs, the directives can be found in a file called X.type.
If X.hs imports a module Y.hs, then all its directives are included as well.
This applies transitively to the modules that Y.hs imports, which we achieve by
storing directive information in object files. Our approach is similar to the one
followed in an earlier paper [6], in which we did not consider overloading.

The use of compiler directives has a number of advantages: They are not
part of the programming language, and can be easily turned off. The directives
function as a high-level specification language for parts of the type inference
process, precluding the need to know anything about how type inferencing is
implemented in the compiler. In tandem with our automatic soundness and
sanity checks for each directive, this makes them relatively easy to use. Also, it
should be straightforward for other compilers to support our directives as well.
Finally, although the focus of this paper is on the type inference process, the
compiler directive approach lends itself to other program analyses as well.

This paper makes the following contributions.

1. We present four type class directives to improve the resolution of overload-
ing (Section 2). With these directives we can report special purpose error
messages, reject suspicious class contexts, improve inferred types, and dis-
ambiguate programs in a precise way.

2. We discuss how the proposed directives can be incorporated into the process
of context reduction (Section 3).

3. We give a general language to describe invariants over type classes (Sec-
tion 4). This language generalizes some of our proposed directives.

4. We extend the specialized type rules [6] to handle type classes (Section 5).
As a consequence, we can report precise and tailor-made error messages for
incorrect uses of an overloaded function.

The type directives proposed in Section 2 have been implemented in our type
inference framework. The Helium compiler [7] is based on this framework, and
supports the extended specialized type rules.
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2 Type Class Directives

In Haskell, new type classes are introduced with a class declaration. If a list
of superclasses is given at this point, then the instances of the type class must
also be member of each superclass; this is enforced by the compiler. To make a
type a member of a type class, we simply provide an instance declaration. Other
means for specifying type classes do not exist in Haskell.

Therefore, some properties of a type class cannot be described: for example,
we cannot exclude a type from a type class. To gain more flexibility, we propose
type class directives to enrich the specification of type classes. Each of these have
been implemented in our type inference framework.

The first directive we introduce is the never directive (Section 2.1), which
excludes a single type from a type class. This is the exact opposite of an instance
declaration, and limits the open-world character of that type class. Similar to this
case-by-case directive, we introduce a second directive to disallow new instances
for a type class altogether (Section 2.2). A closed type class has the advantage
that we know its limited set of instances.

Knowing the set of instances of a type class opens the door for two opti-
mizations. In the exceptional case that a type class is empty, we can reject every
function that requires some instance of that class. If the type class X has only
one member, say the type t, then a predicate of the form X a can improve a
to t. This is, in fact, an improvement substitution in Jones’ theory of qualified
types [8]. If we have (X a, Y a), and the set of shared instances is empty or a
singleton, then the same reasoning applies. For example, if the instances of X are
Int and Bool, and those of Y are Bool and Char, then a must be Bool. This is
easily discovered for Haskell 98 type classes by taking intersections of sets of
instances.

Our next directive, the disjoint directive, specifies that the intersection
of two type classes should be empty (Section 2.3). This is another instance
of an invariant over sets of types, which is formulated by the programmer, and
maintained by the compiler. In Section 4, we present a small language to capture
this invariant, and many others besides.

Finally, Section 2.4 discusses a default directive for type classes, which helps
to disambiguate in case overloading cannot be resolved. This directive refines the
ad hoc default declarations supported by Haskell.

In the remainder of this section, we explore the directives in more detail, and
conclude with a short section on error message attributes.

2.1 The never Directive

Our first directive lets us formulate explicitly that a type should never become
a member of a certain type class. This statement can be accompanied with a
special purpose error message, reported in case the forbidden instance is needed
to resolve overloading. The main advantage of the never directive is the tailor-
made error message for a particular case in which overloading cannot be resolved.
In addition, the directive guarantees that the outlawed instance will not be given
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in future. We illustrate the never directive with an example. For the sake of
brevity, we keep the error messages in our examples rather terse. Error message
attributes, which we will discuss in Section 2.5, can be used to create a more
verbose message that depends on the actual program.

never Eq (a -> b): functions cannot be tested for equality

never Num Bool: arithmetic on booleans is not supported

These two directives should be placed in a .type file2, which is considered prior
to type inference, but after collecting all the type classes and instances in scope.
Before type inference, we should check the validity of the directives. Each incon-
sistency between the directives and the instance declarations results in an error
message or warning. For example, the following could be reported at this point.

The instance declaration for

Num Bool at (3,1) in A.hs

is in contradiction with the directive

never Num Bool defined at (1,1) in A.type

We proceed with type inference if no inconsistency is found. If arithmetic on
booleans results in a Num Bool predicate, we report our special purpose error
message. For the definition

f x = if x then x+1 else x

we simply report that arithmetic on booleans is not supported, and highlight the
arithmetical operator +. An extreme of concision results in the following type
error message.

(1,19): arithmetic on booleans is not supported

The never directive is subject to the same restrictions as any instance decla-
ration in Haskell 98: a class name followed by a type constructor and a list of
unique type variables (we took the liberty of writing function arrow infix in the
example presented earlier). Haskell 98 does not allow overlapping instances,
and similarly we prohibit overlapping nevers. This ensures that there is always
at most one directive which we can use for constructing an error message. If we
drop this restriction, then it becomes arbitrary which message is generated.

never Eq (Int -> a): message #1

never Eq (b -> Bool): message #2

In this example, it is unclear what will be reported for the type class predicate
Eq (Int -> Bool). One way to cope with this situation is to require a third
directive for the overlapping case, namely never Eq (Int -> Bool). This im-
plies that we can always find and report a most specific directive. Note that in
the context of overlapping never directives, we have to postpone reporting a
violating class predicate since more information about a type variable in this
assertion may make a more specific directive a better candidate.
2 Our convention in this paper is to write all type inference directives on a light gray

background.
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2.2 The close Directive

With the never directive we can exclude one type from a type class. Similar
to this case-by-case directive, we introduce a second type class directive which
closes a type class in the sense that no new instances can be defined. As a result
of this directive, we can report special error messages for unresolved overloading
for a particular type class. A second advantage is that the compiler can assume
to know all instances of the given type class since new instances are prohibited,
which can be exploited when generating the error message.

One subtle issue is to establish at which point the type class should be closed.
This can be either before or after having considered the instance declarations
defined in the module. In this section we discuss only the former. A possible use
for the latter is to close the Num type class in Prelude.type so that everybody
who imports it may not extend the type class, but the Prelude module itself
may specify new instances for Num.

Before we start with type inference, we check for each closed type class that
no new instance declarations are provided. A special purpose error message is
attached to each close directive, which is reported if we require a non-instance
type to resolve overloading for the closed type class. Such a directive can live
side by side with a never directive. Since the latter is strictly more informative,
we give it precedence over a close directive if we have to create a message. As
an example, we close the type class for Integral types, defined at the standard
Prelude. Hence, this type class will only have Int and Integer as its members.

close Integral: the only instances of Integral are Int and Integer

The main advantage of a closed type class is that we know the fixed set of
instances. Using this knowledge, we can influence the type inference process. As
discussed in the introduction to Section 2, we can reject definitions early on (in
case the set of instances for a certain type class is empty) or improve a type
variable to a certain type (in case the set of instances is a singleton).

For example, consider a function f :: (Bounded a, Num a) => a -> a.
The type class Bounded contains all types that have a minimal and maximal
value, including Int and Char. However, Int is the only numeric type among
these. Hence, if both Bounded and Num are closed, then we may safely improve
f’s type to Int -> Int.

The advantages of the close directive would be even higher if we drop the
restrictions of Haskell 98, because this directive allows us to reject incorrect
usage of a type class early on. We illustrate this with the following example.

class Similar a where

(~=) :: a -> a -> Bool

instance Similar Int where

(~=) = (==)

Assume that the previous code is imported in a module that closes the type class
Similar.
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close Similar: the only instance of Similar is Int.

f x xs = [x] ~= xs

GHC version 6.2 (without extensions) accepts the program above, although an
instance for Similar [a] must be provided to resolve overloading. The type
inferred for f is

f :: forall t. (Similar [t]) => t -> t -> Bool

although this type cannot be declared in a type signature for f3. This type makes
sense: the function f can be used in a different module, on the condition that
the missing instance declaration is provided. However, if we intentionally close
the type class, then we can generate an error for f at this point.

In this light, the close directive may become a way to moderate the power
of some of the language extensions by specifying cases where such generality is
not desired. An alternative would be to take Haskell 98 as the starting point,
and devise type class directives to selectively overrule some of the language
restrictions. For instance, a directive such as general X could tell the compiler
not to complain about predicates concerning the type class X that cannot be
reduced to head-normal form. Such a directive would allow more programs. In
conclusion, type class directives give an easy and flexible way to specify these
local extensions and restrictions.

2.3 The disjoint Directive

Our next directive deliberately reduces the set of accepted programs. In other
words: the programs will be subjected to a stricter type discipline. The disjoint
directive specifies that the instances of two type classes are disjoint, i.e., no
type is shared by the two classes. A typical example of two type classes that
are intentionally disjoint are Integral and Fractional (see the Haskell 98
Report [5]). If we end up with a type (Fractional a, Integral a) => ....
after reduction, then we can immediately generate an error message, which can
also explain that “fractions” are necessarily distinct from “integers”. Note that
without this directive, a context containing these two class assertions is happily
accepted by the compiler, although it undoubtedly results in problems when we
try to use this function. Acknowledging the senselessness of such a type prevents
misunderstanding in the future. A disjoint directive can be defined as follows.

disjoint Integral Fractional:

something which is fractional can never be integral

Because Floating is a subclass of Fractional (each type in the former must
also be present in the latter), the directive above implies that the type classes
Integral and Floating are also disjoint.
3 In our opinion, it should be possible to include each type inferred by the compiler

in the program. In this particular case, GHC suggests to use the Glasgow extensions,
although these extensions are not required to infer the type.
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In determining that two type classes are disjoint, we base our judgements on
the set of instance declarations for these classes, and not on the types implied
by the instances. Therefore, we reject instance declarations C a => C [a] and
D b => D [b] if C and D must be disjoint. A more liberal approach is to consider
the set of instance types for C and D, so that their disjointness depends on other
instances given for these type classes.

Take a look at the following example which mixes fractions and integrals.

wrong = div 3 8 + 1/2

The disjoint directive helps to report an appropriate error message for the
definition of wrong. In fact, without this directive we end up with the type
(Integral a, Fractional a) => a. GHC reports an ambiguous type variable
as a result of the monomorphism restriction.

Disjoint.hs:1:

Ambiguous type variable ‘a’ in these top-level constraints:

‘Integral a’ arising from use of ‘div’ at Disjoint.hs:1

‘Fractional a’ arising from use of ‘/’ at Disjoint.hs:1

Possible cause: the monomorphism restriction applied

to the following:

wrong :: a (bound at Disjoint.hs:1)

Probable fix: give these definition(s) an explicit type

signature

Ironically, it is the combination of the two class predicates that makes the de-
faulting mechanism fail (no numeric type is instance of both classes), which in
turn activates the monomorphism restriction rule.

2.4 The default Directive

One annoying aspect of overloading is that seemingly innocent programs are
in fact ambiguous. For example, show [] is not well-defined, since the type
of the elements must be known (and showable) in order to display the empty
list. This problem can only be circumvented by an explicit type annotation. A
default declaration is included as special syntax in Haskell to help disambiguate
overloaded numeric operations. This approach is fairly ad hoc, since it only covers
the (standard) numeric type classes. Our example suggests that a programmer
could also benefit from a more liberal defaulting strategy, which extends to other
type classes. Secondly, the exact rules when defaulting should be applied are
unnecessarily complicated (see the Haskell Report [5] for the exact specification).
We think that a default declaration is nothing but a type class directive, and
that it should be placed amongst the other directives instead of being considered
part of the programming language. Taking this viewpoint paves the way for
other, more complex defaulting strategies as well.

One might wonder at this point why the original design is so conservative.
Actually, the caution to apply a general defaulting strategy is justified since it



260 Bastiaan Heeren and Jurriaan Hage

changes the semantics of a program. Inappropriate defaulting unnoticed by a
programmer is unquestionably harmful. By specifying default directives, the
user has full control over the defaulting mechanism. A warning should be raised
to inform the programmer that a class predicate has been defaulted. Although we
do not advocate defaulting in large programming projects, it is unquestionably
useful at times, for instance, to show the result of an evaluated expression in an
interpreter. Note that GHC departs from the standard, and applies a more liberal
defaulting strategy in combination with the emission of warnings, which works
fine in practice.

Take a look at the following datatype definition for a binary tree with values
of type a.

data Tree a = Bin (Tree a) a (Tree a) | Leaf deriving Show

A function to show such a tree can be derived automatically, but it requires a
show function for the values stored in the tree. This brings us to the problem:
show Leaf is of type String, but it is ambiguous since the tree that we want to
display is polymorphic in the values it contains. We define default directives to
remedy this problem.

default Num (Int, Integer, Float, Double)

default Show ((), String, Bool, Int)

The first directive is similar to the original default declaration, the second de-
faults predicates concerning the Show type class. Obviously, the types which we
use as default for a type class must be a member of the class.

Defaulting works as follows. For a given type variable a, let P = {X1 a,
X2 a, ..., Xn a} be the set of all predicates in the context which contain a.
Note that only these predicates determine which type may be selected for a as
a default, and that other predicates in the context are not influenced by this
choice. If at least one of the Xi has a default directive, then we consider the
default directives for each of the predicates in P in turn (if they exist). For each
of these default directives, we determine the first type which satisfies all of P.
If this type is the same for all default directives of P, then we choose this type
for a. If the default directives cannot agree on their first choice, then defaulting
does not take place.

If default directives are given for a type class and for its subclass, we should
check that the two directives are coherent. For instance, Integral is a subclass
of Num, and hence we expect that defaulting Integral a and Num a has the same
result as defaulting only Integral a.

Considering defaulting as a directive allows us to design more precise de-
faulting strategies. For instance, we could have a specific default strategy for
showing values of type Tree a: this requires some extra information about the
instantiated type of the overloaded function show.

2.5 Error Message Attributes
The error messages given so far are context-insensitive, but for a real implemen-
tation this is not sufficient. Therefore, we use error message attributes, which
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may hold context dependent information. For example, location information is
present in an attribute @range@ (attributes are written between @ signs). Due
to space limitations we restrict ourselves to an example for the close directive.

close Show:

The expression @expr.pp@ at @expr.range@ has the type @expr.gentype@.

This type is responsible for the introduction of the class predicate

@errorpredicate@, which is not an instance of @typeclass@ due to

the close directive defined at @directive.range@.

The attributes in the error message are replaced by information from the actual
program. For instance, @directive.range@ is changed into the location where
the close directive is defined, and @expr.pp@ is unfolded to a pretty printed
version of the expression responsible for the introduction of the erroneous pred-
icate. We can devise a list of attributes for each directive. These lists differ: in
case of the disjoint directive, for instance, we want to refer to the origin of
both class predicates that contradict.

A complicating factor is that the predicate at fault may not be the predicate
which was introduced. Reducing the predicate Eq [(String, Int -> Int)]
will eventually lead to Eq (Int -> Int). We would like to communicate this
reasoning to the programmer as well, perhaps by showing some of the reduction
steps.

3 Implementation

Type inference for Haskell is based on the Hindley-Milner [9] type system.
Along the way, types are unified, and when unification fails, an error message is
reported. An alternative method is to collect equality constraints to encapsulate
the relation between various types of parts of the program, and solve these af-
terwards. Type inference for Haskell 98 is widely studied and well understood:
we suggest “Typing Haskell in Haskell” [10] for an in-depth study. To support
overloading, we extend the Hindley-Milner system and propagate sets of type
class predicates. For each binding group we perform context reduction, which
serves to simplify sets of type class predicates, and to report predicates that
cannot be resolved. Context reduction can be divided into three phases.

In the first phase, the predicates are simplified by using the instance decla-
rations until they are in head-normal form, that is, of the form X (a t1. . .tn)
where a is a type variable. Typically, we get predicates where n is zero. Predi-
cates that cannot be reduced to this form are reported as incorrect. For instance,
Eq [a] can be simplified to Eq a, the predicate Eq Int can be removed alto-
gether, and an error message is created for Num Bool.

Duplicate predicates are removed in the second phase, and we use the type
class hierarchy to eliminate predicates entailed by assertions about a subclass.
For instance, Eq is the superclass of Ord, and, hence, Ord a implies Eq a. If we
have both predicates, then Eq a can be safely discarded.

In the final phase, we report predicates that give rise to an ambiguous type.
For instance, the type (Read a, Show a) => String -> String, inferred for
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Fig. 1. Context reduction with type class directives for Haskell 98

the famous show . read example, is ambiguous since there is no way we can
determine the type of a, which is needed to resolve overloading. Note that we
can postpone dealing with predicates containing monomorphic type variables.

We continue with a discussion on how the four type class directives can be in-
corporated into context reduction. Figure 1 gives an overview. The first, second,
and fifth step correspond to the three phases of the traditional approach. The
thickened horizontal line reflects the main process in which the set of predicates
P is transformed into a set of predicates Q.

The first modification concerns the predicates that cannot be simplified to
head-normal form. If a never or close directive is specified for such a predicate,
then we report the specialized error message that was declared with the directive.
Otherwise, we proceed as usual and report a standard error message.

The disjoint directives and closed type classes are handled after removal
of duplicates and super-classes. At this point, the predicates to consider are in
head-normal form. A disjoint directive creates an error message for a pair of
predicates that is in conflict. Similarly, if we can conclude from the closed type
classes that no type meets all the requirements imposed by the predicates for
a given type variable, then an error message is constructed. If we, on the other
hand, discover that there is a single type which meets the restrictions, then we
assume this type variable to be that particular type. This is an improvement sub-
stitution [8]. Because we consider all predicates involving a certain type variable
at once, the restrictions of Haskell 98 guarantee that improvement substitu-
tions cannot lead to more reduction steps.

Finally, we try to avoid reporting ambiguous predicates by inspecting the
given default directives, as described in Section 2.4. Defaulting a type variable
by applying these directives results again in an improvement substitution.

The use of improvement substitutions leads to more programs being accepted,
while others are now rejected. The sum of their effects can be hard to predict,
and not something to rely on in large programming projects. Even without im-
provement substitutions, the never, close, and disjoint directives can be quite
useful.
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4 Generalization of Directives

In this section, we sketch a generalization of the first three directives described
in Section 2. This part has not been implemented, but gives an idea how far we
expect type class directives can go, and what benefits accrue.

Essentially, a type class describes a (possibly infinite) set of types, and most
of the proposed directives can be understood as constraints over such sets. In
fact, they describe invariants on these sets of types, enriching the means of
specification in Haskell, which is limited to membership of a type class (instance
declaration), and a subset relation between type classes (class declaration).

We present a small language to specify invariants on the class system. The
language is very expressive, and it may be necessary to restrict its power for
reasons of efficiency and decidability, depending on the type (class) system to
which it is added.

Constraint ::= Type EltOp Set | Set SetOp Set
Set ::= BinOp Set Set | SetLiteral | Class
SetLiteral ::= {} | { Type (, Type)∗ }
EltOp ::= isin | isnotin
SetOp ::= <= | == | >=
BinOp ::= intersect | union | difference

Each constraint can be followed by an error message. If necessary, syntactic sugar
can be introduced for special directives such as never and disjoint.

Monad == {Maybe, [], IO}: only Maybe, [], and IO are monads today.

Read == Show

intersect Egglayer Mammal <= {Platypus}

The first example directive prevents new instances for the Monad class, while
Read == Show demands that in this module (and all modules that import it)
the instances for Show and Read are the same. A nice example of an invariant is
the third directive, which states that only the duckbilled platypus can be both
in the type class for egg layers and in Mammal. This directive might be used to
obtain an improvement substitution (as discussed in Section 2): if we have the
predicates Mammal a and Egglayer a, then a must be Platypus. This example
shows that the directives can be used to describe domain specific invariants over
class hierarchies.

5 Specialized Type Rules

In an earlier paper [6], we introduced specialized type rules to improve type
error messages. The main benefits of this facility are that for certain collections
of expressions, the programmer can

1. change the order in which unifications are performed, and
2. provide special type error messages, which can exploit this knowledge,
3. with the guarantee that the underlying type system is unchanged.
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This facility is especially useful for domain specific extensions to a base language
(such as Haskell), because the developer of such a language can now specify
error messages which refer to concepts in the domain to replace the error mes-
sages phrased in terms of the underlying language. We present an extension of
these type rules which allows class assertions among the equality constraints
to deal with overloading. This extension has been implemented in the Helium
compiler [7].

Consider the function spread, which returns the difference between the small-
est and largest value of a list, and a specialized type rule for this function, given
that it is applied to one argument.

spread :: (Ord a, Num a) => [a] -> a

spread xs = maximum xs - minimum xs

xs :: t1;

--------------------

spread xs :: t2;

t1 == [t3]: @xs.pp@ must be a list

t3 == t2: @expr.pp@ should return a value of type @t3@

Eq t2: @t2@ is not an instance of Eq, let alone Ord or Num

Ord t2: @t2@ should have a linear ordering imposed on it

Num t2: @t2@ should allow numerical operations

A specialized type rule consists of a deduction rule, followed by a list of con-
straints. In the consequent of the deduction rule, spread xs :: t2, we describe
the expressions of interest. Since xs also occurs above the line, it is considered to
be a meta-variable which functions as a placeholder for an arbitrary expression
(with a type to which we can refer as t1).

The deduction rule is followed by a number of constraints. The first of these
states that the type t1 is a list type, with elements of type t3 (t3 is still un-
constrained at this point). The next equality constraint constrains the type t3
to be the same as the type of spread xs. Note that the listed constraints are
verified from top to bottom, and this fact can be exploited to yield very precise
error messages.

For class assertions we can also exploit the order of specification. Although
membership of Ord or Num implies membership of Eq, we can check the latter
first, and give a more precise error message in case it fails. Only when Eq t2
holds, do we consider the class assertions Ord t2 and Num t2. Note that the
assertion Eq t2 does not change the validity of the rule.

Context reduction takes place after having solved the unification constraints.
This implies that listing class assertions before the unification constraints makes
little sense, and only serves to confuse people. Therefore, we disallow this.

Equality constraints can be moved into the deduction rule, in which case it
is given a standard error message. This facility is essential for practical reasons:
it should be possible to only list those constraints for which we expect special
treatment. Similarly, we may move a class assertion into the deduction rule.
Notwithstanding, this assertion is checked after all the unification constraints.
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All specialized type rules are automatically examined in that they leave the
underlying type system unchanged. This is an essential feature, since a mistake
is easily made in these rules. We compare the set of constraints implied by the
specialized type rule (say S) with the set that would have been generated by
the standard inference rules (say T ). A type rule is only accepted if S equals T
under an entailment relation. This relation is a combination of entailment for
class predicates and for equality constraints.

6 Related Work

A number of papers address the problem of improving the type error mes-
sages produced by compilers for functional programming languages. Several ap-
proaches to improve on the quality of error messages have been suggested. One
of the first proposals is by Wand [11], who suggests to modify the unification
algorithm such that it keeps track of reasons for deductions about the types of
type variables. Many papers that followed elaborate on his idea. At the same
time, Walz and Johnson [12] suggested to use maximum flow techniques to iso-
late and report the most likely source of an inconsistency. This can be considered
the first heuristic-based system.

Recently, Yang, Michaelson, and Trinder [2] have reported on a human-like
type inference algorithm, which mimics the manner in which an expert would
explain a type inconsistency. This algorithm produces explanations in plain En-
glish for inferred (polymorphic) types. McAdam [1] suggested to use unification
of types modulo linear isomorphism to automatically repair ill-typed programs.
Haack and Wells [3] compute a minimal set of program locations (a type error
slice) that contribute to a type inconsistency. The Chameleon type debugger is
developed by Stuckey, Sulzmann, and Wazny [4], and helps to locate type errors
in an interactive way.

Elements of our work can be found in earlier papers: closed type classes were
mentioned by Shields and Peyton Jones [13], while the concepts of disjoint type
classes and type class complements were considered by Glynn et al. [14]. Type
class directives lead to improvement substitutions which are part of the frame-
work as laid down by Jones [8]. All these efforts are focused on the type system,
while we concentrate on giving good feedback by adding high-level support to
compilers via compiler directives. Moreover, we generalize these directives to
invariants over type classes.

A different approach to tackle language extensions is followed in the DrScheme
project [15], which introduces language levels (syntactically restricted variants)
to gradually become familiar with a language.

7 Conclusion and Future Work

This paper offers a solution to compensate the effect that the introduction of
overloading (type classes) has on the quality of reported error messages. In gen-
eral, the types of overloaded functions are less restrictive, and therefore some
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errors may remain undetected. At the same time, a different kind of error mes-
sage is produced for unresolved overloading, and these errors are often hard to
interpret.

To remedy the loss of clarity in error messages, a number of type class di-
rectives have been proposed, and we have indicated how context reduction can
be extended to incorporate these directives. The directives have the following
advantages.

– Tailor-made, domain-specific error messages can be reported for special cases.
– Functions for which we infer a type scheme with a suspicious class context

can be detected (and rejected) at an early stage.
– An effective defaulting mechanism assists to disambiguate overloading.
– Type classes with a limited set of instances help to improve and simplify

types.

Furthermore, we have added type class predicates to the specialized type rules,
and the soundness check has been generalized accordingly.

We see several possible directions for future research. A small language to
specify invariants on the class system (see Section 4) seems to be a promising
direction, and this requires further investigation. The more expressive such a
language becomes, the more need there is for some form of analysis of these
invariants. Another direction is to explore directives for a number of the proposed
extensions to the type class system [16], and to come up with new directives to
alleviate the problems introduced by these extensions.

In both these cases, we see the need for a formal approach, so that the
effects of our (more general) directives on our (extended) language can be fully
understood. The constraint handling rules (used in [14]) are a good starting
point for such an approach.

Furthermore, we would like to lift our ideas on directives to Jones’ theory of
qualified types [8]. As a result, we want to look for directives to support other
qualifiers that fit in his framework. Besides the type class predicates discussed
in this paper, we plan to investigate predicates for extensible records, and for
subtyping.
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