
ICFP 2003, Uppsala, Sweden JJ J I II J • ×

Scripting the Type Inference Process

Bastiaan Heeren Jurriaan Hage S. Doaitse Swierstra

Institute of Information and Computing Sciences

Utrecht University

{bastiaan,jur,doaitse}@cs.uu.nl

August 25, 2003

Overview 1 JJ J I II J • ×

Overview

I Introduction

I Type inference directives

• Specialized type rules

• Phasing of type constraints

• Sibling functions

• Permuting function arguments

I Conclusion

Introduction 2 JJ J I II J • ×

Introduction
.hs file

data Expr = Lambda [Pattern] Expr

type Patterns = [Pattern]

type Pattern = String

pExpr :: Parser Token Expr

pExpr

= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<*> many pVarid

<* pKey "->"

<* pExpr -- <* should be <*>

Error message by Hugs:

ERROR "Example.hs":7 - Type error in application

*** Expression : pAndPrioExpr <|> Lambda <$ pKey "\\" <*>

many pVarid <* pKey "->" <* pExpr

*** Term : pAndPrioExpr

*** Type : Parser Token Expr

*** Does not match : [Token] -> [(Expr -> Expr,[Token])]

Introduction 3 JJ J I II J • ×

Introduction
.hs file

data Expr = Lambda [Pattern] Expr

type Patterns = [Pattern]

type Pattern = String

pExpr :: Parser Token Expr

pExpr

= pAndPrioExpr

<|> Lambda <$ pKey "\\"

<*> many pVarid

<* pKey "->"

<* pExpr -- <* should be <*>

Error message by GHC:

Example.hs:7:

Couldn’t match ‘Expr’ against ‘Expr -> Expr’

Expected type: [Token] -> [(Expr, [Token])]

Inferred type: [Token] -> [(Expr -> Expr, [Token])]

In the expression:

(((Lambda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))

<* pExpr

In the second argument of ‘(<|>)’, namely

‘(((Lambda <$ (pKey "\\")) <*> (many pVarid)) <* (pKey "->"))

<* pExpr’

Introduction 4 JJ J I II J • ×

Problems

Type error messages suffer from the following problems.

1. A fixed order of unification. The order of traversal strongly influences the
reported error site, and there is no way to depart from it.

2. The size of the mentioned types. Irrelevant parts are shown, and type
synonyms are not always preserved.

3. The standard format of type error messages. Because of the general
format of type error messages, the content is often not very poignant. Domain
specific terms are not used.

4. No anticipation for common mistakes. Error messages focus on the
problem, and not on how to fix the program. It is impossible to anticipate
common pitfalls that exist.

Introduction 5 JJ J I II J • ×

Type inference directives

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Implemented for the Helium compiler

(http://www.cs.uu.nl/helium/)

Introduction 5 JJ J I II J • ×

Type inference directives

Idea: supply type inference directives to the compiler to improve error reporting.

I For a given .hs file, a programmer may supply a .type file containing the
directives

I The directives are automatically included when the module is imported

I Implemented for the Helium compiler

(http://www.cs.uu.nl/helium/)

I Examples:

• Type inference directives in Prelude.type can help the students of an
introductory course on functional programming

• The designer of a (combinator) library can supply directives so that type
error messages become domain-specific

I We use directives for a set of parser combinators as a running example

Type inference directives - Specialized type rules 6 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ H̀M x : a → b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

Type inference directives - Specialized type rules 6 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ H̀M x : a → b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

I ...with type constraints

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

Type inference directives - Specialized type rules 6 JJ J I II J • ×

Specialized type rules

<$> :: (a -> b) -> Parser s a -> Parser s b

I A specialized type rule

Γ H̀M x : a → b Γ H̀M y : Parser s a

Γ H̀M x <$> y : Parser s b

I ...with type constraints

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a → b
τ2 ≡ Parser s a
τ3 ≡ Parser s b

I ...and “small” unification steps

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

Type inference directives - Specialized type rules 7 JJ J I II J • ×

Syntax for a specialized type rule

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

.type file

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1
t2 == Parser s1 a2
t3 == Parser s2 b2
s1 == s2
a1 == a2
b1 == b2

Type inference directives - Specialized type rules 7 JJ J I II J • ×

Syntax for a specialized type rule

x : τ1 y : τ2

x <$> y : τ3

 τ1 ≡ a1 → b1
τ2 ≡ Parser s1 a2
τ3 ≡ Parser s2 b2

s1 ≡ s2
a1 ≡ a2
b1 ≡ b2

.type file

x :: t1; y :: t2;

x <$> y :: t3;

t1 == a1 -> b1 : left operand is not a function
t2 == Parser s1 a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser
s1 == s2 : parser has an incorrect symbol type
a1 == a2 : function cannot be applied to result of parser
b1 == b2 : parser has an incorrect result type

I Supply an error message for each type constraint. This message is reported if
the corresponding constraint cannot be satisfied.

Type inference directives - Specialized type rules 8 JJ J I II J • ×

Error message attributes

Type error messages can contain context specific information, such as:

I Inferred types for (sub-)expressions and intermediate type variables

I Pretty printed expressions from the program

I Position and range information

Type inference directives - Specialized type rules 8 JJ J I II J • ×

Error message attributes

Type error messages can contain context specific information, such as:

I Inferred types for (sub-)expressions and intermediate type variables

I Pretty printed expressions from the program

I Position and range information

.type file
...
t2 == Parser s1 a2 :
@expr.pos@: The right operand of <$> should be a parser
expression : @expr.pp@
right operand : @y.pp@

type : @t2@
does not match : Parser @s1@ @a2@

...

Type inference directives - Specialized type rules 9 JJ J I II J • ×

Example
.hs file

test :: Parser Char String
test = map toUpper <$> "hello, world!"

Compiling this program results in the following type error message:

(2,21): The right operand of <$> should be a parser
expression : map toUpper <$> "hello, world!"
right operand : "hello, world!"

type : String
does not match : Parser Char String

Type inference directives - Specialized type rules 10 JJ J I II J • ×

Soundness

The soundness of a specialized type rule with respect to the default type rules is
examined at compile time. Invalid type rules are automatically rejected.

I A mistake is easily made

I Type safety can still be guaranteed at run-time

.type file

x :: t1; y :: t2;

x <$> y :: Parser s b;

t1 == a1 -> b : left operand is not a function
t2 == Parser s a2 : right operand is not a parser

I This type rule is not restrictive enough and thus rejected

Type inference directives - Phasing 11 JJ J I II J • ×

AST versus conceptual structure

f <$> p <*> q <*> r

I By design, associativities and priorities of the parser combinators minimize the
number of parentheses in a practical situation.

I The inferencing process closely follows the shape of the abstract syntax tree,
but the shape may differ from the way a programmer reads the expression.

<*>

<*>

r

q

pf

<$> f

<$>

<*>

p q r

abstract syntax tree conceptual structure

As a consequence, the reported error for an ill-typed expression involving these
combinators can be counter-intuitive and misleading.

Type inference directives - Phasing 12 JJ J I II J • ×

Assigning phase numbers
.type file

x :: t1; y :: t2;

x <$> y :: t3;

phase 6
t2 == Parser s1 a2 : right operand is not a parser
t3 == Parser s2 b2 : result type is not a parser
phase 7
s1 == s2 : parser has an incorrect symbol type
phase 8
t1 == a1 -> b1 : left operand is not a function
a1 == a2 : function cannot be applied to result of parser
b1 == b2 : parser has an incorrect result type

I The constraints in phase number i are solved before the constraint solver
continues with the constraints of phase i + 1

I The default phase number is 5

Type inference directives - Phasing 13 JJ J I II J • ×

Phasing by example
.hs file

test :: Parser Char String
test = (++) <$> token "hello world"

<*> symbol ’!’

Hugs reports the following:
ERROR "Phase1.hs":4 - Type error in application

*** Expression : (++) <$> token "hello world" <*> symbol ’!’

*** Term : (++) <$> token "hello world"

*** Type : [Char] -> [([Char] -> [Char],[Char])]

*** Does not match : [Char] -> [(Char -> [Char],[Char])]

Type inference directives - Phasing 13 JJ J I II J • ×

Phasing by example
.hs file

test :: Parser Char String
test = (++) <$> token "hello world"

<*> symbol ’!’

Hugs reports the following:
ERROR "Phase1.hs":4 - Type error in application

*** Expression : (++) <$> token "hello world" <*> symbol ’!’

*** Term : (++) <$> token "hello world"

*** Type : [Char] -> [([Char] -> [Char],[Char])]

*** Does not match : [Char] -> [(Char -> [Char],[Char])]

A phased approach might result in:

(1,7): The function argument of <$> cannot be applied to the

result types of the parser(s)

function : (++)

type : [a] -> [a] -> [a]

does not match : String -> Char -> String

Type inference directives - Sibling functions 14 JJ J I II J • ×

Anticipating common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.

Type inference directives - Sibling functions 14 JJ J I II J • ×

Anticipating common mistakes

One typical mistake is confusing two functions that are somehow related.

Examples:

I curry and uncurry

I (:) and (++)

I (<∗>) and (<∗)
We will refer to such a pair of related functions as siblings.

By declaring siblings in a .type file, the type inferencer will consider suggesting a
probable fix.

.type file

siblings <$> , <$
siblings <*> , <*

Type inference directives - Sibling functions 15 JJ J I II J • ×

Example (from introduction)
.hs file

data Expr = Lambda Patterns Expr
type Patterns = [Pattern]
type Pattern = String

pExpr :: Parser Token Expr
pExpr

= pAndPrioExpr
<|> Lambda <$ pKey "\\"

<*> many pVarid
<* pKey "->"
<* pExpr -- <* should be <*>

An extreme of concision:

(11,13): Type error in the operator <*
probable fix: use <*> instead

Type inference directives - Permuting arguments 16 JJ J I II J • ×

Permuting function arguments
.hs file

-- option :: Parser s a -> a -> Parser s a

test :: Parser Char String
test = option "" (token "hello!")

Supplying the arguments of a function in the wrong order can result in
incomprehensible type error messages.
ERROR "Permuted.hs":4 - Type error in application

*** Expression : option "" (token "hello!")

*** Term : ""

*** Type : String

*** Does not match : [a] -> [([Char] -> [([Char],[Char])],[a])]

I Check for permuted function arguments in case of a type error

I There is no need to declare this in a .type file

Type inference directives - Permuting arguments 17 JJ J I II J • ×

Example
.hs file

-- option :: Parser s a -> a -> Parser s a

test :: Parser Char String
test = option "" (token "hello!")

I Improved error message:

(4,8): Type error in application
expression : option "" (token "hello!")
term : option

type : Parser a b -> b -> Parser a b
does not match : String -> Parser Char String -> c

probable fix : flip the arguments

Conclusion 18 JJ J I II J • ×

Conclusion

The major advantages of our approach can be summarized as follows.

I Type directives are supplied externally. As a result, no detailed knowledge of
how the type inference process is implemented is necessary.

I Type directives can be concisely and easily specified by anyone familiar with
type inferencing. Consequently, experimenting effectively with the type
inference process becomes possible.

I The directives are automatically checked for soundness. The major advantage
here is that the underlying type system remains unchanged, thus providing a
firm basis for the extensions.

I It becomes possible to report error messages which correspond more closely to
the conceptual domain of a combinator library.

Conclusion 19 JJ J I II J • ×

Summary and future work

fixed order
size of
types

standard
format

no
anticipation

specialized type rules
√ √ √ √

phasing
√

× × ×
siblings × ×

√ √

permuting × ×
√ √

Work in progress:

I Designing type inference directives for the Helium Prelude

I Employment of directives in education

I Extend framework to work for type classes

I More support to design specialized type rules

I Extending the facilities for phasing

