
Repair Systems

Automatic correction of type errors in functional

programs

Arjen Langebaerd

Master’s thesis

Thesis number: INF/SCR-05-79

Supervisors:

Jurriaan Hage

Bastiaan Heeren

July 2006



2



Abstract

Type errors in functional programs can often produce confusing error messages. Traditional
compilers merely state the fact that two or more types are in conflict with each other,
often including additional type variables in the reported types that were introduced during
inferencing. In some compilers the application of heuristics that recognizes instances of cer-
tain errors can generate a more useful error message. This thesis aims to devise a method
that attempts to correct type errors in a more generic way, by defining a set of program
transformations and implementing a strategy to apply them.

Firstly, we will investigate which transformations will be useful and examine their prop-
erties. Secondly, an algorithm to search for solutions to type incorrect input expressions will
be described. Methods of optimizing the search process will be investigated. Finally we will
measure the effectiveness of the algorithm by applying it to a set of ill-typed programs that
were produced by students during the functional programming course at the University of
Utrecht.





Contents

Contents 3

1 Introduction 5

2 Preliminaries 7
2.1 Type systems and inferencing . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Type inferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Literature 9
3.1 Type inferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.1 Damas and Milner . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.2 Lee and Yi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Improving the quality of error messages . . . . . . . . . . . . . . . . . . . 9
3.2.1 Wand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Yang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Johnson and Walz . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.4 Rittri . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.5 Simon, Huch and Chitil . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.6 Stuckey, Sulzmann and Wazny . . . . . . . . . . . . . . . . . . . . 11
3.2.7 Heeren and Hage . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Automated repair systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3.1 McAdam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Transformations 15
4.1 Isomorphic transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Permutation of arguments . . . . . . . . . . . . . . . . . . . . . . 17
4.1.2 Currying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.3 Parenthesization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Non-isomorphic transformations . . . . . . . . . . . . . . . . . . . . . . . 24
4.2.1 Insertion and deletion . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Application of transformations 27
5.1 Solution space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Bottom up aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2.1 Verifying type-correctness . . . . . . . . . . . . . . . . . . . . . . . 29
5.2.2 The repair algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 31

3



5.3 Lazy evaluation of solution space . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 The Progress data type . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Combination and merging of solutions . . . . . . . . . . . . . . . . 32

5.4 Introducing repair costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5 Integration of concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Type propagation 37
6.1 Propagation rules for type information . . . . . . . . . . . . . . . . . . . . 37

6.1.1 Function application . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1.2 Conditionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.1.3 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Incorporating type context information . . . . . . . . . . . . . . . . . . . . 40
6.2.1 Narrowing down of the solution space . . . . . . . . . . . . . . . . 40
6.2.2 Directed repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 Combination of solutions, revisited . . . . . . . . . . . . . . . . . . 44
6.2.4 Updating the repair function . . . . . . . . . . . . . . . . . . . . . 44

6.3 Additional enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.1 Allowing incorrectly typed subexpressions . . . . . . . . . . . . . . 47
6.3.2 Allowing re-evaluation of transformed expressions . . . . . . . . . . 48
6.3.3 Integration of enhancements . . . . . . . . . . . . . . . . . . . . . 48

7 Results 51
7.1 Application of the repair system to selected expressions . . . . . . . . . . . 51

7.1.1 Permutation of arguments . . . . . . . . . . . . . . . . . . . . . . 52
7.1.2 Currying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1.3 Parenthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.1.4 Combination of transformations . . . . . . . . . . . . . . . . . . . 54

7.2 Application to real world programs . . . . . . . . . . . . . . . . . . . . . . 55
7.2.1 Number of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.2.2 Effectiveness of re-evaluation . . . . . . . . . . . . . . . . . . . . . 57

7.3 Analysis of the quality of solutions . . . . . . . . . . . . . . . . . . . . . . 58
7.3.1 Failed repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.3.2 Successful repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.4 Complexity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8 Conclusions 63

9 Future work 65

Bibliography 67

A Code 69
A.1 Data type definitions and their operations . . . . . . . . . . . . . . . . . . 69
A.2 Implementation of the transformations . . . . . . . . . . . . . . . . . . . . 70
A.3 Implementation of the combination algorithm . . . . . . . . . . . . . . . . 72
A.4 Implementation of the type checking algorithm . . . . . . . . . . . . . . . 72
A.5 Implementation of the repair algorithm . . . . . . . . . . . . . . . . . . . . 74

4 Contents



Chapter 1

Introduction

Compilers for modern functional languages such as ML and Haskell often generate cryptic
error messages when there is a conflict between two or more types of expressions, especially
when the types are large. One of the reasons for this is that it can be a nontrivial affair
to locate the real source of the error. While programmers that have been around for a
while are usually able to decipher such messages effectively due to their experience, novices
can be easily confused. Most of the recent work in this area has focused on developing
ways to enhance the accuracy of which error location is reported, such as the constraint
based inferencer that is part of the Helium compiler developed at the University of Utrecht.
Some attempts have been made at letting the compiler suggest fixes to repair the original
program. Usually this means detecting patterns in the incorrect program. The effectiveness
of this method depends on the quality and quantity of the collection of patterns. This thesis
aims to devise and implement a system to repair arbitrary ill typed expressions in a more
generic way using the Helium platform to determine which expressions should be given this
treatment.

5





Chapter 2

Preliminaries

In this chapter we will first introduce some of the notation and basic concepts that are
required for the rest of this thesis. If you are familiar with type systems in functional
languages you can safely skip this section.

2.1 Type systems and inferencing

This thesis deals with manipulating expressions in a purely functional language in order to
attempt to automatically repair a certain class of errors, namely type errors. In a functional
language every computation is done by the evaluation of expressions. The result of these
evaluations are values. Every value has a type associated with it. There are different kinds
of type.

• Type constants. These are the basic types such integers (Int), booleans (Bool),
characters (Char) etc, as well as type constructors such as the list ([ ]) and tuple (())
constructors

• Type variables. Type variables are used to represent types that are not yet known. In
this thesis type variables are used to denote polymorphic types in the target language,
as well as fixed types in the context of our repair system where we have yet to establish
the actual type.

• Type application. The application of types allows for the construction of type compo-
sitions, for example the application of the list constructor to a basic type represents
a list of those basic types, or the application of the function constructor (→) to a set
of types represents a function type.

2.2 Type inferencing

Every language construct that combines a set of subexpressions into a new expression
imposes limitations on the types that the subexpressions can assume. For example the if
construct combines three expressions, the guard which has to be a boolean type and the
then and else expressions that have to be the same type. These specifications of type
restrictions are called inferencing rules and allow an inferencing algorithm to determine

7



2.3 Unification

whether a certain expression is well typed or not. When an expression is not well typed this
means that one or more of the inferencing rules broke down and the type of the expression
as a whole could not be determined. The order in which the rules are applied is important,
different orderings result in different locations where a potential type error is located.

2.3 Unification

The process of inferring the type of an expression implies that we have to be able to
determine whether two different types are ’compatible’ with each other. Because some or
all parts of a type can be unknown (type variables are used as placeholders) at the time
of unification it is not simply a matter of testing two types for equality. For example, the
inference rule for the language construct of the conditional expression specifies that both
then and else branches must be of the same type. Assume that the then branch has
type v1 → Int (in which v1 is a type variable) and the else branch has type Bool → v2.
Unification of these two types is possible by substituting Bool for v1 and Int for v2. Thus
if unification is successful a substitution is the result. If unification fails because the types
are not compatible some kind of error must be returned.

8 Preliminaries



Chapter 3

Literature

In order to provide a context in which to place this thesis, this section will provide an
investigation of other research performed in the fields related to automated correction of
type errors. We will provide a summary for a selection of works that will detail how it relates
to the problem we have set out to solve.

3.1 Type inferencing

3.1.1 Damas and Milner

Milner and Damas [1], building on the work of Roger Hindley [4], have provided the basic
theory behind type-inferencing of a polymorphic functional language, the mechanism used
to statically determine the type of a given expression, if such a type exists. The algorithms
used to determine the type of an expression are known as the Hindley-Milner or the Damas-
Milner algorithm (also known as W). In a joint paper [1] Milner and Damas proved that
the algorithm will always find the most general type for an expression or declaration thereby
implying that the problem of determining well-typedness of a program is decidable.

3.1.2 Lee and Yi

Lee and Yi [6] presented a similar algorithm to W known as the M algorithm and proved
it correct with respect to the type inferencing rules. M is ”context-aware” meaning it
has the ability to access information about the context in which the current expression is
placed. Soon they came to the conclusion that M reports different but not necessarily
better locations compared to the W algorithm. To try and improve on this Lee and Yi
devised the G algorithm which can be considered a hybrid of of the W andM algorithms.

3.2 Improving the quality of error messages

One of the problems with type-inferencing is that the location where type inconsistencies are
detected, depends on the order in which the inferencing rules are applied. Two well-known
inferencing algorithms: W which applies inferencing rules top-down and left-to-right, and
M, which pushes the expected type down and applies inferencing rules bottom-up will detect

9



3.2 Improving the quality of error messages

a type-inconsistency at different locations. With both algorithms there will be instances
where the location of the reported error will not be the location where the programmer
actually made the mistake and reporting of this errant location often gives rise to confusing
error messages. This phenomenon has prompted researchers to try and find algorithms that
will eliminate this fixed bias in an effort to give more precise error messages.

3.2.1 Wand

Wand [12] proposes to keep track of which inferencing rules have contributed to a particular
type inconsistency. Reporting of all the elements of the program that contribute to the error
gives a more complete picture, although it has the disadvantage that the size of the error
message can grow beyond what is deemed desirable in many cases.

3.2.2 Yang

Yang [5],[13] solved the problem of eliminating bias in location of the error site by cre-
ating what is known as the UAE algorithm. This algorithm computes an assumption set
for a node in the abstract syntax tree by unifying the sets of its children. This bottom-up
method of inferencing assures that when an inconsistency is detected this will happen at
the deepest construct that contains the inconsistency. Apart from bottom-up computation
of the assumption sets an additional environment that records information about predefined
functions is passed along from the top of the expression to the leaves. Because the UAE

algorithm will prove useful in our own approach we will now present a more detailed exam-
ination.

The UAE algorithm is based on the unification of assumption sets. Children of expres-
sions are typed independently and checked for consistency at their root. If an inconsistency
is detected, it means that there exists at least one entity in the assumption set of more
than one of the children and that the typings of the entity in the different sets cannot be
unified successfully. Because unification takes place at the root of the expression, both
sites that contribute to the inconsistency are found at the same time, and can be treated
equally thereby eliminating the inherent bias of theW andM algorithms. Yang defined the
algorithm for a language based on λ-calculus including various basic types, conditionals and
let-constructs that allow polymorphic types. A small fragment of the algorithm is shown in
Figure 3.1. It shows how one particular construct, namely function application, is handled.

First, the algorithm is called recursively on both of its subexpressions, storing the types
found in τ1 and τ2 and the type-environments in TE 1 and TE 2. According to the infer-
encing rules, the type of the function e1 (τ1) should be equal to the type of a function that
takes e2 as its argument and returns an as of yet unknown type (β). The EnvConstraints
function looks up all variables that are shared in both environments and UnifyConstraintSet
unifies them. The end result is the type of the function return value (β), possibly refined
by substituting information found in S , and the combination of the environments of each
subexpression.

10 Literature



Improving the quality of error messages 3.2

Figure 3.1 Inferring the type of a function application in Yang’s UAE algorithm

e1 e2 →
let

(τ1,TE 1) = UAE (TE , e1)
(τ2,TE 2) = UAE (TE , e2)
β be a fresh type variable
∆ = {τ1

.= τ2 → β}∪ EnvConstraints (TE 1,TE 2)
S =UnifyConstraintSet (∆)

in
(S (β),S (TE 1 ⊕ TE 2))

3.2.3 Johnson and Walz

Johnson and Walz [11] realized that in a lot of practical scenarios the number of correct
uses will be greater than the number of incorrect uses. Using a maximum flow technique
to determine the most likely constraints to be in error the information is presented to the
programmer in an editor using a highlighting scheme.

3.2.4 Rittri

Rittri [8] describes a way of determining the location of the inconsistency by creating an
interactive system that will, upon detecting an inconsistency, formulate a series of ques-
tions to establish the types that the programmer expects certain expressions to have and
comparing those with the types that have been inferred by the system.

3.2.5 Simon, Huch and Chitil

Another interactive method, suggested by Simon, Huch and Chitil [9] allows the programmer
to select bits of code and have the system provide typing information, supported visually
by the use of colors. If a particular selected subexpression cannot be typed, the system will
suggest a number of possible types so the programmer can choose the one thought to be
correct. The method has been partially implemented and is known as TypeView. TypeView
operates on a small functional language including lambda, let and case constructs. Upon
querying the type of a certain expression, the tool will display a list of types that the
expression should be compatible with, while coloring the locations in the program that gave
rise to these typings. When querying expressions in ill-typed programs some of the types in
the list will be incompatible. By allowing the user to disregard the types that are deemed
correct, the list of possible locations where the inconsistency is caused can be narrowed
down. For some programs however the list of types provided for an expression may be
large and work is ongoing to provide the tool with a mechanism that enables it to be more
selective about the possible typings it reports.

3.2.6 Stuckey, Sulzmann and Wazny

Stucky, Sulzman and Wazy [10] also devised a method to aid the programmer to locate the
source of type errors interactively. Their tool, known as the Chameleon Type Debugger will

Literature 11



3.3 Automated repair systems

upon selection of a particular expression that cannot be typed, highlight all of the other
pieces of code that contribute to the type inconsistency. The implementation supports
among other things inferencing of types for arbitrary locations, error explanations outlining
all locations involved and explanation of suspicious-looking types.

3.2.7 Heeren and Hage

Heeren and Hage [2] came up with a different strategy based on type inferencing using
constraints. In this approach the inferencing process is divided into three distinct phases:
collection, ordering and solving. The reason for this is that now the ordering of the con-
straints can be made independent of the way in which they are generated. In order to be
able to do a more global analysis of the program a typegraph is created. The typegraph
is a special data structure for storing information with the property that it is possible to
represent inconsistent programs. Using a typegraph makes it possible to apply heuristics
that capture expert programmer knowledge to maximize the chance of reporting the correct
location of the error or even suggest a fix. An implementation of this approach has also
been provided in the form of top, a type inferencing framework. This framework has been
used successfully in a Haskell compiler known as Helium [3].

3.3 Automated repair systems

Finding the right location of a type-error is critical in presenting the user with an accurate
error message. In some cases, however, this will not be enough and a better understanding
would be facilitated by letting the system provide a possible solution to repair the error.
While there can be no guarantee that the system will provide the correct solution, it is
possible that presenting the programmer with a modified type-correct version of his/her
own erroneous code will be an effective alternative to an error message that states only in-
compatible types and is often clouded further by the inclusion of intermediate type variables
that have been introduced by the inferencer. Interactive systems may be more accurate in
finding the right location of a type error, but by requiring an additional number of steps
to perform by the user, are also prone to bogging down workflow. For this reason we are
interested in a repair system that requires a minimum of user interaction and is able to give
constructive feedback in the form of an error message.

3.3.1 McAdam

McAdam [7] proposes a way of using linear isomorphisms to rewrite expressions in order
to repair a type inconsistency so that the result can be presented as a suggestion to the
user. When regular unification fails, the clashing expressions are unified modulo linear iso-
morphism recording every morphism used and injecting those into the original expression.
Partial evaluation of the resulting expression will yield a type-consistent expression that can
be suggested as a fix. For example consider the following expression: filter (intList , even)
in which the function filter is a predefined function of the type: (a → Bool)→ [a ]→ [a ],
intList is simply a list of integers ([Int ]) and even is a function having type a → Bool .
Obviously this expression is in error. The author has made two mistakes: the arguments of
the function filter should be given separately, not paired and the order of the arguments
is also incorrect. McAdam’s reparation system is able to correct the error and will give a

12 Literature



Automated repair systems 3.3

helpful error message. Because of the two mistakes, two morphisms (which are ordinary
lambda terms) are required to correct the type-inconsistency: the argument has to be curried
(λf (x , y)→ f x y) and then subsequently the order has to be reversed (λf x y → f y x ).
The resulting morphism (λf (x , y)→ f y x ) can be applied to the original expression giving
a type correct expression, although it looks not particularly helpful yet in its current state:
((λf (x , y)→ f y x ) filter (intList , even)). Partial evaluation of this expression results in
the constructive error message displayed in Figure 3.2.

However, it is not always clear whether the expression can be partially evaluated to such a
level that the visual evidence of the morphisms that were applied is eliminated completely.
Additionally, allowing only linear isomorphism to be used ensures certain desirable proper-
ties (e.g.. reversibility) but can limit the number of program errors that can be successfully
handled by the system. Linear isomorphisms have the property that every type variable that
occurs on the lefthand side of the transformation will also occur exactly once in the right-
hand side. While this property has some advantages (eg. it limits the number of possible
unique transformations) it is also restrictive and will only be able to successfully unify two
inconsistent types in a small number of scenarios.

Figure 3.2 McAdam’s helpful error message

Try changing
filter (intList, even)

To
filter even intList

Literature 13





Chapter 4

Transformations

Before we can discuss the various transformations used in our repair algorithm we first need
to establish formally what the target language will be. In this paper we will focus on repairing
a subset of the Haskell functional language that includes all of the constructs represented
by our grammar shown in Figure 4.3. For simplicity we will not allow transformations to
let and lambda constructs themselves but we will allow transformations in their children.
By enforcing this rule we can avoid problems that could arise as a result of changing scope.
For example examine the code in Figure 4.1.

Figure 4.1 Ill-typed expression with nested let
let

f = head
in

let
f x = ¬ x

in
f 1

If we would allow changes to the inner let construct itself, this could result in the change
of scope for the use of the identifier f . If the inner let expression were to be selected,
a transformation could possibly replace it by only the body of the let and result in the
solution shown in Figure 4.2 which would still be incorrectly typed.

Figure 4.2

let
f = head

in
f True

While a mechanism could be devised to keep track of things like scoping of identifiers, this
will significantly increase complexity of the algorithm while it is unclear whether there is

15



anything to be gained. Instead our approach in this instance will have to select as input for
the repair algorithm either:

• the children of the inner let or

• the children of the outer let and treat the inner let as a block that cannot be altered
internally

or possibly both. The same holds for declarations and lambda abstractions. For this reason
the abstract syntax tree does not model these constructs explicitly: either a child of such an
expression is selected for repair or it will be represented by a Blk construct when it is part
of a selected expression, signifying its unalterable nature. The type-variable info is used to
store various sorts of information for every node.

Figure 4.3 Grammar representing a subset of Haskell

data AExpr info =
App info (AExpr info) [AExpr info ]
| If info (AExpr info) (AExpr info) (AExpr info)
| Tup info [AExpr info ]
| Lst info [AExpr info ]
| Var info String
| Blk info

In order to be able to perform repair operations we first need to define what it consists
of. A repair operation is either a single transformation or a composition of transformations
that transform an ill-typed expression into a well-typed expression. A single transformation
is defined as a function that takes an expression as input and produces a set of expressions
as output. Transformations that are applied to incompatible expressions will produce a
singleton set containing only the original input expression. We will use Transform as a
shorthand for this type. It is defined as is shown in Figure 4.4. In order to be able to

Figure 4.4 Type of a single transformation

type Transform = Expression → {Expression }

effectively use transformations in a repair algorithm, we will first need to establish some of
their properties.
Definition 1 (Composition of transformations). Suppose t and t ′ are well-defined trans-
formations and e is an expression. The composition of t and t ′ is defined as

(t ′ ◦ t) e = {e ′′ ∈ t ′ (e ′) | e ′ ∈ t (e)}

In other words, the composition t ◦ t ′ is the union of all of the sets that result from applying
the second transformation t ′ to each of the elements of the result of the application of the
first transformation t on the original expression e.
Definition 2 (Equality of transformations). Two transformations t and t ′ are equal if and
only if

16 Transformations



Isomorphic transformations 4.1

∀ e . t (e) = t ′ (e)

Definition 3 (Commutativity of composed transformations). Two transformations g and
h are said to be commutative if for every expression e, (g ◦ h) e = (h ◦ g) e.

Whether two transformations are commutative obviously depends on the nature of the
transformations themselves. In general we will find that this is not the case but for some
instances of specific compositions of transformations this property will hold which indicates
that the enumeration of all possible composition sequences will likely generate a plethora
of sequences that will yield the same result. Identification of such properties will enable us
to limit the number of sequences that have to be evaluated without changing the set of
solutions.

Definition 4 (Idempotency of transformations). A transformation t is idempotent if for
every expression e it holds that (t ◦ t) e = t e

The composition of two idempotent transformations is another example of a sequence that
can be disregarded safely without negatively affecting the number of unique solutions. How-
ever, occurrences of these sequences may not always be straightforward to recognize. In this
chapter we will investigate what properties we can identify for each of the transformations
that we would like to use.

The isomorphic transformations will be explored first. Later in the section we will ex-
plore what kind of non-isomorphic transformations can be included in order to improve the
error-repairing capabilities.

4.1 Isomorphic transformations

4.1.1 Permutation of arguments

This is a fairly straightforward transformation where the arguments of a function in a par-
ticular application are rearranged in a different order. Consider the following code

(λx y → if x then y else y + 1) 1 True

This is an example of an application that can be repaired by swapping the two arguments
to the lambda. As McAdam [7] showed, this operation can be expressed as the following
morphism

λf a b → f b a

Application of the morphism to the original expression results in

(λf a b → f b a) (λx y → if x then y else y + 1) 1 True

This expression is a well-typed expression. Here we can completely eliminate the morphism

Transformations 17



4.1 Isomorphic transformations

itself by using partial evaluation

(λx y → if x then y else y + 1) True 1

In this example there is only one (very obvious) solution to repair the type-inconsistency.
However, in type-incorrect function applications where there are at least two arguments of
the same type, there will be more than one solution. Consider the following expression

(λx y z → if z then x + 1 else y + 1) 1 True 2

In this case the application of the following morphisms to the original expression will produce
a new type-correct expression

(λf a b c → f a c b)
(λf a b c → f c a b)

In fact if we assume that there are n groups of arguments that have the same type and gx

represents the number of arguments in group x, then the number of solutions is equal to

x=n∏
x=1

gx!

In a function application that has a total of 6 arguments in which there are 2 groups of 3
arguments with the same type, which is not uncommon, the number of solutions would be
3! · 3! resulting in a total of 36 solutions. Not all of these solutions will provide the same
degree of meaningful information to a programmer if they were to be presented however
since clearly a solution that makes a change in the order of arguments that is not required
will have less chance of being the solution that the programmer intended then a solution
that leaves a larger number of arguments in their original position. Even if we measure
the quality of a solution by the number of arguments that have had their order changed
and selecting only those solutions with maximum quality, it is still possible to be left with
a multitude of solutions that have an equal number of order changes. How we can dis-
cern the quality of solutions will be examined later, For now we generate all of the possible
permutations of arguments and filter the results on the condition that they are type-correct.

Function permute (see Figure 4.5) will generate all of the possible permutations of ar-
guments to a given function. Since a single permute will generate all of the possible
arrangements of arguments, composition of permute on the same application node will not
provide any additional candidates. In other words, function permute is idempotent.

Lemma 1 (Permute is idempotent). Composition of function permute with itself is idem-
potent:

permute ◦ permute = permute

Proof. Follows from definition 4 and the definition of function permute (Figure 4.5)

18 Transformations



Isomorphic transformations 4.1

Figure 4.5 Generation of permutations

permute :: EmptyInfo info ⇒ Transform info
permute (App f a) = {App emptyInfo f a ′ | a ′ ∈ perms (a)}
permute = [ ]

4.1.2 Currying

Another commonly found type-error is the invalid use of currying in function applications.
Some functions require their arguments to be a pair while others require their arguments
simply juxtaposed. For example consider the following expression

(λ(x , y)→ x + y) 1 2

In this case, the arguments should have been given as a pair. This transformation can
be written as the morphism λf a b → f (a, b). The opposite transformation takes an
application that has its arguments paired and separates them as in the following example.

(λx y → x + y) (1, 2)

This type-error can be repaired by application of the morphism λf (a, b) → f a b. For
applications that involve a greater number of arguments however the possible pairing-
configurations increases, resulting in a greater number of possible morphisms to apply.
Knowing which morphism to apply to fix the error involves finding out in what particular
configuration the function that is being called expects its arguments. As a first approach
to the problem we will generate all of the possible pairings and let the type-checker decide
which one is valid. The transformation to curry applications is shown in Figure 4.7 and its
companion to uncurry applications is shown in Figure 4.6. Instead of altering the function
call it would also be possible to transform the pattern in the definition of the function that
is being called. However in our algorithm we will refrain from doing so for the following
reasons:

• Including transformations for both the definition and the application of a function
does not lead to any additional unique solutions.

• Functions included from a library must be assumed correct anyway.

• Allowing transformation of the definition of a function could potentially break the
program in other locations where the same function is called.

The last reason is a double edged sword since it ignores the scenario where we have a
locally defined function and multiple uses of that function that all use their arguments
in the same way but are inconsistent with the definition. In this scenario the most likely
solution would be to correct the function definition so that all of its uses become consistent.

As with permute, the curry transformation generates all possible ways to eliminate tu-
ples and its counterpart uncurry generates all possible ways to introduce them. Therefore,

Transformations 19



4.1 Isomorphic transformations

the composition of these two transformations with themselves will not provide any new
candidate expressions.

Figure 4.6 Uncurrying of applications

uncurryTuple :: EmptyInfo info ⇒ Transform info
uncurryTuple (App info fun args) =

let
currySingle (Tup telems) = telems
currySingle notup = [notup ]

in
[App info fun args ′ | args ′ ← (optmap currySingle args [[ ]]),

or (map isTuple args)]
uncurryTuple = [ ]

Figure 4.7 Currying of applications

curryTuple :: EmptyInfo info ⇒ Transform info
curryTuple (App info fun args) =

let
buildapp (l , (ain, aout)) =

App info fun (l ++ [Tup emptyInfo ain ] ++ aout)
split2 = splitTwice 0 args

in
map buildapp split2

curryTuple = [ ]

4.1.3 Parenthesization

Erroneously omitting parentheses or writing them while none are required are both com-
mon mistakes made by novice programmers. In previous transformations we have seen that
rewriting of a single construct was sufficient to correct the error. Parenthesizing a particular
subexpression however requires a rewrite of a larger part of the tree. In order to understand
this we’ll examine the following expression:

head filter even [1 . . ]

in which head is a function having type [a ] → a, filter is a function with type (a →
Bool)→ [a ]→ [a ] and even is a function that has type a → Bool . In this case the author
forgot to parenthesize: the expression should have been head (filter even [1 . . ]). While
this appears to be a relatively straightforward fix, let us examine what the abstract syntax
trees for both expressions look like. The erroneous expression will have a tree that looks
like Figure 4.8. The fixed tree in shown in Figure 4.9. Examining the difference between
the two syntax trees shows that the transformation required will have to perform changes

20 Transformations



Isomorphic transformations 4.1

on multiple nodes.

Figure 4.8 Incorrect expression without parenthesis

filter

App

App

even

App

[1..]

head

Figure 4.9 Correct expression with parenthesis

App

App

filter

[1..]

even

head App

This transformation is in fact the composition of two transformations that change the order
in which the applications are evaluated. The building block transformation, which we will
call swap, can be written as a morphism in the following manner.

swap ((f a) b) = {f (a b)}

A visual representation of the transformation is show in Figure 4.10. This transformation
has an inverse which we will call iswap (Figure 4.11) that achieves the exact opposite effect.

iswap f (a b) = {(f a) b}

In the example mentioned earlier the application of two normal swap’s will repair the incon-
sistency. The original expression head filter even [1 . . ] can be written as (((head filter) even) [1 . . ]).
The first application of swap will occur at the inner parenthesis-level and substitutes the
values of f , a and b with head , filter and even respectively. The result of the first swap is:

Transformations 21



4.2 Isomorphic transformations

(swap ((head filter) even)) [1 . . ] = (head (filter even)) [1 . . ]

The second application occurs at the outer level and substitutes the values of f , a and b
with head , (filter even) and [1 . . ] respectively. The end result looks like:

swap ((head (filter even)) [1 . . ]) = head (filter even [1 . . ])

Figure 4.10 Visual representation of swap

a b

App c

App

App

App

a

b c

Figure 4.11 Visual representation of iswap

App

App

a

b c a b

App c

App

The implementation of the swap transformation is listed in Figure 4.12. The swap function
determines all possible ways to split the arguments of a function application in three groups.
The first and last groups contain arguments that will be left unaltered, the middle group
contains arguments that will be used to build a new application that will be substituted in
place of those arguments.

The implementation of the iswap function is shown in Figure 4.13. It builds new possible lists
of arguments by examining the nature of the original arguments in a function application.
Whenever an argument is found that is an application itself, two lists will be built: one will
include this argument unaltered, the second will remove the application and substitute its
function and arguments as arguments to the parent application.

22 Transformations



Isomorphic transformations 4.2

Figure 4.12 Swapping an application

swap :: EmptyInfo info ⇒ Transform info
swap (App info fun args) =

let
splitTwice ml elems =

let
minlength = filter ((>ml) . length . fst . snd)
splt as = zip (inits as) (tails as)

in
concatMap

(minlength . (λ(l , r)→ (map (λrs → (l , rs)) (splt r))))
(splt elems)

buildapp (l , (ain, aout)) =
App emptyInfo

fun
(l ++ [App info (head ain) (tail ain)] ++ aout)

split2 = splitTwice 1 args
in

map buildapp split2
swap = [ ]

Figure 4.13 Inverse of swapping an application

iswap :: EmptyInfo info ⇒ Transform info
iswap (App fun args) =

let
swapArgs (a : as) rlists =

let newrlists =
case a of

app@(App fn arg)→
(map (++[app ]) rlists) ++
(map (++[fn ] ++ arg) rlists)

noapp → map (++[noapp ]) rlists
in

swapArgs as newrlists
swapArgs [ ] rlists = rlists

in
[App emptyInfo fun args ′ |

args ′ ← swapArgs args [[ ]], or (map isApp args)]
iswap = [ ]

Transformations 23



4.2 Non-isomorphic transformations

4.2 Non-isomorphic transformations

4.2.1 Insertion and deletion

When traditional compilers try to infer function applications where one or more arguments
have been forgotten, the error message can be especially confusing. For example consider
the function application f a b where we assume that the application is type-correct and
that the type of a is not equal to the type of b. Now assume that the programmer has
forgotten to include the first argument and has written f b instead. The inferencer will now
try to unify the type of the first argument that f expects with the totally unrelated type
of b. A transformation that would be capable of introducing an argument with the right
type for a would be valuable. For a more concrete example consider the following expression.

(λx y z → if z then x else y) 1 True

Intuition tells us that either the first or the second argument have been omitted, since
the last argument has type Bool and is probably supposed to be used as the guard in
the if -expression. Introduction of an additional argument would make this expression type-
correct. The following morphisms, when applied to the original expression would both repair
the inconsistency.

(λf x y → f a x y)
(λf x y → f x a y)

where a is a new variable having type Int . Both morphisms are equally valid: there is no
reason to prefer the first over the second or vice-versa. The transformation to fix these
kinds of type-inconsistencies will have to generate solutions that include all of the possible
places where arguments can be inserted. In the case of this example that would include the
generation of the solution where we assume that the first two arguments are correct and
the last one has been forgotten (morphism (λf x y → f x y a)) but since that will result in
another type-incorrect expression the type-checker will drop this variant. The actual trans-
formation to insert missing arguments in every possible location is listed in Figure 4.14.

Figure 4.14 Insertion of arguments

insertArgument :: EmptyInfo info ⇒ Transform info
insertArgument (App info fun args) =

let
argsplit = zip (inits args) (tails args)
newarg = Blk emptyInfo
newarglists =

case args of
[ ]→ [[newarg ]];
→ map (λ(i , t)→ (i ++ [newarg ] ++ t)) argsplit

in
[App emptyInfo fun args ′ | args ′ ← newarglists ]

insertArgument = [ ]

24 Transformations



Non-isomorphic transformations 4.2

To handle cases where a programmer supplies more arguments than are required, the op-
posite transformation, deletion of certain arguments, can also be convenient. This can be
dangerous however, if we allow this transformation to be performed, deletion of all of the
arguments of the toplevel application of a program for which a type-signature has not been
provided results in a type-correct program, but will most likely not be what the programmer
had in mind. Consider the following expression.

(λx y → x + y) 1 2 3 .

Possible morphisms that result in type-correct expressions include the following

(λf a b c → f a b)
(λf a b c → f a c)
(λf a b c → f b c)
(λf a b c → f a)
(λf a b c → f b)
(λf a b c → f c)
(λf a b c → f )

The transformation is shown in Figure 4.15. If no context is provided, the number of
possible solutions can grow enormously when allowing this transformation. While certain
type-incorrect expressions cannot be repaired without it, allowing a large number of these
types of transformations will however most likely not enhance the quality of the solution.
In the next chapter we will outline a strategy for applying the transformations that we have
seen that will take into account the potentially detrimental effects of allowing large numbers
of these kinds of transformations.

Figure 4.15 Deletion of arguments

deleteArgument :: EmptyInfo info ⇒ Transform info
deleteArgument (App info fun args) =

let
delElem as i = (take (i − 1) as) ++ (drop i as)
newarglists = map (delElem args) (enumFromTo 1 (length args))

in
[App info fun args ′ | args ′ ← newarglists ]

deleteArgument = [ ]

Transformations 25





Chapter 5

Application of transformations

In the previous chapter we have seen that the application of a single transformation to a
small expression can already result in a multitude of possible solutions. For many real world
occurrences of type errors however a combination of transformations will be required to pro-
duce an adequate solution. Simply combining all of the possible transformations in every
possible order will lead to an enormous explosion of the number of altered expressions that
need to be evaluated. As with a single transformation like permute, we are most interested
in solutions that require a minimum number of alterations to the original expression. But
just minimization of the number of transformations is insufficient. For example compare
the single use of a permute transformation to the single use of a deleteArgument trans-
formation. The powerful deleteArgument is capable of singlehandedly eliminating entire
subexpressions, which is probably not what the programmer had in mind. This is especially
dangerous when the expression in question is the toplevel expression of a program for which
no type signature has been provided, essentially enabling the repair algorithm to produce
solutions of any type as long as the expression itself is internally consistent. For example
consider the following program.

map ([1, 2], (+1))

Since no type signature has been provided the repair algorithm has no way of knowing what
type the programmer expects the program to have. Therefore by applying a single instance
of the deleteArgument transformation, a solution is provided having type (a → b)→ [a ]→
[b ] (the type of map). However in this case what the programmer had in mind was probably
map (+1) [1, 2]. However to come to this expression we need the application of both the
curryTuple and permute transformations. To restrict the power to make radical changes in
expressions of transformations such as deleteArgument we introduce the notion of a repair
cost. Every transformation should be parametrizable with a cost that is proportional to
the degree of modification that it is capable of. The use of powerful transformations like
insertion and deletion can thus be avoided unless absolutely necessary by assigning a high
cost value to them. By minimizing cost instead of the number of transformations we will
be better able to distinguish the quality of a solution. In light of the example above, we will
want to make sure that the combined repair cost of the solution permute ◦ curryTuple is
lower than the cost of the solution deleteArgument .

27



5.1 Solution space

5.1 Solution space

The number of possible compositions of transformations grows with both the number of
distinct transformations and the maximum allowed number of transformations that make
up a composition. If we are using m unique transformations and a maximum of n transfor-
mations that make up the composition the total number of permutations (p) would be:

p(n, m) =
i=m∑
i=1

ni

So even if we limit ourselves to the number of transformations discussed in the previous
chapter (m = 7) with only a modest composition length (say n = 4) we already have 2800
possible compositions. How the amount of unique transformations and the maximum com-
position length of those transformations affect the total number of solutions is illustrated
in Figure 5.1.

Figure 5.1 Effect of the maximum composition length (n) and number of unique transfor-
mations (m) on the size of the solution space (p)

0

0.5

1

1.5

2

n

0

2

4

6

8

10

m

0

20

40
p

0

0.5

1

1.5

2

n

The function that transforms a single expression into an (infinite) list of all possible trans-
formed expressions uses the transitiveClosure function to construct the list of all possible
compositions of transformation primitives and applies them to the expression in the list-
comprehension shown in Figure 5.2.

If we allow each of these composed transformations to be applied to every node in the tree
and we remember that some of the transformations (possibly all of them!) in these compo-
sitions produce a multitude of solutions themselves, we are faced with an enormous amount
of possible tree-alterations to consider. So obviously a brute force strategy is unlikely to
produce satisfying results, after all we would like to debug our program before the end of

28 Application of transformations



Bottom up aggregation 5.2

Figure 5.2 Transformation of an expression

transform :: Transformations info → AExpr info → [AExpr info ]
transform transList aexpr =

[new | trans ← transitiveClosure transList ,new ← trans aexpr ]

the century if at all possible. In this chapter we will investigate what we can do to find a
high quality solution while minimizing the number of solutions that are considered.

5.2 Bottom up aggregation

Just applying all of the possible transformation compositions to every possible node in the
tree is of course a rather unsophisticated approach. It is likely that many subexpressions are
in fact correctly typed themselves. A better approach is to try and leave parts of the program
that are internally type-consistent unmodified as much as possible. To this end we will use
a bottom-up strategy reminiscent of the one used by the UAE algorithm described earlier.
It will inspect subexpressions and leave them intact as much as possible, only transforming
nodes whenever there is a clash between the types of subexpressions that are unified by their
root node. When a particular subexpression has been typed successfully this information
will be stored in the root of the that subexpression. When transformations are applied to
some parent of this expression that require it to be type checked again, this information
can be reused without recalculation of the type, in the entire subexpression.

5.2.1 Verifying type-correctness

Initially, when a new expression tree is used as input for the repair algorithm, only certain
nodes are already supplied with type information. Since the expression is built up from
terms for which the type is established already, every leaf in the syntax tree is already
typed, while every other node does not have a type yet (and quite possibly none exists if
there is an inconsistency). To determine the type of a node we determine the types of
the children and then make sure the conditions that are associated with the node hold by
applying the according inferencing rule. For example when we want to infer the the type
of the function application map even [1 . . ] we know that function application requires the
type of the arguments to match the function that is being applied. In this case that results
in the condition: v3 = v1 → v2 → β where v3 is the type of map, v1 and v2 are the types
of the first and second arguments respectively and β is the return type. If unification of the
types in the condition succeeds, it will result in a list of substitutions which are also stored
in every node. To represent type information we will use the type Typed as defined below.

type Typed = (Tp,FiniteMapSubstitution)

To represent the fact that some nodes in the abstract syntax tree have no type information
initially, the complete type to represent expressions becomes: AExpr (Maybe Typed). Any
solutions resulting from running the repair algorithm over these input expressions will have
to produce an expression for which all nodes can be typed, thus the type of solutions can

Application of transformations 29



5.2 Bottom up aggregation

be expressed as AExpr (Typed). Because the inferred types are stored in every node they
only have to be determined once. Whenever a transformation is applied, it will reset the
type information to Nothing so that the new expression can be evaluated again. To limit
the amount of duplicate code we will separate the gathering of information about a certain
type of node from the actual unification of the types in the conditions as much as possible.
For applications the information gathering is implemented as is shown in Figure 5.3.

Figure 5.3 Typing function application

typeAExpr :: AExpr (Maybe Typed)→ Maybe (AExpr Typed)
typeAExpr aexpr =

case aexpr of
App info fun args →

do (funTyped , (tp1 , s1 ))← recAExpr fun
(argsTyped , (tps2 , ss2 ))← recAExprs args
let makeApp x = App x funTyped argsTyped

β = freshTVar ()
superUnify makeApp info β (s1 : ss2 )

[(tp1 , foldr (.− > .) β tps2 )]
...

First the types and substitutions of the children are collected by recursive calls. Addition-
ally, a function is constructed that will rebuild the current node if it has been found to be
consistent. Then the conditions (in the case of application, there is only one condition) are
specified and the unification function is called with all of these results as arguments. The
unification function itself is shown in Figure 5.4.

Figure 5.4 Unification of conditions

superUnify :: (Typed → AExpr Typed)→ Maybe Typed → Tp →
[FiniteMapSubstitution ]→ [(Tp,Tp)]→ Maybe (AExpr Typed)

superUnify make maybeTyped β ss cs =
case maybeTyped of

Just t → return (make t)
Nothing →

do superSub ← unifySubstList synonyms ss
let (ts1 , ts2 ) = unzip (superSub |− > cs)
s ← mguMaybe synonyms (tupleType ts1 ) (tupleType ts2 )
let final = s @@ superSub
return $ make (final |− > β,final)

30 Application of transformations



Lazy evaluation of solution space 5.3

5.2.2 The repair algorithm

To avoid having to define the repair function for every possible type of node, we will define
a function that will construct the following:

• a collection of all of the children of the current node

• a function that takes a collection of children and is able to rebuild the original node

The main function repairExpr (Figure 5.5) takes care of this and passes the items as
arguments to the function that does the real work, superRepair which is shown in Figure
5.6. Since the implementation of repairExpr is similar for every type of node in the abstract
syntax tree only the definition for function application is shown here.

Figure 5.5 Main repair function

repairExpr :: Expr → [Expr ]
repairExpr App fun args =

let
children = fun : args
buildApp = λ(fun : args)→ App emptyInfo fun args

in
superRepair children buildApp

Function superRepair recursively calls repairExpr on each of the children in the list. This
results in a list of possible alternatives for every child. These alternatives must be combined
to produce a list of every possible combination of the children. This is achieved by simply
making every possible combination of the available children in each list. These combinations
are then verified for correctness by calling function check , where the node is rebuilt using
the provided function-argument makeNode, and is then type-checked: if the expression is
type-consistent it is returned unaltered, otherwise the transformations are applied.

Since every combination of alternate children is evaluated, we have to limit the list of
allowed transformation compositions for the algorithm to terminate at all because in some
cases the list of alternates will be infinite if we do not. Also, the current algorithm does not
keep track of repair costs. This implies we are producing a list of solutions that is sorted
by composition length, which we have concluded earlier to be inadequate for making sure
the best solution comes out on top. In the next sections we will implement a way to only
evaluate the most promising solutions by making use of lazy evaluation and introduce repair
costs to the algorithm.

5.3 Lazy evaluation of solution space

5.3.1 The Progress data type

The main weakness with respect to the complexity of the algorithm lies in the fact that
we do not keep track of the amount of work we are doing to produce a certain expression.
For example consider we are currently evaluating the type-incorrect expression e. We find

Application of transformations 31



5.3 Lazy evaluation of solution space

Figure 5.6 Repair worker function

superRepair :: [Expr ]→ [Expr ]
superRepair children makeNode =

let
check :: [Expr ]→ [Expr ]
check newChildren =

let
newNode = makeNode newChildren
newExprs = transform newNode

in
case (typeCheck newNode) of

Just typedExpr → [typedExpr ]
Nothing → catMaybes . (map typeCheck) . newExprs

in
concatmap check . combine . (map repairExpr children)

that by applying transformation t1 (one of the first in the list of possible transformation
compositions) we produce a type-consistent expression so it is added to the list of possible
solutions. Now the algorithm will try to apply other, more complex transformation com-
positions to e, to see if there are any other solutions. Assume that it does not find any
consistent alternatives until we arrive at the composition tn ◦ . . ◦ t2 ◦ t1 where n is rather
large. This solution is added to the list as the second possible solution. To the algorithm
there is little difference between the two solutions while in fact there is a huge difference:
it took a very large amount of time to come up with the second solution compared to the
first. So large in fact, that it is questionable whether we are interested in this particular
solution at all. By keeping track of not only successful solutions but also failed attempts,
we can restrict the number of solutions that are to be evaluated rather than restricting the
number of transformation compositions. In other words, the amount of work required to
come up with a particular solution is the deciding factor when determining whether we are
interesting in it. Therefore we will encapsulate solutions in the data structure Progress
where both successful and failed solutions are represented. The definition of the Progress
data type can be seen in Figure 5.7.

Figure 5.7 The Progress data type

data Progress a = Success a | Fail

5.3.2 Combination and merging of solutions

Now we will redefine the function combine to adapt to the new data type. Every child
expression now produces a list of Progress a, so all children together produce a list of a list
of Progress a. We will combine this list of lists into a list of Progress [a ]. The process
is illustrated in Figure 5.8: in this example there is a list of alternate expressions for both
the function f and its argument a. To be able to build all of the variations of the whole

32 Application of transformations



Lazy evaluation of solution space 5.3

application f a the lists are combined. The function to combine two lists of solutions is
shown in Figure 5.9. For it to work correctly it requires the following:

• A function must be provided that maps instances of Progress a to an integer so that
the order in which they should be appended to the result list can be determined.

• The two lists that are to be combined must be ordered themselves with respect to
the ordering function for the algorithm to produce an ordered list of combinations as
in the merge of merge sort.

Figure 5.8 Combination of solutions for subexpressions

f

f a

a

Fail

...

Fail

Fail

Fail

Fail

Fail

Fail

Success (t1 f) cost=1

Success (t2 a) cost=2

Fail

Success [(t1 f , t2 a)] cost=3

Fail

Success ((t4 ◦ t3) a) cost=6

...

Success ((t3 ◦ t1) f) cost=7 Success [(t1 f , ((t4 ◦ t3) a)] cost=7

Fail
...

Success [((t3 ◦ t1) f), (t2 a)] cost=9

Success [((t3 ◦ t1) f), ((t4 ◦ t3) a)] cost=13

Figure 5.9 Function to combine lists of solutions

combine :: (a → Int)→ [Progress a ]→ [Progress a ]→ [Progress (a, a)]
combine f = rec
where

rec (Fail : xs) ys = Fail : (rec xs ys)
rec xs (Fail : ys) = Fail : (rec xs ys)
rec [ ] = [ ]
rec [ ] = [ ]
rec ((Success x ) : xs) ((Success y) : ys) =

let
as = [Success (x , z ) | Success z ← ys ]
bs = [Success (z , y) | Success z ← xs ]
cs = rec xs ys
g (i , j ) = f i + f j

in
(Success (x , y)) : (merge g as (merge g bs cs))

Application of transformations 33



5.3 Lazy evaluation of solution space

The algorithm starts at the head of the lists and examines one element of each at a time.
When Fail elements are encountered they are moved to the result list until two Success
entries (a and b) are discovered. The combination of these entries ((a, b)) is then added
to the result list. Now we have to combine the following:

• Success a with the remaining Success entries in the second list (as).

• The remaining Success entries in the first list with Success b (bs).

• The remaining Success entries of both lists (cs).

If we represent values in the first list along the the x -axis and values in the second list along
the y-axis, we can represent the combinations of these lists graphically as is shown in Figure
5.10.

Figure 5.10 Combination of solutions

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �� � � � � � �

�
�
�
�
�
�
�

�
�
�
�
�
�
�

� � �� � �

� � �
� � �
	 	 	
	 	 	

 
 
� � �

cs

(a, b)

bs

as

To unite these three lists we use the function merge which is shown in Figure 5.11.

Figure 5.11 Merging lists of combinations

merge :: (a → Int)→ [Progress a ]→ [Progress a ]→ [Progress a ]
merge f = rec

where
rec [ ] ys = ys
rec xs [ ] = xs
rec (Fail : xs) ys = Fail : (rec xs ys)
rec xs (Fail : ys) = Fail : (rec xs ys)
rec ((Success x ) : xs) ((Success y) : ys)
| f x < f y = (Success x ) : rec xs (Success y : ys)
| otherwise = (Success y) : rec (Success x : xs) ys

rec (x : xs) (y : ys) = x : y : (rec xs ys)

Merging of two lists is a little more straightforward: after processing all of the Fails until
two Successes are discovered, the ordering function is used to determine which one should
be placed up front and the rest of the list is determined by a recursive call to the remainder
of the lists.

34 Application of transformations



Introducing repair costs 5.5

The incremental definition of the combine and merge functions (i.e. there is not a single
part that requires manipulation of all of the elements of the lists at once) allows us to
specify up to how many solutions we want to return (by using the prelude function take)
without requiring the entire list to be evaluated.

5.4 Introducing repair costs

In the previous section we encountered the fact that a function is required to compare
solutions for ordering purposes. In the introduction of this chapter we discussed the need
for a method of keeping track of the cost of transformation compositions. In describing
the Progress data-structure, we did not explicitly specify the type of a, only that some
function having type a → Int must be provided. To realize a lazily evaluated list of
solutions that are ordered by the total cost of the transformations used we will substitute
(AExpr ,RepairAdmin) for a where RepairAdmin is the type shown in Figure 5.12.

Figure 5.12 Merging lists of combinations

newtype RepairAdmin = RepairAdmin ([String ], Int)

The list of strings will serve to keep track of which transformations were used to arrive at a
particular solution. This is useful during construction of the message that will inform the user
about the nature of that solution. The integer will be used to accumulate cost-information.
Every transformation will be initialized with a cost-value and the cost of compositions of
transformations simply corresponds to the sum of their individual costs. The global value
of RepairAdmin will have to be continually updated during calculations. By instantiating
it as a member of the Monoid class we can avoid having to manage the data explicitly and
thereby reduce code clutter. The instance definition is shown in Figure 5.13, it requires the
definition of an identity element and an associative binary operator over its elements.

Figure 5.13 RepairAdmin is instantiated as a member of class Monoid
instance Monoid RepairAdmin where

mempty = RepairAdmin ([ ], 0)
mappend (RepairAdmin (xs1 , i1 )) (RepairAdmin (xs2 , i2 )) =

RepairAdmin (xs1 ++ xs2 , i1 + i2 )

5.5 Integration of concepts

We are now ready to update the original ’naive’ algorithm with the concepts of lazy com-
bination of solutions and repair costs. The updated algorithm can be seen in Figure 5.14.

The call to recAExprs will now produce a list of solutions with type:

Application of transformations 35



5.5 Integration of concepts

Figure 5.14 Updated repair algorithm

superRepair make =
let

op (Success pairs) rest =
let

(aexprs, admins) = unzip pairs
app = make (map (fmap Just) aexprs)
newAdmin = mconcat admins
newapps = (transform transList app)
newExprs = concatMap (checkFail newAdmin) newapps

in
case typeAExpr synonyms app of

Just typedExpr →
Success (typedExpr ,newAdmin) : rest

Nothing → (Fail : (merge getCost newExprs rest))
op rest = Fail : rest

in foldr op [ ] . combiList getCost . recAExprs

Progress (AExpr Typed ,RepairAdmin)

for every child. These lists are combined using the new combination function and the results
are processed by op in the foldr . The original parent is reconstructed using function make
and is checked for type-correctness. When the expression is found to be correct, it is certain
that none of the possible solutions in the rest of the list will ever provide a cheaper solution:
the current element of the solution list was cheaper than all of the remaining elements, and
no additional transformations are necessary. When the expression is found to be incorrect,
a Fail is added to the result list, and the transformations are applied to by a call to the
transform function. Because we cannot be certain that the results of these transformations
will produce solutions cheaper than other candidates in the rest of the list, the results have
to be merged with rest .

36 Application of transformations



Chapter 6

Type propagation

6.1 Propagation rules for type information

Reparation of an abstract syntax tree that contains a type-inconsistency by traversing every
node in a bottom-up method, building up type correct alternative subtrees along the way is
a powerful way to come up with, in many cases, a large number of possible solutions. The
problem is that the method is a bit too powerful and as we have seen the corresponding
solution space can explode in relation to the number of unique transformations, the amount
of transformations that we are allowed to apply and the number of constituent parts of the
tree. While selecting solutions based on minimization of repair cost alone can provide a
satisfactory solution in some cases, it will be totally off the mark in others. By incorporating
type context into the picture we can finetune our selection process by quickly eliminating
those solutions that are type-consistent internally but don’t unify with the type that the
rest of the program expects from this particular subexpression. Sometimes this information
is not available, for example the selected expression is the root node of the tree and no
type signature has been provided. In the many cases where type-context information is
available however it would be preferable to make use of it while traversing the solution
space. In order to accomplish this, the previous algorithm for the bottom-up generation of
solutions will have to be expanded to enable type information flowing from top to bottom
to be incorporated in the generation process. For this purpose we need to establish exactly
in what way type information is propagated down into the tree. Once all of the available
type-information has been distributed we can generate variants of subexpressions as before
with the exception that now the context type can be taken into account. The complete
algorithm will have three distinct stages:

• Stage 1. Any available type information arising from the context will be propagated
from top to bottom.

• Stage 2. Bottom up building up of subexpressions taking available type-information
into account

• Stage 3. A conflict has been found. We can try to repair this conflict by applying
transformations to the current node as before. Unlike before however we can now
also build alternate solutions by initializing special instances of the first stage with
more detailed and/or different type information that is to be pushed down.

37



6.1 Propagation rules for type information

Previously our algorithm was limited to only being able to apply transformations to the
node where an inconsistency was detected. Allowing a greater number and more complex
transformations could in theory compensate for this limitation somewhat, but will result
in even worse running times. Propagating type information downward enables us to, upon
detecting a type conflict in an expression, find out whether we can establish a type for
the inconsistent node anyway by ignoring the type constraints posed by one or more of its
children. To limit the potential for large modification we would like to ignore the constraints
of as few of the children as possible. Unification of the conditions with respect to the sets
of enabled children can produce a more specialized type for whatever children where not in
the set. Re-evaluating these children by pushing down the more specialized types enables us
to apply transformations on any part of the tree beneath the parent where the inconsistency
was detected.

6.1.1 Function application

If the expected return type of the application of a function f is assumed to be β, then we can
determine that the type of the function being applied is λα1 → λα2 → ...→ λαn → β for
some types α1, α2, ..., αn where n is the number of arguments f is being applied to. Once

Figure 6.1 type propagation over function application

f a1 a2 an

β

α→ β α1 α2 αn

App

every alternative of each child has been validated and their types have been established, all
of the combinations of the alternatives are inspected and there are a number of possible
scenarios to consider:

• the arguments do not match the function type;

• there is a mismatch between the amount of arguments the function expects and the
actual number of arguments supplied;

• the arguments match the function type, but the context type does not match the
return type;

• the arguments match the function type and the context type matches the return type.

The first two scenarios signify an internal inconsistency and can be handled as before.
The second scenario is something we have not encountered before and recognition of this
situation enables us to take action in order to produce a subexpression that will deliver the
expected return type. As an example consider the simple code fragment in Figure 6.2:

38 Type propagation



Propagation rules for type information 6.1

Figure 6.2 Type incorrect program fragment containing function application

g :: a → a
g = ...

f :: Int
f = g True

The selected expression in this case will be g True and while internally consistent the ex-
pected return type will be Int due to the presence of the type signature. The types that will
be pushed down here are α → Int for the function and α for the single argument. During
evaluation of the function, unification of α → Int with β → β will yield the substitution
{α := Int } while evaluation of the argument leads to unification of α with Bool , yielding
the substitution {α:=Bool} as a result. Clearly these substitutions are in conflict with
each other. Apart from applying transformations to the application node we build a list of
possibilities to initialize special instances of stage 1. In this example possible elements of
this list would include:

• Keeping the function fixed and re-evaluating the argument pushing down Int for α

• Keeping the argument fixed and re-evaluating the function pushing down Bool → Int

In the last scenario there are no problems and no further action is necessary

6.1.2 Conditionals

If the expected type of the expression is β as before, the type of the guard-expression must
be Bool while both the left-branch and the right branch must have type β. As an example
consider the code in Figure 6.4.

Figure 6.3 type propagation over conditionals

guard elsethen

β

Bool β β

If

Figure 6.4 Type incorrect program fragment containing a conditional expression

f :: Bool → Int
f x = if x then 1 else False

The conditional expression inside the declaration of f will be selected as the culprit: it

Type propagation 39



6.2 Incorporating type context information

contains an internal inconsistency. However at first sight it is not entirely clear whether the
result of the expression must produce something of type Int or Bool . This is where context
can help decide which of the two alternatives to favor, the type signature of function f
requires the return type to be Int .

6.1.3 Tuples

For tuples, we must ensure that β is unifiable with (α1, α2, . . , αn) for some types α1, α2,
.. , αn .

Figure 6.5 type propagation over tuple construct

β

α1 α2 αn

Tup

6.1.4 Lists

For lists we must ensure that β is unifiable with [α ] for some type α.

Figure 6.6 type propagation over list construct

β

α α α

List

6.2 Incorporating type context information

6.2.1 Narrowing down of the solution space

Now we will extend the original algorithm with the objective of limiting the number of pos-
sible solutions by using type context information. The function typeExpr which previously
took care of determining whether an expression was well-typed or not will be updated to
take this information into account. Instead of using a fresh type variable for the type of
the whole expression we will now substitute β to enforce compliance with the expected
type. The updated function is called typeAExprWithContext and the case for function
application can be seen in figure 6.7.

40 Type propagation



Incorporating type context information 6.2

Figure 6.7 Typing an application using context

typeAExprWithContext :: AExpr (Maybe Typed)
→ Tp → Maybe (AExpr Typed)

typeAExprWithContext aexpr β =
case aexpr of

App info fun args →
do

childTypes ← typePropagate synonyms aexpr β
(funTyped , (tp1 , s1 ))← recAExpr fun (head childTypes)
(argsTyped , (tps2 , ss2 ))← recAExprs args (tail childTypes)
let makeApp x = App x funTyped argsTyped
superUnify makeApp info β (s1 : ss2 )

[(tp1 , foldr (.− > .) β tps2 )]

The recursive calls to the children are now accompanied by their respective expected types
which have been determined by the typePropagate function for which the case for ap-
plications is displayed in figure 6.8. Upon the first visitation of the application node no
information about the types of the arguments is known and thus fresh type variables are
instantiated to take their place. The expected type β is known however and this is reflected
in the definition of the expected type of the function.

Figure 6.8 Propagating expected type of an application to its function and arguments

typePropagate :: AExpr info → Tp → Maybe Tps
typePropagate expr β =

case expr of
(App args)→

let
argTypes = freshVars (length args)
funType = foldr (.− > .) β argTypes

in
Just (funType : argTypes)

6.2.2 Directed repair

As was mentioned before, apart from ruling out a host of incompatible solutions upon typ-
ing the current node, we can also try to generate more accurate solutions by re-evaluating
specific branches in the expression-tree when more detailed type information has become
available. Upon detection of a type conflict we can determine whether disregarding the
constraints posed by one or more of the children of the current expression solves the type
conflict. To realize this we implement the function findConflict shown in figure 6.9.

Type propagation 41



6.2 Incorporating type context information

Figure 6.9 Determining sets of children that unify successfully with respect to the conditions
associated with the current expression

findConflict :: [AExpr Typed ]→
(Tps → [(Tp,Tp)])→ [[(AExpr Typed ,Bool)]]

findConflict exprs makeConditions = rec exprs 1
where
rec [ ] = [ ]
rec as omitAmount =

let
perms = (doPerms as omitAmount)
typesAndConditions = evalTypesAndConditions makeConditions
permsWithConditions =

zip perms (map typesAndConditions perms)
(unifiedPerms, ) =

unzip (filter (doUnify syns) permsWithConditions)
in

if (length unifiedPerms) > 0
then unifiedPerms
else rec as (omitAmount + 1)

The arguments of the function consist of the list of children of the the current expression
and a function that takes the list of types that have been determined for every child and
produces the list of conditions associated with the current expression. The result is a list
of lists of children coupled with a boolean that indicates whether this child is enabled or
not. We would like to disable as few children as possible therefore we start disabling a
single expression and increase the number until there is at least one permutation in the set
for which unification succeeds.. All of the permutations for the current amount of disabled
children are calculated after which they are paired with their types and conditions in the
function evalTypesAndConditions (Figure 6.10).

Figure 6.10 Generating the conditions for sets of enabled children

evalTypesAndConditions :: ([Tp ]→ [(Tp,Tp)])→
[(AExpr Typed ,Bool)]→ ([Tp ], [(Tp,Tp)])

evalTypesAndConditions makeC perms =
let

types = map getType perms
in

(types,makeC types)
where

getType (expr ,True) = fst (getInfo expr)
getType ( ,False) = freshTVar ()

For an enabled child its previously determined type is used, while for a disabled child a fresh
type variable is substituted. Subsequently the sets of enabled and disabled children are

42 Type propagation



Incorporating type context information 6.2

checked by the function doUnify (Figure 6.11) that tries to find out if they can be typed
correctly.

Figure 6.11 Unifying a combination of enabled and disabled children

doUnify :: ([(AExpr Typed ,Bool)], ([Tp ], [(Tp,Tp)]))→ Bool
doUnify (exprs, ( , cs)) =

let
enabledExprs = filter snd exprs
substs = map (λe → snd . getInfo . fst $ e) enabledExprs
unified = (unifySubstList syns substs)

in
case unified of

Just superSub →
let

(ts1 , ts2 ) = unzip (superSub |− > cs)
s = (mguMaybe syns (tupleType ts1 ) (tupleType ts2 ))

in
case s of

Just → True
Nothing → False

→ False

Function doUnify collects the substitutions for every enabled expression and combines them
using unifySubstList . When unification succeeds, the resulting substitution is applied to
all the conditions and every lefthand side of a condition is unified with its righthand side at
once by encapsulating both left and righthand sides within a tuple.

As an example consider the expression in Figure 6.4 once more. The findConflict function
will be called once the inconsistency within the conditional expression has been detected.
The arguments will be the list of correctly typed children (in this case [(x : Bool), (1 :
Int), (True : Bool)]) and the function that given the types of the children produces the
conditions that validate the type correctness of the if construct. In this case that function
is (λ(g : t : [e ])→ [(g ,Bool), (t , β), (e, β)]) where β is the expected type of the expression
as a whole (in this case β is Int due to the presence of the type signature). Then all of
the permutations of enabled and disabled children are calculated when a single one is to be
disabled. In this case this will produce the following three possibilities.

[((x : Bool),False), ((1 : Int),True), ((True : Bool),True)]

[((x : Bool),True), ((1 : Int),False), ((True : Bool),True)]

[((x : Bool),True), ((1 : Int),True), ((True : Bool),False)]

For each of the possibilities the conditions are evaluated substituting a fresh type variable
that we will label γ. For the first possibility this yields the set of conditions [(γ,Bool), (Int , Int), (Bool , Int)].

Type propagation 43



6.2 Incorporating type context information

Clearly we cannot unify integers and booleans so this possibility will be rejected. The same
applies to the the second possibility which yields the set [(Bool ,Bool), (γ, Int), (Bool , Int)].
The third possibility however ([(Bool ,Bool), (Int , Int), (γ, Int)]) can be unified successfully
and yields the substitution {γ := Int }.

6.2.3 Combination of solutions, revisited

Apart from solutions produced by the application of transformations to the current node,
we now also produce a separate list of solutions that are a result of the re-evaluation of the
children of the current node. Successfully combining these lists using the merge-function
described earlier presents a problem however. Merging two lists of Progress values always
prepends any Fail values found in either list before the first Success value to the result
list. Now the possibility may arise that either of the two lists does not contain any solution.
This implies an infinite list of Fail values in one list and thus an infinite number of Fail
values will be prepended to the result list. For this reason we will modify the Progress data
type to allow Fail values to also store solutions so that their cost can be determined by
the getCost function. This allows comparison of the cost between a successful solution and
a failed one and we can choose to allow a cheaper successful solution to precede a more
expensive failed solution. The new definition for the Progress data type is shown in Figure
6.12.

Figure 6.12 The updated Progress data type

data Progress a = Success a | Fail a | Debug String deriving Show

This modification requires the merge and combine algorithms to be adjusted. For the com-
bination of two solutions we must now also take into account the possibilities of combining
a failed with a successful solution and two failed solutions. The updated combine algorithm
is shown in Figure 6.13.

Merging now requires us to compare not only two successful solutions but also every other
combination to maintain an ordered result list. The updated merge function can be seen in
Figure 6.14.

6.2.4 Updating the repair function

Now we have all the ingredients required to update the main repair function and enable it
to take advantage of the features that propagating type information make possible. The
updated function is displayed in Figure 6.15.

As can be seen in the body of the op-function whenever an expression is found to be ill-
typed, both the transformations are applied via the transform function and the expressions
that are a result of re-evaluation of the children using function getAltExprs are combined
using the merge function. Instead of the static Fail value that used to be prepended to the
result list whenever typing of a subexpression failed a call to the failedSolution function

44 Type propagation



Incorporating type context information 6.2

Figure 6.13 The updated combination function

doCombi :: Progress a → Progress a → Progress (a, a)
doCombi ((Success a), (Success b)) = Success (a, b)
doCombi ((Success a), (Fail b)) = Fail (a, b)
doCombi ((Fail a), (Success b)) = Fail (a, b)
doCombi ((Fail a), (Fail b)) = Fail (a, b)
combi :: (a → Int)→ [Progress a ]→ [Progress a ]→ [Progress (a, a)]
combi f = rec

where
rec [ ] = [ ]
rec [ ] = [ ]
rec (x : xs) (y : ys) =

let
as = map doCombi [(x , b) | b ← ys ]
bs = map doCombi [(a, y) | a ← xs ]
cs = (rec xs ys)
g (a, b) = f a + f b

in
(doCombi (x , y)) : (merge g as (merge g bs cs))

Figure 6.14 The updated merging function

merge :: (a → Int)→ [Progress a ]→ [Progress a ]→ [Progress a ]
merge f = rec

where
rec [ ] bs = bs
rec as [ ] = as
rec ((Fail a) : as) ((Fail b) : bs)
| f a < f b = (Fail a) : (rec as ((Fail b) : bs))
| otherwise = (Fail b) : (rec ((Fail a) : as) bs)

rec ((Success a) : as) ((Fail b) : bs)
| f a < f b = (Success a) : (rec as ((Fail b) : bs))
| otherwise = (Fail b) : (rec ((Success a) : as) bs)

rec ((Fail a) : as) ((Success b) : bs)
| f a < f b = (Fail a) : (rec as ((Success b) : bs))
| otherwise = (Success b) : (rec ((Fail a) : as) bs)

rec ((Success a) : as) ((Success b) : bs)
| f a < f b = (Success a) : rec as (Success b : bs)
| otherwise = (Success b) : rec (Success a : as) bs

rec (a : as) (b : bs) = a : b : (rec as bs)

Type propagation 45



6.2 Incorporating type context information

Figure 6.15 The updated repair function

superRepair :: (∀ a . EmptyInfo a ⇒ [AExpr a ]→ AExpr a)→
Tp → [Tp ]→ [AExpr (Maybe Tp)]→
[Progress (AExpr Typed ,RepairAdmin)]

superRepair make β childTypes =
let

op :: Progress [(AExpr Typed ,RepairAdmin)]→
[Progress (AExpr Typed ,RepairAdmin)]→
[Progress (AExpr Typed ,RepairAdmin)]

op (Success pairs) rest =
let

(aexprs, admins) = unzip pairs
node = make (map (fmap (Just)) aexprs)
transNodes = transform transList node
newAdmin = mconcat admins

in
case typeAExprWithContext synonyms app β of

Just typedExpr →
Success (typedExpr ,newAdmin) : rest

Nothing →
let

transExprs =
concatMap (checkFail newAdmin β) transNodes

altExprs =
getAltExprs synonyms make transList node pairs β

bothExprs = merge getCost altExprs transExprs
in

(failedSolution (getRealCost newAdmin)) :
(merge getCost bothExprs rest)

op (Fail pairs) rest =
let ( , admins) = unzip pairs

newAdmin = mconcat admins
in

(failedSolution (getRealCost newAdmin)) : rest
op (Debug str) rest = (Debug str) : rest

in foldr op [ ] . combiList getCost . (recAExprs childTypes)

46 Type propagation



Additional enhancements 6.3

is substituted that will create a solution with a dummy expression but with the actual
administration data (cost and repair log) that have accumulated up to this point.

6.3 Additional enhancements

There are still a few notable scenarios where the repair system will fail to find a cheap so-
lution while transformations exist that would be able to correct them. The problem is that
in these scenarios the transformations are not applied to the correct node. The following
scenarios demonstrate where the repair algorithm in it current state will fail to find a cheap
solution while it is obvious one exists:

• Because we only allow correctly typed subexpressions when building up our solution
list, a transformation that is capable of transforming itself as well as its children might
potentially produce a well-typed expression even though one of the children by itself
can not be typed correctly. As an example consider the following expression:

f (x y)

Assume that f has type a → a → a and x and y have type Int . Clearly the
application x y is in error, but by allowing it into the list of possible solutions for this
subexpression, we pave the way for the successful use of the iswap transformation at
the toplevel application:

iswap f (x y) = (f x ) y = f x y

• We rule out a number of solutions by restricting re-evaluation of subexpressions to
those produced by directly by combining the different alternatives of the children.
We do not currently allow re-evaluation and transformation of subexpressions to be
combined at the same level in the abstract syntax tree. As an example take a look at
the following expression:

g x y

Function g has type Int → [Bool ] → Bool , x has type Bool and y has type Int .
The only cheap solutions the repair system in its current state will find are changing
the type of g or x and y , deleting and inserting arguments and combinations of
those. Allowing re-evaluation of the transformed expression g y x which can be
produced for little cost (a single permute), results in the additional solution g y [x ]
in which the first argument was selected for re-evaluation and transformed by the
listify transformation.

To see what can be done about these limitations we will introduce some additional modifi-
cations to the repair system that will be described in the following sections.

6.3.1 Allowing incorrectly typed subexpressions

We modify the original repair function to include the original expression in the solution list
even if typing has failed, in the hope that transformations applied to parent nodes will also
fix the local inconsistency. Because including a solution into the result list requires the type

Type propagation 47



6.3 Additional enhancements

of that solution to be specified we will use a special type named errorType. Additionally
the repair log will be updated to indicate the status of this solution. Whenever the result
of a transformation types successfully, this status indication will be removed.

6.3.2 Allowing re-evaluation of transformed expressions

This enhancement presents a problem. Since the list of transformed expressions is infinite,
if we were to re-evaluate every transformed expression we would end up with an infinite
amount of lists. While all of the lists of re-evaluated transformed expressions are ordered
by cost, their concatenation is not. Therefore we would have to merge these lists, but
because you cannot be certain of the position of an element in the result list until you have
merged all of the input lists this would take infinite time. Because of this we have to pose a
restriction on the number of transformed expressions that we will allow to be re-evaluated.

6.3.3 Integration of enhancements

The repairAExpr function will be modified in two places to realize the enhancements
discussed in the earlier sections. Since both of the enhancements deal exclusively with the
case where typing of an original expression has failed, only this fragment is displayed in
Figure 6.16.

Figure 6.16 Enhanced handling of untypable expressions

let
transExprs = (transform transList node)
transExprsAlt =

foldr (merge getCost) [ ]
(map

(checkFail synonyms transList newAdmin τ True maxAltTrans)
(take maxAltTrans transExprs))

transExprsRest =
concatMap

(checkFail synonyms transList newAdmin τ False maxAltTrans)
(drop maxAltTrans transExprs)

allTrans = merge getCost transExprsAlt transExprsRest
altExprs =

getAltExprs synonyms make transList origNode pairs τ maxAltTrans
allExprs = merge getCost allTrans altExprs

in
(failedSolution (getRealCost newAdmin)) :

(Success (errorNode,
mappend newAdmin (RepairAdmin (["incorrect node"], 0)))) :

(merge getCost allExprs rest)

The list of transformed expressions is split in two at the position determined by the value
of maxAltTrans which has become an additional parameter of the repairAExpr function.

48 Type propagation



Additional enhancements 6.3

Both sides are still processed by the checkFail function which has also received an additional
parameter of type Bool to indicate whether re-evaluation is allowed. The results of re-
evaluated transformed expressions are merged while the others are simply concatenated.
These two lists are then merged again. As can been seen in the return expression, the result
list now contains a successful solution that is incorrectly typed to allow transformations to
its parent nodes to correct it.

Type propagation 49





Chapter 7

Results

In this chapter we will investigate how the repair algorithm performs when it is applied to
several selected input expressions to verify whether the behaviour of the repair system does
not produce unexpected results. Additionally we will test the repair system on samples
of a collection of ill-typed programs that were produced by students during the functional
programming course at the University of Utrecht. We will compare the results of the repair
system with the solutions that a human corrector would produce to give insight into the
practical applicability of such systems. Finally we will analyze what the relations are between
the size of the input expression, the parameters of the repair system and the efficiency of
the system.

7.1 Application of the repair system to selected expressions

In this section we will analyze the results of executing the repair algorithm using a set of
input expressions that have purposely been set up to contain a specific instance of a type-
error that can be repaired by a relatively simple transformation. This allows us to verify
that the repair system does not generate any incorrect solutions. Whether or not the results
actually match the expected results will likely depend on the cost values that have been
assigned to each of the transformations. By adjusting the cost values in such a way as to
maximize the agreement between expected and actual results in the largest possible number
of cases, we can build a template for transformation costs that will hopefully be equally
successful when the repair system is applied to real world samples in the next section. The
initial cost distribution of the transformations will be as follows:

• Isomorphic transformations: transformations that do not require the introduction of
new subexpressions or elimination of existing subexpressions should be preferred over
ones that do. Initial cost of isomorphic transformations will be 3.

• Non-isomorphic transformations: to discourage the widespread use of transformations
that will alter the structure of the original expressions their cost has been set to 4.

• Changing the type of a variable or block should only be tried as a last ditch effort.
Therefore the cost has been set to 6.

This distribution is not more than an educated guess and will likely need to be adjusted to
perform optimally.

51



7.1 Application of the repair system to selected expressions

7.1.1 Permutation of arguments

Function f perm shown below has been given the type Int → Char → Float → Bool and
arguments a, b and c have been given types Char , Int and Float respectively. The order
of the first two arguments has been reversed. We would expect the repair system to be able
to correct this in a single permutation transformation and produce the result f perm b a c.

f perm a b c

The output of the repair algorithm is shown in Figure 7.1. The results are ordered by repair
cost, cheapest solutions first. Only successful solutions are displayed.

Figure 7.1 The result of the repair algorithm when applied to f perm
results:
(Success (f_perm b a c)

repairinfo: (["permute"],3)
(Success (f_perm b a c)

repairinfo: (["permute","permute"],6))
(Success (f_perm a b c)

repairinfo: (["Type of variable: f was changed"],6))
(Success (f_perm {Int} a c)

repairinfo: (["insertArgument","deleteArgument"],8))
(Success (f_perm {Int} a c)

repairinfo: (["deleteArgument","insertArgument"],8))
(Success (f_perm b a c)

repairinfo: (["permute","permute","permute"],9))

We can see that the cheapest solution was indeed permuting the arguments once at cost =
3. Looking further in the list of results we can see that performing the same permutation
twice also yielded the correct result as did inserting a new argument with type Int followed
by deleting b. The same result could also be obtained doing the reverse, first deleting
b followed by insertion of an argument. Finally we observe that the error could also be
eliminated by changing the type of the function f perm.

7.1.2 Currying

To test the ability of the repair system to successfully apply currying and uncurrying trans-
formations we use as input the following expression:

(f curry1 (a, b))

The variable f curry1 has been assigned the type Int → Int → Int and both a and b are
of type Int . A single application of the curryTuple transformation should eliminate this
inconsistency which coincides what the repair system produces which is shown in Figure
7.2.

52 Results



Application of the repair system to selected expressions 7.1

Figure 7.2 The result of the repair algorithm when applied to f curry1
results:
(Success (f_curry1 a b) | cost=3 |

repairlog: ["curryTuple"]
(Success (f_curry1 (a,b)) | cost=6 |

repairlog: ["Type of variable: ’f_curry1’ was changed"]
(Success (f_curry1 a b) | cost=6 |

repairlog: ["curryTuple","curryTuple"]
(Success (f_curry1 b a) | cost=6 |

repairlog: ["curryTuple","permute"]
(Success (f_curry1 a b) | cost=6 |

repairlog: ["curryTuple","permute"]

To test the inverse transformation we use the following expression as input.

(f curry2 a b)

The variable f curry2 has type (Int , Int)→ Int and both a and b have type Int . A single
application of the transformation uncurryTuple should eliminate the type inconsistency.
Output of the repair system which is shown in Figure 7.3 produces the expected result.

Figure 7.3 The result of the repair algorithm when applied to f curry2
results:
(Success (f_curry2 (a,b)) | cost=3 |

repairlog: ["uncurryTuple"]
(Success (f_curry2 a b) | cost=6 |

repairlog: ["Type of variable: ’f_curry1’ was changed"]
(Success (f_curry2 (a,b)) | cost=6 |

repairlog: ["uncurryTuple","curryTuple"]
(Success (f_curry2 (a,b)) | cost=6 |

repairlog: ["uncurryTuple","permute"]
(Success (f_curry2 (b,a)) | cost=6 |

repairlog: ["permute","uncurryTuple"]

7.1.3 Parenthesis

To verify whether the repair system will correct expressions with misplaced parenthesis, we
run the algorithm on the following input expression.

(f swap a b)

Results 53



7.1 Application of the repair system to selected expressions

Here, f swap and a have type Int → Int and b has type Int . The swap transformation is
capable of repairing this expression (Figure 7.4.
For the reverse transformation we use the following input expression.

Figure 7.4 The result of the repair algorithm when applied to f swap
results:
(Success (f_swap (a b)) | cost=3 |

repairlog: ["swap"]
(Success (f_swap b) | cost=4 |

repairlog: ["deleteArgument"]
(Success (f_swap a b) | cost=6 |

repairlog: ["Type of variable: ’f_swap’ was changed"]
(Success (f_swap (a b)) | cost=6 |

repairlog: ["swap","iswap"]
(Success (f_swap (a b)) | cost=6 |

repairlog: ["swap","permute"]

(f iswap (a b))

The types of the variables are the following. The type of f iswap is Int → Int → Int and
the types of a and b are both Int . The results show a single application of iswap is the
most inexpensive solution in Figure 7.5.

Figure 7.5 The result of the repair algorithm when applied to f swap
(Success (f_iswap a b) | cost=3 |

repairlog: ["iswap"]
(Success (f_iswap a b) | cost=6 |

repairlog: ["iswap","iswap"]
(Success (f_iswap b a) | cost=6 |

repairlog: ["iswap","permute"]
(Success (f_iswap a b) | cost=6 |

repairlog: ["iswap","permute"]
(Success (f_iswap a b) | cost=6 |

repairlog: ["permute","iswap"]

7.1.4 Combination of transformations

To test the ability of the repair system to produce solutions composed of multiple transfor-
mations we will use the following expression.

f x y

54 Results



Application to real world programs 7.2

The type of function f is [Int ] → Bool → Bool while the types of x and y are Bool
and Int respectively. The solution which we hope to find for this expression should reverse
the order of the arguments of the function and re-evaluate y in order for the the listify
transformation to be applied. The output of the system is shown in Figure 7.6.

Figure 7.6 The result of the repair algorithm when applied to f reval

(Success (f x y) | cost=7 |
repairlog: ["re-evaluation","Type of identifier: ’f’ was changed"]

(Success (f [y] x) | cost=7 |
repairlog: ["permute","re-evaluation","listify"]

(Success (f {v10000306} x) | cost=8 |
repairlog: ["deleteArgument","insertArgument"]

(Success (f {v10000288} x) | cost=8 |
repairlog: ["insertArgument","deleteArgument"]

(Success (f ({v10002056 -> v10002054} y) x) | cost=10 |
repairlog: ["permute","insertArgument","flattenApp"]

While the solution that we expected was found, simply changing the type of identifier ’f’
proved to be a solution of equal cost, indicating that in this case the chosen parametrization
is not optimal.

7.2 Application to real world programs

In this section we will apply the repair system to a number of ill-typed programs that were
produced by students during the course of their functional programming class at the Uni-
versity of Utrecht. The repair system will be run with different parameters in order to judge
the effectiveness of different parts of the algorithm. First we will investigate the ability of
the system to produce a solution at various search lengths, taking into account the running
time. Secondly the system will be run with and without re-evaluation enabled to measure
the effectiveness of this feature. After this, in a selected number of cases where the repair
system failed to produce a solution, we will analyze the reason for this failure. Finally in
cases where the system did produce a solution we will try to compare this to the correction
a human would produce (this is subjective, and not always possible).

7.2.1 Number of solutions

To determine the optimal parameters the repair algorithm will be executed a large number
of times on a diverse set of input expressions. The relation between search length and
the number of solutions is most important. It can be expected that at some point trying
more and more transformations will not produce a significant amount of additional solutions
unless the amount of nodes in the expression is large. For every run, the running time is
recorded. For every series of runs at a specific search length the number of solutions is
recorded. Running times for a series of runs at a particular length are averaged to produce

Results 55



7.2 Application to real world programs

the average running time in the leftmost graphic of Figure 7.7. The rightmost graphic
displays the number of solutions that were found out of a maximum of 100 solutions.

Figure 7.7 Effects of search length on running time (left) and number of solutions found
(right)

 95

 100

 105

 110

 115

 120

 0  1000  2000  3000  4000  5000

A
ve

ra
ge

 R
un

tim
e 

(m
s)

Search Depth

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  1000  2000  3000  4000  5000

N
um

be
r 

of
 s

ol
ut

io
ns

 fo
un

d

Search Depth

Running time increases roughly linear with search length. The number of solutions increases
rapidly at first, then quickly stabilizes around lengths of 2000. The expressions that were
repaired at lengths greater than 2000 were for the most part those with a large number of
nodes. This is hardly surprising, since a large amount of nodes in the input expression means
a greater chance of multiple inconsistencies. Multiple inconsistencies cause a decrease in
the number of intermediate solutions per node and this in turn causes a decrease in the
maximum complexity of a partial solution that repairs a single inconsistency. In other words,
at equal search lengths, the chance of finding a solution is partly determined by the number
of inconsistencies in the input expression.

Figure 7.8 shows the relation between maximum cost and the number of solutions found out
of a maximum of 150 solutions. The sharp drop-off in number of solutions found at around
a cost of 8 suggests that, regardless of search length, increasing the maximum complexity
of solutions at some point does not equal increasing the likelihood of finding additional
solutions.

56 Results



Application to real world programs 7.2

Figure 7.8 Relation between maximum cost and the number of solutions

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6  8  10

N
um

be
r 

of
 s

ol
ut

io
ns

Maximum cost

7.2.2 Effectiveness of re-evaluation

To analyze the effects of re-evaluation on the number and cost of solutions we execute the
algorithm both with and without this feature and compare the results. Table 7.1 shows the
differences.

without re-evaluations with re-evaluations
Number of input expressions 150 150
Number of solutions 119 114
Average cost of solutions 6.4 6.0

Table 7.1: Effects of re-evaluations on the number and cost of solutions

We can see that, even though the number of solutions is less than without re-evaluation
enabled (a decrease of about 4.2%), the average cost of the solutions is about 6% lower.
In 15% of the cases where both methods came up with a solution re-evaluation produced a
cheaper one. Re-evaluation means that the same amount of transformation combinations
leads to more intermediate solutions, therefore if the total number of solutions is kept fixed,
re-evaluation causes a decrease in the overall number of transformation combinations that
are evaluated. Thus to maintain the same chance of finding a solution for a particular
expression with re-evaluation enabled, the search length must be increased.

It can be seen in Figure 7.9 that enabling re-evaluation also has a drastic effect on which
transformations are used to produce a solution.
The most visible aspect of this change is the rather large decrease in the usage of both

the insertArgument and swap transformations and the increase in the number of type
changes to identifiers. Closer inspection of this discrepancy reveals that the combination

Results 57



7.3 Analysis of the quality of solutions

Figure 7.9 Transformations used, with and without re-evaluation enabled

insert 
Argument

swap type 
Change

delete 
Argument

listify permute unlistify iswap
0

10

20

30

40

50

60

70

80

90

100

Without Re­evaluation

With Re­evaluation

of the insertArgument and swap transformations is providing a sort of catch-all solution
to a large amount of inconsistencies. The type of the argument that is inserted can be of
any type. The swap transformation turns this argument into a function that consequently
can also have any type. Figure 7.10 illustrates the effect. The combination can repair any
inconsistency (signified by the difference in color between the nodes) in any argument of an
application, by inserting an application with a function that converts between the type of
the argument and the type that the application expects this argument to have.

Figure 7.10 The insertArgument and swap transformation combination

When re-evaluation is enabled, this combination is replaced by simply changing the type
of the function since with our chosen parametrization of the costs this results in a cheaper
solution.

7.3 Analysis of the quality of solutions

In this section we will, for expressions where the repair system failed to produce a solution,
examine the reasons, and for expressions where the system did produce a solution, compare
this solution with a correction a human would make.

58 Results



Analysis of the quality of solutions 7.3

7.3.1 Failed repair

In this section we will analyze in detail some of the incorrectly typed programs from the
collection that the system failed to repair in order to better understand the limitations of
the system. The program fragment in Figure 7.11 was a submitted by a student during the
course of an assignment.

Figure 7.11 Type incorrect submission from an assignment

discriminant :: Float → Float → Float → Float
discriminant a b c = b ∗. b −. 4.0 ∗. a ∗. c
aantalOpl :: Float → Float → Float → Int
aantalOpl a b c = (d div abs (negate (d))) + 1.0

where d = discriminant a b c

The objective was to write a function that calculates the number of real solutions to a
quadratic equation of the form ax2 + bx + c = 0. The compiler determines that the ex-
pression with the highest probability of being incorrect is: (d div abs (negate (d))) + 1.0
in which d has type Float and div , abs and negate are variables representing prelude func-
tions having been instantiated with the types Int → Int → Int , Int → Int and Int → Int
respectively. The expected return type of the expression is Int as specified by the type
signature. There are a number of things wrong here. The expression d does not have a
function type yet it is being used as one with two arguments. It appears the quote-characters
around the div expression were forgotten. Furthermore div is a function that only accepts
integers yet its intended arguments are floats.

Apart from the fact that the intended function definition is not quite correct (division
by zero is possible) it would seem that transforming it into a type-correct expression would
not be all that difficult. However even using exceptionally high values for the search length
the system still fails to find a solution. The problem is related to the explosion of possibilities
described in chapter 5. An inexpensive (although drastic) way to eliminate the type incon-
sistency with the transformations at our disposal would be to delete the entire subexpression
(d div abs (negate (d))), and change the type of the +-function. The cost of this would
be 4 for the deletion, 1 for the re-evaluation of the function type of the toplevel application
and 6 to change it to Float → Int totalling a cost of 11. It is the same problem as we
have seen in the previous section in our analysis of the re-evaluation enhancements. The
increase of the number of lists of re-evaluated transformed expressions limits the complexity
of transformation compositions for fixed search lengths. In this program type inconsisten-
cies exist at multiple nodes in the syntax tree, the algorithm will start generating lists of
solutions for every one of those nodes likewise limiting the number of compositions that can
be examined. In this example a cost of 11 implies a number of combinations approaching
the hundreds of thousands.

7.3.2 Successful repair

In this assignment the task was to write a function to flatten a list of lists of integers into
a single list. Figure 7.12 shows one attempt at solving the problem.

Results 59



7.3 Analysis of the quality of solutions

Figure 7.12 Flattening a list, incorrectly

slaPlat :: [[Int ]]→ [Int ]
slaPlat [ ] = [ ]
slaPlat [[a ]] = [a ]
slaPlat (a : rest) = [a ] ++ slaPlat (rest)

The mistake has been to write [a ] instead of a in the third case thereby producing an ex-
pression of type [[Int ]] which obviously cannot be concatenated to a list of type [Int ]. The
subexpression selected by the compiler is thus [a ] ++ slaPlat (rest). The transformation to
fix this problem would be to remove the brackets around a. Figure 7.13 shows the output
of the repair system.

Figure 7.13 Solutions for the ill typed flattening expression

results:
(Success (++ a (slaPlat rest)) | cost=4 |

repairlog: ["re-evaluation","unlistify"]
(Success (++ [a] (slaPlat rest)) | cost=7 |

repairlog: ["re-evaluation",
"Type of variable: ’++’ was changed"]

(Success (++ [a] (slaPlat rest)) | cost=7 |
repairlog: ["re-evaluation",

"Type of variable: ’a’ was changed"]
(Success (++ ({v10022240 -> v10022238} [a]) (slaPlat rest)) |

cost=7 | repairlog: ["insertArgument","swap"]
(Success (++ (slaPlat rest) {v10022438}) | cost=8 |

repairlog: ["deleteArgument","insertArgument"]

In this case the most inexpensive solution is in accordance with our own solution. The
example in Figure 7.14 demonstrates that this is not always the case.

Figure 7.14 Converting a table to a string

writeTable :: Table → String
writeTable table = unlines . head table

Here the student has forgotten to include parenthesis around the function composition
unlines . head . However the pattern for this mistake doesn’t quite match the one defined
in the swap and iswap functions. The solution produced instead removes the table argu-
ment altogether and inserts a new block of suitable type.

Another problem is that there is no measure of the degree to which the structure of the
input expression is altered. Large subexpressions can be deleted at relatively low cost. Es-
pecially if the return type of an expression is not explicitly specified by the context, deleting
arguments turns out to be a popular way of getting rid of typing problems. To discourage
this behaviour we could make the cost of transformations that can potentially make large

60 Results



Complexity analysis 7.4

changes in the structure of an expression dependent upon the size of the subexpressions
that they work on.

A related problem is that even though the cost of changing the types of variables has
been initialized with a relatively high value, its power to singlehandedly eliminate type prob-
lems is compensating. For example when a type conflict has been detected in an application
with several arguments, a single change in the type of the function variable can have a large
impact, it can change the expected type of multiple arguments at once. To remedy this
the cost of changing the type of a variable or block would also have to be made depen-
dent on their impact. This is hard to realize however. Apart from prelude functions which
should be considered unalterable, a seperate analysis would have to be made to analyze the
repercussions of changing a certain variable type with respect to the rest of the program.

7.4 Complexity analysis

The algorithm has been designed to evaluate a fixed number of solutions. While the time
spent on evaluating a particular solution can vary itself depending on size of the expression,
number and properties of the transformations that are being applied and number and nature
of the inconsistencies in the expression, the overall time consumed is still governed by the
amount of solutions that have to be evaluated. Therefore the most interesting question is,
how many solutions do we need to calculate? This in turn depends on the complexity (cost)
of the best solution to a particular inconsistent expression. We have already witnessed in the
previous chapter that for search lengths greater then 2000, there is little chance of finding
additional solutions. This is equal to a cost of about 7. In Figure 7.15 the relation between
transformation cost and search length is displayed for the chosen set of transformations and
their cost parametrization. It confirms that finding solutions which require a cost larger
then 10 simply becomes unfeasible.

Results 61



Figure 7.15 Relation between search length and transformation cost

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0  2  4  6  8  10  12

S
ea

rc
h 

le
ng

th

Transformation cost



Chapter 8

Conclusions

Using the top-down type-propagation and bottom-up generation techniques for building up
a solution space is an flexible alternative to checking for the existence of fixed patterns in
erroneous code. While static pattern matching does provide a higher degree of certainty
when it comes to finding the appropriate fix, it will always be limited by the number of
patterns that are available to it. While the same could be said about the limited number
of transformations that the repair system has at its disposal, its strength lies in the flexible
way in which they can be combined.

Even when the repair system has found a single most inexpensive solution to a particu-
lar fragment of ill typed code, we have very little certainty that this solution coincides with
the fix that would correct the program in the way the programmer intended it. Extend-
ing the system to include more heuristic knowledge about often made errors can help but
it will grow more difficult to conclude anything definite as the input becomes more complex.

The explosion of the search space is very difficult to control. While type-propagation lim-
its the number of possible intermediate solutions by a large amount, the actual number of
computations performed is still very much dependent on the various parameters. The search
length plays the largest role but the number of transformations, the amount of transformed
expressions that are to be considered for re-evaluation, and number of inconsistencies in the
input expression are also important factors.

63





Chapter 9

Future work

Better heuristics may be a means of both increasing the likelihood that the ’right’ solution
will be found as well as narrow down the solution space further, perhaps by ruling out
certain combinations of transformations, or encouraging the use of specific combinations of
transformations that have been found to repair a problem in a large number of instances.
To realize this it will be required to study many type errors that are produced in real world
settings in order to find the patterns that make such heuristics possible. It remains to be
seen how effective such a method will be.

Research into how to best display possible solutions might be of value. Merely outputting
the fixed code might encourage students to rely on the system too much and copy and
paste the code without actually thinking about the source of the error themselves. This
is contrary to what a compiler that is focused on educating its users is supposed to be
achieving.

65





Bibliography

[1] Luis Damas and Robin Milner. Principal type-schemes for functional programs. Ninth
Annual Symposium on Principles of Programming Languages, Association of Comput-
ing Machinery, pages 207–212, 1982.

[2] Bastiaan Heeren and Jurriaan Hage. Parametric type inferencing for helium. Technical
Report UU-CS-2002-035, Institute of Information and Computing Science, University
Utrecht, Netherlands, August 2002. Technical Report.

[3] Bastiaan Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning Haskell.
In ACM Sigplan 2003 Haskell Workshop, pages 62 – 71, New York, 2003. ACM Press.

[4] J. R. Hindley. The principal type scheme of an object in combinatory logic. Transactions
of the American Mathematical Society, pages 146:29–60, 1969.

[5] Yang Jun. Explaining type errors by finding the sources of type conflicts. In Greg
Michaelson, Phil Trindler, and Hans-Wolfgang Loidl, editors, Trends in Functional
Programming, pages 58–66. Intellect Books, 2000.

[6] O. Lee and K. Yi. Ordering type constraints: A structured approach. Technical report,
Korea Advanced Institute of Science and Technology, 1997. Technical Report.

[7] B.J. McAdam. Repairing type errors in functional programs. Technical report, PhD
Thesis, University of Edinburgh, Laboratory for Foundations of Computer Science,
Division of Informatics, August 2001.

[8] Mikael Rittri. Finding the source of type errors interactively. Proc. El Wintermote,
Department of Computer Science, Chalmers University, 1993.

[9] Axel Simon, Olaf Chitil, and Frank Huch. Typeview: A Tool for Understanding Type
Errors. In Markus Mohnen and Pieter Koopman, editors, Draft Proceedings of the
12th International Workshop on Implementation of Functional Languages, pages 63–
69, Aachen, Germany, September 2000. Aachener Informatik-Bericht 00-7, RWTH
Aachen.

[10] Peter J Stuckey, Martin Sulzmann, and Jeremy Wazny. The chameleon type debugger
(tool demonstration), 2003.

[11] J. A. Walz and G. F. Johnson. A maximum flow approach to anomaly isolation in
unification-based incremental type inference. In Conference Record of the 13th An-
nual ACM Symposium on Principles of Programming Languages, pages 44–57, St.
Petersburg, FL, January 1986.

67



[12] Mitchell Wand. Finding the source of type errors. 13th Symposium Principles of
Programming Languages, SIGPLAN,ACM Press, pages 38–43, 1986.

[13] Jun Yang. Improving Polymorphic Type Explanations. PhD thesis, Heriot-Watt Uni-
versity, Edinburgh, 2001.

68 Bibliography



Appendix A

Code

A.1 Data type definitions and their operations

module Top.Repair.AExpr where

import Top.Types
import Top.Repair.Progress
import Data.List (intersperse)
import Data.Monoid

newtype RepairAdmin = RepairAdmin ([String ], Int) deriving (Show, Eq)

instance Monoid RepairAdmin where
mempty = RepairAdmin ([ ], 0)
mappend (RepairAdmin (xs1, i1)) (RepairAdmin (xs2, i2)) =

RepairAdmin (xs1 ++ xs2, i1 + i2)

instance Ord RepairAdmin where
compare (RepairAdmin (xs1, i1)) (RepairAdmin (xs2, i2)) =

compare (i1, length xs1) (i2, length xs2)

class EmptyInfo info where
emptyInfo :: info

class EmptyInfo info ⇒ RepairInfo info where
getType :: info → (Maybe Tp)
makeInfo :: Tp → info

instance EmptyInfo (Maybe a) where
emptyInfo = Nothing

instance EmptyInfo (Typed) where
emptyInfo = (errorType, emptySubst)

type TransformProgress info = AExpr info → [Progress (AExpr info)]
type Transformation info = (TransformProgress info, RepairAdmin)
type Transformations info = [Transformation info ]

data AExpr info =
App info (AExpr info) [AExpr info ]
| If info (AExpr info) (AExpr info) (AExpr info)
| Tup info [AExpr info ]
| Lst info [AExpr info ]
| Var info String
| Blk info
deriving (Eq, Show)

getInfo :: AExpr info → info
getInfo (App info ) = info
getInfo (If info ) = info
getInfo (Lst info ) = info
getInfo (Tup info ) = info
getInfo (Var info ) = info
getInfo (Blk info) = info

getInfos :: AExpr info → [ info ]
getInfos aexpr =

getInfo aexpr : concatMap getInfos (subexpressions aexpr)

editInfo :: AExpr info → (info → info) → AExpr info
editInfo aexpr f =

case aexpr of
App a fun args → App (f a) fun args
If a e1 e2 e3 → If (f a) e1 e2 e3
Tup a elts → Tup (f a) elts
Lst a elts → Lst (f a) elts
Var a s → Var (f a) s
Blk a → Blk (f a)

instance Functor AExpr where
fmap f aexpr =

case aexpr of
App a fun args → App (f a) (fmap f fun) (map (fmap f ) args)
If a e1 e2 e3 → If (f a) (fmap f e1) (fmap f e2) (fmap f e3)

69



A.2 Implementation of the transformations

Tup a elts → Tup (f a) (map (fmap f ) elts)
Lst a elts → Lst (f a) (map (fmap f ) elts)
Var a s → Var (f a) s
Blk a → Blk (f a)

mapAExpr :: (a → b) → (a → b) → AExpr a → AExpr b
mapAExpr nodeF leafF = rec

where
rec aexpr =

case aexpr of
App a fun args → App (nodeF a) (rec fun) (map rec args)
If a e1 e2 e3 → If (nodeF a) (rec e1) (rec e2) (rec e3)
Tup a elts → Tup (nodeF a) (map rec elts)
Lst a elts → Lst (nodeF a) (map rec elts)
Var a s → Var (leafF a) s
Blk a → Blk (leafF a)

mapAExprM :: Monad m ⇒ (a → m b) → AExpr a → m (AExpr b)
mapAExprM f aexpr =

case aexpr of
App a fun args →

do b ← f a

fun′ ← mapAExprM f fun

args′ ← mapM (mapAExprM f ) args

return (App b fun′ args′)
If a e1 e2 e3 →

do b ← f a

e1 ′ ← mapAExprM f e1

e2 ′ ← mapAExprM f e2

e3 ′ ← mapAExprM f e3

return (If b e1′ e2 ′ e3 ′)
Lst a elts →

do b ← f a

elts′ ← mapM (mapAExprM f ) elts

return (Lst b elts′)
Tup a elts →

do b ← f a

elts′ ← mapM (mapAExprM f ) elts

return (Tup b elts′)
Var a s →

do b ← f a
return (Var b s)

Blk a →
do b ← f a

return (Blk b)

subexpressions :: AExpr a → [AExpr a ]
subexpressions aexpr =

case aexpr of
App fun args → fun : args
If e1 e2 e3 → [e1, e2, e3 ]
Lst elts → elts
Tup elts → elts
Var → [ ]
Blk → [ ]

isBlock :: AExpr a → Bool
isBlock (Blk ) = True
isBlock = False

printType :: Tp → String
printType = show

isTuple :: AExpr info → Bool
isTuple (Tup ) = True
isTuple = False

isApp :: AExpr info → Bool
isApp (App ) = True
isApp = False

type Typed = (Tp, MapSubstitution)
type TypedList = (Tps, [MapSubstitution ])

failedSolution :: Int → Progress (AExpr Typed, RepairAdmin)
failedSolution cost =

addAdmin (admin cost "failed") (Fail (Var (boolType, emptySubst) "fail"))

failedSol :: EmptyInfo info ⇒ AExpr info
failedSol = (Var emptyInfo "fail")

admin :: Int → String → RepairAdmin
admin i s = RepairAdmin ([s ], i)

addAdmin :: RepairAdmin → Progress (AExpr info) → Progress (AExpr info, RepairAdmin)
addAdmin admin (Success s) = Success (s, admin)
addAdmin admin (Fail s) = Fail (s, admin)

A.2 Implementation of the transformations

module Top.Repair.Transformations where

import List (inits, tails)
import Top.Types
import Top.Repair.AExpr

permute :: EmptyInfo info ⇒ Transform info

70 Code



Implementation of the transformations A.3

permute (App fun args) = [App emptyInfo fun args′ | args′ ← perms args ]
permute = [ ]

listify :: EmptyInfo info ⇒ Transform info
listify aexp = [Lst emptyInfo [aexp ] ]

unlistify :: EmptyInfo info ⇒ Transform info
unlistify (Lst [ lelem ]) = [ lelem ]
unlistify = [ ]

insertArgument :: EmptyInfo info ⇒ Transform info
insertArgument (App fun args) =

let
argsplit = zip (inits args) (tails args)
newarg = Blk emptyInfo
newarglists = case args of [ ] → [ [newarg ] ]; → map (λ(i, t) → (i ++ [newarg ] ++ t)) argsplit

in

[App emptyInfo fun args′ | args′ ← newarglists ]
insertArgument = [ ]

deleteArgument :: EmptyInfo info ⇒ Transform info
deleteArgument (App info fun args) =

let
delElem as i = (take (i − 1) as) ++ (drop i as)
newarglists = map (delElem args) (enumFromTo 1 (length args))

in

[App info fun args′ | args′ ← newarglists ]
deleteArgument = [ ]

flattenApp :: EmptyInfo info ⇒ Transform info
flattenApp (App info fun args) =

let
buildapp (l, (ain, aout)) = App emptyInfo fun (l ++ [App info (head ain) (tail ain)] ++ aout)
split2 = splitTwice 1 args

in
map buildapp split2

flattenApp = [ ]

flattenAppRev :: EmptyInfo info ⇒ Transform info
flattenAppRev (App fun args) =

let
flattenRev (a : as) rlists =

let newrlists =
case a of

app@(App fn arg) → (map (++[app ]) rlists) ++ (map (++[ fn ] ++ arg) rlists)
noapp → map (++[noapp ]) rlists

in
flattenRev as newrlists

flattenRev [ ] rlists = rlists
in

[App emptyInfo fun args′ | args′ ← flattenRev args [ [ ] ], or (map isApp args)]
flattenAppRev = [ ]

permuteTuple :: EmptyInfo info ⇒ Transform info

permuteTuple (Tup info telems) = [Tup info telems′ | telems′ ← perms telems ]
permuteTuple = [ ]

curryTuple :: EmptyInfo info ⇒ Transform info
curryTuple (App info fun args) =

let
currySingle (Tup telems) = telems
currySingle notup = [notup ]

in

[App info fun args′ | args′ ← (optmap currySingle args [ [ ] ]), or (map isTuple args)]
curryTuple = [ ]

uncurryTuple :: EmptyInfo info ⇒ Transform info
uncurryTuple (App info fun args) =

let
buildapp (l, (ain, aout)) = App info fun (l ++ [Tup emptyInfo ain ] ++ aout)
split2 = splitTwice 0 args

in
map buildapp split2

uncurryTuple = [ ]

splitTwice :: Int → [a ] → [([a ], ([a ], [a ]))]
splitTwice ml elems =

let
minlength = filter ((>ml) . length . fst . snd)
splt as = zip (inits as) (tails as)

in
concatMap (minlength . (λ(l, r) → (map (λrs → (l, rs)) (splt r)))) (splt elems)

optmap :: (a → [a ]) → [a ] → [ [a ] ] → [ [a ] ]
optmap f (e : es) fes = optmap f es ((map (++(f e)) fes) ++ (map (++[e ]) fes))
optmap fes = fes

perms :: [a ] → [ [a ] ]
perms [ ] = [[ ]]
perms (a : x) = [z | y ← perms x, z ← insertions a y ]

insertions :: a → [a ] → [ [a ] ]
insertions a [ ] = [[a ] ]
insertions a x@(b : y) = (a : x) : [b : z | z ← insertions a y ]

Code 71



A.4 Implementation of the combination algorithm

A.3 Implementation of the combination algorithm

module Top.Repair.Progress where

data Progress a = Success a | Fail a | Debug String deriving Show

combiList :: (a → Int) → [ [Progress a ] ] → [Progress [a ] ]
combiList f p = foldr op (map toList (last p)) (init p)

where
op as ass = conv (combi g (map toList as) ass)
g = sum . map f

toList :: Progress a → Progress [a ]
toList (Success s) = Success [s ]
toList (Fail s) = Fail [s ]
toList (Debug str) = Debug str

conv :: [Progress ([a ], [a ])] → [Progress [a ] ]
conv =

let
c p = case p of

Success s → Success (uncurry (++) s)
Fail s → Fail (uncurry (++) s)
Debug str → Debug str

in
map c

combi :: (a → Int) → [Progress a ] → [Progress a ] → [Progress (a, a)]
combi f = rec

where
rec [ ] = [ ]
rec [ ] = [ ]
rec (x : xs) (y : ys) =

let
doCombi ((Success a), (Success b)) = Success (a, b)
doCombi ((Success a), (Fail b)) = Fail (a, b)
doCombi ((Fail a), (Success b)) = Fail (a, b)
doCombi ((Fail a), (Fail b)) = Fail (a, b)

as = map doCombi [(x, b) | b ← ys ]

bs = map doCombi [(a, y) | a ← xs ]

cs = (rec xs ys)

g (a, b) = f a + f b
in

(doCombi (x, y)) : (merge g as (merge g bs cs))

merge :: (a → Int) → [Progress a ] → [Progress a ] → [Progress a ]
merge f = rec

where
rec [ ] bs = bs
rec as [ ] = as
rec ((Fail a) : as) ((Fail b) : bs)
| f a < f b = (Fail a) : (rec as ((Fail b) : bs))
| otherwise = (Fail b) : (rec ((Fail a) : as) bs)

rec ((Success a) : as) ((Fail b) : bs)
| f a < f b = (Success a) : (rec as ((Fail b) : bs))
| otherwise = (Fail b) : (rec ((Success a) : as) bs)

rec ((Fail a) : as) ((Success b) : bs)
| f a < f b = (Fail a) : (rec as ((Success b) : bs))
| otherwise = (Success b) : (rec ((Fail a) : as) bs)

rec ((Success a) : as) ((Success b) : bs)
| f a < f b = (Success a) : rec as (Success b : bs)
| otherwise = (Success b) : rec (Success a : as) bs

rec (a : as) (b : bs) = a : b : (rec as bs)

A.4 Implementation of the type checking algorithm

module Top.Repair.TypedExpr where

import Top.Repair.AExpr
import Top.Types
import Data.IORef
import Data.List (intersect)
import System.IO.Unsafe (unsafePerformIO)
import Debug.Trace
import Data.Maybe (fromJust)

-- produce i new fresh type variables
freshVars :: Int → [Tp ]
freshVars 0 = [ ]
freshVars i = (freshTVar ()) : (freshVars (i − 1))

-- how to propagate a type over the children of an expression
typePropagate :: OrderedTypeSynonyms → AExpr info → Tp → Maybe Tps
typePropagate syns expr τ =

case expr of
(App args) →

let
argTypes = freshVars (length args)
funType = foldr (.− > .) τ argTypes

in
Just (funType : argTypes)

(Tup elems) →
do

let

72 Code



Implementation of the type checking algorithm A.4

tTypes = freshVars (length elems)
tVars = map (λ(TVar i) → i) tTypes

unified ← mguMaybe syns τ (tupleType tTypes)
return (map (λi → lookupInt i unified) tVars)

(Lst elems) →
do

let
freshVar = freshTVar ()
tVar = (λ(TVar i) → i) freshVar

unified ← mguMaybe syns τ (listType freshVar)
return (replicate (length elems) (lookupInt tVar unified))

typeAExprWithContext :: OrderedTypeSynonyms → AExpr (Maybe Typed) →
Tp → Maybe (AExpr Typed)

typeAExprWithContext synonyms aexpr τ =
case aexpr of

App info fun args →
do

childTypes ← typePropagate synonyms aexpr τ
(funTyped, (tp1, s1)) ← recAExpr fun (head childTypes)
(argsTyped, (tps2, ss2)) ← recAExprs args (tail childTypes)
let makeApp x = App x funTyped argsTyped
(superUnify makeApp info τ (s1 : ss2) [(tp1, foldr (.− > .) τ tps2)])

If info e1 e2 e3 →
do (e1Typed, (tp1, s1)) ← recAExpr e1 boolType

(e2Typed, (tp2, s2)) ← recAExpr e2 τ
(e3Typed, (tp3, s3)) ← recAExpr e3 τ
let makeIf x = If x e1Typed e2Typed e3Typed
superUnify makeIf info tp2 [s1, s2, s3 ] [(tp1, boolType), (tp2, tp3), (tp2, τ)]

Tup info es →
do

tupleChildrenTypes ← typePropagate synonyms aexpr τ
(esTyped, (tps, ss)) ← recAExprs es tupleChildrenTypes
let makeTup x = Tup x esTyped
superUnify makeTup info τ ss [(τ, tupleType tps)]

Lst info es →
do

lstChildrenTypes ← typePropagate synonyms aexpr τ
(esTyped, (tps, ss)) ← recAExprs es lstChildrenTypes
let makeLst x = Lst x esTyped

beta2 = freshTVar ()
(superUnify makeLst info τ ss ((τ, listType beta2) : zip tps (repeat beta2)))

Var info string →
let makeVar x = Var x string
in (superUnify makeVar info τ [ ] [ ])

Blk info →
superUnify Blk info τ [ ] [ ]

where
recAExpr :: AExpr (Maybe Typed) → Tp → Maybe (AExpr Typed, Typed)
recAExpr aexpr τ =

do new ← typeAExprWithContext synonyms aexpr τ
return (new, getInfo new)

recAExprs :: [AExpr (Maybe Typed)] → [Tp ] → Maybe ([AExpr Typed ], TypedList)
recAExprs aexprs types =

do xs ← mapM (λ(expr, tp) → recAExpr expr tp) (zip aexprs types)
let (as, typedList) = unzip xs
return (as, unzip typedList)

superUnify :: (Typed → AExpr Typed) → Maybe Typed → Tp → [MapSubstitution ] →
[(Tp, Tp)] → Maybe (AExpr Typed)

superUnify make maybeTyped β ss cs =
case maybeTyped of

Just t →
do

let (tp, ) = t
checkType ← (mguMaybe synonyms tp τ)
(return (make (tp, checkType)))

Nothing →
do

superSub ← (unifySubstList synonyms ss)
let (ts1, ts2) = unzip (superSub |− > cs)
s ← (mguMaybe synonyms (tupleType ts1) (tupleType ts2))
let final = s @@ superSub
(return $ make (final |− > β, final))

unifySubstList :: OrderedTypeSynonyms → [MapSubstitution ] → Maybe MapSubstitution
unifySubstList [ ] = Just emptySubst
unifySubstList synonyms (s1 : ss) =

do s2 ← unifySubstList synonyms ss
unifySubst synonyms s1 s2

unifySubst :: OrderedTypeSynonyms → MapSubstitution → MapSubstitution →
Maybe MapSubstitution

unifySubst synonyms s1 s2 =
let is = dom s1 ‘intersect‘ dom s2

s1′ = removeDom is s1

s2′ = removeDom is s2
t1 = tupleType [ lookupInt i s1 | i ← is ]
t2 = tupleType [ lookupInt i s2 | i ← is ]

in case mguMaybe synonyms t1 t2 of
Nothing → Nothing
Just s3

| null (dom s3) → Just (s1′ @@@ s2′)
| otherwise → unifySubst synonyms (s1′ @@@ s2′) s3

Code 73



A.5 Implementation of the repair algorithm

mguMaybe :: OrderedTypeSynonyms → Tp → Tp → Maybe MapSubstitution
mguMaybe synonyms t1 t2 =

case mguWithTypeSynonyms synonyms t1 t2 of
Left → Nothing
Right ( , s) → Just s

-- ——————————————————————-
-- A global IO reference for fresh type variables
-- ——————————————————————-

freshTVarRef :: IORef Int
freshTVarRef = unsafePerformIO (newIORef 10000000)

freshTVar :: () → Tp
freshTVar () =

unsafePerformIO $
do i ← readIORef freshTVarRef

writeIORef freshTVarRef (i + 1)
return (TVar i)

A.5 Implementation of the repair algorithm

module Top.Repair.RepairExpr where

import Top.Repair.AExpr
import Top.Repair.TypedExpr
import Top.Repair.Progress
import Top.Repair.Transformations (perms)
import Top.Types

import Data.Maybe (fromJust)
import Data.List (nub)
import Data.Monoid
import Debug.Trace (trace)

getLog :: RepairAdmin → [String ]
getLog (RepairAdmin (alog, )) = alog

emptyTransformation :: Transformation info
emptyTransformation = ((λexpr → [Success expr ]), mempty)

getCost :: (a, RepairAdmin) → Int
getCost ( , admin) = getRealCost admin

getRealCost :: RepairAdmin → Int
getRealCost (RepairAdmin ( , cost)) = cost

checkFail :: OrderedTypeSynonyms → Transformations (Maybe Typed) → RepairAdmin → Tp →
Bool → Int → Progress (AExpr (Maybe Typed), RepairAdmin) →

[Progress (AExpr Typed, RepairAdmin)]
checkFail syns transList newAdmin τ doAlts maxAltTrans (Success (expr, extraAdmin)) =

case (typeAExprWithContext noOrderedTypeSynonyms expr τ) of
Nothing →

let
transAlts :: [Progress (AExpr Typed, RepairAdmin)]
transAlts =

let
children = subexpressions expr

in
if (length children ≡ 0)
then [ ]
else

let
typeChild :: AExpr (Maybe Typed) → Maybe (AExpr Typed)
typeChild expr = case (getInfo expr) of

Just → Just (fmap (fromJust) expr)
Nothing → Nothing

typeChildren :: [AExpr (Maybe Typed)] → [AExpr Typed ] →
Maybe [AExpr Typed ]

typeChildren [ ] fcs = Just (reverse fcs)
typeChildren (c : cs) fcs =

case (typeChild c) of
Just tc → typeChildren cs (tc : fcs)
Nothing → Nothing

transPairs = case (typeChildren children [ ]) of
Just children → map (λexpr → (expr, RepairAdmin ([ ], 0))) children
Nothing → [ ]

in
if (length transPairs ≡ 0)
then [ ]
else

map (addToAdmin (mappend (removeErrors extraAdmin)
(removeErrors newAdmin)))
(getAltExprs syns (getMake expr)

transList expr transPairs τ maxAltTrans)
in

((failedSolution (getRealCost (mappend extraAdmin newAdmin))) :
(if doAlts then transAlts else [ ]))

Just typed → [Success (typed, removeErrors (mappend extraAdmin newAdmin))]
checkFail newAdmin (Fail ( , extraAdmin)) =

[(failedSolution (getRealCost (mappend extraAdmin newAdmin)))]
checkFail (Debug str) = [Debug str ]

removeErrors :: RepairAdmin → RepairAdmin
removeErrors (RepairAdmin (alog, cost)) = RepairAdmin (rec alog, cost)

where
rec [ ] = [ ]
rec (logEntry : logs) =

74 Code



Implementation of the repair algorithm A.5

if (logEntry ≡ "incorrect node")
then (rec logs)
else (logEntry : (rec logs))

resetError :: (Maybe Typed) → (Maybe Typed)
resetError info@(Just (tp, )) =

if (tp ≡ errorType)
then Nothing
else info

resetError noError = noError

getMake :: EmptyInfo info ⇒ AExpr (Maybe Typed) → ([AExpr info ] → AExpr info)
getMake aexpr =

case aexpr of
App → (λ(fun : args) → App emptyInfo fun args)
If → (λ[guard, thenb, elseb ] → If emptyInfo guard thenb elseb)
Tup → Tup emptyInfo
Lst → Lst emptyInfo

wipeTypeInfo :: AExpr (Maybe Typed) → AExpr (Maybe Typed)
wipeTypeInfo expr =

let
leafWipe leafInfo = Just (fst (fromJust leafInfo), emptySubst)
nodeWipe = Nothing

in
mapAExpr nodeWipe leafWipe expr

repairAExpr :: OrderedTypeSynonyms → Tp → Transformations (Maybe Typed) →
Int → AExpr (Maybe Tp) → [Progress (AExpr Typed, RepairAdmin)]

repairAExpr synonyms τ transList maxAltTrans aexpr = (
case aexpr of

App fun args →
let

makeApp (y : ys) = App emptyInfo y ys
branchTypes = fromJust (typePropagate synonyms aexpr τ)

in superRepair makeApp τ branchTypes (fun : args)
If e1 e2 e3 →

let makeIf [a, b, c ] = If emptyInfo a b c
in superRepair makeIf τ [boolType, τ, τ ] [e1, e2, e3 ]

Tup es →
case (typePropagate synonyms aexpr τ) of

Just tctps → superRepair (Tup emptyInfo) τ tctps es
→

let childTypes = freshVars (length es)
in superRepair (Tup emptyInfo) τ childTypes es

Lst es →
case (typePropagate synonyms aexpr τ) of

Just lctp →
superRepair (Lst emptyInfo) τ

(take (length es) (repeat (head lctp))) es
→

let childTypes = freshVars (length es)
in superRepair (Lst emptyInfo) τ childTypes es

Var str →
let

e = fmap (fmap (λtp → (tp, emptySubst))) aexpr
transVars =

concatMap
(checkFail synonyms transList

(RepairAdmin ([ ], 0)) τ False maxAltTrans)
(transform transList e)

in case (typeAExprWithContext synonyms e τ) of
Just okay → [Success (okay, RepairAdmin ([ ], 0))]
Nothing → (

(Success (fmap (λmtp → (fromJust mtp, emptySubst)) aexpr,
RepairAdmin ([ ], 0))) :

merge getCost
[(Success ((Var (τ, emptySubst) str),

RepairAdmin
(["Type of identifier: ’" ++ str ++ "’ was changed" ], 6)))]

transVars)

Blk →
let

e = fmap (fmap (λtp → (tp, emptySubst))) aexpr
transBlks =

concatMap
(checkFail synonyms transList

(RepairAdmin ([ ], 0)) τ False maxAltTrans)
(transform transList e)

in case typeAExprWithContext synonyms e τ of
Just okay → [Success (okay, RepairAdmin ([ ], 0))]
Nothing →

Success (fmap (λmtp → (fromJust mtp, emptySubst)) aexpr,
RepairAdmin ([ ], 0)) :

merge getCost
[Success ((Blk (τ, emptySubst)),

RepairAdmin (["Type of block was changed" ], 6))]
transBlks)

where
recAExprs :: [Tp ] → [AExpr (Maybe Tp)] → [ [Progress (AExpr Typed, RepairAdmin)]]
recAExprs childTypes children =

map (λ(childTp, child) →
repairAExpr synonyms childTp transList maxAltTrans child) (zip childTypes children)

superRepair :: (∀ a . EmptyInfo a ⇒ [AExpr a ] → AExpr a) → Tp → [Tp ] →
[AExpr (Maybe Tp)] → [Progress (AExpr Typed, RepairAdmin)]

superRepair make τ childTypes children =

Code 75



A.5 Implementation of the repair algorithm

let
op :: Progress [(AExpr Typed, RepairAdmin)] → [Progress (AExpr Typed, RepairAdmin)] →

[Progress (AExpr Typed, RepairAdmin)]
op (Success pairs) rest =

let

(aexprs, admins) = unzip pairs
errorNode = make aexprs
app = (fmap resetError (make (map (fmap (Just)) aexprs)))
origApp = make (map

(fmap (λc → case c of
Just tp → Just (tp, emptySubst);
→ Nothing)) children)

newAdmin = mconcat admins
in

case (typeAExprWithContext synonyms app τ) of

-- In this arrangement, the expression is well-typed.
-- Don’t use the transformations.

Just typedExpr →
(Success (typedExpr, removeErrors newAdmin)) : rest

-- Incorrectly typed, try to repair
Nothing →

let
-- use transformations on current node

transExprs = (transform transList (wipeTypeInfo app))

-- for these transformed expressions,
-- allow re-evaluation of children

transExprsAlt =
foldr (λx y → merge getCost x y) [ ]

(map
(checkFail synonyms transList

newAdmin τ True maxAltTrans)
(take maxAltTrans transExprs))

-- for these transformed expressions,
-- do not allow re-evaluation of children

transExprsRest =
concatMap

(checkFail synonyms transList newAdmin τ
False maxAltTrans)

(drop maxAltTrans transExprs)

allTrans = merge getCost transExprsAlt transExprsRest

-- leave current node intact,
-- push needed types for correction to children

altExprs = (getAltExprs synonyms make transList
origApp pairs τ maxAltTrans)

allExprs = merge getCost allTrans altExprs
in

(failedSolution (getRealCost newAdmin)) :
((Success (errorNode,

mappend newAdmin (RepairAdmin (["incorrect node" ], 0))))) :
(merge getCost allExprs rest)

op (Fail pairs) rest =
let

( , admins) = unzip pairs
newAdmin = mconcat admins

in
((failedSolution (getRealCost newAdmin)) : rest)

op (Debug str) rest = (Debug str) : rest

in (foldr op [ ] . combiList getCost . (recAExprs childTypes)) children

showP :: Progress (AExpr Typed, RepairAdmin) → String
showP (Success (s, r)) = "* " ++ showSimple s ++ " --> " ++ show (getLog r)
showP (Fail ) = "* " ++ "fail"

isBlk :: AExpr info → Bool
isBlk (Blk ) = True
isBlk = False

getAltExprs :: OrderedTypeSynonyms → (∀ a . EmptyInfo a ⇒ [AExpr a ] → AExpr a) →
Transformations (Maybe Typed) → AExpr (Maybe Typed) → [(AExpr Typed, RepairAdmin)] →
Tp → Int → [Progress (AExpr Typed, RepairAdmin)]

getAltExprs syns make transList expr pairs τ maxAltTrans =
let

(exprs, admins) = (unzip pairs)
makeConditions = (getTypeInfo expr τ)

disabledCombis :: [ [(AExpr Typed, Bool)]]
disabledCombis = (findConflict syns exprs makeConditions)

combisWithTypesAndConditions :: [([(AExpr Typed, Bool)], ([Tp ], [(Tp, Tp)]))]
combisWithTypesAndConditions =

(zip disabledCombis
(map (evalTypesAndConditions makeConditions) disabledCombis))

altSubsts = map (fromJust . findSubst syns) combisWithTypesAndConditions

altChildren :: [ [Progress [(AExpr Typed, RepairAdmin)]]]
altChildren =

(evalCombis syns admins combisWithTypesAndConditions
altSubsts transList maxAltTrans)

altCombis :: [ [Progress (AExpr Typed, RepairAdmin)]]
altCombis = map (λcombi → map checkNewExpr combi) altChildren

newExprs :: [Progress (AExpr Typed, RepairAdmin)]
newExprs = foldr (λcombiList rest → merge getCost combiList rest) [ ] altCombis

in

76 Code



Implementation of the repair algorithm A.5

newExprs

where

checkNewExpr :: Progress [(AExpr Typed, RepairAdmin)] →
Progress (AExpr Typed, RepairAdmin)

checkNewExpr (Success pairs) =
let

(exprs, admins) = unzip pairs
app = make (map (fmap Just) exprs)
newAdmin = mconcat admins

in
case typeAExprWithContext syns app τ of

Just typedExpr → (Success (typedExpr, newAdmin))
Nothing → (failedSolution (getRealCost newAdmin))

checkNewExpr (Fail pairs) =
let

( , admins) = unzip pairs
newAdmin = mconcat admins

in (failedSolution (getRealCost newAdmin))
checkNewExpr (Debug str) = (Debug str)

evalTypesAndConditions :: ([Tp ] → [(Tp, Tp)]) → [(AExpr Typed, Bool)] → ([Tp ], [(Tp, Tp)])
evalTypesAndConditions makeC perms =

let
types = map getType perms

in
(types, makeC types)

where
getType (expr, True) = fst (getInfo expr)
getType ( , False) = freshTVar ()

findConflict :: OrderedTypeSynonyms → [AExpr Typed ] → ([Tp ] → [(Tp, Tp)]) →
[ [(AExpr Typed, Bool)]]

findConflict syns exprs makeConditions = rec exprs 1
where
rec [ ] = [ ]
rec as omitAmount =

let
perms = (doPerms as omitAmount)
permsWithConditions =

zip perms (map (λp → evalTypesAndConditions makeConditions p) perms)
(unifiedPerms, ) = unzip (filter (doUnify syns) permsWithConditions)

in
if (length unifiedPerms) > 0
then unifiedPerms
else rec as (omitAmount + 1)

getTypeInfo :: AExpr (Maybe Typed) → Tp → ([Tp ] → [(Tp, Tp)])
getTypeInfo expr τ = case expr of

(App ) →
let

makeAppConditions :: [Tp ] → [(Tp, Tp)]
makeAppConditions childTypes =

let
funType = head childTypes
argTypes = tail childTypes

in
[(funType, foldr (.− > .) τ argTypes)]

in makeAppConditions

(If ) → (λ(g : t : [e ]) → [(g, boolType), (t, τ), (e, τ)])

(Lst ) → map (λtp → (tp, τ))

(Tup ) → (λtps → [((tupleType tps), τ)])

doUnify :: OrderedTypeSynonyms → ([(AExpr Typed, Bool)], ([Tp ], [(Tp, Tp)])) → Bool
doUnify syns (exprs, ( , cs)) =

let
enabledExprs = (filter snd exprs)
substs = map (λe → snd . getInfo . fst $ e) enabledExprs
unified = (unifySubstList syns substs)

in
case unified of

Just superSub → (
let

(ts1, ts2) = unzip (superSub |− > cs)
s = (mguMaybe syns (tupleType ts1) (tupleType ts2))

in
case s of

Just → True
Nothing → False)

→ False

doPerms :: [a ] → Int → [ [(a, Bool)]]
doPerms as i =

let
enabled = take ((length as) − i) (repeat True)
disabled = take i (repeat False)
shuffles = nub (perms (enabled ++ disabled))
doZip [ ] = [ ]
doZip (a : as) (s : ss) = (zip a s) : (doZip as ss)

in
doZip (repeat as) shuffles

findSubst :: OrderedTypeSynonyms → ([(AExpr Typed, Bool)], ([Tp ], [(Tp, Tp)])) →
Maybe MapSubstitution

findSubst syns (alt, ( , conditions)) =
do

let

Code 77



A.5 Implementation of the repair algorithm

enabledBranches = filter snd alt
substs = map (snd . getInfo . fst) enabledBranches

-- determine the substitution of the enabled branches
uSubst ← unifySubstList syns substs
let

(tp1, tp2) = unzip (uSubst |− > conditions)
newSub ← (mguMaybe syns (tupleType tp1) (tupleType tp2))
return (uSubst @@ newSub)

addToAdmin :: RepairAdmin → Progress (AExpr Typed, RepairAdmin) →
Progress (AExpr Typed, RepairAdmin)

addToAdmin oldAdmin (Success (expr, newAdmin)) =
(Success (expr, mappend oldAdmin newAdmin))

addToAdmin oldAdmin (Fail (expr, newAdmin)) =
(Fail (expr, mappend oldAdmin newAdmin))

addToAdmin (Debug str) = (Debug str)

evalCombis :: OrderedTypeSynonyms → [RepairAdmin ] →
[([(AExpr Typed, Bool)], ([Tp ], [(Tp, Tp)]))] →
[MapSubstitution ] → Transformations (Maybe Typed) → Int →
[ [Progress [(AExpr Typed, RepairAdmin)]]]

evalCombis [ ] = [ ]
evalCombis syns admins ((a, (tps, )) : as) (uSub : ss) transList maxAltTrans =

let

recBranches :: [(((AExpr Typed, Bool), RepairAdmin), Tp)] →
[ [Progress (AExpr Typed, RepairAdmin)]]

recBranches [ ] = [ ]
recBranches ((((expr, enabled), admin), oldTau) : bs) =

if enabled
then

-- enabled branch, return unmodified
([Success (expr, admin)] : recBranches bs)

else

-- disabled branch, re-evaluate with new tau
let

newTau = (uSub |− > oldTau)
altAdmin = mappend (RepairAdmin (["re-evaluation" ], 1)) admin
repairedBranch =

repairAExpr syns newTau transList maxAltTrans
(fmap (λ(tp, ) → Just (tp)) expr)

repairedBranchWithUpdatedAdmin = map (addToAdmin altAdmin) repairedBranch
in

(repairedBranchWithUpdatedAdmin) : (recBranches bs)

branchesWithTypes = (zip (zip a admins) tps)
newBranches = recBranches branchesWithTypes
combiBranches = combiList getCost newBranches

in
(combiBranches : (evalCombis syns admins as ss transList maxAltTrans))

transform :: (EmptyInfo info) ⇒ Transformations info → AExpr info →
[Progress (AExpr info, RepairAdmin)]

transform transList aexpr =
[new | (trans, admin) ← transitiveClosure transList,

new ← map (addAdmin admin) (trans aexpr)]

transitiveClosure :: EmptyInfo info ⇒ Transformations info → Transformations info
transitiveClosure xs = emptyTransformation : prod xs (transitiveClosure xs)

where
prod (x : xs) (y : ys) =

(x ‘andThen‘ y) :
(map (x ‘andThen‘) ys . + +. map (‘andThen‘y) xs . + +. prod xs ys)

prod = [ ]

(. + +.) = mergeBy (λ( , admin1) ( , admin2) → compare admin1 admin2)

andThenList :: Transformations info → Transformation info
andThenList =

foldr andThen emptyTransformation

andThen :: (a → [Progress a ], RepairAdmin) → (a → [Progress a ], RepairAdmin) →
(a → [Progress a ], RepairAdmin)

andThen (f1, a1) (f2, a2) =
let

checkf1 (Success s) = f2 s
checkf1 other = [other ]
composed expr = concatMap checkf1 (f1 expr)

in
(composed, mappend a1 a2)

mergeBy :: (a → a → Ordering) → [a ] → [a ] → [a ]
mergeBy f = rec

where
rec [ ] ys = ys
rec xs [ ] = xs
rec (x : xs) (y : ys) =

case f x y of
GT → y : rec (x : xs) ys
→ x : rec xs (y : ys)

78 Code


	Contents
	Introduction
	Preliminaries
	Type systems and inferencing
	Type inferencing
	Unification

	Literature
	Type inferencing
	Damas and Milner
	Lee and Yi

	Improving the quality of error messages
	Wand
	Yang
	Johnson and Walz
	Rittri
	Simon, Huch and Chitil
	Stuckey, Sulzmann and Wazny
	Heeren and Hage

	Automated repair systems
	McAdam


	Transformations
	Isomorphic transformations
	Permutation of arguments
	Currying
	Parenthesization

	Non-isomorphic transformations
	Insertion and deletion


	Application of transformations
	Solution space
	Bottom up aggregation
	Verifying type-correctness
	The repair algorithm

	Lazy evaluation of solution space
	The Progress data type
	Combination and merging of solutions

	Introducing repair costs
	Integration of concepts

	Type propagation
	Propagation rules for type information
	Function application
	Conditionals
	Tuples
	Lists

	Incorporating type context information
	Narrowing down of the solution space
	Directed repair
	Combination of solutions, revisited
	Updating the repair function

	Additional enhancements
	Allowing incorrectly typed subexpressions
	Allowing re-evaluation of transformed expressions
	Integration of enhancements


	Results
	Application of the repair system to selected expressions
	Permutation of arguments
	Currying
	Parenthesis
	Combination of transformations

	Application to real world programs
	Number of solutions
	Effectiveness of re-evaluation

	Analysis of the quality of solutions
	Failed repair
	Successful repair

	Complexity analysis

	Conclusions
	Future work
	Bibliography
	Code
	Data type definitions and their operations
	Implementation of the transformations
	Implementation of the combination algorithm
	Implementation of the type checking algorithm
	Implementation of the repair algorithm


