
M.Sc. Thesis

Developing Interacting
Domain Specific Languages

November 2007

Sander Mak
sam@solcon.nl

Supervising professor : Prof. Dr. S. D. Swierstra
Supervisor UU : Dr. B.J. Heeren
Supervisor TUD : Dr. E. Visser
INF/SCR-07-20

Center for Software Technology,
Dept. of Information and Computing Sciences,
Universiteit Utrecht,
Utrecht, The Netherlands.

Abstract

Domain specific languages (DSLs) and model driven software development (MDSD) both aim at rais-
ing the abstraction level for programmers, thereby enhancing both quality and productivity in software
development. Many approaches exist to create and use DSLs. Unfortunately, almost all of these DSL
based solutions depend on having a single, monolithic model of the domain as basis. From a software
engineering point of view, this approach does not scale very well.

In this thesis project, we explore a road less travelled. Instead of starting from a monolithic model,
we propose to improve this practice by splitting up different concerns over different domain specific
languages. Consequently, the models expressed in these languages must together form a complete ap-
plication, and therefore need to interact. This cross-language modularity provides more possibilities for
reuse and allows DSLs to be narrower and more focused. Examples of this idea are occasionally found
in model driven software development approaches. However, the interaction is often implicitly handled
and poorly formalized. We have studied these issues from a more traditional programming language and
compiler based point of view.

A case study was performed, entailing the creation of two textual domain specific languages for
technical domains (and the design for a third). The first language, DomainModel, is geared towards
modeling persistent data models, and targets the existing Java Persistence Architecture framework. The
second language, WebLayer, is concerned with creating a web-application around such a data model,
and targets the JBoss Seam framework. This prototype forms the basis of our study on the interaction
amongst those languages. Through this case study, we investigate whether such DSL interaction is
feasible and practical, and what the design issues are.

i

ii

Contents

1 Introduction 1
1.1 Setting the scene . 2
1.2 Models and abstraction . 3
1.3 Challenges in DSL development . 5
1.4 Research questions . 6

2 Modeling software 7
2.1 Libraries and frameworks . 7
2.2 4GL languages . 8
2.3 Embedded DSLs . 8

2.3.1 Language assimilation . 9
2.3.2 Natural embedding . 10
2.3.3 Syntax macros . 10
2.3.4 Concluding remarks . 11

2.4 Language oriented programming . 11
2.4.1 Intentional programming . 11
2.4.2 Language workbenches . 12

2.5 Model Driven Architecture . 13
2.6 Our approach . 14

3 DomainModel DSL 15
3.1 Language description . 15

3.1.1 Syntax . 15
3.1.2 Types and annotations . 16

3.2 Implementation . 19
3.2.1 Java Persistence Architecture . 19
3.2.2 Translating concepts . 20
3.2.3 Translating concept members . 22
3.2.4 Equals and hashCode implementation . 25
3.2.5 Semantic checks . 26

3.3 Concluding remarks . 27

4 WebLayer DSL 29
4.1 Target libraries . 30
4.2 Language Description . 31

4.2.1 Text elements . 33
4.2.2 Iterative constructs . 34
4.2.3 Input elements . 35
4.2.4 Actions and forms . 36
4.2.5 Page and session variables . 37

4.3 Implementation . 38
4.3.1 Semantic checking . 39
4.3.2 Specializing generic constructs . 40
4.3.3 Translating pages . 41
4.3.4 Page navigation and data-flow . 44
4.3.5 Translating page elements . 45

iii

Contents

4.3.6 Action language . 48
4.3.7 Session variables and validators . 49

4.4 Issues . 50
4.5 Concluding remarks . 51

5 Interaction aspects 55
5.1 Interaction between DSLs . 55

5.1.1 Motivation . 56
5.1.2 Intended usage scenario . 57
5.1.3 Separate compilation and interface files . 58
5.1.4 Interface characteristics . 61
5.1.5 Issues . 62
5.1.6 Dependencies . 63

5.2 Interaction between DSL and user-written code . 63
5.2.1 Motivation . 64
5.2.2 Extended types . 64
5.2.3 Comparison . 67
5.2.4 Inlined Java annotations . 68

5.3 Concluding remarks . 69

6 BusinessRules DSL 71
6.1 Language Description . 71
6.2 Interface . 73
6.3 Concluding remarks . 74

7 Related work 75
7.1 Model composition . 75
7.2 Ordina Software Factory . 76
7.3 openArchitectureWare . 79
7.4 DSLs for the web . 80

7.4.1 Links . 81
7.4.2 bigwig/JWIG . 82
7.4.3 WASH/WebFunctions . 82
7.4.4 WebObjects . 82

7.5 Active Libraries . 83

8 Conclusion 85
8.1 Reflection . 85
8.2 Future work . 87

Bibliography 87

A Implementation details 89
A.1 Syntax definitions . 89
A.2 Generated code . 91

A.2.1 DomainModel . 91
A.2.2 WebLayer . 94

B Model driven development environments 99
B.1 JetBrains Meta Programming System . 99
B.2 OptimalJ . 101

iv

Chapter 1

Introduction

Software engineering as a discipline finds itself in a permanent state of flux. Especially when it comes to
programming languages, their design and application are subject to numerous studies in both academic
and corporate environments. Programming languages can be categorized into two large groups: general
purpose languages (GPLs) and domain specific languages (DSLs). The former are languages that can
be used to create arbitrary computer programs, whereas the latter are focussed on expressing programs
on a single, smaller domain. It is the latter group that is of prime interest in this thesis.

We observe a surge of interest in high-level software development. Whether it is touted as Model
Driven Software Development, Model Driven Architecture, Domain Specific Languages, or using an-
other fashionable term, many companies are willing to invest. Mainly, the industry’s need for faster
turnaround times on software is the driving force behind this heightened awareness. However, often-
times these initiatives are oblivious to decades of existing research on raising the abstraction level in
software development. By contributing a comprehensive survey of existing ideas and approaches in the
introductory part of this thesis, we hope to alleviate this problem. Both conceptual foundations and
actual implementations are treated.

Our survey (Chapter 2) shows that many approaches to high-level software modeling exist. From
now on, we refer to the collective of these approaches as model-driven software development (MDSD).
In this thesis we want to explore a road less travelled. Many of the MDSD solutions depend on having
a single, monolithic model as basis. From a software engineering point of view, this does not scale very
well. Instead of starting from a monolithic model, we propose to improve this practice by splitting up
different concerns over different domain specific languages. This cross-language modularity provides
possibilities for reuse and allows DSLs to be narrow and focused. Consequently, the models expressed
in these languages must together form a complete application. The goal of this thesis is to create
and research a prototype MDSD environment following this idea, thereby studying and describing the
interaction that is necessary between DSLs.

Organization

The first part of this thesis is dedicated to the introduction of the goals and possibilities of software
development at high abstraction levels. In the remainder of this chapter, we introduce the key concepts
and ideas of model-driven software development. Chapter 2 continues by exploring existing strategies to
implement these concepts, concluding with a short description of our approach. If the reader is already
familiar with model-driven software development at large, all but the last section of Chapter 2 can be
safely skipped. Chapters 3 and 4 consequently describe the individual DSLs we have developed for our
prototype. In Chapter 5, interaction between the DSLs is scrutinized. Chapter 6 introduces another
DSL which has been investigated, building on the introduced interaction mechanism. The remaining
chapters compare our work to existing work.

1

1 Introduction

1.1 Setting the scene

Ever since the inception of computers there has been a constant evolution in the means to program
them. Starting from processor specific machine code, programming languages have evolved to higher
levels of abstraction in small steps. Along the way, focus has shifted from programming the computer it-
self to programming a certain high-level task. The how and when of the execution of the aforementioned
machine codes have become side issues to this task, instead of leading the development. Currently, the
most prevalent languages are the so-called third generation languages. These general purpose languages
(GPLs), such as C++ or Java or Haskell, give ample means to construct software (almost) independent
of the machine it runs on. However, in the face of the ever-increasing complexity of software (Dijkstra
even coined the term software crisis [?]) another step in the evolution of programming languages is
imminent. The designation general purpose language indicates that these third generation languages
are suited to describe a very large class of tasks. This enormous flexibility turned out to be as much
of a weakness as it is a strength. Still, computational steps (albeit at a higher level) are the units of
composition in these languages. The steps of an algorithm, for example, are easily mapped onto these
units. The development of large applications, however, reveals a disparity between the actual develop-
ment means and the high-level requirements provided by the outside world. Yet it is this outside world
that normally commissions the development of software.

Several solutions to this problem emerged, mostly out of necessity. One of them is the advent of
constructs for reusability. Collections of common tasks, called libraries or frameworks are developed.
The idea is to implement a specific task and do it well, and in such a way that it can be reused at
a later time. Abstractions of a certain domain are captured in such a library. A related concept is
component software [?], which also enables and promotes this reuse engineering technique. Still, these
reusable elements are used and combined within languages that do not carry the intentions of a pro-
grammer very well. In practice this has already led to frameworks that are large and unwieldy, in which
domain concepts are obfuscated by implementation issues. Performing maintenance on such systems,
and assessing the reliability , or correspondence with the underlying ideas is hard. Moreover, not every
desirable aspect of domain specific extensions can be captured in reusable libraries. It is, for example, in
most languages impossible to add arbitrary semantic checks at compile time in user-definable libraries.
Furthermore, the syntax, paradigm, and conventions of a general purpose languages impose restrictions
on the forms which libraries and their usage can take. More often than not, these restrictions prohibit
the right abstraction mechanism to be implemented, and the programmer unfortunately has to settle
for good enough.

Standard practices (such as design patterns) and reference architectures are other aids for the pro-
grammer to tame the development complexity. From a technical engineering point of view these tools
are very valuable. Unfortunately, these vocational approaches still do not bridge the gap between the
abstractions of a domain and the code that implements software for this domain in a automatable
manner. Expertise when to use what pattern can generally not be expressed at the code level.

All these issues lead to the realization that a more fundamental change in the software engineering
toolset is necessary, if we want to continue the upward spiral of abstraction in programming. There
is a large movement in computer science that approaches this problem by creating domain specific
languages. A domain specific language is a language that is geared to a specific task or application
domain. The major idea behind DSLs is that much can be gained if a programmer can describe software
in a way that is close to the domain as it exists in the programmers mind:

Quality By abstracting away from low-level details, the potential for errors related to the act of
programming itself decreases dramatically. Furthermore, domain-specific semantic checks can be
performed automatically.

Productivity By restricting a programmer to a certain domain, development within this domain
becomes faster and requires less effort.

Clarity Mapping ideas or requirements to an implementation becomes easier. Also, intentions of an
implementation are better identifiable in the actual (DSL) source code, rather than in (most likely
out-of-sync) documentation and comments.

2

1.2 Models and abstraction

Optimization Optimization can be delegated to the DSL implementation, leveraging domain specific
knowledge.

As stated in the last point, in some cases, performance can also be improved by using a DSL. For
example, optimizations can be applied because of assumptions that may be made for a certain domain,
that would not hold in the general case (i.e. it will never be implemented in a GPL compiler). Given
these prospective benefits, it should not come as a surprise that there is a large interest from the
academic field as well as the corporate field for domain specific languages. The vast amount of available
work shows that there is no single right answer to the question of how domain specific languages should
be created and used. There are many different approaches to construct and implement DSLs. Even the
concept of what a DSL is, is not always clearly definable. A configuration file with a specific structure
constitutes a DSL for some, whereas others only use this term for a full-blown language with a dedicated
compiler. The existing approaches can be roughly put into three categories:

1. Embeddings of languages in general purpose host languages.

2. Stand alone languages.

3. Visual modeling languages.

Generally, the term domain specific language refers to the second approach: stand alone languages.
All of the ideas enumerated above have in common that they try to model (part of) the application
at a higher level than possible in low-level GPL code. These models of a specific domain are generally
translated into GPL code that implements it, either by code generation or using other techniques.
Chapter 2 examines each of these approaches.

1.2 Models and abstraction

Abstraction has been the key word in the preceding introduction, but it is a very general term:

”The act of abstraction is the obtainment of the general in favor of the specific. Our human civiliza-
tion rests on the power of abstraction insofar as the volume of specific cases handled by an abstraction
is typically much greater than the overhead of the abstraction mechanism itself. This is especially true
in software so the ability to abstract is key to any encoding.” (C. Simonyi [?]).

There are many ways of encoding software, but as we have already seen, one is prevalent: general
purpose language code. In this section we are going to examine many approaches that try to abstract
away from this notion. An intuitive classification of these approaches will help in determining where
they fit in the complete spectrum of model-driven engineering efforts. Figure 1.1 provides such a clas-
sification. For each column, one has to consider what exactly can be a model, and what the arrows
between code and model mean. For now we will settle on the definition of model as an abstract rep-
resentation of a program in a certain domain, and code as the implementing source code in a general
purpose language. The arrows indicate an automated (i.e. not involving human intervention) connec-
tion between code and model, or vice versa.

On the far left, we find the currently prevalent practice: a program, its characteristics, and under-
lying ideas are determined solely by the code that was used to implement the program. There might or
might not exist any corresponding documentation, but even if it does exist, there is no direct, tangible
connection to the code. Guarantees whether these documentational artifacts are valid or up-to-date,
cannot be given. Essentially, there is no model, except for the mental model in the programmer’s mind.
Following the reasoning of the preceding introductory section, this approach does not scale well in the
light of ever growing (both in size and complexity) software projects. Software development possibly
involves many people who need to understand the application and work on it effectively. On the code
level, abstractions can only be expressed in terms of available constructs and concepts in a language.
So, in Java one has to encode domain abstractions in terms of classes and methods, Haskell requires the
programmer to encode abstractions in terms of (higher-order) functions, data types, and type classes,
and so on.

3

1 Introduction

Figure 1.1: Comparison of software development methodologies

The second column, model embedding, indicates a next step in the growing need for abstraction:
enhance the language by allowing models to be embedded inside a general purpose language. This is
particularly appealing since only select parts of the application can be modelised, whereas other parts
can be described in low-level GPL code. Section 2.3 explores the design limits of this approach, for the
feasibility of this approach highly depends on the embedding method and target language. Generally,
the level of abstraction of embedded models is modest compared to the approaches that follow.

The third column, code visualization, depicts the school of thought that code and the model should
be separate entities. Moreover, the model describes the application as a whole. In this way, develop-
ment teams should really reap the rewards of higher productivity, maintainability, and quality. However,
code visualization cannot achieve this, since it relies on the code to present and manipulate the model.
Therefore code visualization can aid program understanding but not program construction. An alter-
native use of this class of tools is to extract models from legacy code, and use these models as starting
point for any of the remaining approaches.

Moving on to roundtrip engineering, we now identify a bi-directional relationship between the model
and code. This implies that development can take place on both the high abstraction level, and the low
implementation level. It is not hard to see that this approach is made or broken by the quality of the
synchronization between these two levels. More concretely, code generation (arrow down) must respect
changes made by programmers in underlying code. Conversely, the model has to reflect changes in the
underlying implementation (arrow up), in order to be able to keep developing on the model level. In
practice, this problem turns out to be very hard. Integration between low-level GPL code and code
following from the model therefore also has the focus in this thesis proposal, though not necessarily in
a bi-directional setting.

The penultimate column, model driven development, depicts the inverse of code visualization. Devel-
oping programs using this approach, is more of a blackbox activity. A program is encoded by creating a
high-level model, whereupon this model is translated to an executable implementation. Full generation
of applications from models puts a heavy burden on the modeling capabilities. It might very well be
the case that developing programs using this approach provides less freedom. However, this depends
very much on the quality and scope of the models that can be used, and of course on the desired degree
of freedom. Our research prototype fits into this category, where domain specific languages assume the
role of models.

In the last position, we find the model only approach. This has been the state of model driven
engineering for a long while. Generally, software development is started in good style by creating a
model first. However, the mapping from model to implementation is then performed manually. While
the upfront design steers developers in the right direction, this is not as optimal as either of the previous
two approaches. Experience gained by performing many of these mappings cannot be captured for later
use in an automated fashion, as with the previous two approaches.

4

1.3 Challenges in DSL development

Figure 1.2: Relation between technical and business domains

An interesting link to ’Functional Design Patterns’, studied by several UU Master’s students [?, ?]
exists. In this research, structured documentation and specification of possibilities for reuse are ex-
plored, based on functional and architectural similarities between programs. However, while useful,
still such an approach does not provide a generative connection from the model (functional design
patterns) to an implementation. Moreover, opportunities to create such a connection are only touched
upon, and not actually realized. We think our work and approach, introduced in more detail in Sec-
tion 2.6 is exemplary of how information contained in a functional design pattern can be materialized
as concrete software engineering tools.

One way of describing a model is to use a domain specific language. The language definition defines
the restrictions imposed on the model, and each program written in the DSL constitutes a model
instance. Another way of describing models is, for example, by creating diagrammatic representations.
The central theme is that models can drive software development. What the shape, form, or abstraction
level of models is, and how expressive these models are, what the scope of models is, is all subject to
many factors. Models are depicted as monolithic entities in Figure 1.1, but this need not be the
case at all. In fact, our research rejects the notion of a single model approach, as will be discussed
in the following section as well as in our approach in Section 2.6. Also, the extent of the connection
between model and code is an important variable to observe when comparing various approaches. Many
approaches are hybrids between the described categories. Nevertheless, the categorization presented
here is meant to give a solid basis for the assessment of various tools, languages, and techniques in the
field of model driven software development.

1.3 Challenges in DSL development

We have chosen to express high-level models using domain specific languages. Chapter 2 gives an
overview of the alternative approaches, and places this choice in a wider context. Many interesting
issues exist in the area of DSL design and development. In the design process, non-trivial choices are
to be made, each of which can have an effect on the usability or even viability of a DSL. These effects
are sometimes obvious, but oftentimes not so. This already becomes clear when trying to give a basic
definition of what constitutes a domain. Traditionally, a domain is often linked to a real world subject
matter, e.g. the domain of creating software solutions for banking products or insurance brokers. An-
other view on domains pertains to focusing on technical areas that are part of the software engineering
process. These areas typically cross cut the former real world domains, as depicted in Figure 1.2. A
domain specific language implementation can be made or broken by the choice of the domain concerned.

By their nature, domain specific languages come in multitudes. You most probably need several

5

1 Introduction

languages or models to create a complete software solution. This is especially true when the concerning
domains are technical domains rather than real world problem domains, which is the premise of the
remainder of this thesis. Having multiple DSLs raises the issue of how these languages should interact.
This interaction can be described on several levels. Conceptually, a DSL must be able to reference an
abstraction in a related DSL. Ideally, the modularization between interacting DSLs should follow the
principle of separate compilation. This notion is explored in detail in Chapter 5. Furthermore such
interaction should feel natural to the DSL user.

Apart from these meta-issues, finding the right abstractions for the design of a DSL is currently
more of an art than it is a standard engineering practice. In this regard we will explore the similarities
between library design and domain specific language design in Section 2.1. This issue becomes even
more interesting when we take into account the notion of a family of interacting languages.

The advent of domain specific languages is based on two important principles in language design:
abstraction and restriction. A general purpose language allows its users to define any program, but at
increasing costs. The complexity of achieving a task increases with the complexity of this task. Domain
specific languages aim at raising the abstraction level, thereby lowering the complexity of achieving a
specific task. On the other hand, other tasks might become harder or even impossible to achieve in a
DSL. While the imposed restrictions lead to improved productivity, several downsides can be identified
as well:

• Programmers can grow frustrated when a DSL restricts them by its design.

• The domain might evolve in unforeseen ways, leaving the programmer with insufficient means to
express himself.

• Certain tasks are inherently better suited to a solution expressed in a GPL.

A route that is often taken to remedy these problems, is to start modifying the code that was gen-
erated from a domain specific language. Unfortunately, this is not a solution at all, since it leads to
several new problems. First of all, any changes to the generated code will be lost when the code is
regenerated, after a change at the model level. Second, a programmer has to be familiar with every
detail of the translation scheme in order to edit the generated code in a meaningful way. However,
the original problems cannot be ignored, for they prohibit the adoption of DSLs. We think a good
DSL design therefore also involves creating well-defined extension points from the DSL to the target
language. Our prototype contains such extensions, and as such these will serve as vehicle to investigate
this type of interaction. Furthermore, we believe that having multiple interacting DSLs, all using a
well defined interface mechanism, opens up the way for new DSLs to be plugged in. In this way, new
domain abstractions can be introduced, if doing so is justified.

1.4 Research questions

We observe that domain specific languages can improve the software engineering process, with respect
to the challenges outlined in this section. Using several domain specific languages together to model
complete applications is not unprecedented. However, the interaction aspects seem to be under exposed.
Summarizing, we can identify two research themes, with corresponding research questions:

1. Interaction between DSLs

• What interaction patterns can we identify?
• How can we implement DSL interaction?
• How does interaction affect the design of a DSL?

2. Interaction between DSL and host language code

• When and how should interaction between DSL and GPL code be implemented?

By creating a prototype environment we want to answer these research questions. Furthermore, we
firmly place our work into a wider context, which we believe is an important contribution. The field of
MDSD research is wide and fragmented, yet this thesis aspires to provide a solid overview.

6

Chapter 2

Modeling software

Before moving on to the details of our prototype (Chapter 3 and further), we provide a survey of
principal ways to raise the abstraction level in software development. We will see that, although the
described approaches share this common objective, vastly different techniques, methods, and ideas can
be identified. The last section of this chapter (Section 2.6) introduces the concrete setup and design
goals of the prototype we developed during the course of this thesis project.

2.1 Libraries and frameworks

We have seen that models can abstract from code in several ways. However, we also noted that the
code itself can contain more abstract notions, in the form of libraries and frameworks. A library is a
reusable component in a language, providing functions that perform certain (domain specific) tasks. A
framework is defined in the same way, only at a higher level. Frameworks usually guide the programmer
towards using a certain architecture, possibly utilizing and integrating several libraries. We will now
explore the link between domain specific languages and libraries and frameworks.

Libraries themselves form a prime target for (embedded) domain specific languages. By extension,
we believe that a framework is a prime target for multiple interacting DSLs. When the usage of a
library becomes too complex or too verbose, (E)DSLs (which are discussed in Section 2.3) can provide
a significant improvement. Often, libraries have implicit semantics layered over the bare semantics of
the language it is implemented in. This can be hidden state, unexpected semantics pertaining to the
ordering of function calls, or complex rules with respect to the initialization of libraries. Learning to
use a library in some cases is equally hard as learning a new (E)DSL, without getting the advantages.

However, caution should be taken when designing a DSL with a specific library implementation in
mind. Details from the underlying library should leak through to the higher layer as little as possible.
A famous example is an SQL query with the clause WHERE a=b AND b=c AND a=c, which runs faster
than with the equivalent (at least to the SQL user) clause WHERE a=b AND b=c. This behavior is due
to the way the query is translated to an execution plan using indices in the DBMS. A good abstraction
layer is intuitive, however, in some cases having to know what is going on at a lower level is unavoidable.

Frameworks encode domain specific knowledge (i.e. best practices and architectural choices) in a
GPL. A trend that can be discerned is that more and more of these frameworks rely on external speci-
fications to be instantiated. Most Java and .Net frameworks rely on these external files, predominantly
in XML format. These configurations are then interpreted at deployment time creating an instance of
the framework, often extensively using reflectional facilities of the language. It is clear that domain
specific languages can play a big role in eliminating these sort of constructions. That is, by letting
the programmer express the variability of a framework in a domain specific language, which can then
generate optimized code for that specific instance. This transition can almost be equated to the shift
from an interpreted to a compiled programming language.

Program families are another important notion when talking about libraries and frameworks. A
program family denotes a set of programs that have enough in common to regard them as a common
system with controlled variations. Frameworks exploit the same sort of commonality between programs.

7

2 Modeling software

Analyses to assess whether programs can be grouped into a program family, or supported by a frame-
work, are quite mature. These analyses also form the foundation of DSL design (e.g. commonality
analysis [?]). A natural conclusion is that DSL design, framework design, and program families are
closely related concepts. And indeed, this is shown by case studies [?]. An interesting observation
that we would like to add, is that frameworks typically encode layered architectures. Each layer is
responsible for a small aspect of the complete application. These aspects, in turn, are often supported
by a library. This maps nicely onto our classification of technical domains (Figure 1.2, page 5). Hence,
if libraries map to DSLs, then frameworks potentially map to our proposed multiple DSL approach.
Our prototype confirms this thought, as we will show in this thesis.

2.2 4GL languages

A first DSL based answer to the so-called software crisis, as sketched in Section 1.1, came in the mid-
eighties. Many so-called fourth generation languages (4GL) emerged. A good overview from this era on
the design goals of 4GLs is given by Alan Tharp [?]. One of the most ambitious objectives is that 4GLs
should be simple, English-like, non-procedural languages. Programming by writing natural text was
hailed as the ultimate goal. Furthermore, these languages are intended to reflect high-level domains,
corresponding to business domains in our definition from Section 1.3. 4GLs are an early instance of the
’model driven engineering’ approach (i.e. the fifth column of Figure 1.1 on page 4). Some examples of
4GLs are:

Progress 4GL Language to define data-entry (and related) applications.

Oracle Forms Language to create management reporting applications on top of Oracle databases.

Mathematica Language for mathematicians.

These are examples of 4GLs that are still in use. However, many 4GLs did not survive the test of
time. We can identify several reasons for the demise of these languages. First of all, the focus has been
on business domains. Effectively, this means that a 4GL language should take care of the complete
implementation, from storage to logic, as well as presentation, and everything in between. Especially
in the eighties, creating such a language with an appropriate mapping to an implementation was highly
non-trivial. Library support for all sorts of tasks in the underlying implementation language was not as
excellent as it is nowadays. Also, even when creating a language from the business perspective, changes
in technology can still have a profound impact. Think, for example, of moving from console applications
to graphical applications, to web-applications, etc. To facilitate these changes, the languages had to be
changed and extended as well. The danger of this approach is that 4GL languages gradually turn into
general purpose languages. All of the examples mentioned above succumbed to this temptation to var-
ious degrees, thereby surrendering at least some of the advantages of having domain specific languages.

The most important downside of nearly all 4GLs is the fact that they are strongly connected to
software components of the vendors of the 4GL. This point is made explicit by observing the examples,
where two already contain a direct reference to large database companies. Vendor lock-in is not only
present in the target languages and platforms, but also in development environments. We can conclude
that the lack of an open environment works detrimental for all but the largest vendors. Applicability
and development of 4GLs depend too much on solitary, external parties to really gain acceptance as a
good software engineering practice.

2.3 Embedded DSLs

An embedded DSL is the counterpart of the stand-alone DSL (such as a 4GL language). The class of
embedded DSLs (EDSL) consists of languages defined within a general purpose language. In this way,
the embedded language inherits the infrastructure of the host-language. Creating an EDSL therefore
eliminates some of the start-up costs attached to stand-alone DSLs. Another advantage is that the
power of the host-language can be mixed arbitrarily with the DSL embedding. The degree of success of
an embedding highly depends on how amenable the host-language is to these embeddings. There can be
many inhibiting factors for creating embedded domain specific languages, depending on the approach

8

2.3 Embedded DSLs

taken and the host-language concerned. We will consider these issues and evaluate them in this section.
The approaches examined in this section all constitute an instance of the second column of Figure 1.1.

When a stand-alone DSL partially implements functionality for a certain domain, the question arises
how this can be incorporated into a complete software product. One approach is to reference artifacts
generated from this DSL (e.g. invoke a parser generated by Yacc), or to derive from them (e.g. using
subclassing). The disparity between domain specific definition in the DSL and usage in the actual code
can lead to confusion or inconsistencies. If a language is directly embedded, the interplay between the
domain specific concepts and the host-language is much clearer. Note that when a (combination of)
stand-alone DSL(s) caters for complete program generation, this problem is also avoided.

Three different embedding strategies can be distinguished. One strategy is to create a new lan-
guage (syntax) definition for the embedded language combined with the host-language. Consequently,
this hybrid syntax is parsed and translated into a pure host-language program, in pre-processor style.
Section 2.3.1 explores this strategy.

The second strategy is to fit the embedding in the existing syntax of the host-language [?], an
approach often taken by domain specific languages for Haskell and Ruby. Limiting factor in this approach
are the features offered within a language. Operator overloading, as a single example, allows for more
natural and expressive embeddings. A language such as Java lacks many of these desirable features,
generally making it a bad choice for this type of embedding, whereas the two mentioned language have
excellent provisions. Section 2.3.2 treats this type of embedding.

As a third strategy, we identify embeddings through syntax macros. This strategy is related to
the first one, but in this case the host-language itself provides the environment for the assimilation of
an embedding. This last embedding strategy is handled in Section 2.3.3. We will now proceed with
exploring each of these strategies in more detail.

2.3.1 Language assimilation

Language assimilation in the case of domain specific languages means that domain specific abstractions
within a general purpose language are reduced to general purpose abstraction implementing the desired
functionality. In effect, a language L is extended to language L′ by adding domain specific extensions.
Then, a pre-processor assimilates L′ sources into L sources, which in turn can be compiled by the
standard L compiler.

An example of this approach is the MetaBorg project [?, ?]. The approach taken by MetaBorg is
to create a language definition for a domain, and compose it with the syntax definition for the target
language. This is done by exploiting the modular Syntax Definition Formalism [?], in which arbitrary
language declarations can be mixed. The next step is to write an assimilator for this mixed language
definition, which translates constructs of the domain specific embedding to constructs in the target
language. In this translation, semantic checks can be performed to ensure safety. Also, this checking
phase offers large potential for user-friendly error reporting. The translation itself is described with
term rewrite rules in Stratego/XT [?]. One of the advantages is that the embeddings are completely
independent from the language features provided by the host-language. As long as the combined syntax
can be parsed, and the domain specific constructs can be expressed in host-language constructs, all is
well. Parsing hardly is a problem due to the generalized LR parser that is used. A prime example of
the MetaBorg approach is the embedding of a Swing User-interface Language in Java [?].

If a syntax definition for the host-language is available in the SDF format, creating an embedding
following the MetaBorg approach is surprisingly straightforward. However, a drawback of this approach
is the lack of compositionality of the embeddings. For each combination of domain specific language
embeddings, a composed syntax definition must be created. Furthermore, the assimilations potentially
influence each other, introducing non-determinism in the absence of a clear ordering with arbitrary
combinations of embeddings. Also, assimilated code may conflict with assimilated code of another
embedding.

9

2 Modeling software

2.3.2 Natural embedding

With a natural embedding we mean that the domain language can be expressed within a general
purpose language, without extending the syntax of this language. Features such as operator over-
loading/introduction and higher-order functions can make this approach feel sufficiently natural for a
domain. Essentially, natural DSL embeddings are libraries disguised as languages. It is clearly the
most economical way of introducing a domain specific language, since one can focus on the domain
only, without having to worry about the infrastructure. Compilers, IDEs, and other tools can still
be used, even though they are not aware of the domain specific embedding. Especially in the Haskell
community, many of these embedded languages [?] are developed. These languages are sometimes also
called combinator libraries, because often they rely on introducing new operators to express domain
constructs. Advantage of having such an embedding is that the full power of the host-language can be
combined with the domain abstractions. On the other hand, this can be a danger as well, since domain
specific programming relies on restriction as much as it relies on domain expressivity.

A downside of the natural embedding approach is that errors are reported directly by the host
compiler, which has no knowledge of domain specific constructs. There are exceptions, such as the
Helium compiler1 which can incorporate specialized typing rules and error messages for domain specific
constructs. However, such a mechanism is generally not available. Furthermore, the resulting syntax
often is not the most desirable syntax when looking from the domain perspective. A striking example
of this argument is the usage of regular expressions in Java. Regular expressions can be regarded as
a domain specific language for string matching and manipulation. Java supports regular expressions
through an API, which accepts a regular expression described in a string. The format is almost the same
as for Perl regular expressions (arguably a de facto standard), but at the same time you are confined
to the way strings are handled on the Java platform. This means that many symbols that are used in
regular expressions, need to be explicitly escaped. Most unfortunately, the escape symbol of regular
expressions is one of these symbols. This leads to the undesirable situation in which a programmer is
doing some domain specific programming (namely creating a regular expression), but meanwhile all the
peculiarities of the host-language have to be considered as well. Even worse, regular expressions inside
a string are not checked for validity until the actually run-time API call. So, even though the ’natural’
embedding is possible in this case, it is not always the best choice. The suitability of this approach
therefore highly depends on the capabilities of the host language.

2.3.3 Syntax macros

The main idea behind syntax macros is that a programmer can instruct a compiler to translate an
input pattern to an output pattern, without requiring any changes in the compiler or the compilation
pipeline. There are many ways such functionality can be implemented, ranging from very safe but
limited to principally unsafe but very expressive.

The archetypical example of extending a language through macro facilities is provided by (Common)
Lisp. This language has a very minimalistic syntax, but allows for powerful extensions as it is a
programmable programming language. In Lisp, the code itself can be generated and altered at run-time,
because data and code share the same representation (it is a homo-iconic language). The concrete Lisp
syntax resembles the abstract syntax very closely. Ultimate expressivity is gained by this mechanism.
Macros work on the internal program structure. Using functions and macros, Lisp can be extended to
cover a specific domain. However, the power of Lisp has proven to be too much for many. In practice,
this freedom of unstructured extension did not serve domain specific development very well.

Also, Lisp macros allow for the definition of local transformations in a natural way. Creating trans-
formations that use global information is much harder. Having the ability to specify transformations
using global information is, however, very important when high-level domain specific languages are
concerned.

At the other end of the spectrum, far less powerful macro approaches can be identified. Macros in
C are nothing more than a textual search and replace action on C-sources. A similar example is the

1Helium is a compiler for a subset of Haskell.

10

2.4 Language oriented programming

templating system in C++. Macros in this templating system are expanded without any type checking,
deferring these checks to the compilation of the expanded code. Naturally, this leads to very confusing
error messages in terms of the (generated) expanded code. This is a problem that is strongly related
to the one-way nature of these macro expansions. A macro facility for Haskell which overcomes this
shortcoming, by providing a two-way mechanism, is created by Rommers [?]. This is a powerful way
of extending syntax in a type safe manner, but it requires a custom Haskell compiler. As such, it voids
the advantage of lower startup costs by using existing infrastructure for the translation of an embedding.

All in all, most macro facilities offered by general purpose languages (if any) are too lightweight for
an integrated domain specific programming approach. Either the translation lacks safety, or requires a
large effort to ensure safety. Some of the most popular languages (e.g. Java) do not even offer a macro
facility.

2.3.4 Concluding remarks

Embedding DSLs is a convenient method to lift code to a more abstract level at minimal costs, using
any of the three approaches. The trade-off between these approaches mainly consists of finding the right
balance between implementation effort, usability, and safety. We observe that natural embeddings are
mostly used for domains that are quite narrow. A small, convenient abstraction is injected into a GPL,
e.g. parser combinators or a query language. While this raises the abstraction level of parts of a pro-
gram, it does not completely cover the goal of raising the abstraction in application development. This
can be seen as a blessing or a curse. On the one hand, the full power of the host language is available
around the embedding. On the other hand, this may exactly be something that needs to be avoided to
guarantee quality and productivity improvement in some settings.

Depending on the environment and approach taken, combining different EDSLs is potentially prob-
lematic. This holds in particular for approaches that use pre-processors to translate the embedding, i.e.
not for natural embedding. Conversely, in the case of natural embeddings it is generally not possible to
perform specialized semantic checking on embedded languages, since the compiler generally is unaware
of the extensions. A sufficiently expressive type system helps in this regard. However, the more expres-
sive such a general purpose type system is, the harder it is to provide legible (or even domain specific)
error messages.

2.4 Language oriented programming

Language oriented programming (LOP) is another idea to bring specialized languages into software de-
velopment. The central idea is to integrate (domain specific) language development into every software
development process. It should be as easy to define a new language for use within a project as it is to
add a new class or module in present practice. This differs from the previous approaches we have seen,
where DSL are developed independently of actual development projects, to be used many times over. It
is not very surprising that none of the current LOP approaches entirely succeed in the aforementioned
goal, but the direction is clear.

2.4.1 Intentional programming

The term intentional programming (IP) [?] is first used by Simonyi at Microsoft Research in the mid-
nineties. It forms the basis for most of the current work on LOP, as it was the first instance of a
language oriented approach. Simonyi observes that languages as they exist are fundamentally flawed
in several ways, including:

• There is a mismatch between the (low) level of programming languages and the (high) level of
development goals.

• Existing languages are by default not compatible with each other.

• Domain experts cannot take part in the actual development process in any shape or form, because
of the language barrier.

11

2 Modeling software

Most of his observations amount to the same conclusion: general purpose languages are not very
well suited for a programmer to express his intentions in. Undoubtedly the intentions get obfuscated
by having to mix them with trivialities and implementation details. Simonyi postulates that ’every
good comment in source code indicates a shortcoming in the language’. Much less can a domain expert
without traditional programming abilities participate in the development process, beyond voicing his
intentions in a way that is not machine processable.

Intentional programming envisions a development environment in which there is no single traditional
programming language. Instead, many small languages may be developed in order to enable quick
construction of the application at hand. This language development is split into two phases:

1. The programmer and/or domain expert create the appropriate abstractions.

2. The programmer links these abstractions (together forming a ’language’) into the intentional
programming environment.

After these steps, a program can be developed in terms of the abstractions of a specific domain. How-
ever, it is still up to the programmer to create a consistent mapping that translates these abstractions
in a meaningful way. In order to make these languages interoperable they all map to a standardized,
common representation. This representation is called the intention tree, which is a normalized repre-
sentation of computations. This tree can have many views, at various levels of abstraction. Editing a
program involves editing the tree, or rather one of its synchronized views. In fact, each of the aforemen-
tioned languages are particular views on the intention tree. An editor that works on the structure of
those trees or views is an essential part of IP. The notion of editing program code as unstructured text is
abandoned, thereby avoiding the difficulties of parsing a mixture of textual representations. By working
in such a structured editing environment, the well-formedness of programs is forced by construction.
This contrasts with the traditional compiler approach, where well-formedness is forced by corrective
error messages. The front-end part of a compiler (that does the parsing and builds an AST) can be
omitted in the IP environment, since the programmer is constructing the AST directly in the structured
editor. Whether this approach really fits the programmer’s perspective remains to be seen; editors that
force the programmer into a certain mode of operation can be experienced as a nuisance. This com-
plete departure from current practice could be a severe liability to the adaptation of this new technique.

The first prototype of IP was constructed at Microsoft Research. Unfortunately, this work was
shelved after several years because it was too disruptive for Microsoft’s .Net strategy, which promotes
a more traditional paradigm. Currently, Simonyi’s company Intentional Software is working on a new
implementation. A paper re-iterating the principles of IP and containing a concrete example was pre-
sented at OOPSLA 2006 [?]. Besides this paper, not much information is available on this project and
it remains to be seen whether the ambitions of IP can be materialized.

2.4.2 Language workbenches

In his article ’Language workbenches: the killer-app for domain specific languages?’, [?] Martin Fowler
explains a vision akin to what intentional programming tries to achieve. However, his description is
implementation agnostic. In fact, the intentional programming environment is an implementation of a
language workbench, albeit an ambitious one.

In the description of language workbenches, however, healthy skepticism is exercised towards the
lay-programmers argument. This is the idea that a domain expert without programming knowledge will
be able to write his own programs. While it offers a nice perspective, this goal might be unattainable.
Fortunately, this does not obliterate the need for language workbenches (or domain specific languages
for that matter) at all. Having a programmer work on a level closer to the understanding of a domain
expert is just as valuable, giving all the advantages discussed in the introduction of this proposal.

A strong emphasis is put on the fact that evolution now can take place on two axis: a program
can evolve, but so can the languages that were used to implement it. This calls for a strong notion
of refactoring, to reflect changes of a meta-language in the development of applications in a language

12

2.5 Model Driven Architecture

workbench. This danger is also described by Klint et al. [?, ?]. We have surveyed a concrete imple-
mentation of a language workbench call the ’JetBrains Meta Programming System’. A comprehensive
description of this environment can be found in Appendix B.1.

2.5 Model Driven Architecture

Model Driven Architecture (MDA) itself is not an environment to create (visual) DSLs. It is a stan-
dardization effort by the Object Management Group2. The idea is to create standards which all meta-
modeling environments should adhere to, in order to ensure interoperability between model driven
development environments and their input models. A meta-model is a model that describes well-
formedness for model instances (i.e. a model conforms to a meta-model, as a source file conforms to a
grammar). MDA describes the following ingredients for the model driven approach:

Platform Independent Model The actual high-level description of an application (UML).

Platform Definition Model A model of a specific architecture (e.g. CORBA, .Net or a web-environment).

Platform Specific Model Executable description of an architecture instance.

Given a Platform Independent Model, which corresponds to a meta-model, and a Platform Defini-
tion Model, a Platform Specific Model has to be generated. How this is achieved, is left as an exercise
to the implementor of the tool. The many acronyms associated to MDA already indicate that this
standard is quite heavyweight. Even more standards than mentioned here are bundled into MDA. In
practice, not many actively used MDSD environments make use of the complete set of MDA standards.
This can be mostly attributed to the (uncalled-for) complexity.

The modeling languages and environments based on and related to MDA are mostly of visual
nature. A prevalent visual modeling language is UML. However, many tools also employ their own
visual language, since UML as a general purpose modeling language can suffer the same problems as
general purpose programming languages. In particular, the complexity and sheer size of the language
in practice makes it hard to succinctly express domain concepts. Furthermore, UML does not natively
support any module system. Consequently, managing models suitable for code generation for complete
applications is cumbersome at best. On a more practical note, version control of UML models is a
complex endeavour.

Still, many approaches do use UML, since a vast amount of editors is available for this generic
language. Building a custom visual editing environment is costly, but generally deemed worthwhile
because of the abovementioned issues.

Some concrete modeling environments that follow the MDA ideas (but do not necessarily implement
the associated standards) are:

• Eclipse Modeling Framework (EMF), an open source effort. The Graphical Modeling Framework
provides means to create custom graphical editors. Compatible with (but not built on) UML.

• Microsoft DSL tools, a proprietary visual DSL development environment. Discussed as related
work in Section 7.2.

• OpenArchitectureWare, a tool to transform and check EMF/GMF (and various other types of)
models. Discussed in Section 7.3.

These projects form the current state of the art in graphical modeling coupled with code generation,
and also have a track record (though short, compared to the approaches in previous sections) of actual
usage in production environments.

2OMG is a consortium of corporate and academic members that also standardized UML and CORBA.

13

2 Modeling software

2.6 Our approach

A prototype has been implemented to research whether creating multiple interacting DSLs is feasible,
practical, and desirable. The prototype is comprised of three technical domains, each having their
own domain specific language. The choice of domains for our prototype is largely immaterial, since
we are interested in the principles behind the language design and interaction rather than the domains
themselves. However, to avoid a contrived case study, we selected domains that benefit from a DSL
approach regardless. Concretely, we model web-application development for the Java platform. The
existing libraries and frameworks for this domain show that it is extremely difficult to concisely and
accurately express the concepts of this domain through a natural embedding (i.e. native Java libraries).
This can be attributed mainly to Java’s narrow set of general abstraction facilities, as was discussed in
Section 2.3 and Section 2.1 of this chapter. Therefore we develop several stand-alone DSLs, meanwhile
showing how this improves the ability to model web-applications.

A well known and prevalent architecture for web-applications is the three layer (or tier) model [?].
It consists of a data-layer at the base, which we model with a DSL called DomainModel (Chapter 3).
The top layer is concerned with presentation aspects, such as navigation between pages, presenting
forms for data entry etc. In between these two layers resides the business logic of web-applications.
Business logic is quite a fuzzy term, we define it as the code responsible for data manipulation, thereby
enforcing business rules and policies. The DSLs for these layers will target existing Java libraries.

We restrict the scope of the DSLs to modeling data-intensive web-applications. A precise, agreed-
upon definition of data-intensive web-application is not directly available. An intuitive definition suf-
fices: data-intensive means the web-application is structured around a data model and consists of an
interface to manipulate the underlying data-model, according to a set of pre-defined rules. The paper
’Design principles for data-intensive web site’ [?] contains an excellent exploration of the design space
for such applications. Practical examples that spring to mind are internal data-processing applications
of companies to support tasks such as managing customer information, or a student administration sys-
tem. These types of applications are built in large quantities on a daily basis, and therefore constitute
an excellent program family to be supported by DSLs.

In particular, we stress the fact that it is not the intention to create production-quality, all encom-
passing implementations of the DSLs. Rather, we are interested to see how modular or independent
our DSLs can be, and how we can shape the interaction between different DSLs and between DSL and
host language code.

14

Chapter 3

DomainModel DSL

The objective of the DomainModel DSL (which we will refer to as DomainModel from now on) is to
provide a language to specify persistent data models for arbitrary domains. Such a domain model
forms the foundation for any type of application that works on domain data, whether it is a desktop
application, command line tool, or web application. In this context, the adjective persistent means
that instances of a domain model must be storable in a non-volatile environment, such as a database
or filesystem.

Since our languages are targetted at the object-oriented language Java, DomainModel follows the
object-oriented paradigm as well. Prime goal is to provide a language that provides a flexible way of
modeling a domain, whilst keeping the user oblivious to the implementing machinery aiding the per-
sistence of the domain model. From a modeling perspective, DomainModel bears some resemblence to
UML class diagrams. This language independent, visual formalism is widely known in the data model-
ing world. Even though DomainModel is not a visual language, some elements of UML class diagrams
can be distinguished, which we elaborate upon later. In general, it is good practice to leverage existing
formalisms or known mechanisms for a domain in a relevant DSL. In this way, users of a DSL can
reuse their intuitive knowledge of a domain when using or learning the DSL. From a functional point
of view, however, UML class diagrams are mostly used as formal input for database schema design.
Our focus, on the other hand, is on generating an implementation that handles the persistence of an
object-oriented domain model, from the code level to the database level.

The DomainModel language will be introduced by describing its structure and by inspecting a
concrete example of a domain model. Subsequently, we analyze the implementation of the DSL, where
the semantics of the language is solidified by giving the translation to Java.

3.1 Language description

3.1.1 Syntax

We introduce the DomainModel language by analyzing its concrete syntax. Figure 3.1 shows a con-
densed version of the concrete syntax in EBNF notation. Bold, quoted symbols denote a terminal
whereas italic names indicate the non-terminals of the language. Definitions of trivial non-terminals
(i.e., ucase ident and lcase ident) are left implicit, as is the definition of java annotation. The latter
is introduced later, during the description of the implementation in Section 3.2. The actual syntax
definition (in SDF format) used in the implementation can be found in Appendix A.1.

Domain constitutes the root element of a DomainModel definition, containing the name associated
with this domain model definition and a list of concepts defined within this domain model. A concept
definition describes the structure of entities that can exist in the domain model. On this abstraction
level, one can view concepts as being equivalent to value-types1, since a data structure is defined, with-
out any possibility to define operations on this data structure. Each concept describes the structure
of an entity in our domain model. This description is comprised of concept member definitions, where

1Also known as structs.

15

3 DomainModel DSL

domain ::= ‘domainmodel’ lcase ident concept ? domain definition

concept ::= ‘concept’ ucase ident ‘{’ member? ‘}’ concept definition

member ::= lcase ident association type concept member
{ ‘(’annotation {‘,’ annotation }? ‘)’ }?

association ::= ‘→’ reference
| ‘3’ composition
| ‘::’ built-in

type ::= builtin type DomainModel type
| ucase ident concept type or

extended type
| enum type enumeration type
| ‘[’ ucase ident ‘]’ list type

builtin type ::= ‘String’ DomainModel
| ‘Integer’ built-in types
| ‘Boolean’
| ...
| ‘Date’

enum type ::= ‘{’ enum dec {‘,’ enum dec}? ‘}’ enumeration type

enum dec ::= quoted text ‘:’ all ucase ident single enum value

annotation ::= ‘unique’ DomainModel
| ... annotations
| ‘name’
| java annotation concrete Java

annotation

Figure 3.1: Simplified syntax definition for the DomainModel language

such a definition contains the name, type, and meta data of the member. A type either refers to a
built-in DomainModel type or to a user-defined concept, or lists of these, or defines an enumeration
type. Furthermore, a concept member can be either a value-type (e.g., String, Int), a reference (to
another concept) or a composition with another concept. The semantics of these modifiers will be
discussed shortly. Last, a concept member has optional annotations providing meta data. Figure 3.2
lists the available DomainModel annotations.

3.1.2 Types and annotations

We now move on to a concrete example of a domain model, presented in Figure 3.3 on page 17, in order
to explain the concepts behind this high level domain modeling language. In the example, a concise
domain model for a blog is defined. It consists of four concepts:

User Central concept in this domain. The User concept has a list of BlogEntry concepts.

BlogEntry Describes a blog posting, which can contain tags and replies in addition to the actual
posting.

Tag Encapsulates the name of a tag.

Reply Describes a reply to a blog post, linked to a certain User.

16

3.1 Language description

Annotation Description
unique Every instance of a Concept must have a distinct value

for the member carrying this annotation:
∀ c1,c2 :: Concept : c1.member == c2.member ⇒ c1 == c2

name Member is used in canonical representation of instances of the enclosing concept.

required A non-null value must be assigned to this member before persisting.

Figure 3.2: Available DomainModel annotations

domainmodel blog

concept User {

name :: String (unique, name)
email :: Email
blogEntries <> [BlogEntry]

}

concept BlogEntry {

title :: String (name, required)
abstract :: Text
contents :: Text (required)
date :: Date (name)
tags -> [Tag]
replies <> [Reply]
category :: {"Technical" : TECH, "Other" : NONTECH}

}

concept Tag {

tagName :: String

}

concept Reply {

contents :: String
user -> User (name)
date :: Date (name, @Column(name="reply_date"))
level :: { "Nice reply!" : GOOD

, "Average" : AVERAGE
, "Not good." : BAD }

}

Figure 3.3: Concrete example of DomainModel definition

17

3 DomainModel DSL

Observing the concept definitions, we see that most concept members are value-types, (using ’::’
syntax). Furthermore, concept members with a type referring to (a list of) other concepts are either
a reference (’->’) or a composite (’<>’) member. The latter means, that the lifecycle of the member
is tied to the lifecycle of the entity (concept instance) that contains this composite member. In other
words, when an entity is deleted, this deletion cascades to all composite members. In our example,
deleting a User entity entails deleting all its blog postings as well, since the list blogEntries is defined
as a composite member within the User concept. Note that this is a transitive process, deleting each
BlogEntry of a user also deletes its composite replies, and so forth. When defining a reference member,
however, the lifecycle of the member is independent of the enclosing concept instance. Note that all
members with a DomainModel built-in type by default behave as composite members, since there is
no notion of an independent entity for these types. Still, there are use cases for having references to
these built-in value-types. This is exemplified by the tags of a BlogEntry, where tags should be shared
between blog posts. By wrapping the built-in String type in a concept definition (thereby promoting
it to an entity), we can model this.

The reference/composite distinction is somewhat similar to the distinction between primitive and
reference types in Java. However, under the surface every member is implemented by a reference type,
as can be seen in the description of the implementation in Section 3.2. Later, we will see (Section 4.3.2)
that the reference/composite designation can also be used to steer more user-interface oriented con-
cerns, in the WebLayer DSL.

Regarding the types used in the example, we can distinguish the four different alternatives as
portrayed in Figure 3.1. Besides the value-types, familiar to many programming languages (such as
String and Integer), there are also extended types available in the DomainModel language. An example
of such a type is found in the email member of the User concept. The type of this member is not
drawn from the list of built-in types (as given in Figure 3.1). Rather, it is an extended type, meaning
that it derives from a built-in type while it adds additional semantics. In this case, Email derives from
String, and adds data validation to ensure that only valid email addresses are stored in this member.
An elaborate discussion of how these extended types are defined is provided in Section 5.2.2, since it
constitutes an instance of interaction between DSL and host language code. For now we only assume
their existence.

The enumeration type, as defined for the level member in Reply, defines three valid values for
this type. An enumeration is useful for situations in which the domain designer wants to restrict the
values of a member by design to a small number of options. The quoted text of an enumeration type
member specifies the user-friendly rendering of the enumeration value, whereas the identifier specifies
the programmatic name of the member.

In the example, we can also see the usage of DomainModel annotations. The name member of a
User is declared to be unique, meaning that no two instances of the User concept can have the same
name. Furthermore, the name member has a name annotation as well. Note that the first name is
a user-defined identifier, whereas the second name is a DomainModel construct (compare to title
member of BlogEntry). This annotation indicates that this field is the visual identifier for instance of
this object. Whenever a string representation of the instance is necessary, the string representation of
the contents of this field will be given. It is possible to annotate multiple fields with name, leading to
a concatenated string representation of all annotated members. In the case of the BlogEntry concept,
the annotated member is a String itself. However, this is not mandatory, as can be seen in the Reply
concept. There, the name member with type User is annotated with name. The mechanism works
transitively, i.e., the actual representation is delegated to User. Hence, the name of the user is part of
the string representation of Reply, as is the date. If no name annotation is provided, a default imple-
mentation is generated for the concept. The details of this default are described in the implementation
section. Members with any type can have the name annotation, with one exception: list types. The
name annotation is intended to create a short, meaningful string representation of a concept instance,
and lists are not likely to contribute to this goal. Note that the name annotation is most useful when
at least one of the name annotated members is defined to be unique as well, to ensure that the string
representation indeed is a good identifier for the instance.

All in all, creating a domain model is structurally quite similar to creating an object model in, for
example, Java. However, the constructs offered by DomainModel allow the programmer to think only

18

3.2 Implementation

in terms of concepts, members and associations. In the example, no low-level details with regard to how
the model is stored are exposed. Also, identity management and linking of instances of concepts (as
in primary/foreign keys) is kept implicit. The DSL definition coupled with the compiler encapsulates
all these details, as described in the following section. We also note that inheritance between concepts,
while possible in the target library, is not implemented in DomainModel. This is purely a practical choice
to restrict the implementation effort and we see no inherent obstructions to adding this functionality
later, if desired.

3.2 Implementation

We provided a description of a fully declarative language for specifying persistent domain models in the
previous section. In this section, we will look into the implementation of the compiler for this language.
By inspecting the transformation steps from DomainModel source to Java output, we can establish a
better frame of reference for the semantics of the language. First, we will briefly introduce the target
API and library.

3.2.1 Java Persistence Architecture

With the advent of object-oriented languages, the mismatch between data storage facilities and object-
oriented data usage in programs grew. Persistent data storage is predominantly done in relational
databases, for they provide many desirable properties with respect to safety and data integrity. Rela-
tional database systems have been thoroughly studied and developed. Many libraries emerged, trying
to solve the disparity between object-oriented data models and relational storage. A detailed study
of such object-relational mapping schemes is well beyond the scope of this thesis. We suffice with
the observation that these schemes are practically usable, though not all theoretical problems of the
OO/relational mismatch can be solved consistently. Hibernate is an O/R mapping library for Java,
which grew to be a de facto standard in Java application development. The basic idea is that objects
are extended with O/R mapping hints, and the library takes care of the actual object persistence. The
following contributions of the Hibernate library can be identified:

• Generic solution to the O/R mismatch.

• Transparent support for different relational backends.

• Automatic generation of database schema’s for domain models.

• Caching layer for objects, to minimize stress on database.

• Transactional safety on the object level.

• Fully transparant optimistic locking implementation using object versioning.

• Database connection pooling.

• Lazy loading of collections inside objects.

• An object query language.

Since these facilities are advantageous to almost any data-intensive program, the approach taken by
Hibernate was standardized in 2006 and called Java Persistence Architecture (JPA). Simultaneously, the
O/R mapping hints could also be provided through Java annotations, instead of through a proprietary
Hibernate XML format. The resulting API is normalized and managed by the Java-community, and
implementations (such as Hibernate) all conform to this API. Therefore, DomainModel emits code that
leverages the JPA API, while using Hibernate as specific implementation provider on the deployment
side. This way, the DomainModel compiler does not depend on a (theoretically unreliable) third-party,
but uses features specified by Java itself. Such third-party dependencies should always be minimized
in a generative setting, though this is not always feasible.

19

3 DomainModel DSL

3.2.2 Translating concepts

The DomainModel compiler is implemented using rewrite rules, defined in the strategic rewriting lan-
guage Stratego [?]. We have set up an infrastructure in which we can traverse the abstract syntax tree
of a domain model, and transform input terms into Java code. This Java code in the rewrite rules can
be expressed in concrete syntax, yet the transformation takes place using the abstract syntax. By virtue
of this mechanism (as described by Bravenboer et al. [?]), the syntactical validity of the target code is
verified by the compiler of our infrastructure. This approach contrasts with many other code generation
infrastructures, where emitting code is equivalent to building an unstructured string representation. In
this section, examples of such rewrite rules are given to illustrate the mechanisms used to implement
the DomainModel compiler.

As is normal for a compiler, the DomainModel compiler works in distinct phases:

1. Semantic checking phase, verifying (amongst other things) that:

• every type used is a legal DomainModel type or is defined in the domain model, and

• every member in a concept has a legal name.

2. Code generation phase, where:

• each concept is mapped to a Java class, and

• an XML configuration file is created for deployment, and

3. Additionally, an interface file is emitted.

The semantic checks will be revisited later in this chapter. In this section we focus on the code
generation phase, while deferring the explanation of the interface file mechanism to Chapter 5. We
illustrate the translation scheme of the DomainModel compiler by looking at the translation of the
BlogEntry concept as found in Figure 3.3. A condensed version of the resulting Java code can be found
in Listing A.1 on page 91 and further. The omitted class members (as indicated in the comments in
Figure 3.4) pertain to infrastructural necessities. For example, the optimistic locking mechanism of the
JPA library is activated, and a domain-specific implementation overriding the standard equals method
is provided. Some of these class members are introduced in Section 3.2.4. For a complete overview of
the generated class members we again refer to Listing A.1.

Code generation is driven by a syntax-directed traversal of the input AST. A domain model contains
multiple concept definitions, each of which is translated into a Java class, using the transformation rule
as presented in Figure 3.4. In this rule, italic identifiers indicate meta-variables of the transformation,
and a star indicates that a variable is a list. For brevity, capitalization of the contents of a variable is
assumed to be performed when the identifier is capitalized, rather than by calling an auxiliary strategy
to perform this operation. The code, resulting from the application of this transformation rule to the
BlogEntry concept from Figure 3.3, is given in Appendix A.2.1.

In order to control the name space in which the code is generated, the package qualifier begins with
the meta-variable prefix, which can be set using a compiler flag. Also, the name of the domain model
(dm name) is incorporated into the package structure. Then, a class is introduced that will implement
the DomainModel concept we are translating. The annotation @Entity is an indicator for the JPA
library that this class represents a persistable entity. Next, an empty default constructor is generated,
as demanded by JPA. Furthermore, we also generate a constructor accepting values for all concept
members, assigning them to their respective fields. These fields and their respective get/set methods
are computed by mapping the rule translate-member over the list of members in the concept. The
result of this translation (translated members) is then spliced into the class we are generating. We
describe this rule in the subsequent section.

In short, each concept member is translated into a:

1. private class member variable of the correct type, and a

2. get/set method, annotated with the appropriate JPA annotations.

20

3.2 Implementation

translate-concept :

Concept(conceptname , members *)
-> compilation-unit

|[
package prefix.dm_name.domainmodel;

import java.util.*;
import javax.persistence.*;

public class Conceptname implements java.io.Serializable {

public Conceptname () { }

public Conceptname (fs*) { as* }

private Long id;

@Id @Generated
public getId() { return id; }

protected setId(Long id) { this.id = id; }

translated_members*

// other class members omitted for brevity

}
]|

where translated members* := <map(member-to-classbodydecls)> members*

(fs*, as*) := <map(member-to-formalparam-and-assign); unzip> members*

Figure 3.4: Transformation of a concept

Also, an id member variable and corresponding get/set methods are added, representing the sys-
tem identity of the object. The annotations @Id @Generated instruct the JPA implementation to use
this field as the primary key in the database representation of the object, using an automatically gen-
erated key. This mechanism can be used to track the immutable identity of objects without depending
on (volatile) data in user-defined properties, nor on the memory location. The latter is the default Java
mechanism for tracking object identity, however, the memory location is different each time an object is
retrieved from storage and therefore is not adequate. This phenomenon will be elaborated upon further
when looking at the generated equals implementation.
The comments in Figure 3.4 indicate that there still is more to the translation of a concept. Additional
methods that are generated for a concept are discussed in Section 3.2.4 and further.

Previous versions of Hibernate persistence necessitated the implementation of a Hibernate specific
interface, or the usage of post-compilation bytecode enhancement in combination with an external XML
mapping file in order to make an object persistable. With the advent of JPA, however, the class only
has to adhere to the JavaBean2 principle to achieve this. That is, a property of an object is formed
by a getter/setter method pair, and a default (empty) constructor for the object is present. In this
way, data is encapsaluted in private fields and access is mediated through the corresponding getter and
setter, which can be intercepted by the JPA implementation. The O/R mapping information can be
provided through Java annotations rather than through an XML file. Consequently, the generated code
only depends on the standardized javax.persistence API.

2Specification available at: http://java.sun.com/products/javabeans/

21

3 DomainModel DSL

translate-member :

ConceptMember(membername , NativeType(), dm_type , dm_annotation *)
-> class-body-dec*

|[
type _membername ;

@Basic
annotation*

public type getMembername () {
return _membername ;

}

public void setMembername (type _membername) {
this._membername = _membername ;

}
]|

where annotation* := <translate-annotations> dm_annotation*

; type := <translate-type> dm_type

Figure 3.5: Transformation of a concept member

3.2.3 Translating concept members

The translation of a concept member depends on its type and the kind of association. A transformation
rule for concept members with a built-in type is given in Figure 3.5. In the BlogEntry example, the first
four members match this rule. While its structure is directly derived from the implementing Stratego
rule, many details (mostly infrastructural) have been omitted for the sake of clarity. First thing to
notice is that the member variable is prefixed with an underscore. By doing this, we do not have to
disallow the usage of reserved Java keywords as DomainModel identifiers. There are over 50 reserved
keywords, some of which are entirely plausible when modeling a domain (e.g. abstract when modeling
publications, or class when modeling a school administration). However, the name exposed by the
set/get methods can still be the unmodified DomainModel identifier, since it is part of a larger name.
Furthermore, a translation from the DomainModel type to a corresponding Java type is performed
using the strategy translate-type. Figure 3.6 defines the mapping function T that is being applied
in this translation. Native, built-in types (e.g. String, Integer) are translated directly to their Java
counterpart. A special case is the mapping of extended types. The mapping for these types is provided
by the user at compile time. Specifics of this mechanism are described in Section 5.2.2. Effectively,
the mapping function’s domain is augmented with mappings found in the extended type definitions. In
Figure 3.6, Email constitutes such a mapping. Types referring to another DomainModel concept are
translated to the type of the corresponding newly created class. A DomainModel list type is translated
to the Java collections List type, parameterized with the translation of the element type. Note that our
DSL definition is more restrictive than the mapping function indicates: the type argument of a list type
cannot be another list type, as encoded in the syntax definition. This choice was made since the O/R
mapping does not support directly nested lists, and because nesting can still be achieved by wrapping
the nested list in an entity. In fact, only other concepts may be used as parameter.

Furthermore, the annotations to instruct the JPA library are placed on the getter method. In this
case, the annotation @Basic is provided, indicating that a mapping to a native type in the database
should be performed. Note that the actual mapping to a database type is left to the library, since
it also depends on the database used. When translating a composite member with a type referring
to another DomainModel concept, the @OneToOne annotation is generated instead. In the case of a
reference member, the @OneToMany annotation is emitted (which subsumes the @OneToOne mapping).

An example translation of a reference member with type [Tag], can be seen in Listing 3.1, where
the generated code for concept member tags is given. We can see that the JPA annotation in this case

22

3.2 Implementation

private List<Tag> t a g s ;

@ManyToMany(cascade = {CascadeType .PERSIST , CascadeType .MERGE})
public List<Tag> getTags ()
{

return t a g s ;
}

public void setTags (Li s t<Tag> t a g s) { this . t a g s = tag s ; }

public void addToTags (Tag b 0)
{

i f (this . t a g s == null)
{

this . t a g s = new ArrayList<Tag>() ;
}
this . t a g s . add (b 0) ;

}

public void removeFromTags (Tag c 0)
{

i f (this . t a g s != null)
{

this . t a g s . remove (c 0) ;
}

}

Listing 3.1: Translation of tags concept member

is @ManyToMany, indicating that an intermediate table will be used by the JPA library to model the list
relation. Within this annotation, we specify that events that update list members directly cascade to
these members. Note that removal from the list, however, does not cascade to a delete since we are
dealing with a reference member. If this member was specified to be a composite, CascadeType.REMOVE
would have been present as well.

In addition to the getter/setter and member field, two extra methods are generated for members
with a list type. The list is lazily initialized upon addition of the first element using the addToTags
method, thus avoiding NullPointerExceptions in code that uses this concept. Removing an element
is also safe with respect to null pointers when using the generated removeFromTags method. While this
defensive coding style is desirable, oftentimes it is not used because of the verbosity, or simply because
of ignorance. Since we are in a generative setting, we can easily adopt these kind of best practices,
providing robust code.

Another variation on the presented mapping is the case of an enumerated type. The translated
code for the category member is provided in Listing 3.2. Both the programmatical identifiers (TECH,
NONTECH) and the user-friendly labels are used in the translation. Again, the rule for translating a
member with an enumerated type is an extension to the rule presented in Figure 3.5, since a type
declaration for a type safe Java enumeration is generated as well. This enum declaration follows a well
known pattern, in which the user-friendly representation is stored as a member variable (in this case
the string label) of the enum. The possible enum instantiations are being fixed in the declaration,
as can be seen on the third line of Listing 3.2. Values of this enum type can now be referred to as
Enum category.TECH or Enum category.NONTECH. The private constructor precludes any other instan-
tiations at a later time. Furthermore, two ways of retrieving the user-friendly label of an enum value
are generated, one overriding the standard toString method, and getLabel, following the JavaBean
getter idiom. Note that the annotations on the getCategory method are different as well, since we have
to instruct the JPA library to map values of the enum to their ordinal (integer) value for storage.

Translating annotations

So far, we have emitted JPA annotations based on the type and association of the member. These
annotations are used to steer the O/R mapping process. Additionally, annotations given in the
DomainModel program must be translated. This translation corresponds to the application of the
translate-annotations strategy in Figure 3.5. The (optional) list of annotations on a concept mem-

23

3 DomainModel DSL

public enum Enum category
{

TECH(” Technica l ”) , NONTECH(”Other”) ;

private St r ing label ;

Enum category (S t r ing label) { this . label = label ; }

public St r ing getLabe l () { return label ; }

@Override public St r ing toS t r i ng () { return label ; }

public Enum category [] getValues () { return Enum category . va lue s () ; }
}

private Enum category ca t ego ry ;

@Basic @Enumerated (EnumType .ORDINAL) public Enum category getCategory ()
{

return ca t ego ry ;
}

Listing 3.2: Translation of category concept member

T J String K 7→ java.lang.String
T J Date K 7→ java.util.Date
T J Boolean K 7→ java.lang.Boolean
T J Integer K 7→ java.lang.Integer
T J Long K 7→ java.lang.Long
T J Double K 7→ java.lang.Double
T J Email K 7→ java.lang.String
T J Type K 7→ package.domainmodel.Type
T J [Type] K 7→ java.util.List.< T J Type K >

Figure 3.6: Available types and their mapping

ber may contain both special purpose DomainModel annotations, as well as inlined Java annotations.
The latter are introduced into the DomainModel language to allow for the customization of generated
code. Users can add specific annotations to fine-tune deployment parameters. An example can be
seen in the domain model given in Figure 3.3, where the date member carries the Java annotation
@Column(name="reply date"). By default, the JPA library uses the member name for the correspond-
ing database column. If, for example, we have reuse an existing database schema, this annotation can
steer the mapping in the right direction. The possibility to inline Java annotations is implemented by
importing the syntax definition for these annotations into our DSL syntax definition. This is possible
since we can use the Java 1.5 syntax of JavaFront in a modular fashion, as can be seen in Appendix A.1.
Thus, it is possible for the user of DomainModel to fine-tune the generated code, without having to
edit the generated source files.

Translation of the annotations takes place in two steps:

1. Each annotation is either

• mapped to a corresponding Java annotation using the function A (Figure 3.7),

• or copied verbatim if it is a Java annotation.

2. The resulting list of Java annotations is post-processed.

Post-processing the list entails first eliminating any duplicate annotations, and occurrences of ⊥.
Duplicates can arise when the user provides the same Java annotation in the DomainModel source as the
one that will be generated based on the type and association of the concept member concerned. Second,
the annotations may be of the same type, but have different contents, e.g. @Column(unique=true) is

24

3.2 Implementation

AJ unique K 7→ @Column(unique=true)
AJ required K 7→ @Column(required=true)
AJ name K 7→ ⊥

Figure 3.7: Mapping annotations

generated, and @Column(name="cname") is provided by the user. In this case, the bodies of the anno-
tations will be merged (i.e. @Column(unique=true, name="cname"). Annotations that are not part of
the domain of A result in a compile time warning. This is the reason for name to be in the domain,
even though it maps to ⊥, which is filtered out afterwards.

@Override public St r ing toS t r i ng ()
{

St r i ngBu i l d e r name = new St r i ngBu i l d e r () ;
i f (t i t l e != null)
{

name . append (t i t l e . t oS t r i ng ()) ;
}
name . append (” ”) ;
i f (date != null)
{

name . append (date . t oS t r i ng ()) ;
}
return name . t oS t r i ng () ;

}

Listing 3.3: Implementing toString using name annotations

One exception in the annotation translation scheme is the name annotation. For this annotation,
there is no local, one-to-one mapping. Instead, we need to collect all members that carry the name anno-
tation and use these to implement the toString method. Figure 3.3 shows how a string representation
is build from the annotated members, in this case title and date. For each of these members, their
toString method is transitively called and the result appended to the string representation. Spaces
are interspersed when multiple members are part of the string representation. If none of the concept
members carries a name annotation, a default is generated in which the name of the enclosing concept
and the identifier (the automatically generated id member) are combined.

Our DomainModel implementation shows that having a well defined, and preferably small and con-
trolled extension point in a DSL to the target language can be a good interaction pattern. Precautions
have to be taken, however, to eliminate conflicts between generated and inlined code. Section 5.2.4
investigates this in more detail. Another danger is that the DSL is too tightly coupled to the target
language. Since the Java annotations that can be inlined in DomainModel only pertain to deployment
and configuration issues, which have good defaults if omitted, we believe this represents a fair trade-off
between higher coupling and control over the generated code.

3.2.4 Equals and hashCode implementation

Object identity is an important issue in Java programming. Many standard library implementations
depend on the correct implementation of the equals method, which is responsible for establishing the
external identity of objects. A correct implementation adheres to the (informal) contract defined in the
language’s documentation. In short the implementation must be:

reflexive, symmetric, transitive and consistent.

The latter property is a bit awkward compared to the other well defined properties. Consistency
in this context means that multiple calls over time should return the same value, given that none of the
values used in the equals body have changed (in other words, it should be a true deterministic func-
tion). A thorough description of all the problems associated with this contract is given by Stevenson
et al. [?].

25

3 DomainModel DSL

For example, the implementation of collections in the Java standard library all hinge on the correct
implementation of the equals and hashCode methods. If the contract is broken, undefined behavior
surfaces, such as objects that seem to be magically dissappearing from lists and so on. However,
the correctness of implementations for these functions cannot be verified by the Java compiler, and
requires the programmer to guarantee the correctness. Since the default implementation (provided
in the universal super class java.lang.Object) uses the reference comparison (the == operator), it
satisfies the contract trivially and is sufficient most of the times.

public @Override boolean equa l s (Object o)
{

i f (o != null && o instanceof BlogEntry)
{

Long own id = this . id ;
Long o th e r i d = ((BlogEntry) o) . ge t Id () ;
i f (own id != null)

return own id . equa l s (o t h e r i d) ;
else

return this == o ;
}
else

return fa l se ;
}

@Override public int hashCode () {
return get Id () != null ? get Id () . intValue () : super . hashCode () ;

}

Listing 3.4: equals/hashCode implementation for BlogEntry

However, this standard approach fails in the setting of the persistence library we are using. Objects
are instantiated by the library, based on persistent information stored in the database. We can retrieve
the same object multiple times in a program. Semantically, these objects are equal, but when using the
standard equals method, they are deemed to be different since they are in separate memory locations.
In order to prevent the aforementioned unintended behavior, we generate an alternative implementation
as shown in Figure 3.4. This approach is better suited to our intended domain. The idea embodied in
this implementation is that the JPA library assigns an immutable, unique identifier to each concept.
We use this knowledge to base the object equality on this identifier. However, simply delegating to the
equals implementation of the identifier (which is of type Long) will not suffice. The problem is, that
the identifier only is assigned to a concept when it has been saved to the database by the library. When
a new concept instance is constructed, and it has not been persisted yet, the identifier value is null.
Comparing null values using equals always returns false, which would lead to the odd situation that
a new object is not equal to itself (no reflexivity). Therefore, we revert to the reference comparison
implementation in the event that the identifier of the concept is null, which can be seen in the inner
else branch in Figure 3.4.

The hashCode method is used to efficiently store and retrieve objects in hashing data structures.
It must return a native int that represents the hash of the object. It should satisfy the contract
o1.equals(o2) ⇒ o1.hashCode() == o2.hashCode(). The hash need not be unique (but the bet-
ter the hashing scheme, the better the performance of data structures). We use the identifier’s value,
converted to a native int, as hash value. Since a long consists of 64 bits as opposed to 32 bits for an
int, the hash will eventually wrap to zero. However, this is not a problem. Again, we must revert to
the original hashing strategy when the identifier of the object has not been assigned yet.

It is clear that using the JPA library correctly spans beyond just knowing and calling the API. We are
able to encode specific knowledge with respect to the handling of object identity into the DomainModel
DSL compiler, using properties that result from our translation scheme.

3.2.5 Semantic checks

The presented transformations in the previous sections all work by the assumption that the input model
is well-formed. However, this well-formedness does not come for free: it is checked in a separate phase,

26

3.3 Concluding remarks

before the actual compilation. In this phase, we check the following constraints:

1. A concept name may not clash with the name of a DomainModel built-in or extended type.

2. Each type used, must be defined (either as built-in or as concept type).

3. Each concept name must be unique, and within a concept each member name must be unique.

4. A member name may not be ’id’ or ’versionNum’ (since these are used in translation scheme).

5. Unknown annotations are ignored, and a warning is emitted.

These checks are fairly standard, and resemble the traditional semantic checking phase of a GPL
compiler. However, we are also able to report more domain specific issues to the user of Domain-
Model. These issues pertain to the usage of annotations on concept members. For example, having a
unique annotation on a concept member with an enumeration type is suspicious, since this limits the
amount of possible instantiations of a concept to the number of values defined in the enumeration type.
Furthermore, we can disallow the usage of the name annotation on a concept member with list type.
And, the usage of a unique contraint on such a member is prohibited, since the library does not support
this (but the JPA library can checks this at run time only). Whereas the checks enumerated earlier
come for free in the Java compiler, more domain specific checks such as described cannot be given at
compile time. We believe this is a strong feature of DSLs.

3.3 Concluding remarks

With DomainModel we implemented a completely declarative language, which is compiled to a fully
functional persistent domain model, using the standardized Java persistence API. Technical, domain-
specific knowledge with regard to the usage of this API is encoded in the DomainModel compiler, and
virtually no implementation details are visible at the language level. One exception is the possibility
to inline Java JPA annotations in DomainModel code, for users who are familiar with the compilation
target. This allows for fine- tuning of the generated code, without having to alter it after generation.
However, in typical cases this feature is not needed.

Having a terse, declarative language at a high abstraction level brings many advantages. First of
all, when looking at the raw lines of code for our example, we observe a major increase in lines of code,
going from the DomainModel code to the implementing code. Typically, we observed this increase to be
at least a factor ten. Developing and refactoring a domain model in Java code necessitates coordinated
changes in several locations to change a single aspect (i.e., a concept member name), whereas in Domain-
Model all information is in a single location. Besides the raw line count, another advantage is that our
compiler generates default implementations for standard functions (such as equals/hashCode) using
knowledge of the application domain. Many programmers are not aware of the issues involved, and
consequently encounter erratic behavior due to not addressing the issues. The usage of the JPA library
is abstracted away from, leaving the programmer with the task to actually model the domain data
without worrying about what mapping hints and configuration should be provided.

Furthermore, we can identify mistakes in metadata at compiletime, that would otherwise lead to
run-time errors by the JPA library. This semantic checking phase is implemented independently from
the generation phase, allowing for reuse when another backend needs to be implemented. Alternative
backends, such as native Hibernate or a .Net equivalent3 can be implemented following the same rel-
atively straightforward translation scheme. In the beginning of this chapter we also identified some
overlap with UML class diagrams. Theoretically, it is possible to use a UML class diagram editor as an
alternative front-end to our compiler. This would involve engineering a way to include the appropriate
metadata for concept members in these diagrams, as well as serializing diagrams to a format processable
by our compiler. One advantage would be that such an editor creates a graph, whereas our language is
mimicking a graph-like structure (as does almost any programming language) using symbolic references.
On the other hand, issues like version management of models become harder, whereas in our textual
language any source control tool can be used.

3This would require a (currently unavailable) JavaFront like infrastructure for a .Net language in Stratego though.

27

3 DomainModel DSL

Having different backends for the DomainModel language raises the question of what the semantics
of the language are. In this chapter we introduced the semantics by describing intentions and effects
of language constructions, as well as by outlining a translation scheme towards the Java language
(leveraging JPA libraries). The Java language has a well understood operational semantics [?], yet it
is the knowledge encoded in the libraries we target that really forms the basis of our understanding.
However, we are not able to formalize these high-level semantics, neither for the JPA library nor for
our DSL.

28

Chapter 4

WebLayer DSL

In this chapter we are moving to the top layer of a typical web-application stack, which is the presen-
tation layer. A typical web-application stack in Java web development is depicted in Figure 4.1, and is
loosely based on the Model-View-Controller architecture. With the previously described DomainModel
DSL, we are able to model the database layer of the application stack (Model) in a high-level man-
ner. We wish to achieve the same for the remaining layers. For the time being we will disregard the
middle layer, and focus on the notion of web-applications that purely manipulate data. A large class
of applications can suffice with solely basic CRUD1 actions, without having to invoke any specialized
business logic. In Chapter 6 we return to the middle layer. Our goal in this chapter is to define a
language in which we can express the views necessary to manipulate a domain model created using
the DomainModel DSL. Combining these two languages, it must be possible to define a complete and
directly deployable web-application.

Figure 4.1: Typical web-application architecture

Typical concerns in the presentation layer relate to showing data, editing and adding data as well
as defining flow between screens in a web-application. An important aspect of page flow, besides
simple navigation, is data flow between different pages. Ultimately, every web-application runs on top
of the HTTP protocol, regardless of the language it was created in. Since the HTTP protocol is a
stateless protocol, offering only a request/response cycle, state and data flow are inherently difficult to
control. One of the main features of the WebLayer language is that it abstracts over common solutions
(or rather, workarounds) and their intricacies. Moreover, the complex and brittle usage patterns of
web development libraries for the Java platform in general will be addressed in the implementation of
WebLayer.

1Create, Retrieve, Update and Delete

29

4 WebLayer DSL

4.1 Target libraries

Before proceeding with the language description, we first inspect the libraries the WebLayer language
is going to target. There is a rich variety of web frameworks and libraries available. We deliberately
forgo the basic libraries such as Java Servlets, since these are too low-level. These standards still form
the basis of the current flock of web development libraries. Generating towards them would constitute
replicating all efforts that went into the more high-level libraries.

The libraries we elected to use are:

• Java Server Faces (JSF)

• Facelets

• Ajax4JSF (A4J)

• JBoss Seam (Seam)

Each of these libraries is actively supported and widely used in the Java community. For the
presentation layer, JSF is quickly becoming a standard. JSF defines a component based mechanism for
creating web pages. The library components basically wrap around HTML elements, for example, by
providing a systematic way of creating databindings between Java objects and HTML form elements.
Databinding is based around a lifecycle (Figure 4.2 [?]) that is applied for each request to the JSF
web-application.

Figure 4.2: JSF lifecycle definition

Without going into the details of this lifecycle, we can already establish that development using JSF
is both powerful and intricate. Every phase of this lifecycle is extensible and adaptable. However, due
to this flexibility in its design, using the JSF framework turns out to be complex. Some properties,
forced by its operational model (such as: every request must be a POST request in the application),
also limit the flexibility and applicability a great deal. The Facelets libraries extends the capabilities
of the JSF framework, providing for example a templating mechanism and adding missing compo-
nents. Furthermore, the strong coupling between JSF and Java Server Pages2 is abandoned in favor of
an interpreted, XML based approach involving custom tag libraries. Ajax4JSF supplies an implemen-
tation of the asynchronous in-page messaging paradigm, while still trying to fit in with the JSF lifecycle.

Integrating the aforementioned libraries, which together form just one possible permutation out
of many alternatives, is no small task. JBoss Seam recognizes this deficiency and provides a glue
layer between combinations of these (and other) libraries. Using Seam reduces boilerplate code that
would otherwise be necessary, and introduces an alternative means of relating Java code and view code
expressed using Facelets and JSF tags. Still, creating a basic application requires a large effort, involving
activities ranging from selecting actual library distributions (easily more than 20 jar files in a basic
application) to setting up configuration files for these libraries. All this before even a single line of code

2The optionally compiled, dynamic server side scripting language for Java.

30

4.2 Language Description

can be written and executed. Then, development commences, revealing another problematic issue: all
of the discussed libraries introduce many dynamic (interpreted) mechanisms on top of normal, statically
type safe Java code. Section 4.3 inspects these mechanisms when discussing the implementation of the
WebLayer language, but obviously this is not a desirable situation.

In the light of the complications discussed, an interesting aspect of Seam is that it comes bundled
with an application called seam-gen. Using seam-gen, a developer can set up a skeleton for a Java
web-application by answering a few questions. Furthermore, entity classes (similar to DomainModel
output) can be generated by reverse engineering an existing database scheme. This generator was cre-
ated to give developers a headstart, addressing some of the aforementioned issues. However, it only
addresses the initial setup, since it is a one-time generation approach. Actual development takes place
by editing the generated skeleton. There is no model involved in the usage of seam-gen. Still, the
existence of such a basic generator in itself is an indicator that a high-level, generative approach seems
to be unavoidable in the context of current web development frameworks.

In our opinion, the libraries listed in this section represent the state of the art in current Java
web-application development. All the issues discussed, do not pertain to these libraries exclusively.
Each of the existing alternatives exhibits similar problems, most even to a higher degree. It should
be noted that there are sound reasons to use these libraries, despite their shortcomings. In particular,
these libraries are mature, run on a scalable architecture and have proven themselves in production
environments. Our motivation to develop the WebLayer DSL is to create a prototype that abstracts
over the technical details as discussed, providing an expressive high-level language for the presentation
layer of web-applications. In doing so, it is not our goal to unleash the complete power of all underlying
libraries in the DSL. Rather, the prototype should show that it is beneficial to create a language
that captures principled and common usage patterns of these libraries, and the ideas they embody.
Moreover, it must be able to leverage models created using DomainModel as seamlessly as possible,
thereby relieving the DSL user of having to know any implementation details of the interaction between
the frameworks involved.

4.2 Language Description

Again, we first inspect the concrete syntax of the WebLayer language. A definition is provided in
Figure 4.3, following the conventions introduced in Section 3.1.1. The actual syntax definition used in
the implementation is provided in Appendix A.1.

weblayer ::= ‘weblayer’ lcase ident import? body elem? weblayer preamble

import ::= ‘using’ lcase ident lcase ident import DSL
statement

body elem ::= page top-level elements
| ‘var’ ucase ident lcase ident

page ::= ‘initial’? ucase ident ‘(’ { param {‘,’ param }? }? ‘)’ { page definition
page elem?

}

param ::= ucase ident lcase ident formal parameter

Figure 4.3: Condensed syntax definition for the WebLayer language

A WebLayer definition consists of a header, specifying the name of the module and import state-
ments. These statements specify which other DSL definitions we link to. The first identifier refers to the
name of the DSL, and the second to the name of the actual definition. Although the syntax definition
of imports is completely free-form in order to allow for future extension, currently only domainmodel
and businessrules are recognized as DSL identifiers by the WebLayer compiler, though the latter is

31

4 WebLayer DSL

described in Chapter 6 but not implemented. Following the import statements, page definitions may
be provided. Page definitions model the contents of distinct pages in the web-application. Also, session
variables may be declared at the top level, which are further explained in Section 4.2.5. Each page defi-
nition has a name, zero or more page parameters, and a body consisting of page elements. The optional
initial keyword is used to designate the page that will be shown as the first page of the web-application.
Page parameters are used to model data-flow throughout the application. A parameter is scoped over
the page it is declared in, and can have any concept type introduced in the DomainModel module that
is imported. Obviously, the initial page of an application may not depend on incoming page parameters,
and there can be only one initial page in a WebLayer module. The non-terminal page elem in Figure 4.3
is deliberately left unspecified, as it has many alternatives. Each of these alternatives is introduced by
example in the remainder of this language description.

Figure 4.23 (page 53) shows a page generated using WebLayer. It is taken from a larger Web-
Layer module that builds upon the blog domain model, which was introduced in the previous chapter
(Section 3.1.2). The source code for this page is shown in Figure 4.4. The first two lines of code form
the header of the module, with the using clause indicating that the blog DomainModel definitions are
imported. On the generated webpage shown in Figure 4.23, a single BlogEntry is shown and users can
add replies to the entry. It is instructive to compare the WebLayer source and the resulting page, to
see how the definitions match the output, from top to bottom. This page will be our running example
for the introduction of the WebLayer language constructs and their implementation. Note that in each
subsequent figure containing EBNF rules for the page elem non-terminal, we are extending it rather
than redefining it.

weblayer blog

using domainmodel blog

page ViewBlog(BlogEntry be, User u){

var Reply r

header(be.title + " (written on " + be.date + ")")

text(be.contents)

table Tag t in be.tags { "Assigned tags" -> t.tagName }

"Reply to this post:"
form(input(r)

action("Add reply", r.user = u; be.replies.add(r); be.save())
)

text("Replies for post " + be.title + " :")

for Reply r in be.replies { show(r) }

navigate("Home", Blog(u))

}

Figure 4.4: WebLayer page definition

32

4.2 Language Description

page elem ::= ‘text’ ‘(’ text expr ‘)’ normal text
| ‘header’ ‘(’ text expr ‘)’ header text
| ‘navigate’ ‘(’ text expr ‘,’ nav binding ‘)’ page navigation
| ‘show’ ‘(’ qualified ident ‘)’ generic show
| ‘show’ ‘(’ key value+ ‘)’ show

text expr ::= text expr part {‘+’ text expr part}? list of text parts

text expr part ::= quoted text literal text
| qualified ident reference

quoted text ::= ‘ ” ’ text ‘ ” ’ quoted text

nav binding ::= upper ident ‘(’ qualified ident {‘,’ qualified ident}? ‘)’ page reference

key value ::= quoted text ‘->’ page elem key-value pair

Figure 4.5: Textual page elements

4.2.1 Text elements

Text is the basic building block of web pages. Hence, WebLayer offers constructs to add both static
and dynamic blocks of text to a page. The corresponding constructs are presented in Figure 4.5. In its
simplest form, literal text can be placed on a page:

text("Reply to this post:")

In Figure 4.4 we can see that in the case of literal text, the enclosing text element is optional,
since the standard interpretation of a text expression directly embedded in a page definition is a text
element containing this expression. Alternatively, dynamic elements can be added to a text element.
This can be achieved by using fully qualified identifiers (fqi). These identifiers take the form of x (just
a single variable name), or x.y.z, where x is a variable, and y is a concept member of the concept type
of x. Consequently, z is a concept member of the concept type of y. Fully qualified identifiers can be
used in many other language constructs as well, as a means of navigating through a concept to indicate
the member of interest. Furthermore, a text element can be composed of different parts, concatenated
using the + operator. A combination of literal and dynamic text parts looks like this:

header(be.title + " (written on " + be.date + ")")

Note that we use the header element rather than the text element, as it prints the expression in
a larger font. The type of the fqi expressions is immaterial in the context of a text element, since any
type in our system can be automatically coerced to a string. In the case of a concept type, this coercion
entails the usage of the name annotation, as introduced in Section 3.1.2.

A special case of text on a web page is a hyperlink. In WebLayer, navigation between pages is
handled by the navigate language construct. This construct abstracts away from URLs, request pa-
rameters, and other low-level implementation details. It requires a descriptive text expression and a
destination page:

navigate("Home", Blog(u))

Note that the destination page may have page parameters, as in this concrete case. The actual
parameters (in this case u, which itself is a page parameter of the ViewBlog page) must be provided in
that case. In Section 4.3.1, we will see that these parameters are all checked at compile time. So, in
effect, we have strongly typed data-flow between the pages of a WebLayer application.

The last element for displaying text on a page is somewhat more advanced. The show construct
comes in two versions (a pattern that also applies to several other constructs that will be introduced),

33

4 WebLayer DSL

page elem ::= ‘table’ param ‘in’ qualified ident ‘{’ key val? ‘}’ table with selector
| ‘table’ param ‘{’ key val? ‘}’ table
| ‘for’ param ‘in’ qualified ident ‘{’ page elem? ‘}’ for-loop with selector
| ‘for’ param ‘{’ page elem? ‘}’ for-loop

Figure 4.6: Iterative page elements

a generic version, and a normal version. An example of the usage of the generic show is:

show(r)

In this case, r is a variable of type Reply, which is brought into scope by a for loop (to be introduced
in the next section). This concept instance will be shown in a structured fashion (see the lower part of
Figure 4.23 for the result), following a membername : value pattern for each member of the concept.
The information necessary to expand this expression is derived from the DomainModel definition of
Reply. The name of the field is the same as the concept member identifier. The value is coerced to a
string, with one exception: if the member is a composite concept, its members are recursively expanded
as well. As such, show is a powerful construct that leverages type information from the DomainModel
DSL. Should this default handling of concepts not be satisfactory, there also is the normal version of
show:

show("Reply :" -> r.contents
"Date :" -> r.date
"Good? :" -> header(r.level)

)

Note that the above piece of code is not reflected in our example, since the generic show(r) is
used instead. The normal version of show accepts one or more key-value pairs (see Figure 4.5 for the
definition). This allows the user to fine-tune the names of the fields, and the exact representation of
the value. On the righthand side of the arrow, an arbitrary page element may be provided. In this case
we mostly leverage the default interpretation of text that was mentioned earlier, i.e., a text expression
(and an fqi is in itself a valid text expression) is automatically interpreted as a text element. Only
the last value is wrapped in a header element, so it will be displayed more prominently. A call to the
generic show on the righthand side is also possible, to automatically show a member with a concept
type (both a reference and a composite!). Using this version of show also allows the user to show only
a projection of a concept, or to combine fields of several concepts into a single structured display block.
In the example above, the user member was deliberately left out.

4.2.2 Iterative constructs

In Figure 4.6 we present the iterative page elements that are part of the WebLayer language. Generally,
either recursion or looping is necessary to effectively process sequences in a language. Since our language
does not allow for any user-defined function-like abstractions, the latter was elected.

DomainModel allows lists of concepts to be defined as concept member. Combined with the fact
that the database itself contains a collection of each concept, this forms the basis for the iterative page
elements. The first element, and one that is prevalent in web pages, is the table. A table page element
consists of the table keyword followed by a parameter binding and an optional selector expression.
The identifier introduced in the parameter binding may shadow other variables with the same name.
The body of table reuses the key-value notation of the show element:

table Tag t in be.tags { "Assigned tags" -> t.tagName }

This line produces a table that lists the tagName member for all tags in be.tags (be is a page
parameter) in a single-column table with ”Assigned tags” as header. The variable t is scoped over
the body of the table construct, iterating over the elements of the tag member for every row. The

34

4.2 Language Description

page elem ::= ‘edit’ ‘(’ qualified ident ‘)’ data entry widget
| ‘input’ ‘(’ qualified ident ‘)’ generic input
| ‘input’ ‘(’ key value+ ‘)’ input

Figure 4.7: Input page elements

alternative version of table (Figure 4.6) neither has the in keyword, nor a selector expression. In-
stead, it ranges over all available concept instances of the type declared in the parameter binding, and it
acts as a universal quantifier over that type. This can be useful to, for example, list all users in a system.

Not all information that is iterative fits the table representation. Therefore, a second iterative con-
struct is introduced, the for loop:

for Reply r in be.replies { show(r) }

Using for, the user is not forced into a row/column structure. Rather, the body contains other
page elements (in this example, a single generic show element), which are repeated for every element in
the collection the for loop is iterating over. As with table, the for construct can also be used without
a selector expression, following the same semantics. Figure 4.23 shows the result of the above line of
code, showing only a single Reply, since be.replies contains only one Reply for the BlogEntry we
are viewing on this page. Also note that the parameter binding of this for loop shadows the local page
variable with the same identifier r.

One observation is that in the table and for elements with a selector, the type annotation for
the iterator variable is redundant. Since all expressions are typed (Section 4.3.1 elaborates on this),
this type can be inferred from the type of the selector expression. However, the annotation is essential
in the iterative constructs without a selector. For the sake of consistency, we have chosen to require
the annotation in all cases. In the description of the implementation of the iterative constructs, an
additional argument in favor of type annotation over inference will be discussed.

4.2.3 Input elements

Besides showing data, we also want to receive input through our web-application. To this end, two new
page elements will be introduced. The first is the edit element. It takes an fqi as argument, and results
in a data entry widget on the page. The form of the widget depends on the type of the argument. For
example, a String argument results in a textbox, an argument with an enumeration type results in a
combo box containing the alternatives of the enumeration, and an argument with type Date produces
a textbox with an associated date-picker, and so on. This makes edit another generic construct. In
Section 4.4 we discuss the drawback of this generic approach. Also, a data entry widget is nothing on
its own: it needs to be submitted back to the server to be handled appropriately. The next section
addresses these concerns.

The second page element for data entry is the input element. It is the counterpart of show, allowing
for structured editing of concepts. As with show, there is a normal version, accepting key-value pairs,
and a generic version that presents a complete edit form for a concept:

input(r)

The generic input construct presents the name of each member of the concept, and a suitable input
widget. Figure 4.23 shows the result of the above line of code, a labeled input form for a new Reply
concept.

An interesting question is what the input widget for a concept member with a list type looks like.
Our example page does not contain such a field, but Figure 4.8, taken from another page of the same
blog application, shows what it looks like. The list of concepts is visualized by printing the names of the
concepts, with the names being composed from their name annotated members. Each entry also has a
delete button to remove the entry from the list. Elements can be added by selecting a concept from the
combo box, which is then automatically added to the list. Section 4.3.5 discusses the implementation

35

4 WebLayer DSL

Figure 4.8: Editing a tags -> [Tag] member

behind this mechanism, since it poses some additional challenges with respect to form handling. This
is also the reason that editing of composite lists (rather than reference lists) is not implemented in the
prototype.

4.2.4 Actions and forms

So far, we have seen the WebLayer page elements for showing and entering data. The missing link
between these elements is how the input data is processed, and possibly stored in the database. For
this purpose, we introduce the last two page elements in Figure 4.9.

page elem ::= ‘action’ ‘(’ text expr ‘,’ actions ‘)’ action button
| ‘form’ ‘(’ page elem? ‘)’ form grouping

element
actions ::= action {‘;’ action }? separated

action list
action ::= qualified ident ‘=’ qualified ident assignment

| ‘redirect’ ‘(’ nav binding ‘)’ page redirect
| qualified ident ‘(’ { qualified ident { ‘,’ qualified ident }? }? ‘)’ call

Figure 4.9: Data processing page elements

The first element, action, encodes data processing logic. It takes a text expression and an action
language block as parameter:

action("Add reply", r.user = u; be.replies.add(r); be.save())

The action element itself is mapped to a button, with the text expression as label. When clicked,
the following happens:

1. Data is submitted (exactly what is submitted will be discussed further on)

2. Input data is validated with respect to the:

• required annotation of the concept member (if present)

• custom validation logic, if the member is an extended type (see Section 3.1.2 and Sec-
tion 5.2.2)

3. If the validation fails, the form is presented again (reflecting any previously entered data)

4. If the validation succeeds, the action code is executed

An example of a validation failure is shown in Figure 4.10. An empty form was submitted, but the
user field has a required annotation on it, so the form is presented again, providing an error message
below the field that failed to validate. When all fields are valid, the action block is executed. An action
block is comprised of statements, separated by a semi-colon. There are three types of statements in the
very basic, sequential action language that is implemented in WebLayer. The first type, the assignment,
is necessary to link concepts to each other and to manipulate data. In the example, the first statement
is an assignment that assigns the page parameter u to the user member of the Reply r that is being

36

4.2 Language Description

Figure 4.10: Required field not set

edited. The second type of statement, redirect, allows an action to redirect the user to a different
page than the page the action code originated from. In the current state of the action language, the
redirect statement only makes sense as the last action in an action block. If omitted, the action by
default presents the same page after it has successfully completed. The last type of statement is the call.
The example contains two call statements. The first call, be.replies.add(r) adds the submitted reply
to the replies member of the current BlogEntry be we are viewing on the page. Conversely, a remove
call is also available. The second call, be.save(), flushes the current state of the BlogEntry be to the
database. Since the reply was added to its replies member, it is transitively saved as well. A delete
call is available as well. Note that is possible to have an action that has no associated input elements,
for example, a delete button in a row of a table that deletes an element from a list. The WebLayer
action language is very basic, and has only a few built-in calls that can be performed. However, for
basic CRUD applications this model suffices. In Chapter 6 we investigate a mechanism to increase the
capabilities of the action language in a manner that fits our multiple DSL approach, based on the call
statements.

One last remaining problem is that we want to logically group what data is submitted when a button
is clicked (i.e. an action is performed). A naive implementation would be to wrap the generated page
completely in an HTML form element. However, this means that whatever button is clicked, every
input element is submitted. This, in turn, means that all elements are validated as well, even though
the action may pertain to a certain group of elements (i.e. resulting from a single input element) only.
However, we cannot infer a smaller scope for the enclosing form element without loss of generality.
Therefore, a form page element is introduced into the WebLayer language, allowing the user to indicate
the correct grouping. It logically groups the page elements that belong to a single ’unit’ within a page:

form(input(r)
action("Add reply", r.user = u; be.replies.add(r); be.save())

)

Now, only the fields generated by the input(r) element are submitted when the “Add reply” button
is clicked. Though WebLayer allows forms to be nested (since they are page elements themselves),
ultimately, the underlying markup language (HTML) does not. In the case of nested forms, only the
outer form element is significant, since HTML is defined that way.

4.2.5 Page and session variables

Having surveyed all page elements, there are still two WebLayer language constructs left: local page
variables and session variables. First we look at page variables. The input elements introduced in
Section 4.2.3 all accept an fqi to indicate what concept (member) to edit. So far, the only possibility we
have seen for data to be available in a page, is through page parameters. However, what if we want to edit
(create) a new concept on a page? An option would be to introduce a new page element (e.g. something
like create(Concept)). However, it would work nearly the same as the input element, the important
difference being that a type is explicitly provided rather than inferred from the argument. Recognizing
this fact, we opted to implement not a different page element, but a page variable declaration:

37

4 WebLayer DSL

page ViewBlog(BlogEntry be, User u){
var Reply r
...

This construct introduces a local variable of type Reply to the page. All fields of this variable are
set to their initial (empty) value. Now, we can just refer to this identifier in an input element (e.g.,
input(r), or edit(r.contents)). Local variables may be passed to other pages, but only if they have
been committed to the database first. This restriction stems from the way data-flow between pages is
implemented, which will be discussed in further detail in Section 4.3.4. Having this construct also allows
us to let the language grow toward variable declarations with initializers (e.g. var Reply r = some
query), should a query language be embedded at some point. Such an embedding is briefly discussed
in the concluding remarks of this chapter.

While data-flow using page parameters is a useful feature, sometimes it can become cumbersome
having to thread a variable through multiple pages. In this case, session variables offer an alternative. It
allows variables with a global scope (though bound to the session of a particular user) to be introduced.
Session variables are declared on the top-level of a WebLayer module (between page definitions), using
the same syntax as for page variables. Initially, a session variable is also a transient, empty concept
instance. Then, actions may assign values to the session variable. Its value is preserved as long as the
session is alive on the server, or a new value is assigned to the variable. A session variable may not be
passed as parameter to a page (which is not necessary anyway, since session variables are accessible in
any page).

4.3 Implementation

In the introduction of this chapter we already introduced the target of the WebLayer compiler, the
Seam framework. In this section we provide a detailed account of how the compiler is implemented.
To start a WebLayer project, a skeleton is provided. It provides the user with a directory containing
all static configuration files necessary to compile, build, and even deploy a DSL project consisting of
DomainModel and WebLayer sources. Furthermore, a build file is provided, that given the locations of
the sources and the DSL compilers, automates these tasks.

Figure 4.11: Page generated using WebLayer

Before moving on to the implementation details, we provide a high-level overview of what the Web-
Layer compiler generates. The relation between a WebLayer source file and the emitted files by the
compiler is visualized in Figure 4.11, where an arrow indicates a direct ‘generates’ relation between the
definition and output file (e.g., every single page definition results in a single Seam Component, and
likewise for session variable declarations).

As is the case with the DomainModel compiler, there is no one-to-one correspondence between
the DSL source and a single output file. Instead, every page definitions translates into three files, a

38

4.3 Implementation

type-check-page-elem :

r @Repeat(ParamBinding(type , ident), selector , elems) -> annotated

where in-tc-context(
{| TypeOf :
where(t := IteratorScope(type)

; rules(TypeOf : ident -> t))
; Repeat(ParamBinding(is-defined, id)

, is-listtype(|type)
, map(type-check-page-elem))

|}
| [<pp-page-elem> r]
)

; ?annotated

Figure 4.12: Type checking rule of for construct

Seam Component, an XML file containing markup (Facelets/XML) code, and an XML file containing
configuration to link both of the preceding files. Furthermore, each top level session variable declaration
translates into a Seam Component. Also, every extended type (originating from the import of a Domain-
Model definition) is translated into a Seam Validator. Last, various configuration files and helper classes
are output by the compiler, visualized as compilation results without an attached arrow in Figure 4.11.
These differ from the other compilation results in that they do not correlate to individual page definitions
(or other definitions in the body of a WebLayer module), but rather need to be generated when compiling
a module. In other words, the same amount of helper classes and XML configuration files is emitted,
regardless of the actual number of definitions in the body of the module.

In the remainder of this implementation section, Seam Components and the rest of the generated
artifacts are introduced. Furthermore, we explain the role and contents of most of the generated files,
as well as how the compiler achieves the translation. Before moving on to the actual code generation
phase (in Section 4.3.3), we first look at the preparatory machinery of the compiler.

4.3.1 Semantic checking

After parsing the WebLayer source, the first stage of the compiler is concerned with importing other
DSL modules mentioned in the using clauses. In practice, this means the compiler imports concept
definitions from a separate DomainModel module, and information on how to use these definitions. The
mechanism that enables this interaction is described in Chapter 5. For now, we just observe that these
definitions are available throughout the compilation process, while the DomainModel source module
need not be parsed and processed again (it can be compiled separately).

These definitions are very important for the second stage of the compiler, the type checking phase.
During this phase, the module is checked for well-formedness, which includes (but is not limited to)
checking the types of all expressions and page elements. This is achieved by performing a syntax-
directed traversal of the input AST. This traversal is encoded in Stratego rewrite rules. This might
seem odd for a checking phase, but this approach was chosen for two reasons:

1. It allows us to rewrite the checked term to a term with a type annotation.

2. We can decorate the AST with generated (unique) identifiers, which is necessary for the translation
of some constructs, as we will see later.

An example of a type checking rewrite rule is given in Figure 4.12. There is a lot going on in this
rule, and we try to convey the intuition behind it. The rule matches a for page element with selector
(which is parsed into a Repeat node with three children). The result of the rule is the annotated meta-
variable, which contains the result of applying the type checking constructs in the where clause. This
type checking is performed inside a (higher-order) strategy in-tc-context, which keeps track of the
current element being checked, in a stack-like manner. The list argument after the vertical bar contains
a pretty-printed string of the for element we are currently checking. This way, we are able to create

39

4 WebLayer DSL

error messages that contain information from the surrounding context, making it easier for the user to
spot the error. Unfortunately, it is not easily possible to include location information in error messages
when rewriting the AST.3 This would allow for more concise error messages, as the ’context-stack’
currently can grow quite large when an error is detected in a deeply nested page element.

Inside this strategy, we start a new dynamic rule scope (between the {| |} delimiters) for TypeOf
rules. This means, that any TypeOf rule introduced within this scope is invalidated when returning
outside the scope delimiters. Dynamic rules (i.e. rules created at run-time) are used to record the
types of the identifiers we encounter. Using the dynamic rule scope we implement the shadowing of
identifiers. Also note that not only the type of the identifier is recorded in the righthand side of the
TypeOf rule that is introduced, but also the fact that the variable stems from an iterative construct
(i.e. IteratorScope(..). This information is necessary when translating expressions accessing this
identifier. The two other scopes we identify are page scope (for page parameters and local page variables)
and session scope (for session variables).

The actual checking is performed through the Repeat congruence strategy with its nested strate-
gies. The is-* strategies perform checks in accordance with their names, and add an error mes-
sage to a collection (again using dynamic rules) of error messages if the check fails. Note that the
type checking phase tries to find as many errors as possible at once, it is not fail-fast. Finally, the
map(type-check-page-elem) strategy recursively continues the traversal. Note that no specific type
annotation is added to the Repeat AST node, but the recursive invocation may return annotated nodes.
In particular, fully qualified expression are resolved using the imported DomainModel definitions, and
their type is appended to the AST node.

There is a type-check-page-elem definition for each distinct page element. Some are more straight-
forward than this rule (e.g. in the generic show the argument only has to be a concept type, and needs
to be annotated), others are more intricate (e.g. action blocks have much more constraints). However,
the principle behind each of these rules is the same. At the end of this phase, the AST is either correct
and annotated, or an error has been detected and the compiler will report these.

Going back to the rule in Figure 4.12, we can see that the is-listtype check gets the type meta-
variable (containing the type annotation of the parameter binding) as an extra argument. It is used
to verify that the type annotation is the same as the inferred element type of the selector expression.
We already established that this annotation is superfluous in this particular construct. However, the
selector expression might also become a database query in a future version of WebLayer. This is a
worthwile addition, which unfortunately could not be realized within the confines of this thesis project.
When a query is present as selector rather than an fqi, it is questionable whether inference of the right
type for the iterator variable is always possible.

4.3.2 Specializing generic constructs

Now that we have a typed AST, the next step is to prepare this intermediate format for the code
generation stage. This means bringing all constructs into their normal form, also known as desugaring.
Doing so entails traversing the AST once more. The iterative constructs without a selector are assigned
a special selector value indicating all concepts should be iterated over. Moreover, the generic versions of
show and input need to be expanded. These constructs need to be unfolded following the structure of
the type of their argument expression, in order to present all the concept members, or an appropriate edit
form for a concept, respectively. We call this process unfolding, or type-directed desugaring. Towards
the end of this section we briefly discuss the relation to generic programming.

Figure 4.13 shows the rules for unfolding the generic input construct, and DesugarShow works in
a similar fashion. The rule DesugarInput rewrites a generic input construct to the normal input,
containing key-value pairs of labels and edit elements (the key values variable). This is achieved by
mapping member-to-keyval-input over the members of the concept type. This map is implicitly
performed by concept-to-keyvals, which deconstructs the appropriate concept type into a list of
its members, based on the type of ident. Note that we use concrete WebLayer syntax between the
|[]| brackets in the transformation rules, allowing for a more intuitive definition of the rules. There
is a second member-to-keyval-input rule that matches only on concept members with a composite
association (explained in Section 3.1.2). These members are not rewritten to an edit element, but
rather to another generic input for this member. This means, that a nested form will be created for

3This situation has been improved during the course of our work.

40

4.3 Implementation

DesugarInput :

pelem |[input(ident)]| -> pelem |[input(key_values)]|
where <is-id> ident

; key_values := <concept-to-keyvals(member-to-keyval-input)> ident

member-to-keyval-input(|ident) :

ConceptMember(_, name , _, _, _) -> keyval |[label -> edit(qid)]|
where label := QuotedText(<capitalize> name)

; qid := <extend-id(|name); post-tc-annotate-id> ident

Figure 4.13: Specializing generic input construct

such a composite member. This works since the DesugarInput is applied repeatedly (until it fails) to
a term and its subterms in a topdown manner. This application is guaranteed to reach a fixed-point if
and only if there are no concepts with mutually recursive composite members. This condition must be
enforced by the DomainModel compiler, since it constitutes an inconsistent situation, considering the
semantics of composite associations. Intuitively, it corresponds to saying two distinct physical objects
are inside each other, which is also impossible.

Another interesting aspect is that such a rewritten generic input has not been typed by our type
checker, since it is a result of the transformation step after type checking has been performed. How-
ever, we do not have to perform a complete type check of the AST after the transformation, since
the type can be incrementally computed during the desugarings (as witnessed by the invocation to
post-tc-annotate-id).

The type-directed desugaring described above resembles the specialization of functions based on
type arguments that is performed by many generic programming languages, such as Generic Haskell
or Clean. In fact, the iData project [?] (written in Clean) also boasts its ability to derive HTML
forms from a Clean data type. However, the aforementioned languages allow their users to write such
type-directed functions, whereas our specialization is built-in to the compiler and is applicable only to
specific language constructs. As such, Haskell’s deriving clause, which instructs the compiler to derive
some predetermined functions for arbitrary data types, is closer to what we implemented in WebLayer.

4.3.3 Translating pages

We now turn to the last stage of the compiler, the code generation phase. Throughout this section and
the subsequent sections, we refer to listings of code generated by the WebLayer compiler, which are
provided in Appendix A.2.2 (starting on page 94). In this section, we look at the three generated files
when translating a page definition, as shown in Figure 4.11. We use the running ViewBlog example
to explore the translation scheme. In this section we look at the result of translating a single page
definition. The subsequent sections provide a discussion of the implementation of page navigation, the
translation of individual page elements, the action language, and the remaining constructs, respectively.

Listing A.4 and Listing A.5 show the Seam component generated from the ViewBlog page. A Seam
component is a Java class annotated with an @Name("ident") annotation, where ident is a unique
identifier linking to a single instance of this class. Instantiation of components is managed by the
Seam framework itself. References to instances of components can be obtained through dependency
injection, or by retrieving them (by name) from a Seam component manager class. Dependency in-
jection is a run-time lookup mechanism, allowing the programmer to write variable declarations like
@In(name="ident") ComponentType member name for a class member. The framework consequently
wires the right component instance into member variable, relieving the programmer from obtaining
a reference to the correct object instance, as would be necessary in plain Java. Configuration of this
wiring is typically done in an external (XML) file. However, this mechanism is not statically checked,
and can lead to unexpected failure when, for example, a typo is made in ident. Dependency injection is
used in our page components to inject an EntityManager and a FacesMessages component, as can be
seen in the first lines of the ViewBlogComponent class in Listing A.4. The former is necessary to ma-

41

4 WebLayer DSL

nipulate JPA entities (i.e. concepts originating from DomainModel), whereas the latter is a component
that manages error messages that need to be displayed on (possibly different) pages. Besides these two
variable declarations, the contents of the Seam component for a page can be roughly divided into code
supporting:

1. Initialization

2. Page parameters

3. Iterative constructs

4. Actions

5. Editing of lists

This structure of components is also reflected in the transformation rule for translating page defini-
tions. This rule is shown in Figure 4.14. Assignments to the (italic) meta-variables using auxiliary rules
are left out for conciseness (hence the ellipses following the where clause). We discuss the initializa-
tion part of the page component in this section, the latter four parts of a page component are treated
throughout the ensuing sections. Figure 4.14 shows that a page component is annotated an @Name an-
notation, making it a Seam component, and an @Scope(ScopeType.CONVERSATION) annotation. This
last annotation indicates the scope of the component instance. These scopes are specific to Seam. The
conversation scope is a subscope of the well-known session scope, that is, a user can have multiple
conversations within a single session (the proliferation of tabs in browsers led to the introduction of this
scope). Assigning this scope, rather than the more narrow page scope, allows us to cache state between
views of different pages.

Every page component has an initialize method. An external configuration file (in the case of
our example: ViewBlog.page.xml, presented in Figure A.3) makes sure this method is called on each
page view of the associated page. The initialize method is annotated with @Begin(join=true),
indicating that Seam should start a new conversation context when executing this method, or that if a
conversation exists for this user, Seam should merge this component into the existing context.

As can be seen in Listing A.4 and Listing A.5, there are many class member variables with associated
get methods (following the JavaBean standard). Note that all references to artifacts generated by the
DomainModel compiler are fully qualified. Chapter 5 explains how we obtain these references without
duplicating knowledge from the DomainModel compiler. Every page component has an initialized
(boolean) member, with false as its default value. Within the initialize method, member vari-
ables relating to page parameters (e.g., those in page param*) are assigned their initial values. In
Section 4.3.4 we will see the exact mechanism behind the page variables. Furthermore, the member
variables containing lists for the iterative constructs in a page definition (if any) are initialized. The last
statement sets initialized to true as a signal for other parts of the code that the page component is
ready for use.

Besides the component, a file containing the markup of the page is generated as well. This file
contains Facelets and JSF code. Facelets is an XHTML-like templating mechanism to create views for
JSF based web-applications. JSF is the component framework used by Seam to render actual elements
on the screen, and to bind them to Java code. From now on, we refer to this file as the viewcode.
Figure A.1 and Figure A.2 show the viewcode for the ViewBlog page. Viewcode is structurally much
closer to the page definition than the Seam component. When a page in the web-application is viewed,
the viewcode is parsed and interpreted by Seam and its underlying libraries. It contains many references
to Seam components (in particular the page component for that page) which are resolved dynamically.
Ultimately, pure HTML and JavaScript is emitted by JSF to the browser, which in turn can be several
orders of magnitude larger than the generated viewcode itself.

The top-level structure of the viewcode is shown in the transformation rule in Figure 4.15. Note
that we use concrete syntax for XML in this rule, between the %> <% delimiters. The document type
declaration and additional namespace declarations are omitted, the complete header can be seen in
Figure A.1. In the top-level element a template.xhtml file is referenced. This file resides in the non-
generated part of the web-application skeleton we provide, and can be edited freely by the DSL user.

42

4.3 Implementation

page-to-component :

PageDecl(_ , name , param* , elem*)
-> compilation-unit
|[

package ~id:Id(<Package>);

// Import statements omitted for the sake of brevity

@Name("~component ") @Scope(ScopeType.CONVERSATION)
public class ~id:Id(component) implements Serializable {

@In private EntityManager em;

@In private FacesMessages facesMessages;

~*page_param*

public @Begin(join=true) void initialize(){
try {

~*initialize_pageparam*
~*initialize_iterator*
initialized = true;

} catch (NullPointerException npe){
// Exception code omitted

}
}

public boolean initialized = false;

public boolean getInitialized() {
return initialized;

}

~*iterator_member*

~*action_method*

~*listedit_method*
}

]|
where ...

Figure 4.14: Transformation of a page definition to Seam component

43

4 WebLayer DSL

page-to-view :

PageDecl(_, _, _, elem*) ->
%>
<ui:composition xmlns="http://www.w3.org/1999/xhtml" ... template="template.xhtml">

<!-- global error and validation messages for page -->
<ui:define name="globalMessages">
<h:messages globalOnly="true" styleClass="errors"/>

</ui:define>

<!-- page element content -->
<ui:define name="content">
<div class="section">
<s:div rendered="#{!<% !component %>.initialized}">
<p> The page could not be rendered due to missing or

invalid information in the request parameters. </p>
</s:div>
<s:div rendered="#{<% !component %>.initialized}">
<% !elem_xml* :: * %>

</s:div>
</div>

</ui:define>

</ui:composition>
<%
where component := <Component>

; elem_xml* := <map(page-elem-to-xml); separators> elem*

Figure 4.15: Transformation of a page definition to view code

All generated content is embedded in this template, allowing a consistent style to be applied to each
page.

Furthermore, two sections are defined (using Facelets’ ui:define tags). The first one displays
any messages that are stored in the FacesMessages component (also mentioned in the description of
the page component above). The second defines the actual page following from the page definition.
However, it this section is rendered conditionally. The rendered attributes contain an EL4 expression
(between the #{ } delimiters) checking whether the page component has been initialized. The expres-
sion works because there is an initialized property on the page component with a corresponding
getInitialized method. If initialized is false, an error message is rendered instead of the page
elements, avoiding any errors that might arise from using an un-initialized page component. EL ex-
pressions form the (statically unchecked) connection between the viewcode and Seam components, and
as such they play a central role in the translation scheme.

The actual page elements are translated by mapping page-elem-to-xml over the page elements in
the AST, a strategy that will be discussed in Section 4.3.5. Afterwards, the strategy separators is
applied, which intersperses line-break elements, such that all page elements are put beneath each other.

4.3.4 Page navigation and data-flow

Navigating between pages is conceptually very simple in WebLayer. Pages link to each other by name,
and concepts may be passed as parameters. The implementation of this data-flow between pages is
handled by the WebLayer compiler. In general, there are three ways to achieve data-flow between
different pages of a web-application. One way is to put the data into the session storage mechanism,
and retrieve it from the (transient) session on a different page. The second way is to submit the data

4Expression Language, defined in the JSF standard, and extended by Seam.

44

4.3 Implementation

itself to a different page. This means that the data has to be encoded in the URL (in the case of a
GET-request) or has to be submitted as form data (for POST-requests). The last way is to store the
data in the database, and retrieve it in the next page.

We chose a combination of the last two approaches. A drawback of the first approach is that a
page relies on transient data to be present in the session storage, without this fact being represented
in the URL. In other words, it is not possible to create an external link to such a page, since sessions
expire and data may be gone. However, sending back and forth the complete set of data between the
client and server (which is implied by the second approach) is not very appealing either. Therefore, we
chose to use the identity of concepts as bridge between different pages. That is, whenever a concept is
passed to another page, this is achieved by encoding its id into the URL. Then, the receiving page uses
this id to retrieve the correct concept from persistent storage. This entails that the state of a page is
encoded in its URL, which in turn means that external links can be created. However, this comes at a
cost: only data that has been persisted can be used in this approach. The first approach of data-flow,
storing data in the session, is also available to the WebLayer user by means of session variables. Session
variables make it possible to exchange transient data between pages, at the cost of having hidden state,
precluding direct links that completely restore the state of the web-application.

The implementation of the combined scheme is to create a class member in the page component
for each page parameter (the concept itself), and one for its associated id, and the appropriate get
methods to be able to reference the members through EL expressions. Furthermore, the id member
is annotated with @RequestParameter("name"), which instructs Seam to automatically retrieve the
value for this member from a GET-parameter called name in the requesting URL. An example would be
http://../ViewBlog.seam?blogEntry beId=1, which produces the value 1 for the id member. Hence,
data-flow is achieved by constructing URLs containing the right parameters with the correct ids. Then,
within the initialize method these ids are used to lookup the correct concepts from the database
and assign them to the class members. In Listing A.4 we show the members generated for the first
BlogEntry be page parameter of the ViewBlog page.

However, we cannot guarantee that in all situations the GET-parameters for a page are present.
For example, if an action is invoked on a page (i.e., a button is clicked and the form is submitted) a
POST-request is issued, which does not include any of the GET-parameters that were present in the
original URL. Therefore, we introduce a caching mechanism in the page component (which itself out-
lives a single page view) for the ids that are passed. In the initialize method we assign the current
id (if it is present) to the caching member. Furthermore, the get method for the ids revert to returning
the cached value if no actual id is present.

To see what navigation looks like on the implementation level, we look at the translation of the
navigate statement of the example page definition (Figure 4.23). In the viewcode, navigation is rep-
resented using a Seam link tag:

<s:link value="Home" view="/Blog.xhtml">
<f:param name="user_uId" value="#{ViewBlogComponent.user_uId}"/>

</s:link>

We use the s:link with nested f:param tags rather than a normal (X)HTML anchor tag because
Seams needs to insert additional, administrative information (e.g., the current conversation id) into the
actual generated link. The value of the parameter is extracted from the page component by using an
EL expression, which may return the actual or cached id, since the EL interpreter accesses members
through their get method.

4.3.5 Translating page elements

The translation of the navigate statement is already an example of how individual page elements are
translated by the compiler. In this section we will lift out some more transformations that are exem-
plary for how the compiler works, without attempting to give an exhaustive overview. Page elements
are translated to viewcode only, except for iterative constructs and edit fields for concept members
with a list type. We will show how these constructs need additional support from the page component.
Another exception is the local page variable, which needs nearly the same code as the page parameters

45

4 WebLayer DSL

(discussed in the previous section), but without the associated id members, since a local variable’s value
is not passed as page parameter.

We will first look at the simplest of page elements, the text element. Every page element has its
own matching definition of the page-elem-to-xml rule. In Figure 4.16 the definition of this rule for
the text element is provided.

page-elem-to-xml :

TextExpr(contents) ->
%><h:outputText value="<% !contents-value %>" escaped="true" /><%

where contents-value := <textExpr-to-elstring> contents

Figure 4.16: Transformation rule for text page elements

The transformation is straightforward: an outputText tag is emitted, with an EL expression as
value binding. Creating this expression is delegated to a strategy which handles the fact that a text
expression can either be quoted text, or an fqi, or a combination (recall Figure 4.5). Most interesting is
the second case, where an fqi must be translated to the correct EL sub expression binding, for example,
to a member of a page parameter. Also note that we explicitly set the escaping of this outputText
component to true. It is possible to just output text without using the outputText component in
viewcode, though doing so makes the application vulnerable to cross-site scripting attacks5. Thus, we
enforce the best practice of escaping all dynamic data before rendering it within the compiler.

qualId-to-elstring :

QualifiedId(var , qualId) ->
<concat-strings> [<scope-resolver> var , ".", <qualId-to-elstring> qualId]

Figure 4.17: Translating WebLayer identifiers into EL expressions

We already established that the translation between an fqi and its corresponding EL expression is a
recurring theme in all page-elem-to-xml rules of the WebLayer compiler. Therefore, this translation
is centralized into a single location in the WebLayer compiler. Figure 4.17 shows the recursive case
of this transformation rule. The scope-resolver strategy is an auxiliary strategy that acts on the
annotated scope information of identifiers (if any), provided in the type checking phase. Each of the
three different scopes (page parameter and local variable, or iterator, or session) results in a slightly
different EL expression. For example, a page variable identifier must point to the correct member of
the page component, and a session identifier must point to the corresponding session component (to be
explained in Section 4.3.7). Listing A.4 and Listing A.5 contain many examples of these different EL
expressions.

page-elem-to-xml :

Iterator(ParamBinding(type , SimpleId(name)), _, key_vals){list_ident } ->
%><h:dataTable value="<% !list %>" var="<% !name %>">

<% !columns :: * %>
</h:dataTable><%

where columns := <map(key_val-to-column)> key_vals

; list := <concat-strings> ["#{", <Component>, ".", list_ident , "}"]

Figure 4.18: Transformation rule for table elements

To further illustrate the translation of page elements, we take a look at the table element. Fig-
ure 4.18 shows how the Iterator AST node, associated with a table with selector expression, is

5Cross-site scripting attempts to inject malicious code into a webpage.

46

4.3 Implementation

translated to viewcode. The corresponding JSF element is the dataTable, which automatically iterates
over the binding provided in value property. The var property contains the iterator variable name, that
may be used in EL expressions in the nested column definitions. Column definitions are represented by
nested column elements, which are generated by the key val-to-column rule (definition not shown).
Returning to the value binding, we see that list is an EL expression, referring to some member of
the page component. Interestingly, the selector expression (second child of the Iterator AST node)
is not being used in this EL expression. This is due to the fact that a JSF dataTable cannot work
on arbitrary lists: the elements of a list must be pre-processed to conform to JSF’s ListDataModel
interface. Fortunately, Seam provides us with an annotation (@DataModel) that transforms any list
transparantly to the right format. However, this does mean that we need to create an explicit class
member containing the list to be processed in the page component.

Since the list member and the dataTable value binding are in two disparate files, and the table
construct itself does not have a distinguishing identifier, we use a compiler generated unique identifier
to link these two locations. The translation rule shows an example of how a unique identifier (meta-
variable list ident), generated during the semantic checking phase, is being used in the EL expression
for the list value. This same identifier is used in the page component for the list member and its get
method. In the generated code of the ViewBlog page, iterator3 is the unique identifier for the table
element containing the tags of the BlogEntry.

The final page element we elaborate upon is the edit element. We note that the generic constructs
have already been desugared to their normal forms in this stage, leaving edit as the only primitive
for the input of field data. The page-elem-to-xml rule for edit constructs delegates the actual
construction of the viewcode to a rule (qid-to-inputfield) which extracts information from the type
annotation of edit’s fqi argument.

qid-to-inputfield :

qid ->
%><s:decorate>

<h:inputText id="<% !ident %>" required="<% !required %>"
value="<% !binding %>">

<% !validator :: * %>
</h:inputText>

</s:decorate><%
where <type-of(?NativeType("String"))> qid

; ident := <qualId-getlast> qid

; binding := <qualId-to-elstring> qid

; required := <get-required> qid

; validator := <get-validator> qid

Figure 4.19: Transformation rule for table elements

A different rule is available for each of the distinct value types. Figure 4.19 shows the (slightly
adapted) rule for plain string arguments. The first action in the where clause is to establish whether
the type of the argument indeed is a string, otherwise a different rule applies. A JSF inputText element
is constructed, with the name of the concept member as its systematic id (ident , a required property
with true or false (depending on the information of the imported DomainModel definition), and a
value binding EL expression (binding). Last, a validator may be attached to an input field. Validators
are created by WebLayer for DomainModel extended types, and can be linked to an input field so that
the custom validation logic is applied by JSF. The validator variable is a list, since we either want
one validator tag, or zero. In this particular rule, get-validator will always return an empty list,
since we are translating a concept member with string type. We included the validator part to illustrate
the mechanism, though.

Other qid-to-input rules exist to handle different types of input widgets. One more interesting
issue arises when edit’s argument has a list type. Figure 4.8 already showed our solution, but the
implementation is somewhat problematic. Originally, we anticipated list editing to be a straightforward
desugaring from edit(list member) to (for example) a table element listing the current contents, and

47

4 WebLayer DSL

page-elem-to-xml :

ActionBlock(actiontext , actions){actionmethod } ->
%><h:commandButton value="<% !descr %>" action="<% !action_expr %>" /><%

where descr := <textExpr-to-elstring> actiontext

; params := <infer-el-params; separate-by(|", "); concat-strings> actions

; action_expr := <concat-strings> ["#{", <Component>, "."
, actionmethod , "("
, params , ")}"]

Figure 4.20: Transformation rule for action elements

actions to add and remove elements from the list. However, implementing this idea has an unfortunate
side-effect. Since nested forms do not exist in HTML, everytime an action fires to manage the list
(which itself is a part of larger input form) all fields of the outer form are submitted as well. This
means, that validation is performed for these fields, and the page component is updated with (possibly
empty) values, even though this is not intended. Therefore, we had to find a way to bypass the JSF
mechanism for our list editing mechanism. The Ajax4JSF library provided us with methods to bypass
the described problems. In particular, it allows parts of forms to be submitted without refreshing the
page, and bypassing the JSF processing. However, in doing so, it could no longer be implemented as
a desugaring to native WebLayer constructs. Instead, many specific Ajax4JSF tags must be used, and
even a helper method for each list to be edited must generated in the page component. In Figure A.4 we
show the viewcode generated for edit(be.tags), which is the expression that results in the screenshot
in Figure 4.8. These problems are also the reason why we only implemented editing of reference lists,
and not composite lists.

4.3.6 Action language

In the language description we have seen the three different types of statements of the WebLayer
action language. Now we will take a look at the translation of the action element and the action
statements contained therein. We first inspect the viewcode generated for an action element, as shown
in Figure 4.20.

A JSF commandButton tag is used to implement actions. The descriptive text is translated using
the rule we saw earlier for text expressions. We will discuss the params meta-variable later. The
action property binds to a method of a page component, rather than a member variable, using an
EL expression. In this method, the action statements themselves are translated. Again, we link the
viewcode and the method in the page component using a generated identifier (actionmethod).

In the case of our example page, the generated method is named action3, and can be seen in List-
ing A.5. The translation of the action statements is embedded in a try-catch block, which handles
validation errors that may occur upon persisting a concept, and detects concurrent modification (by
virtue of the optimistic locking scheme).

We now examine the translation of the statements in the "Add reply" action on the example page of
Figure 4.4. Each distinct type of action statement is translated using its corresponding action-to-java
rule, of which one example is given in Figure 4.21. The first statement, r.user = u, is translated to a
Java statement consisting of a sequence of linked get calls, and a set call for the last element of the
fqi on the righthand side. The argument of this set call is the translation to get calls of the lefthand
side. Note that this translation to get calls is more or less the page component’s dual of creating an EL
expression in viewcode. The second statement, be.replies.add(r), is translated to the corresponding
addToReplies method of the BlogEntry be concept, translating the argument to a sequence (of one
in this case) of get calls.

The last statement, be.save(), is translated to three successive Java method calls. The persist
call is performed on the EntityManager class, which is injected into the page component by Seam. It
forms the gateway to the database, and a persist call forces the concept passed as parameter to be
updated with the new values. However, it may also be the case that the parameter is a new concept
(not yet in the database). In fact, that is the case in our example, where the Reply r that is passed
originates from a local page variable. This means that the concept does not have an id value yet, since

48

4.3 Implementation

action-to-java :

Call((qid , "save"), [])
-> bstm*
|[

em.persist(get_expr);
em.flush();
em.refresh(get_expr);

]|
where get_expr := <component-expr> qid

Figure 4.21: Transformation rule for save calls

this is automatically generated by the persistence layer. In turn, this means that the concept cannot
be used as parameter to another page, since data-flow relies on the id value. Therefore, two additional
statements are generated to explicitly push the change down into the database (flush), thereby forcing
an id to be assigned, and to refresh the object reference (refresh) to reflect this new id value. Now,
the concept may safely be passed to another page.

This brings us to the last type of action statement, redirect, which is not present in the example.
A redirect statement is translated to a Java return statement, which returns a string representing the
destination page. Seam is configured to interpret this return value of the action method, and present
the user with the correct page. If no redirect statement is provided in the action code, the same
page is shown. This default is implemented by a return statement after the main try-catch block
of an action. Listing A.5 shows the structure of this return statement: a URL is created, with all the
corresponding request parameters for the page parameters of the destination page. Note that cached
values of the ids are used to construct this URL. Before the actual return statement is executed, we
also set the initialized variable of the component to false, in order to force the elements on the
page to be reloaded. We do not know what is changed by the action, so we make the conservative
assumption that all data needs to be reloaded on the next page view. Also, local page variables are
initialized to an empty instance again.

In the translation of action statements outlined above, we assume we can access the used vari-
ables through appropriate get/set calls, or by accessing the right session component. However, not
every variable is in the scope of the page component, and thus in scope of the action method. In
particular, iterator variables introduced by the iterative page elements are not statically available in
the page component. Still, these may be used in action statements. Therefore, we implemented a
method which locates the usage of variables with iterator scope, and passes these as arguments to the
action method from the viewcode to the page component. This process is somewhat reminiscent of
creating a lexical closure. It is performed by the infer-el-params strategy in Figure 4.20, leading
to zero or more parameters in the params variable. Furthermore, the action method uses the same
inference results and accepts the correct concepts as parameters. It follows that assigning to an iterator
variable is not possible. In the concrete example, no iterator variables are used in the action statements.

Implementing a small action language in WebLayer was a deliberate choice. An alternative approach
is to embed an existing GPL (in our setting Java) as action language. This would be more convenient,
since no consideration has to be given to a translation scheme. However, doing so would mix two levels
of abstraction in a source file, and hook our DSL design to Java by definition. Whereas currently the
DSL user keeps thinking in terms of concepts and some pre-defined actions, with such an embedding
the user must think in terms of the implementation of concepts. In our opinion, it is not acceptable to
let the user deal with the peculiarities of using, for example, the EntityManager protocol and get/set
methods.

4.3.7 Session variables and validators

Up until now, we have focused on the three arrows originating from ‘page definitions’ in Figure 4.11.
In this section we briefly look at the two remaining arrows, originating from ‘session variables’ and ‘ex-
tended types’. In the language description we have seen that session variable declarations may occur at

49

4 WebLayer DSL

the top level of a WebLayer module. In the compilation phase, each session variable declaration is trans-
lated into its own Seam component. This component has session as its scope type, and contains a single
member of the corresponding concept type of the declaration, and get and set methods. As with local
page variables, the member is initialized with an empty concept instance, so it can be used in input and
edit elements. Every session variable component implements our weblayer.support.SessionVar<T>
interface (where T is instantiated to the type of declaration), allowing action code to handle session
variables generically, without having to know the name and specifics of the class for this session vari-
able. An @AutoCreate Seam annotation on session components makes sure that Seam creates these
components lazily, when they are accessed for the first time.

Last, we look at validator components. The WebLayer compiler creates one for every extended type
imported from a DomainModel definition. Listing A.6 (page 98) shows the validator component for
the extended type URL. The main goal of a validator component is to attach validation error messages
to specific fields. We have seen how the validator tags are placed on fields. These link to a validator
component, through the name given in the @Validator annotation. The validate method is invoked
by JSF upon form submission. Inside this method, we cast the value to the right type, delegate the
actual checking to the extended type implementation, and raise an exception if an error message has
been returned by this implementation. This message is then displayed below the offending field, similar
to Figure 4.10.

4.4 Issues

In the previous sections we have seen both the design of the WebLayer language and most of its imple-
mentation. During the description of the implementation, we already elaborated on some problematic
issues and design choices in the compiler. In this section we want to discuss the issues that arose during
the creation and use of WebLayer.

Early versions of the WebLayer compilers did not have the type checker we described in this chapter.
This revealed a large flaw, in our opinion, of the implementing libraries we use as target for our DSLs.
Namely, it is very easy to create code that compiles, but it is comparatively hard to create code that
does not exhibit run-time errors. Especially the run-time resolving of EL expressions is the culprit, and
the interpretation of the different annotations to a lesser degree. This observation led us to write a type
checker, which also attaches scope information to identifiers. Consequently, the code generation phase
did not have to anticipate inconsistent input anymore, and the extra information made the translation
to EL expressions more straightforward. Having this type checker also allowed us to implement the
generic constructs, which shows that a typeful approach to DSL development can actually bring more
benefits than improved safety alone.

Another issue that emerged during the development of WebLayer is that of layout and styling.
The WebLayer language allows the user to express the structure of a page in terms of page elements.
How these elements are composed on the actual page, and what their appearance must be, cannot be
expressed in the DSL. Instead, page elements are automatically placed beneath each other, and default
CSS class names are assigned to the elements. Also, we only distinguish between header and normal
text, whereas more individual control might be desirable. While the styling is flexible in the sense that
user can edit the CSS stylesheet of the skeleton, the vertical layout of page elements is fixed.

We considered ways of improving this situation, for example, by letting the user indicate custom
regions in a page (e.g., through named div elements which can be uniquely referenced in CSS). How-
ever, this clutters up the page definitions, and still does not allow the DSL user to override standard
elements. The latter could be alleviated by introducing more types of page elements, for example, a
dedicated editXX component for each available widget in HTML forms. The generic edit could be
maintained as well. Nevertheless, growing WebLayer to include all this variability also introduces more
potential for user errors. This is a classical trade-off, and we believe that in the case of a language
like WebLayer, it can be beneficial to consolidate many layout and styling policies into the compiler.
There are DSLs that try to get the best of both worlds, such as WebRB [?], a visual web DSL based on
relational algebra components mixed with UI components in a unified editor. However, this approach
has the weakness of requiring the graphical designer and the application programmer to be the same
person. Our approach of embedding the generated page into a freely editable template allows for a

50

4.5 Concluding remarks

separation between these roles.

A different problem that arose during the implementation of WebLayer is an issue with the compos-
ability of page elements. Several elements, such as the table and for elements, may contain contain
nested page elements. This is a useful and intuitive abstraction. However, the translation scheme and
implementation of table elements poses a restriction. We have seen that a table is bound to a member
in the page component with a special annotation to prepare the list for usage in the viewcode. Also,
an iterator variable is brought into scope. The problem is, that this (dynamic) variable has no direct
(static) counterpart in the page component (also described in Section 4.3.6). Therefore, list members
of the concept this iterator variable is pointing to, cannot have the appropriate annotation on them.
Whenever a table element is nested within another table element, and the inner table iterates over a
list member of the outer table’s iterator variable, this will fail. Knowing the translation scheme, it is
clear why. Nevertheless, a DSL user should not need to know about the internals, and should be able
to nest arbitrary page elements in a table. Interestingly, the tag that implements the for loops does
not need a pre-processing annotation, and therefore does not exhibit the same problem.

The form element also has nested elements, though this page element was not anticipated in early
designs of WebLayer. Rather, our initial design was to always implicitly pair an action with a single
input statement. Soon it became clear that this was a bit too restrictive. What if, for example, we
want to have two different actions associated with the same input, or if we want to have two generic
input elements associated with one action? Ultimately, in the implementation this all comes down to
the question: what is part of the same HTML form in a page? For a while, it seemed feasible to infer
such grouping from the proximity of certain elements in the page definition. However, to do so in an
unambigious and general manner was hard, and attempts were unsuccesful. Therefore we introduced
this form grouping explicitly into WebLayer. It allows arbitrary combinations of input and action
elements, at the expense of having to always use a form element for them to work, even if we only want
to have a single action.

The last issue we want to discuss is more related to an implementation quirk of JSF, and as such
illustrates how a framework can interfere with DSL abstractions. We have seen how the validation of
extended types is applied at the corresponding input field on a form. We recall that the same validation
is performed in the DomainModel layer. Of course this second validation pass is guaranteed to succeed,
since it is the same code as invoked by WebLayer for that field. However, a problem arises when such
a field is left blank, and it has not been marked as required in the DomainModeldefinition. JSF
does not invoke validation for empty fields. If the extended type validation rejects empty values, the
validation will still fail in the DomainModel layer, throwing an exception which we catch in WebLayer
code. Unfortunately, this validation step in DomainModel is global to a single concept, and therefore
JSF cannot trace this failure back to the empty field, thus showing the error message above the form
instead of adjacent to the offending field.

This behavior can be easily prevented by annotating such concept members with required, though
it is not obvious that this is necessary from the user’s perspective.

4.5 Concluding remarks

In this chapter we have explored the design and implementation of the WebLayer language and com-
piler. We have shown that clear and concise abstractions for presentation elements, which can be used
in conjunction with DomainModel concepts, are compiled to a deployable web-application. In partic-
ular, the closeness of mapping6 between WebLayer page definitions and the resulting page is much
higher than between the Seam framework code and the resulting page. No library specific artifacts are
present on the language level. For example, the structure of pages and data-flow between the pages are
directly discernable in the WebLayer source, rather than hidden in Java’s GPL abstractions. We have
also shown that many problems of the underlying libraries and frameworks, especially relating to the
dynamic nature of many constructions, can be alleviated through a typeful DSL approach.

Besides improving quality of code, WebLayer also improves productivity. In order to show the order
of magnitude, we present some metrics for the running example of this chapter, the blog. This sample

6An important cognitive dimension [?] for assessing the abstraction level of a programming language.

51

4 WebLayer DSL

DSL Source Generated code
DomainModel 45

Java 801
XML 22

WebLayer 110
Java 841

XML/Facelets 501
XML 48

Totals 155 2213 ∼ ×14

Figure 4.22: Metrics for blog example application

application consists of five pages and four DomainModel concepts, from which we have seen one page
definition (Figure 4.4) and one concept definition (Figure 3.3). Figure 4.22 shows the lines of code
count of both the source modules and the target files that are generated by the WebLayer and Domain-
Model DSL compilers. The factor 14 increase in lines of code is typical, according to our experiences
with different sample applications. It should be noted that the Java lines are much more involved to
write, compared to WebLayer code. On the other hand, writing the same application from scratch in
the target frameworks might yield a smaller codebase, since generated code invariably contains some
dead code. Nevertheless, we crafted our code generation after real usage patterns of the frameworks,
therefore the disparity between generated code and hand-written code is not significant in our opinion.

In addition to gaining quality and productivity through the use of DSLs, we think this case study also
shows the synergy that can exist between DSLs. For example, the generic input and show constructs
leverage compile time capabilities that cannot be replicated when only using the target frameworks.7

A large drawback of our approach is the fact that when developing a stand-alone DSL, as opposed
to an embedded DSL, we cannot reuse facilities of a host-language. In other words, type checking and
general abstraction mechanisms need to be implemented from scratch for our DSL. The same holds
for a module system, which is not implemented for this very reason. While writing such facilities by
hand allows us to choose abstractions that exactly fit the domain, and write very specific semantic
checks, it still requires a considerable effort. On the other hand, we also experienced that embedding
a web-application DSL in Java (which is ultimately what Seam tries to accomplish) does not lead to
satisfactory results.

With respect to the implementation, we have found the Stratego/XT toolkit to be valuable for this
type of DSL development. Especially the ability to use concrete syntax for Java code, XML markup,
and even our own DSL syntax in rules, helped a great deal while developing the compiler. Tasks that
were not primarily syntax-directed, which are often hard to express in rule rewriting systems, were
accomplished using Stratego’s generic traversals.

The WebLayer language is far from being complete (since it was not our goal to create a single
production quality DSL), but we believe the implementation is easily extendable in its current form,
and has a clear structure. Every compiler phase is decoupled and implemented in relative isolation.
Extending the type checking and code generation rules to handle more page elements is fairly straight-
forward, because of the separation between viewcode and page component code generation. Some ideas
that were not implemented due to time constraints were, for example, embedding a (possibly already
existing) query language for DomainModel concepts, and abstraction mechanisms to reuse parts of page
definitions.

7The best frameworks can do there is to use run-time reflection on classes to simulate this behavior.

52

4.5 Concluding remarks

Figure 4.23: Page generated using WebLayer

53

4 WebLayer DSL

54

Chapter 5

Interaction aspects

In the previous chapters we have provided a detailed account of the individual building blocks for our
prototype of DSL driven web development. However, the mechanism through which these various parts
work together has been left implicit. In this chapter, we discuss the various types of interaction that
can be observed in our implementation. We differentiate between two types of interaction:

1. Interaction between two distinct DSLs.

2. Interaction between DSL code and user-written Java code.

Note that a third type of interaction can be established as well, which is cooperation between modules
written in the same DSL. Nevertheless, our DSLs currently do not exhibit this kind of interaction. We
reflect upon this choice, and possibilities in this regard in the concluding section of this chapter. The
first mode of interaction is investigated in Section 5.1, where the cooperation between DomainModel
and WebLayer and between WebLayer and BusinessRules is elucidated. The second mode of interaction
is investigated in Section 5.2, by looking at the mechanism used to introduce extended types in the
DomainModel DSL. Since interaction between host language code and DSL is also employed by several
other model-driven engineering approaches, a comparison with these approaches is provided as well.

5.1 Interaction between DSLs

The premise throughout this thesis has been that the development of DSLs should mostly focus on tech-
nical domains. In our case, these domains relate to the three distinct layers in typical web-application
development. Since we did not develop a single monolithic DSL to model this domain, a complete
application is created by compiling the separate definitions in the distinct DSLs. However, while the
DSLs are distinct, they are not isolated. In order to create meaningful applications, DSLs must be able
to reference definitions in other DSLs. In particular, WebLayer definitions may use DomainModel and
BusinessRules definitions, by importing them through using clauses. Figure 5.1 provides a schematic
representation of how our DSLs cooperate to create a complete web application in the Java target
environment.

Figure 5.1: Flow between DSLs

55

5 Interaction aspects

In this figure we can clearly identify the hierarchical relationship between the DSLs. In our particu-
lar case, we have a non-cyclic directed graph. More concretely, this means that both BusinessRules and
WebLayer can import DomainModel models, and WebLayer can import BusinessRules models, but not
the other way around. We note that the composition of the DSLs matches the architectural layering
that is present in typical web application development projects. This is an important observation, since
it indicates that other layered architectures possibly can benefit from having multiple interacting DSLs
as well. The subsequent section eloborates upon this thought.

So far, we have seen how code is generated from models expressed in our DSLs. While the link
between the various models is clear on the DSL level, we avoided the issue of how the generated code is
linked. An important observation in this regard is that we want the generated code to behave and look
like code as if it were hand written. Especially the performance of applications may not be negatively
affected by the fact that it was generated from DSLs. In particular, we want to stress the fact that the
generated code from the DSLs must link statically. This rules out any interaction mechanism based
on runtime mediation between the generated artifacts. In Section 7.1 we discuss and compare these
contrasting alternatives in more detail.

Since we want to statically link code from different generators, it is clear that these generators
need to be aware of each other. Specifically, the WebLayer compiler needs to know about the JPA
classes generated by DomainModel and about the methods implementing BusinessRules constructs.
We approach this problem by introducing interface files. Section 5.1.3 discusses the implementation.
Our goal is to minimize the amount of sharing of inner details of the DSL compilers, while still being
able to create code that statically links. Sections 5.1.5 and 5.1.6 deal with issues encountered while
researching the interaction aspects. Czarnecki et al. also raise the issue of identifying interaction
between DSLs compilers in ’Generative Programming’ [?] (p. 157). However, no concrete suggestions
are made as to how this problem should be approached. Some related work in this area exists, which
will be discussed in Section 7.

5.1.1 Motivation

Before moving on to the implementation of interaction between our DSLs, we first want to revisit the
motivation for having multiple DSLs to begin with. Furthermore, Section 5.1.2 discusses the situation
in which we envision our system of interacting DSLs to thrive.

It should be clear that creating a stand-alone DSL is a serious investment and is typically more
involved than creating actual applications. Therefore, it is not normally deemed feasible to implement
DSLs by, and for a single company. In the introduction (Section 2.2), it already became clear that
large monolithic DSLs, as exemplified by 4GL languages, are not the way to go. However, it is too
easy to abandon (stand-alone) DSL development altogether based on this negative legacy. By working
with multiple interacting DSLs, a more agile path emerges. DSL implementations can focus on one
(technical) aspect of the complete picture, and do it well. This decreased granularity in our opinion
provides several advantages:

1. Flexible composition of languages.

2. Reuse of languages.

3. Gradual introduction of DSLs in a project.

4. Separate compilation of DSL models.

5. Separation of concerns.

The combined effect of these advantages in our opinion allows for DSL development in smaller
settings. The first point stems from the modularity that is promoted by the idea of interacting languages.
In our particular case, creating a typical web-application involves writing code in all three DSLs.
However, if we only want an application that performs rudimentary data manipulation (i.e. CRUD),
then we can suffice with writing just DomainModel and WebLayer code. Furthermore, specialized DSLs
for business rules and calcultions can be developed, as we have seen in Chapter 6. When the generator
of such a DSL conforms to the BusinessRules interface, plugging in the DSL is as easy as importing the
right BusinessRules module in the WebLayer program.

56

5.1 Interaction between DSLs

A special case of the aforementioned flexible composition of languages, is their reuse in different
settings. As an example to the second point, we consider the use case in which we want to create a DSL
for adminstrative desktop applications (i.e. a desktop oriented alternative to WebLayer). Obviously
we need to create a DSL that accurately captures different screens, menu structures, dialogs, and other
concepts that exist in the realm of desktop applications. However, the remaining concerns, that is the
data model and business rules, do not change for desktop applications1. Thus, we can reuse the lan-
guage definitions and compilers of the existing languages. The hypothetical new language can import
(using the existing interface definitions) models expressed in these languages, allowing the implementor
to focus solely on issues pertaining to the domain of desktop application GUIs. Note that this reuse
is possible by virtue of the stringent separation of concerns imposed by our multiple DSL model. In
ordinary web-development, ideally the data layer and business rules layer are equally well decoupled
from the presentation layer. Unfortunately, in practice it is all too common for business logic to leak
into the domain model or into the presentation layer. These inadvertant strong couplings then prevent
reuse of the created artifacts.

The third advantage listed is that DSLs can be gradually introduced into existing projects or software
development methodologies. Transitioning from a traditional development environment, using 3GLs,
to an environment in which DSLs are used can be a daunting task. Completely switching to a DSL
based practice at once may present a large risk to companies, even if the languages suit their practice
perfectly. When dealing with multiple interacting DSLs, however, it is also possible to develop only
parts of projects with a DSL. For example, DomainModel might be used to model and generate JPA
classes. These classes can then be integrated into the rest of the code. In the case of DomainModel
some knowledge of the translation scheme is necessary to be able to achieve this. However, most of
this knowledge relates to standardized JPA usage, and is knowledge that should be present at any rate.
Of course, when a language has a dependency on another language (as is the case with, for example,
WebLayer), it cannot be used solitary.

The fourth advantage given, separate compilation of models in different DSLs, has a more technical
nature. In the next section we introduce separate compilation. For now, we suffice with remarking
that separate compilation in general is a desirable property for a programming language. As a last
advantage, having multiple interacting DSLs allows for split development of parts of an application.
Several model-driven engineering approaches are based on the premise that there is a single, monolithic
model. As a result, traditional methods of software engineering (i.e. source control, joint development)
break down. Our approach allows different developers to work on different parts of an application,
without getting in the way of (or being hampered by) fellow developers.

We believe our approach of multiple interacting DSLs can be applied to other layered architectures,
besides web-applications, as well. This belief is strengthened by similar observations from the EDSL
community. For example, Hudak mentions that the root of a good (E)DSL implementation is having
’layers of abstractions rather than a monolithic structure’ [?]. In his case, this layering happens through
the facilities offered by a single host-language.

A more directly related observation in this regard is the approach to device-driver development taken
by Merillion et al. [?]. Here, three layers of abstraction are also distinguished. A DSL is only developed
for a single layer, however, so interaction aspects in this project are unfortunately left unattended.
Therefore, we believe our approach constitutes a natural continuation of existing ideas in this area.

5.1.2 Intended usage scenario

It is evident that companies are eager to reap the benefits of using DSLs, in particular increased
productivity and quality. In our opinion, having multiple interacting DSLs helps this cause, by lowering
the barrier for using and creating DSLs. We envision that lead developers or designers play a key role
in the adoption of DSL based development. These persons are responsible for setting the standards,
creating the architectures, and so on, that are to be used by the companies’ developers. Usually,
such persons also create customized frameworks, libraries, and even guidelines to be used throughout
a business, as they have the overview over the complete spectrum of applications that need to be
developed.

1One exception may lie in database configuration issues.

57

5 Interaction aspects

This knowledge can be encoded in, and its use automated by DSLs. Such languages can be built in
conjunction with existing languages for technical domains. For example, the DomainModel will appeal
to a large range of development projects, since its implementation is fairly general. In WebLayer, on
the other hand, many choices are made that are likely to make sense only in the context of a specific
company policy. Therefore, such a language would be developed by a lead developer, possibly reusing
existing DSLs such as a BusinessRules implementation and the DomainModel DSL. By developing
small, focused DSLs these lead developers can enforce architectural styles, best practices and boost
productivity for specific program families.

5.1.3 Separate compilation and interface files

In order to appreciate the interface file mechanism used to allow interaction between our DSL implemen-
tations, we first introduce the general concept of separate compilation. In general purpose languages,
compiling a source file of an application requires knowledge from other source files, referenced within
the file to be compiled. For example, functions are called that reside in other compilation units, or
externally defined types are used. Separate compilation entails that a source file (or compilation unit)
should be compilable without needing other source files. By ensuring this property, only those source
files that have changed need to be recompiled. Without separate compilation, compilation times would
increase dramatically, since each source file would have to be compiled again upon a single change.
However, some information is still necessary for successful compilation. A solution employed by, for
example, the C compiler is to use header (.h) files. Those files contain function signatures and type
definitions and provide the necessary information to be used for compilation. These header files must
be written by the user though. Haskell (specifically the GHC compiler) works similar, only the interface
(.hi) files are generated by the compiler. These files essentially contain a compiler readable description
of the contents of the generated binary [?]. Java, on the other hand, extracts the desired information
from compiled class files. Separate compilation also allows for a form of source protection: compiled
artifacts (e.g. libraries) can be distributed, and can be used in other programs without having to dis-
close the original source code.

No universally accepted, formal definition of separate compilation exists. Cardelli [?] reduces the
separate compilation problem to the following judgment: Γ ` S : τ , meaning a source file S can
be type-checked and assigned type τ using an environment Γ. Header files and interface files are an
instance of such an environment. Typically, type checking is only one part of the problem, albeit the
most intricate one.

Figure 5.2: Separate compilation

Figure 5.2 presents a diagram showing the essentials of separate compilation by example. A com-
piler normally translates source code into an executable binary (e.g. ’Source A’ compiles into ’Binary
A’). The solid arrow represents the generates relation in this diagram. Now, if we want to write code
(’Source B’) that uses definitions from ’Source A’, having separate compilation means that the compiler
does not need the actual ’Source A’ file in order to compile ’Source B’. Instead, the compiler uses a
descriptive interface file that was also emitted when ’Source A’ was compiled (indicated by the dotted
line). Thus, the two source files can be compiled in separate passes, where the second pass does not

58

5.1 Interaction between DSLs

redo work done in the first pass. As seen in the discussion of interface files in the beginning of this
section, it might also be the case that interface and binary are the same physical file.

We now turn to our domain specific languages, in order to see how separate compilation can be
introduced. First of all, our goal is slightly different. We want to establish separate compilation
between models expressed in different DSLs, as opposed to separate compilation of modules within a
single language. For example, we look at our two DSLs DomainModel and WebLayer. Now, we want to
be able to compile a WebLayer source (that uses DomainModel definitions) without actually needing
the DomainModel compiler.

Furthermore, our DSL compilers do not translate a single source file into a single binary file. Rather,
a source file is translated into multiple files, in particular Java and XML files. Therefore, we consider
the aggregation of these files (resulting from a single compilation pass) as the equivalent to ’the binary’,
in the sense as it was used in the introductory part of this section. As an aside, we note that the Java
files can be either in source or bytecode format in this context.

If we have a binary, produced by one of our DSL compilers, and want to reference its definitions in
another DSL, we have two options:

1. Extract the information from the binary.

2. Communicate the information in an interface file.

These options correspond to the solutions as found in implementations of separate compilation in
general purpose languages. Since the compilation result in our case comprises many files (in differing
formats), the first option is rather unattractive. Implementing the first option almost amounts to
creating a reverse engineering tool for our DSL. In itself that might be useful, but for the purposes of
separate compilation this is overkill. Hence, we are left with the second option of emitting and reading
interface files. This choice also conveniently allows us to regard both generated Java files and their
compiled bytecode counterparts as unit of distribution (binary).

Figure 5.3 shows a concrete instance of an interface file emitted by the DomainModel compiler. The
file is the result of compiling the DomainModel example program of Figure 3.3 on page 15. Formatting
is added manually, and some parts are truncated (indicated by ellipses) for the sake of brevity. The
interface is output in the concrete syntax of ATerms [?], a canonical format for representing tree-
structured data (comparable to XML).

Looking at the contents of the interface, we observe that it is comprised of a top-level DomainModel
term, containing three nested terms. The meaning of these terms can be described as follows:

1. Name Declares the name of the compiled domain model. This corresponds to the name declaration
on the first line of the DomainModel source file.

2. Extended types Contains a list of extended types found during the compilation (Section 5.2.2
introduces the mechanism behind extended types).

3. Concepts Contains a list of actual concept definitions from the corresponding source file.

Clearly, the third term in the interface file closely resembles the (parsed representation of) the
original source. Superfluous details are removed, but since DomainModel already is a terse declarative
language, there are not many details to be omitted. In particular, only DomainModel annotations (e.g.
unique for the name member of the User concept) of concept members are preserved, not the inlined
Java annotations. These annotations are very implementation specific, and tied to the Java language.
Therefore it is not interesting to promote them as part of the model.

Furthermore, additional information is added to the interface. Most notably, fully qualified identi-
fiers for each of the generated artifacts are provided. This allows the compiler that uses the interface
definitions to reference these artifacts directly by using the fully qualified identifier. No assumptions
have to be made on the package and/or class structure of the code generated by the DomainModel
compiler. This form of loose coupling is essential to allow the implementation of the first compiler to
change, without breaking compatibility with the second (importing) DSL compiler. We also note that
the representation of this fully qualified identifier is a plain string. This means it needs to be inter-
preted, in our case in the context of Java types and methods. Should a back-end for another language

59

5 Interaction aspects

DomainModel(
"blog"

, [("Text", "String", [("validate"
, "org.blog.domainmodel.validation.Text.validate")])

, ("Email", "String", [("validate"
, "org.blog.domainmodel.validation.Email.validate")])

]
, [Concept(

"User"
, "org.blog.domainmodel.User"
, [ConceptMember(Native(), "name", NativeType("String")

, "java.lang.String", ["unique"])
, ConceptMember(Native(), "email", ExtendedType("Email")

, "java.lang.String", [])
, ConceptMember(Composite(), "blogEntries"

, ListType(ConceptType("BlogEntry"))
, "List<org.blog.domainmodel.BlogEntry>", [])

]
)

, Concept(
"BlogEntry"

, "org.blog.domainmodel.BlogEntry"
, [ConceptMember(Native(), "title", NativeType("String")

, "java.lang.String", ["required"])
<...>

, ConceptMember(Native(), "category", EnumType(["TECH", "NONTECH"])
, "org.blog.domainmodel.BlogEntry.Enum_category", [])

]
)

, Concept(
"Tag"

, "org.blog.domainmodel.Tag"
, [ConceptMember(Native(), "tagName", NativeType("String")

, "java.lang.String", [])
]

)
, Concept(

"Reply"
, "org.blog.domainmodel.Reply"
[<...>]

)
]

)

Figure 5.3: Interface file for DomainModel

60

5.1 Interaction between DSLs

be implemented, however, we can use the same interface format, and use a string representation suitable
to the alternative language.

Another difference between the plain source and the emitted interface file, is that disambiguation
of type names has been performed. In the DomainModel language, a type name (uppercase identifier)
of a concept member can either be a:

• native, built-in type, or an

• extended type, or a

• type name referencing another concept.

The interface file explicitly differentiates between these possibilities by emitting respectively NativeType,
ExtendedType, or ConceptType terms, containing the type name. Moreover, when reading an inter-
face file, the well-formedness of the corresponding binary can be safely assumed. An interface file is
only emitted after succesfully compiling a DSL source file, thus semantic checks (name resolution, type
checking) have been performed. In the case of DomainModel, this effectively means that every concept
is well-formed, and that all extended types that are referenced are defined.

It might be tempting to think that distributing a DSL source file is just as convenient as emitting
an interface, since they are so similar. However, this entails that every DSL compiler that wants to
reference another DSL’s artifacts, must duplicate (or invoke) the other compiler’s front-end (parsing
and semantic checking). In effect, the interface file mechanism can be viewed as a caching mechanism
for these checks2. Moreover, information that resides in distinct source files, such as extended type
definitions, is also aggregated in a single interface file.

Currently, the only thing that needs to be shared by the DSL compiler implementations is the ATerm
signature (comparable to an XML schema definition) of the interface format. Obviously, the compiler
that wants to import another DSL’s constructs must be able to read the interface file and disclose the
information therein contained.

5.1.4 Interface characteristics

In the previous section we dissected one particular interface. However, it would be presumptuous to
think that everything is said with the description of this interface. An important observation is that
the interface between DomainModel and WebLayer has an explicit and an implicit part. The interface
file (of which an example was given in Figure 5.3) encodes the explicit part. However, there are many
implementation related facts that are not reflected in the interface file. Still, this knowledge is necessary
to use the generated code. Examples of such implicit facts are:

• Every concept has an (automatically administered) id member.

• Each concept member is accessible through a set/get method.

• Every concept employs optimistic locking.

• Each concept member with a list type has additional methods to manage the list.

Interestingly, all of the above sentences contain the universal quantifier in some way. That is precisely
what sets these implementation details apart from the information contained in the interface file. In the
interface file, we only record the variabilities of the model. For example, which concepts and extended
types are defined, what is their structure, and so on. The implicit interface consists of how the artifacts,
generated according to these variabilities, can be used. This is based on static conventions. So, while
we decoupled the implementation of the two DSL compilers to a large extent, there still is an invisible
coupling in the form of the implicit interface. This invisible coupling is of concern when designing a
new DSL that should interact with existing DSLs.

In the realm of component software, a similar observation has been made by Szyperski et al. in
’Component Software: Beyond Object Oriented Programming’ [?] (p. 57). Components need to inter-
act through interfaces as well, and a formal and informal part of such a contract is distinguished. This

2Of course this equally applies to interface files of GPLs.

61

5 Interaction aspects

corresponds with what call the explicit and implicit part of the interface.

In the case of DomainModel the implicit part of the interface is dominated by the implementation
(and our usage pattern) of the Java Persistence Architecture framework we target. An unfortunate side
effect is that alternative back-end implementations for the DomainModel language must also conform to
this implicit interface. If not, the composability of the implementation with the other existing languages
is lost, even though the explicit interface format is unchanged.

The case of BusinessRules is a bit different. Essentially, the tables are turned: the implicit interface
is specified by us, and any DSL implementation can choose to implement this interface in its code gener-
ation. That is, the DSL designer ascribes the implicit interface rather than the specific implementation
framework. It is likely that such an interface is more suitable for supporting multiple implementations,
rather than an implicit interface that stems from a specific implementation with all its quirks. The fact
that the BusinessRules interface specification is very small and general helps as well in this regard.

Of course, the DSL designer can create such an independent interface even if a target framework is
chosen, and wrap it around the actual implementation. In the case of the interface between Domain-
Model and WebLayer however, our implementing framework (JPA) already had a vast and above all
standardized interface. Redoing the interface would constitute a very large task. Moreover, the imple-
menting framework of WebLayer (Seam and JSF) is in itself already tailored to working with the JPA
interface. Introducing a custom wrapper would only lead to overhead in the intended setting.

We conclude that, besides the normal steps of domain analysis when devising a DSL, attention
should be given to the design of the implicit interface. Preferably, this part of the interface is defined
independently of an actual implementation of the DSL compiler. We postulate that it is neither feasible,
nor desirable to devise an explicit representation of every aspect of the interaction between DSLs.

5.1.5 Issues

In the previous section, we concluded that it is not sensible to try to encode every detail of the im-
plementation of the generated code in the published interface of a DSL. In part, this is because this
information is almost entirely static. It is not clear how we can encode conventions such as ’every
property is backed by a get/set method’, or ’entities must be registered with an EntityManager object
before persisting them’. While the first convention can be encoded by resorting to massive duplication
of this information (e.g. list getX()/setX() for every concept member X), the second convention is
already more semantically loaded, and pertains to behavioral constraints. We want to avoid a slippery
slope of over-specification, where practical benefits are mostly lacking. Therefore, we have chosen to
only include a qualified identifier for the model elements, leaving their usage and semantics implicit.

A more practical issue regarding the interaction of generated artifacts, has to do with the fact that
we do not only generate implementation code from our DSLs, but also configuration files for the target
frameworks. A compiled DomainModel requires a persistence.xml configuration file to bootstrap the
JPA framework. However, when we actually want to use this DomainModel code in the Seam frame-
work, different settings in persistence.xml are necessary. Still, we cannot directly generate these
correct settings when compiling the DomainModel. This would entail that the DomainModel compiler
cannot be used to create a stand-alone persistent domain model. Clearly, we would lose the ability
of gradual introduction of this DSL into a project, one of the proposed advantages of having modular
technical DSLs (Section 5.1.1). Our solution is to have the WebLayer DSL recreate the configuration
file, adapting some of the settings to the new environment. Effectively this could be seen as a sort of
overriding mechanism. Fortunately, the DomainModel interface file contains enough information to cre-
ate the new version of persistence.xml. It does, however, mean that some JPA specific configuration
knowledge has leaked (and is duplicated) into the WebLayer compiler, which is somewhat unsatisfac-
tory. Apart from that, the same issue exists for libraries that are necessary to compile the generated
code. In practice, the DSLs generate code into a ’skeleton’ directory containing the appropriate libraries
for the combination of target frameworks.

With this thesis, we are trying to prototype an environment of composable, interacting DSLs based
on realworld application frameworks. In our opinion, we succeeded to create a workable (though admit-
tedly small) system of interacting DSLs. However, it is also necessary to critically reflect upon how open

62

5.2 Interaction between DSL and user-written code

and modular the approach we have taken really is. First of all, the concrete format of our interface files,
the ATerm format, is chosen since it is the native data format of our implementation tool. Fortunately,
many libraries for reading and manipulating ATerms exist in different languages, meaning that possible
DSL compiler implementations in other languages are not unduly disadvantaged.

More important is to assess how modular the languages themselves are. One observation is that the
‘type system‘ as introduced by the DomainModel language, influences both of the other DSL designs.
The WebLayer language knows and uses the details of the structure of concepts in its language definition.
Also, one could almost state that the type checker of the WebLayer language (and BusinessRules, if we
would have made an actual implementation) is parameterized by the format and structure of concepts
as defined in the DomainModel language. This shared understanding of types and data structures is
necessary to allow for any meaningful interaction, but it might also be a restriction to future DSLs that
want to fit into this system. In the following section, we reflect upon our choice to work with separate
compilers for the DSLs.

5.1.6 Dependencies

The introductory part of this chapter already established the hierarchy that exists between our DSLs.
This hierarchy also enforces a compilation order between the models. It is trivial to automate this order
using traditional software engineering tools (e.g. Make, Ant). In fact, our implementation provides a
generic build script that incrementally compiles the DSL sources following this hierarchy.

However, if we were to have mutual references between models in different DSLs, this approach fails.
A GPL compiler (e.g. javac) often does allow cyclic dependencies between modules. In that case, all
files in the cycle are presented to the same compiler in the same compilation pass (assuming none of
the modules have been separately compiled yet). Semantic checking can be performed using all the
information of the members of the cycle at once. Note that the compiler still chooses an order for the
compilation, and therefore requires special facilities to compile the first module in a cycle (i.e. it has
to use assumptions for the still uncompiled members).

In our situation, with separate compilers for each DSL, this would mean the compilers would have to
invoke each other, providing the necessary information for compiling the other model. This is certainly
possible, though the additional complexity does not warrant the few use-cases that might benefit from
the construction, especially in our domains. So far, we have not encountered compelling use-cases for
having such cyclic dependencies between DSLs. If such a dependency does arise in the design of DSLs,
most probably a better design would be to put abstractions that must refer to each other in the same
DSL. Disallowing cyclic dependencies between modules is not unprecedented, Component Pascal3 [?],
for example, only allows uni-directional dependencies.

Alternative configurations were considered during the design of interaction between our DSLs. A
possibility is to separate the front-end and back-end of our compilers into separate (in our case Strat-
ego) libraries. This would allow the WebLayer compiler to invoke the DomainModel front-end on the
imported domain model, obviating the need for the interface files. However, such a configuration limits
openness of a system of interacting DSLs. If we wanted to implement another DSL that uses Domain-
Model definitions in a different language than Stratego, the complete front-end of DomainModel would
have to be duplicated in that language. Having an interface file in a generic format (be it ATerm or
XML) reduces the coupling between the DSL compilers to the signature of the interface. Parsing the
interface file can be done using standard libraries available in virtually any programming language.

5.2 Interaction between DSL and user-written code

In this section we look at two mechanisms that integrate user-written Java code with generated code from
the DomainModel compiler. Before looking at these mechanisms, we explore the motivation for allowing
host language code alongside DSL code. Then, we will explain the rationale and implementation of
data validation for members of DomainModel concepts, which is our first mechanism to add custom
code. In this implementation, we believe to have found an interesting way of unifying user-written
code and DSL abstractions. Furthermore, we will briefly reflect upon the consequences of the fact that

3A descendant of the Oberon languages rather than Pascal.

63

5 Interaction aspects

Java annotations can be inlined in DomainModel concept definitions, which is the second mechanism
to integrate host language code and the DSL.

5.2.1 Motivation

Why should a model-driven (DSL based) software development method allow users to add custom
written host language code? At first sight, such a possibility detracts many of the advantages of the
DSL approach. However, DSLs are by definition restricted in the amount of variability they offer.
Furthermore, it can be argued that certain tasks (i.e. strongly algorithmic problems) can be described
better, or just as succinctly, in GPL code as in a DSL. In that case, forcing the user to use a DSL is
actually detrimental.

Whenever the limits of variability in a DSL are encountered, several scenarios arise. First, the DSL
designer can argue that the limitation is intentional, and that a different language should be used in
case the current one is too restrictive. It is the easiest and most unsatisfactory response. Second, the
DSL can be extended to accommodate for the missing feature. However, this most probably means the
language must be changed, if possible at all, with all the associated problems. The last possible scenario
is to recognize that a DSL, implemented by translation to GPL code, can allow access to (parts of) its
generated implementation. In our opinion this is a valuable option if and only if this access is a natural
(preferably controlled) extension to the DSL, and voids the advantages of the model-driven approach
as little as possible. Furthermore, writing custom code should require as little knowledge as possible of
the translation scheme of the DSL compiler. In Section 5.2.3 we compare various existing mechanisms
and our approach in the light of these criteria.

5.2.2 Extended types

In an early version of the DomainModel DSL, we introduced special purpose types besides the native
types such as String and Integer. The motivation for these types was that native types only delineate
sets of values familiar to programmers. When modeling a data domain, one often needs to restrict the
allowable set of values with respect to the semantics of the actual domain. For example, an age need
not only be numeric but should also be non-negative, and bounded within reason (where the limits of
reason vary from application to application). However, that last observation already hints at the fact
that our initial approach of providing such types with extended semantics (i.e. an URL type) as built-in
DSL constructs is too restrictive. While useful, it will never be complete. Therefore, a provision must
be made to allow the DSL user to define additional semantics for value types of concept members. In
the remainder of this section, we assume these extended semantics to be validation logic. However, the
mechanism presented can be used for other extensions as well. Two quite different solutions can be
distinguished for implementing additional semantics:

1. Introduce DSL abstractions to model validation logic.

2. Let the user write validation code, and link it to the model expressed in the DSL.

From a conceptual point of view, the first solution is the most attractive. It would be nice to have
a declarative means of specifying additional properties on concept members within the DSL. Of course
the question then arises what kind of properties we want to describe, hence what abstractions need to
be introduced into the language. A prime candidate for embedding validation logic in the DomainModel
language was regular expressions. This well known formalism allows for a concise and familiar notation
of a validation constraint. Conceivably, a concept member for an email address could be expressed like
this:

email :: String[^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$] (required, unique)

However, several problems with such a regular expression embedding can be identified:

• Only strings can be validated, whereas we also want to validate, for example, Date and Integer
values.

• Validation is binary: it either passes or fails, without possibility for precise feedback.

64

5.2 Interaction between DSL and user-written code

• No contextual information can be used in the validation (e.g. the current date).

• What if other semantics besides validation need to be described?

In our opinion it is unlikely that abstractions can be found that introduce the desired functionality
in a flexible manner, while still being more succinct than implementing the validation directly in Java
code. This realisation is what prompted the addition of extended types in our prototype. An extended
type is a definition that refines native types with validation semantics (and possibly more, as discussed
towards the end of this section). This definition is external to the DomainModel definition in that it
is described in a different source file. An example, implementing a date type that may only contain a
date in the future, is shown in Listing 5.1.

import java . u t i l . Date ;

public class FutureDate extends Date {

public St r ing va l i d a t e (Date date) {

i f (date . b e f o r e (new Date ()))
return ”Dates in the past are not a l lowed ” ;

else
return null ;

}

}

Listing 5.1: Extended type FutureDate

This example shows that writing an extended type amounts to writing a Java class. The Domain-
Model compiler parses these extended type definitions and integrates them in the generated code for
a domain model. Consequently, syntax errors in the definition are detected at DomainModel compile
time, whereas semantic errors are only detected when compiling the generated Java code. Since the
transformation does not change the statements provided by the user, these errors will be fairly easy to
map to the original source.

Continuing with Listing 5.1, we dissect this class definition in order to introduce the imposed for-
mat. The class name indicates the name of the extended type, while the mandatory extends clause
indicates from which native type this extended type derives. Interestingly, this class does not actually
derive from Date (which is a final class, derivation is prohibited by the Java compiler). We use the
extends solely to let the user indicate the mapping for this extended type in a natural manner. Next,
an implementation for the validate method must provided. It must conform to the following signature:

String validate(Type t)

where Type must be substituted with the actual native type the user is building an extended type
upon. The existence of a method with the correct signature is checked by the DomainModel compiler.
The access modifiers are ignored (replaced) in the translation scheme. In the body of this method,
the user must adhere to one convention: return null if validation succeeds, or return a descriptive
string if validation fails.4 Furthermore, we guarantee that the method will only be called with non-
null values. There are no restrictions on which constructs may be used in the body of the validate
method. Libraries can be called to aid the validation. The user is responsible for adding the correct
import headers to support these libraries, and to make these libraries available at the compilation of
the resulting Java sources if they fall outside of the Java standard libraries. An example of the usage
of Java regular expression libraries to validate a phone number is presented in Listing 5.2.

The example also shows we can give arbitrarily precise feedback as to why the validation fails.

Now, using an extended type within the DomainModel DSL is straightforward:

4Returning null as special value is a typical Java approach to mimic a data type like Maybe in Haskell.

65

5 Interaction aspects

import java . u t i l . regex . ∗ ;

public class PhoneNumber extends St r ing {

public St r ing va l i d a t e (S t r ing s) {

i f (s . indexOf (’+’) != −1) return ”No i n t e r n a t i o n a l p r e f i x e s a l lowed ” ;

Pattern p = Pattern . compi le (” [\\d+\\s−]”) ;
Matcher m = p . matcher (s) ;

i f (!m. matches ())
return ”Phone number may only conta in d i g i t s , space and hyphenation” ;

S t r ing [] tokens = s . s p l i t (” [\\ s−]”) ;
i f (tokens . l ength < 2) return ”Phone number must c o n s i s t o f two par t s ” ;

return null ;

}

}

Listing 5.2: Extended type PhoneNumber

number :: PhoneNumber

The name of the extended type can be used instead of the underlying native type (String in this
case). Result of using this extended type is that a call to the validate method is made for this
member when the enclosing concept is being persisted. A special JPA hook (using the @PrePersist
and @PreUpdate annotation, is leveraged to make sure only valid data is stored. Note that the invocation
of the corresponding validate methods must be guarded with a try/catch block to catch any runtime
errors, since we cannot assume their absence in the custom written code.

Currently, the DomainModel compiler scans the directory, in which the DomainModel source file
being compiled is located, for files with the extension .dmtype. By putting the code of Listing 5.2 in the
file PhoneNumber.dmtype, the compiler will recognize this type. Thus, extended types are orthogonal
to DomainModel definitions and can be reused across different models. It is also possible to let the
compiler scan a fixed directory at each compilation pass, allowing for a library-like pool of extended
types which can be leveraged in different projects. This is not currently implemented. In principle, it
would have been possible to inline extended type definitions in DomainModel source file. However, this
would constitute mixing code of varying abstraction levels in one file, which is undesirable. Using an
extended type just by referring to its name, without implementation details, matches the declarative
nature of the DomainModel language. Furthermore, having the definitions in separate files allows the
user to leverage an existing Java editor. If the Java code would have been mixed with DSL code, this
would be problematic.

The translation (or rather, transformation) of extended types consists of creating a new class for
each type definition, containing a static method validate, containing the body of the method with the
same name from the input file. This class is placed in a validation sub-package in the hierarchy of the
generated code. Furthermore, the import statements are preserved. It also would have been an option
to let the user write this translated class directly. However, there are some small advantages to our
approach. First, the compiler now controls the namespace in which the translated class is put, allowing
the fully qualified name of the validate method to be emitted in the interface file without having the
user to make this information explicit. Consequently, the extended type definition is more decoupled
from a specific DomainModel definition when it lacks a concrete package statement, hence it is better
suited for reuse. Second, the compiler inserts the correct access modifiers (public and static) that
are necessary to use the validation in the rest of the generated code. Thus, the user need not be aware
of this convention. Furthermore, the mapping between the extended type and the native type is made
explicit by extending a native type in the input file to the compiler, and this mapping is checked for
validity. If the class were to be written directly by the user, and inserted into the target source tree,

66

5.2 Interaction between DSL and user-written code

another means of specifying this mapping should be available. Lastly, we believe that this approach
is better equipped for future extensibility. When additional code needs to be generated for extended
type implementations, we can do so freely in the current scheme. Also, additional methods in the input
file can be introduced for more user-defined behavior (e.g. a parsing/conversion function or other type
specific functionality). Both are harder to achieve when we let the user write the implementing class
directly.

Of course, we can also identify downsides to the approach taken. These are mostly related to the
restrictions on the format of the class that are imposed by this approach. First of all, the user must
centralize all code in the validate method, since additional methods are not copied into the imple-
menting class. It is, however, possible to delegate work to imported classes and/or libraries. Moreover,
the functionality is expected to rarely surpasses the limits of reason with respect to the size of a method
body. Second, no inheritance is possible since the extends clause is used to steer the mapping of the
type. Again, we postulate that this is not a problem in practice. Since the user will never instantiate the
class (or reference an instance for that matter) being written, the polymorphism offered by inheritance
is not very useful. If the user wants to take advantage of implementation inheritance, however, this is
not possible either. Rather, the same can be achieved through delegation rather than direct inheritance.

5.2.3 Comparison

In the previous section we described our approach of enabling the user to write custom code in a prin-
cipled manner. Various other methods of integrating custom written GPL code with generated code
exist. In this section, we compare our approach to different approaches found in production systems.

The MS Software Factory (described in more detail in Section 7.2) implementation mainly targets
C# when generating code from its models. The prevailing line of thought is that 80% of the target code
should be derived from the model, whereas the remainder may be hand-written code. Therefore, an
additional feature was devised for C#: partial classes. This feature allows a single class to be defined in
multiple source files. Logically, the C# compiler views these separate sources as one monolithic class.
Thus, generated code is placed in one file of a partial class, leaving any functionality that must be
custom coded undefined. Then, the user can write a complementary partial class without touching the
generated source. Still, some awareness of what is happening in the generated partial class is required.
Conflicts may arise in the case of overlapping or inconsistent definitions.

Java does not have a partial class mechanism. Model driven approaches in this field typically follow
one of three other patterns, regarding the integration of custom code:

1. Extend a generated class through inheritance.

2. Modify/extend generated skeleton.

3. Modify a generated class, within guarded regions.

The first alternative is somewhat similar to C#’s partial classes. Only, with inheritance we create an
additional class, instead of adding functionality to a generated class. This is an important distinction,
since the surrounding generated code must be aware of the fact that a subclass of a generated class exists,
containing user-written extensions. Naming conventions for the subclasses can help in this regard, or
forcing the user to only override methods declared in the generated superclass. Often, design patterns
are employed to ease the process for the user writing custom code in such a setting.

The second alternative can be discarded quickly. Generating a class only once and then leaving it
to the user for modification puts the burden of synchronising the model and the modified code on the
user. This is something that should be avoided at all costs.

The third alternative is also based on one-time generation of classes. Only, the user may solely
change or fill pre-determined parts of these classes. Parts that may be changed are flagged (typically
these are delineated by indicative comments) and guaranteed to be left alone by the DSL compiler in
subsequent compilation passes. Since the user is writing (or even changing) code within generated code,
great care must be taken with regard to dependencies on the surrounding code. It should be made clear
by the DSL documentation what a user may assume and what may be referenced in the custom code.
Also, the programmer must resist the urge to change any code outside of the guarded regions. Finally,

67

5 Interaction aspects

managing guarded sections is the responsibility of the DSL compiler, and in practice this is not always
easily accomplished. An example of such a system is OptimalJ, which is discussed in Appendix B.2.

One caveat of the abovementioned generate-and-extend mechanisms is that it entails implicit mixing
of source (model) and target code. Modified classes and additional hand-written classes now must be
considered as source for a project as well, even though they reside in the generated target tree and
most likely no explicit reference exists in the model to these artifacts. In practice, this means that
the generated code (including the modifications and additions) is also checked in into version control
systems, which a is rather unsatisfactory form of source scattering. On the upside, if the users makes a
mistake in the custom code, the compiler errors are given in terms of code the user has written directly.
Our approach does preserve the code on the statement level, but it is transferred to a new class by the
DSL compiler.

The largest difference between the above mentioned existing approaches and our approach is that
the custom code is considered input to the compiler, rather than a patch or extension on generated
code. Thus, the source scattering mention earlier is minimized. Also, there is a clear and explicit link
between the custom code and the usage in the DomainModel code. While the difference might not be
earth-shattering, we believe our approach has subtle advantages. The mechanisms described in this
section suffer from a very tight link of custom code to a specific model instance (i.e. code generated for
a specific model). The extended type mechanism offers more orthogonality for the user-written code.
Furthermore it can contain information (such as the type mapping) that need not end up in the target
code. Since the DSL compiler has full access to the AST of the custom code, additional analysis could
be performed to ensure the custom code adheres to the desired contracts. For extended types, this is
implemented only partially: we do check for the existence of a method with the correct signature, but
do not check for conformance to the ‘return null on success‘ rule. Still, the possibilities at DSL compile
time are evident. However, there are costs attached. A mechanism must be crafted for each extension
point we want in our DSL, whereas the other approaches all more or less ’come for free’, as long as the
generated code offers the appropriate extension hooks.

5.2.4 Inlined Java annotations

This section introduces the second link between DSL code and host language code. We recall that
concept members of a DomainModel concept cannot only have domain specific annotations on them,
but can also have Java annotations:

member :: String (@Column(name="column1"), unique)

This is another instance of mixing host language code with DSL code, albeit in a very restricted
setting. In this case, the Java syntax for annotations is embedded in the DSL syntax. In the previous
sections we established that this mixing is not generally a good thing. However, there are several reasons
why this approach was chosen. Prime reason is that the usage of Java annotations is exception rather
than rule. Only when the defaults of the generated annotations (which are based on type and associ-
ation kind of the member) do not suffice, users should add Java annotations. Rather than modifying
generated code, with all of the pitfalls discussed in the previous section, we allow this to be done next to
the domain specific annotations. Rather than trying to wrap these annotations for exceptional cases in
DSL abstractions, we chose to open up the way for users to get specific. Furthermore, this embedding
fits in naturally with the domain specific annotations, and may be ignored without ill effect in the case
of different back-ends. However, by introducing this hook we also introduce the possibility of generating
classes that do not compile. Fortunately, the syntax embedding guarantees us that if parsing of the
DomainModel source succeeds, the Java annotations contained therein are syntactically valid (i.e. it is
not treated as an unstructured string). While the user is responsible for writing only semantically cor-
rect annotations, not all semantically correct annotations that can be written will lead to a compilable
class. This can be attributed to the fact that the DomainModel compiler emits annotations as well,
depending on the type, association and DomainModel annotations of the member. In Java only one
instance of an annotation may be provided on the same syntactical token. Therefore, DomainModel
generated and custom supplied Java annotations might clash. The example from the beginning of this
section shows the problem. Since the DomainModel annotation unique leads to the Java annotation
@Column(unique=true), the user supplied Java annotation (@Column(name="column1")) clashes. Since

68

5.3 Concluding remarks

compilation errors of the generated Java code due to such issues are confusing for the DSL user, we
want to minimize the possibility of these errors occuring. To this end, an additional transformation
is applied, merging the bodies of conflicting annotations and removing duplicate annotations. For our
example, this means the following annotation is emitted:

@Column(unique=true, name="column1")

This transformation can be safely applied, since it is meaning preserving. Note that we cannot
guarantee that every conflict is resolved. For example, the bodies of two annotations with the same
name might also clash (e.g. if the user supplies @Column(unique=false) in the example). The fact
that we are not able to resolve them, does not mean that the problem can only be discovered at
the compilation of the generated code. The DSL compiler can detect the detect the clashing bodies.
However, a large class of problems can be automatically resolved by this simple reduction strategy.
If we would really want guarantee that all conflicts are resolved, the user-supplied annotation could
override any conflicting generated annotation (or vice versa). However, the semantics of the DSL code
do not become much clearer by introducing such a defaulting rule.

5.3 Concluding remarks

In this section, we elaborated on mechanisms for interaction between DSLs and DSLs with host lan-
guage code. The interaction between DomainModel and WebLayer models the interaction between the
two corresponding libraries. Modularity within a single DSL, however, is not implemented. Since our
DSLs are stand-alone, such a mechanism must be explicitly crafted for each DSL. In this case, a natural
embedding would definitely be advantageous, where the module system of the host language carries
over to the DSL. However, the foundation for a module system in the DSLs has been by means of the
interface files. These can also be used to exchange information between modules of the same language,
though the extent of the information necessary might be different.

Interaction between DSL code and host language code ideally only happens to customize a certain
project, created with a DSL, that needs a bit of customization. In practice, however, MDSD solutions
revert to letting the user write GPL code whenever a DSL falls short. Either creating a DSL for the
desired functionality is unfeasible, or unpractical (i.e. doing it in GPL code is just as much or less work).
Consequently, adding custom code to code generated from the DSL should be as natural as possible. In
this section have shown two mechanisms (extended types and Java annotations in DomainModel code)
that improve upon current practice.

69

5 Interaction aspects

70

Chapter 6

BusinessRules DSL

Chapters 3 and 4 introduced two DSLs, and the previous chapter introduced the interface file mechanism
that supports their interaction. This system is aimed at creating persistent domain models, and web-
applications to present and modify such domain models. However, the action language introduced in
WebLayer only provides a constrained set of actions. These actions all relate to raw data processing,
e.g. assignments, list manipulation, save actions, and delete actions. Sometimes this is enough, but
often more advanced actions are necessary. We will call such advanced processing of data business
rules, since typically these actions encode business specific policies or rules. Examples of business rules
range from mortgage calculations to checking the consistency of data (e.g. fraud checking of insurance
claims). These two examples already show that the technical domain of business rules (often called
the service layer in the three layer web-application model) covers a vast range of business domains.
Creating a single unified language for business rules in our opinion is not possible, and would amount
to creating a general purpose language.

Still, we want to incorporate such functionality into our DSL based web-applications. Therefore,
the goal of the BusinessRules definition presented in this chapter, is to not let the action language
of WebLayer deteriorate into a GPL, while still allowing actions beyond mere data processing to be
defined and used within WebLayer (and possibly in other DSLs as well). In this chapter, we want to
show how the system of DSLs can grow beyond its current state.

6.1 Language Description

The following description of BusinessRules is different from the two descriptions of the previous DSLs.
Recognizing that no single DSL will fulfill all the needs for business rules, we have not actually imple-
mented a business rules DSL for a certain domain. Rather, we look at a mechanism that tries to capture
the technical commonalities that can exist between business rule DSLs. The premise is that business
rules can be viewed as isolated actions that act on domain data in ways beyond the rudimentary actions
that can be expressed in the WebLayer action language.

Figure 6.1 presents an example of how business rules can be invoked from within actions. In the
example, we invoke two business rules from a (non-existent) banking DSL. It comprises a page with two
page parameters. Besides showing an account and edit form for a customer, there is an action element
that consists of four statements. The first statement is a standard assignment as we have already seen
in Chapter 4. Also, the last save call is a built-in statement of the action language. In between these
two statements we see two new statements that invoke business rules. A business rule invocation looks
like a Java method invocation. Concepts that are necessary for the checks or computations are passed
as parameter. The call to createAccountNr also returns a concept, which is assigned to the number
member of the Customer concept.

While the analogy to a method call is correct, there is more to invoking a business rule than just
passing a parameter and getting a return value. In particular, the application of a business rule can
fail. In that case, we want to present the reason for failure to the user of the application (see Figure 6.2
for a concrete example), or even suspend any subsequent actions. Furthermore, all information passed
to and from business rules is in terms of DomainModel concepts. Also, the concrete interaction of code
generated by BusinessRules DSLs and WebLayer may take on different forms. In the BusinessRules
definition, we want to take care of these issues.

71

6 BusinessRules DSL

page EditCustomer(Customer c, Account a) {

form(
show(a)
input(c)
action("Add account",

a.customer = c
; verifyAccount(a)
; c.number = createAccountNr(a)
; a.save()

)
)

}

Figure 6.1: WebLayer page invoking business rules

Figure 6.2: Feedback when the application of a business rule fails

72

6.2 Interface

6.2 Interface

To use business rules inside WebLayer, they must be made available to the WebLayer compiler. We
achieve this by using the same interface file mechanism that was introduced in the previous chapter.
Therefore, an implementation of a BusinessRules compiler must emit both the implementing code, and
an interface file. The specific format of the BusinessRules interface file can be seen in Figure 6.3.

Following the explanation of Section 5.1.4, we will investigate the explicit as well as the implicit
part of the interface. A BusinessRules interface consists of a term containing the name of the compiled
module ("banking" in this case), and a list of Rule terms. Each Rule contains the following elements:

Name to reference the rule within the WebLayer actions.
Parameters a list of parameter types.
Return type type of return value (may be Void()).
Modifiers indicating additional semantics of the rule.
Access hooks publishing the means through which the rule can be invoked.

BusinessRules(
"banking"

, [Rule("verifyAccount", [Concept("Account")], Void()
, [HaltOnFailure()]
, [("method", "com.corporate.verify")
, ("webservice", "http://corporate.com/accounts/verificationWS")
]

)
, Rule("createAccountNr", [Concept("Account")], Concept("AccountNumber")

, []
, [("method", "com.corporate.createNewAccount")]
)

])

Figure 6.3: Interface file for BusinessRules implementations

Most of these elements are fairly self-explanatory. The parameter and return type information can
be used to type check rule invocations. The last two, modifiers and access hooks, pertain to the issues
raised in the previous section. The latter is necessary for the WebLayer compiler to generate code that
links with the rule. As can be seen in Figure 5.3, it comprises a list of key-value pairs. This allows
for multiple hooks into the BusinessRules generated code. The most obvious way, by creating a static
method for the application of a rule, is tagged with method, mapping to the the fully qualified name
of the method. However, alternative manners to invoke a business rule are conceivable, and should not
be excluded beforehand by our interface specification. To illustrate this point, we added a webservice
entry to the list, referring to a webservice end-point URL where the business rule can be invoked.
Note that it is the responsibility of the actual BusinessRules compiler to generate and publish such
a webservice, if such a hook is put in the interface. There are no restrictions on how many hooks
are published in the interface, and what kind of hooks they are. Naturally, the compiler reading the
interface must know how to use at least one of the published hooks.

The example in Figure 6.3 shows the HaltOnFailure() term as modifier on the verifyAccount
rule. Its interpretation moves us into the realm of the implicit interface. With this modifier, we indicate
that should the application of this rule fail, no further action is to be taken. If omitted, failure of the
rule will not prevent the rest of the actions from taking place. Currently, we do not have any other
modifiers in mind, but this part of the interface is easily extendable.

The HaltOnFailure() modifier does raise the question how success or failure of a business rule is
communicated. Again, we define this is as part of the implicit interface. When considering a business
rule, it accepts concepts as parameter and possibly returns a concept. However, we specify that the
return value must be wrapped in a Result helper class (Listing 6.1). This class is parameterized by

73

6 BusinessRules DSL

public class Result<R> {

public enum STATUS { SUCCESS, FAILURE }

private STATUS s t a t u s ;

private St r ing message ;

private R r e s u l t ;

public Result (S t r ing message){
message = message ;
s t a t u s = STATUS.FAILURE;

}

public Result (R r e s u l t) {
s t a t u s = STATUS.SUCCESS;
r e s u l t = r e s u l t ;

}

public STATUS getStatus () { return s t a t u s ; }

public void s e tS ta tu s (STATUS s ta tu s) { s t a t u s = s ta tu s ; }

public St r ing getMessage () { return message ; }

public void setMessage (S t r ing message) { message = message ; }

public R getResu l t () { return r e s u l t ; }

public void s e tRe su l t (R r e s u l t) { r e s u l t = r e s u l t ; }

}

Listing 6.1: Helper class for BusinessRules result values

the type of the returned concept, to allow for type safe processing on the receiving end. Furthermore,
it contains a status flag indicating success or failure, and a message field that can contain the reason
for failure of the application. So, invoking the createAccountNr rule yields a Result<AccountNumber>
object, containing all information necessary to handle the result in WebLayer.

6.3 Concluding remarks

In this chapter we looked at a generic interface for business specific DSLs. The result is an operation-
centric interface, with additional semantics added to the invocation of an operation. This implicit part
is governed only by the specification of the interface given in this chapter, contrary to the interface of
DomainModel which is governed by the existing framework we target. This shows that DSL interaction
need not be constrained by third party library specifics in all cases, even though a BusinessRules
implementation might very well use such libraries.

Another result of allowing business rules inside the WebLayer action language, is that possibilities
for control flow constructs arise. For example, branching on success or failure of a rule application allows
different actions to take place, and redirects to different pages may occur depending on the outcome.

Without an actual implementation of a DSL compiler that uses the BusinessRules interface, this
effort can be seen as a foreign function interface from WebLayer actions to Java methods. We note
that since the interface is quite generic, any specific knowledge of a rule is encapsulated in the rule
implementation itself, and not published in the interface. Consequently, this allows rules from arbi-
trary BusinessRules implementations to be plugged into WebLayer effortlessly. Specific directives or
properties for a rule can still be encoded as a modifier, which must be interpreted by the DSL that
reads the interface. Alternatively, one could devise a more specific interface for each BusinessRules
implementation, only then it is not possible to plug in such an implementation into WebLayer without
adapting the WebLayer compiler.

74

Chapter 7

Related work

The goal of this chapter is to place our work in a broader perspective. To achieve this, we look at
both theoretic aspects as well as concrete systems, giving descriptions and comparisons to our system.
In Section 7.1, we look at theoretical work regarding the composition of models. In Section 7.2, the
Ordina Software Factory is introduced and compared, a system with many similarities to our DSLs.
Furthermore, we look at an alternative implementation environments for DSLs (Section 7.3), meanwhile
discussing the role of IDEs in model driven development. We also discuss some existing DSLs for web-
application development (Section 7.4). We conclude this survey of related work by looking at the
problem from a rather different angle, namely an idea called active libraries (Section 7.5).

7.1 Model composition

Linking separate DSLs can also be seen from a model-based point of view. Kurtev et al. introduce
special operators in a position paper [?] to compose distinct UML models. This is important, since
UML itself does not provided primitives with respect to modularity. However, their composition does
not take code generation scenarios into account. If code were to be generated, this must happen from
the composed model, voiding our notion of true separation between generators. Furthermore, this com-
position only takes into account the general semantics of UML, and no semantics pertaining to the
actual model expressed in UML. Consequently, the operator definitions work for arbitrary models in
UML, but domain specific safety notions cannot be enforced. Our interface definitions are particular
to the actual DSL, which allows us to be more precise and safe, at the cost of being less generic.

Closer to our notion of interacting DSLs is the work of Stirewalt et al. [?] on what he designates as
the ’model composition problem’. Stirewalt describes three different declarative DSLs for user-interface
generation, an approach which he calls Mastermind. Each of these DSLs accounts for a different aspect
of the user-interface: presentation, dialogue, and interaction with the underlying application. The code
generators for each of these DSLs are completely independent. Furthermore, the correctness of the
composition of the results of these independent generators can be determined statically.

The key idea is to formalize the DSLs as concurrent agents that synchronize on common events.
Moreover, a run-time environment supporting this view on the DSLs is developed. The run-time en-
vironment is the central communication hub between the generated modules of each DSL. Generated
modules communicate solely through a notification mechanism (message passing) of the run-time en-
vironment, and this is guaranteed to compose correctly. The agent formalism used to provide this
guarantee is called Lotos. In this formalism, sequencing constraints on messages between agents (in
this case models in a DSL) can be expressed. Lotos specifications for DSL programs are automatically
derived from these programs and used for the correctness guarantee. Hence, the DSL programmer does
not need to know anything about Lotos, or even the run-time environment for that matter. However,
the derivation process must be aided by the DSL programmer, in the sense that actions that are of
interest for other models must be explicitly indicated in the DSL source. An overview of the system,
as presented in Stirewalt’s paper [?], is shown in Figure 7.1. The run-time environment is called the
’synchronization module’. Stirewalt shows with this solution how formal methods (i.e. Lotos) can steer
the actual implementation of independent code generation.

75

7 Related work

Figure 7.1: Multiple independent code generators

The code generators not only emit modules in the target language, but also an additional file con-
taining the events and messages that can be emitted from this model. These files together are used by
an integrator which sets up the run-time environment to cope with these messages. It is interesting
to note that this integrator works globally on all compiled modules their additional files. It is not
clear whether this integrator works for arbitrary combinations of DSLs conforming to Stirewalt’s model
composition formalism, or whether it is specific to this exact combination of DSLs.
Furthermore, their application model essentially creates abstract classes that need to be subclassed by
the user. These classes, in the target language, are necessary to implement the desired application
logic behind the UI. In effect, this is an instance of DSL interaction with host language code. This
interaction is ignored as far as their formalism is considered. The paper states ’As long as the details of
these extensions [subclasses] do not trigger behavior in dialog or presentation models, this application
behavior may be ignored when defining model composition’. The aforementioned guarantee of correct
composition therefore depends on the compliance of the user in this practical aspect.

An interesting parallel is that the three DSLs that are created, are based on the Presentation-
Abstraction-Control (PAC) architecture (a lesser known variant of the Model-View-Controller archi-
tecture). As with our approach, the DSLs represent technical components of an existing architecture.
However, instead of having hierarchical models, they all are independent. Still, at run-time communi-
cation must occur between the generated modules. Unfortunately, the Mastermind papers do not show
concrete DSL specifications to make clear how exactly this is achieved in such an independent manner.
Moreover, another paper on the system [?] states that ’.. [the dialogue model] acts as the glue between
the presentation and application models’. It is unclear how this statement relates to the assertion that
Mastermind models are independent definitions, which are independently transformed to target code.

Because PAC, and with it most other GUI architectures, is based on events, notifications, and call-
backs, there is a natural fit to the run-time solution chosen. However, it is unlikely that Stirewalt’s
approach, having a central run-time hub with explicit message passing, can be employed for arbitrary
software architectures. In particular, when existing technologies are targeted that are not event-based,
as is the case with our technical domains.

7.2 Ordina Software Factory

The Ordina Software Factory (Ordina SWF) is a modeling environment created by the Dutch software
development company Ordina NV. It is targeted at web-application development in the .Net environ-
ment. As such, it was an important inspiritation for our prototype in this particular domain. In this
section we explore the differences and similarities between our approach and the Ordina SWF. Our
knowledge of the Ordina SWF is limited to two meetings with the lead-developer, one internal docu-
ment and the (mostly marketing related) information published by Ordina. In this section we try to
provide a picture as accurate as possible, based on casual examples we encountered. However, many
details of the languages that comprise the Ordina SWF are protected as trade-secret.

76

7.2 Ordina Software Factory

Figure 7.2: Model in Web Scenario DSL, taken with permission from an internal Ordina document.

The Ordina SWF consists of four DSLs created using the Microsoft DSL Tools (also known as the
Microsoft Software Factory suite). MS DSL Tools is a relatively new endeavor to create modeling
languages. It does not adhere to the MDA standard (as introduced in Section 2.5), but shares many
characteristics with such environments. The DSLs that can be created are visual, and can only be used
within the Visual Studio 2005 IDE. A very basic (text, not AST-based) template language is employed
to generate code (predominantly C# code) from a model.

An example of an actual ’DSL program’ can be seen in Figure 7.2. With these DSLs, web-
applications can be developed according to the standard .Net architecture. As in our approach, different
existing libraries are targeted from the languages. Nevertheless, the DSLs themselves are as technology-
agnostic as possible. The goal of the Ordina SWF is to generate around 80% of the necessary code for
a project, and to manually code the remaining part. Especially business logic is something that is left
to be manually coded. The four DSLs comprising the Ordina SWF are:

1. Business Class

2. Data Contract

3. Web Scenario

4. Service

In the Business Class DSL, all domain (entity) classes are modeled. This DSL is very similar to
our DomainModel language, only in a visual format. It does not allow for integrating validation of
members (as is possible in DomainModel using extended types), but it does allow for the addition of
business rules. Adding a business rule (which is just a name) in the model results in the generation of
a corresponding empty method, to be filled by the user of the DSL.

The Service DSL mediates between the pages defined in Web Scenario and the Business Class data
classes. Services define operations on data. Again, most of these services are left to be implemented in
host language code. All wrappers (i.e. for WebServices calls) are generated.

The Data Contract DSL provides a decoupling of the Web Scenario from Business Class entities.
Each Business Class entity also has a corresponding Data Transfer Object definition in the Data Con-
tract DSL. Furthermore, aggregations of different Business Class entities, and special views on them
can be defined in the Data Contract DSL. Especially this Data Contract DSL is interesting, since many
models (or model elements) of this DSL are directly derived from Business Class definitions. Still, its
viability is sustained by the need for different views on Business Class definitions and the fact that
the reference architecture prescribes the use of DTOs between the different layers instead of passing
business classes directly. We believe that we have obviated the need for such intermediate objects, since
we allow projections or aggregations of concepts to be expressed in the WebLayer language. Thus,
we observe that in the Ordina SWF the decomposition into different DSLs follows a prescribed .Net

77

7 Related work

architecture, whereas it is debatable whether every part of such an architecture should be retained in
a DSL setting.

The Web Scenario DSL encodes what pages are part of the web-application, and what the flow
is between these pages. This corresponds to the WebLayer DSL, which has similar goals. However,
Figure 7.2, which shows a Web Scenario instance, already reveals some differences in the granularity of
modeling capabilities. In WebLayer, a single page is composed of different page elements. In the Web
Scenario DSL, on the other hand, a complete page is either a list, edit, or a view only page of a certain
element defined in the Data Contract DSL. The example in Figure 7.2 shows two pages, a search page
for multiple Orders objects and an edit page for a single Order object. Page flow is modeled by creating
edges between page nodes. Generated artifacts from such a page definition are embedded in a ’master
page’, which is similar to our template.

It is not entirely clear how data-flow is modeled. The available examples all exhibit a master-detail
relation, i.e. an edge going from a list (or search) page to a view (or edit) page. We believe that our
WebLayer language in this regard offers more flexibility, making data-flow explicit by passing parame-
ters to pages or by instantiating session variables.

So far, we discussed the different visual languages available in the Ordina SWF in relative isolation.
It is clear that references between the models in different DSLs must exist. For instance, the example
of Figure 7.2 refers to an Order object, which is in turn defined in the Data Contract DSL and the
Business Class DSL. However, MS DSL tools does not allow for references between models, not even in
the same DSL. Therefore, Ordina implemented a facility to allow this [?], on top of what MS DSL tools
offers. This addition to MS DSL tools is called the partial model capability by the developers. Models
in the Ordina SWF models publish details of their elements to a central repository, which is maintained
by the Visual Studio IDE. The repository is named ’Non-persistent DSL Information Provider’ (NDIP).
This central repository can in turn be queried by the code generators of the DSLs. Therefore, only
a notion of provides interfaces exist, which are all aggregated into the NDIP. Models can reference
other partial models in the same DSL as well as partial models in other DSLs. All references between
models are made by name, and additional information that is necessary for code generation is stored as
key-value pairs. There is no formal description of what this additional information entails, and what is
stored depends on the needs of the generators. A similar mechanism, called a reuse-repository is pro-
posed by Nussbaumer et al. in the workshop paper ’Towards DSL-Based Web Engineering’ [?]. Ordina
implemented NDIP by hooking into the save event handler of MS DSL tools/Visual Studio. Whenever
a model is stored, its information is published to the repository. Also, code generation is then performed.

There seems to be a many-to-many relationship between the DSLs. They all use the same repository,
and can access each others information. However, the DSL designer can choose which constructs of a
model are exported to the repository, so some encapsulation is possible. While there is an explicit notion
of exporting information, importing information from different models is done implicitly by means of the
code generators querying the NDIP. Hence, there is a notion of provides but not of requires interfaces,
which makes the system fragile, since the code generation only has implicit dependencies.

One of the advantages of the run-time repository is that cyclic dependencies between models from
different DSLs become a non-issue. References are made by name, and are allowed to be ’dangling’ (i.e.
reference a non-existent artifact), though this obviously breaks code generation. This is enough to be
able to support the construction of mutual references through the NDIP.
The NDIP solution for interaction between models is a completely run-time solution. In this case, run-
time actually means the time that the development environment is used. Furthermore, it is explicitly
tied to and tailored for the Visual Studio 2005 IDE. A nice side-effect of this strong coupling is that
the repository information can be used for refactorings and other IDE assisted tasks.

Additional code that needs to be written is separated from the generated code mostly by using
partial classes. Partial classes are a feature of C#, which allows a single class to be defined in separate
physical files, as discussed in Section 5.2.3. Generated code can be merged with user-written code
through this mechanism. However, the programmer still has to know the internals of the generated
code in order to write the correct extensions. Many methods in the Service DSL pertain to application
logic, which cannot be modeled in the Ordina SWF DSLs. Consequently, only method signatures are
generated by the DSL and the programmer has to provide the implementation for these stubs.

78

7.3 openArchitectureWare

Visual and textual languages

MS DSL Tools (and therefore the Ordina SWF) only work with visual languages. Programs are created
by drawing diagrams, and setting properties of diagram elements. However, our approach solely consists
of text-based DSLs. We briefly compare both paradigms.

Visual languages are quite popular in current MDSD solutions. Quite possibly, this is due to the
air of complexity that surrounds the creation of textual languages (i.e. creating a grammar, parsing).
Visual languages, on the other hand, can reuse existing diagram editors and notation. In fact, we can
equate the grammar of a textual language to the meta-model of a visual language, which dictates what
graphical elements may be used in the language. The actual visual appearance of these elements is
similar to the concrete syntax of a textual language.

One important difference between visual and textual languages is the way relations are encoded. In
textual programming languages, references to abstractions (e.g., variables, classes, et cetera) are made
symbolic, by name. The compiler resolves these implicit links by means of a symbol table (or some
similar construction), and unresolvable names are reported as error. In a visual language, links between
abstractions are generally created by drawing a connector between the elements. A crucial difference
is that only valid links can be created by the user, avoiding a common source of compiler errors, or
unintended behavior, while creating a program.

If no existing editor fits the design of a visual language, one must be created. Then, the effort
necessary to create such an editor is substantial, compared to creating a grammar for a textual language.
Also, the user of a visual language is tied to the environment of the language creator, whereas textual
languages can be edited in any text editor, or in more advanced IDEs. An interesting problem for visual
languages is version management. Version control systems (VCS) traditionally have good support for
merging textual sources. Merging different versions of a visual program is a more involved problem,
without a generic solution. Again, this calls for special purpose supporting tools.

A related issue is that of modularity of visual programs. Since generally links between abstractions
are created explicitly, the most natural representation of a visual program consists of a complete dia-
gram. However, for sufficiently large programs this representation tends to become incomprehensible.
Again, excellent editor support is needed to traverse and manipulate such large diagrams. For example,
by hiding details, navigational support, scaling, and so on. Or, diagrams can be split up into several
smaller parts, as with the Ordina SWF (but note this was a custom add-on to MS DSL tools).

Textual programming is still the most widespread paradigm. Creating a visual language just for
the sake of abandoning textual forms is therefore not a very good idea. That is not to say there
are compelling cases in which visual languages excel. Especially when the concepts being programmed
themselves are mainly visual (e.g., GUIs) or an accepted visual representation exists (e.g. state machine
diagrams), visual languages can add value. On the other hand, lower level code is not easily (nor
intuitively) captured in a visual language.

7.3 openArchitectureWare

OpenArchitectureWare (oAW) is a range of tools and components to modularly create generators from
models to code. As such, it constitutes an alternative environment in which we could have implemented
our DSLs. It is built on top of Eclipse. The core of oAW contains a workflow engine allowing the
definition of transformation workflows, integrating different transformations.

A model can be either textual (using xText, a parser generator from BNF declarations that also
emits a corresponding syntax highlighting editor), visual (UML and other languages), or come from
any other front-end plug-in. Furthermore, checks on models can be performed using a constraint lan-
guage. Checked models can be transformed to code using a proprietary transformation and templating
language. This language does not provide the same guarantees on syntactical validity as using concrete
syntax in Stratego does. The combination of the aforementioned components is commonly called a
cartridge and equals a single DSL compiler like we created. Interaction between cartridges is possible,
but not only in an explicit manner. If knowledge from two models is necessary in the compilation
process, both need to be presented to the cartridge as input. This is made easy by means of the central
workflow definition, but does not allow for true separation and interaction between DSLs.

79

7 Related work

In oAW, thought has been given to the interaction with custom code as well. Cartridges that need
to do so, emit code that leaves hooks by means of appropriate design patterns (e.g., the proxy pattern
or adapter pattern), or by letting the user extend generated classes. The user of the DSL then needs
to know the conventions and naming of these hooks, or generated classes, in order to write the custom
code in the host language. Interestingly, the developers of oAW recognized this is a very brittle process.
Therefore, they introduce so-called recipe frameworks. A recipe framework is nothing more than a
principled way of adding dead code (!) to the output of the DSL cartridge. This dead code contains
references to custom code elements (classes, methods) that are expected to be written by the DSL
user. If the user fails to provide the expected code, the dead code triggers errors when compiling the
generated code. This hardly is a satisfactory approach, since care must be taken that the dead code
is not optimized away by the compiler (this can be trickier than it seems), and the error messages
provided by the host language compiler are not domain specific.

Role of the IDE

OpenArchitectureWare, and many other MDSD solutions award an increasingly important role to the
Integrated Development Environment (IDE). This is completely understandable, since having a com-
pletely controlled development environment offers many possibilities for the vendors of MDSD products.
Coupled with the fact that many products utilize visual languages, a lock-in with respect to the de-
velopment environment is not uncommon. In our approach, we have shown that we can eliminate the
dependency on a development environment when working with multiple interacting (textual) DSLs. Of
course, an IDE could still enhance the user experience of the DSLs, for example, by offering syntax
highlighting or code completion, and so on. We believe it is easier to create a pluggable IDE that
handles multiple syntaxes and syntax-oriented concerns as mentioned before, invoking an external DSL
compiler, than it is to create a pluggable IDE that supports semantic-oriented concerns for arbitrary
DSLs. With semantic-oriented concerns we mean the semantic (type) checking and transformations
that are performed in our DSL compilers.

Many GPL languages also have strong support for more productive coding through IDE assistance,
i.e. Visual Studio for C#, and Eclipse or IntelliJ for Java. They all have in common that the IDE can
generate code for you, ranging from simple templates, to code generation based on annotations or other
meta-data. A popular notion for generating code is through guidance (also known as ’wizards’), in which
high-level questions are answered by the programmer, and code is generated accordingly. Combining
these IDE mechanisms, we could approximate some of the functionality of our DSL compilers. However,
an important observation is that all the IDE assisted code generation lacks a source language, and is
only concerned with the output of the generation process. Once a template is instantiated, or a wizard
has been completed, there is only the generated code that acts as source. Hence, refactoring support is
also in high demand. The choices and variability expressed by template selection or answers to questions
are not recorded, whereas in our DSLs, the user always works at a higher level. The generated code is
merely a (very useful) derivation of the DSL code.

Furthermore, it is debatable whether an IDE is the right place to integrate more and more domain
specific knowledge, for example, by supporting specific libraries and frameworks in a generative manner.
Should library designers create such support, and if so, for which of the many IDEs? By externalizing
such support into a separate DSL compiler, these issues are avoided. Integration of DSL compilers such
as ours is possible when the IDE allows external tasks to be called for files in the editor (which means
virtually all IDEs).

7.4 DSLs for the web

Many domain specific languages for web-development exist [?, ?, ?]. In this section, we will review four
interesting variants. The first two are a stand-alone DSLs, whereas the other two are embedded DSLs
in Haskell and Java, respectively. These efforts do not correlate directly to our approach of modeling
distinct technical concerns in different DSLs. However, each of the languages constitutes an effort to
raise the abstraction level of web-application development. As such, we believe it is interesting to view
them as alternative approaches when looking at just this domain.

80

7.4 DSLs for the web

7.4.1 Links

Initiated by Wadler, Links [?] is one of the most recent research endeavors concerning web-application
development. Wadler et al. recognize that this development generally involves multiple tiers:

• Presentation in the web browser.

• Application logic running on the web server.

• Database back-end providing data.

Each of these tiers can be programmed in their own languages, such as HTML and JavaScript (in
the web browser), PHP, Java or equivalent (on the web server), and SQL or XQuery (to query the
database). Creating applications in this mixture of general purpose languages is cumbersome and
error-prone. Their proposed solution is to provide a tierless approach, by creating a single language
that links (hence the name of the language) all of the concepts that span the traditional tiers.

Links is a strongly typed, strict functional language, providing a compiler that produces HTML and
JavaScript for clients, proprietary Links code to run on their own server, and SQL to query a database.
The language’s main properties are:

• Session state is preserved on the client side.

• Transfer of computation between client and server is supported in continuation-passing style.

• Typed message passing between concurrent processes is the primary means of communication on
the server and on the client, and between these two.

• Database query optimization is provided by the compiler.

Especially the second property is one of Links’ strong points. Continuation passing (suspending and
resuming functions in different environments) provides a natural fit to supporting AJAX1 like inter-
action. Also, it allows the ’back-button’ problem to be solved: the state can be reconstructed and
resumed wherever it was left off. The last property shows the strength of a domain specific approach:
database interaction takes place using list comprehensions, filters, and other functions familiar to func-
tional programmers. The Links compiler has the ability to compile highly optimized queries out of
these constructs.

In effect, Links constitutes a new general purpose language. It has functions and other general
abstraction mechanisms, all supported by type inference. On the other hand, it is compiled to code in a
very particular setting (web-server and client), and contains many useful domain specific abstractions as
first-class citizen. For example, server and client are keywords in the language, list-comprehensions
can directly read from a database, there are special database and table expressions, and XML literals are
in the language. Furthermore, Erlang-style concurrency (shared-nothing processes that communicate
by message passing) is implemented for event-handling. Wadler et al. have chosen to create a new
language, containing advanced GPL constructs (for example, continuations) but only if they support
the domain concepts in a novel way.

This results in a language that is very expressive, albeit still a bit low-level. They concede this
last point in their paper, stating that, for example, form construction should ideally be abstracted
away from. Currently, it is not possible to reuse (parts of) forms, much less to generate them by
induction over a type (as is done in WebLayer). No interaction with other languages is currently
possible, resulting in the situation that Links must provide its own implementations for everything.
Clearly, this is a downside of the GPL with extensions approach taken. A foreign function interface
is mentioned as future work, though this is certainly not trivial given the mostly functional nature of
Links. In accordance with the research nature of this project, this issue does not seem to have a high
priority.

1Asynchronous JavaScript And XML: a method to overcome limitations of the per-page request/response cycle of
HTTP.

81

7 Related work

7.4.2 bigwig/JWIG

JWIG [?] is a continuation of the somewhat obsolete <bigwig> [?] project. It consists of a port of
the <bigwig> project to Java, meanwhile tailoring it in such a way that sophisticated static program
analysis is possible for JWIG applications. The main features of <bigwig>, and therefore also JWIG
are:

• Dynamic construction of HTML, while interspersing generated content.

• Analyses that guarantee correctness of dynamic pages.

• A type system to statically check client and server interaction.

A large objection to <bigwig> is that this stand-alone DSL was not powerful enough. It also did not
provide enough libraries, or facilities to integrate existing libraries of other languages, mainly because
its analyses depend on a closed-world assumption. Therefore, the authors decided to generalize the
<bigwig> core language to Java, thereby allowing the use of arbitrary Java libraries. In the process,
other parts were generalized as well. For example, safe construction of XML documents (instead of
only HTML) is supported. Syntactic constructs are added to Java that provide concrete syntax for
constructing XML. The type system and program analyses are also extended to the more expressive
Java language. Program analyses are the key of JWIG, and they are defined as instances of a monotone
framework. The main contribution is that for every possible output generated to the client, the validity
of this output can be established with respect to a document type definition (DTD). Because arbitrary
library functions can be invoked, outside of the JWIG framework, this analysis is not as precise as it
was in <bigwig>.

7.4.3 WASH/WebFunctions

The Web Authoring System for Haskell (WASH [?]) project provides an embedded DSL to create
dynamic webpages from within Haskell. It provides four sub-languages: the document language, widget
language, session language, and persistence language. WASH communicates with a web-server through
CGI. Well-formedness of HTML is guaranteed by the document language, which provides functions
to build a Haskell datatype that represents an HTML page. A pre-processor is available to translate
HTML in concrete syntax to the Haskell equivalent. Widgets (input fields) are automatically linked to
the site where their input is used, WASH abstracts away from form and input field name resolution.
State management is offered by WASH as well, using the session sub-language.

WASH offers a lot of power to experienced Haskell programmers. However, creating a typical web-
application using WASH results in code that mixes a lot of concerns. It is not clear whether this is due
to the fact that each of the sub-languages is embedded, or the design of WASH as a whole.

WebFunctions is a master’s project by Robert van Herk [?] that tries to alleviate the issues of WASH,
by building higher level abstractions upon it. WebFunctions also is an embedded DSL for Haskell, and
is based on a Java web-language called WebObjects (which is discussed in the subsequent section). It
abstracts over session and application state, as well as database interaction. The Haskell type system
guarantees correct HTML and SQL to be emitted from WebFunctions. It constitutes an integration
effort building upon HaskellDB [?] and WASH. Interaction between the several aspects (sub-languages
in WASH) of web-development is implicit, because everything is embedded in Haskell.

7.4.4 WebObjects

WebObjects is a commercial (although some versions are available for free) web-application framework
from Apple Computer. It is a Java framework, in many aspects similar to the frameworks we target
with our DSLs. However, WebObjects offers a complete (proprietary) solution for all concerns of web-
applications, from the data layer to the presentation layer, and even an application server.

In principle, it is an embedded language in Java, aspiring to address the issues of all layers of
web-applications. Unfortunately, Java is not particularly suited to embeddings, resulting in a very
verbose language (Apple’s naming conventions only add insult to injury in this case). It also seems
that WebObjects, as our target frameworks, makes heavy use of reflection and run-time interpretation

82

7.5 Active Libraries

of bindings. In fact, this was one of the main motivations for the previously mentioned WebFunctions
project. However, a supporting IDE environment, containing many generative aspects, and even some
visual modeling tools, is available. With this, WebObjects has become a rapid application development
environment, as long as the tools support the abstractions the developer needs. An interesting question
then is, what constitutes the WebObjects language? Is it the libraries and the programmatic interfaces
contained therein, or the capabilities offered by the tools, or a combination? The latter is probably
the best answer, since developing a complete WebObjects application also involves supplementing and
adapting generated code with custom code.

In general, an increasingly larger role is awarded to integrated development environments (or plug-ins
for these) in the light of specific libraries. Ultimately, we believe this is not a satisfactory answer to the
challenge of exposing domain specific capabilities to programmers. As a library or framework designer,
having to support many IDEs through plug-ins (if this is even possible to a satisfactory degree), or
creating a dedicated IDE is simply too much work, as was discussed towards the end of Section 7.2.

7.5 Active Libraries

We have already established (Section 2.1) that libraries currently are the primary means of expressing
and reusing domain specific constructs. Veldhuizen [?] proposes to alleviate the associated problems
of libraries by giving them an active role in the compilation process. The key idea is, that libraries
should not only provide the desired functionality, but also the syntax, optimizations and safety checks
(with corresponding, friendly error messages) for a problem domain. A pre-requisite for such an active
library approach is that there exists a compiler supporting these types of additions. Furthermore,
a unified way of expressing the aforementioned library responsibilities must be crafted. Veldhuizen
envisions a staged compiler (and corresponding language), in which compile-time computations and
transformations can be specified by libraries. If we apply this line of thinking to our work, it would
entail mixing the meta-code code describing our transformations, and possibly the syntax definition of
our DSLs, directly with the implementing libraries. Clearly, this is an enticing possibility for library
creators. However, it is also evident that rigorously applying the ideas of active libraries demands a
redefinition of traditional interactions between compilers, libraries and applications. As with Intentional
Programming (Section 2.4.1), it is unlikely that this happens outside a laboratory in the near feature.

83

7 Related work

84

Chapter 8

Conclusion

8.1 Reflection

In this thesis project we have developed a prototype environment in which multiple DSLs interact to
create a single, coherent application. The DomainModel language and compiler (Chapter 3) allows
for concise definitions of persistent data models, whereas WebLayer (Chapter 4) is geared towards
creating views for web-applications. Interaction between these two languages has been researched and
implemented (Chapter 5) . Together with the BusinessRules interface definition (Chapter 6), we have
shown that by using multiple interacting DSLs we can model applications with a layered architecture of
technical domains, thereby providing the advantages of a high-level, domain specific specific approach
(described in Chapter 1 and Chapter 2). We succesfully extracted high level abstractions from the
target frameworks, even though this has proven harder than originally anticipated in the case of the
WebLayer language. The DSLs provide much more clarity with respect to the domain concepts than the
corresponding Java code. Also, we have shown that a vast improvement in productivity and quality is
possible through our approach. As expected, we have also experienced the disadvantages of developing
stand-alone DSLs. In particular, having to write every semantic check from scratch is not a very
appealing aspect of our approach, even though it offers (domain specific) possibilities as well.

During the development of the two central domain specific languages, DomainModel and WebLayer,
we have gained considerable insight in developing DSLs for current Java frameworks. In this conclusion,
we will reflect on these insights before formulating answers to our research questions.

The most important observation is that even though Java’s type system becomes more expressive
with each new version, many frameworks layer dynamically checked, or interpreted mechanisms on
top of (type safe) Java primitives. Particularly, the abundant (ab)use of Java 5 annotations for such
mechanisms is notable. Possibly, this trend reflects the longing for more flexibility, akin to scripting
languages, or a compulsion to avoid more complex language constructions at the expense of risking
more runtime failures. While developing the DSLs, one of our goals was to avoid these runtime failures,
by making sure the design of our DSL contains enough leverage to guarantee that the aforementioned
dynamic checks will succeed as much as possible.

Furthermore, programmers are required to repeat the same (or subtly different) information in
several places, when using libraries or instantiating a framework. This holds even more when combining
frameworks, or in other words, when crossing the boundaries of layers in the architecture. Thus,
another important observation is that such usage patterns of frameworks form a good indicator of
variability that belongs in a DSL design. Gathering, combining, and analyzing occurences of this form
of redundancy almost automatically leads to a design for the (typeful) representation of a higher level
domain abstraction in the DSL. Our implementation of generic constructs in WebLayer takes this
sharing of information even further, offering more powerful abilities than the underlying frameworks
have, by sharing information between DSLs.

We now proceed with reflecting upon the research questions posed in Chapter 1. During the dis-
cussion of interaction between the DSLs, we have argued that multiple interacting DSLs have many
advantages over traditional, monolithic DSL approaches, and are an excellent match to layered ar-
chitectures in general (Section 5.1.1) This also forms a partial answer to our first research question,
’What interaction patterns can we identify? ’. Layered architectures are such a pattern. Consequently,

85

8 Conclusion

a guiding principle that we believe to hold emerges from this pattern. This principle states that de-
pendencies between DSLs in our environment must form an acyclic graph (Section 5.1.6), and that if
a cycle emerges when designing interacting DSLs, abstractions probably are distributed over the DSLs
in a sub-optimal manner.

Another interaction pattern that is worth mentioning is that interaction should be as strongly typed
(and as specific) as possible. The interaction between DomainModel concept definitions and WebLayer
(generic) constructs forms a good example of such interaction. Though being specific in the inter-
face precludes us from defining a general interaction mechanism, the benefits in terms of usability are
clear. It is possible to define a slightly more generic interface, as we have shown with BusinessRules
(Chapter 6). However, DSLs conforming to this BusinessRules interface (though currently none is im-
plemented) cannot communicate much more information than that certain rules are available, and how
they can be invoked.

Our second research question is more practical of nature: ’How can we implement DSL interac-
tion? ’. Through the development of our prototype we introduced interface files for the DSLs. One of
the merits of this approach is that it precludes a (too) tight coupling between the DSLs, while still
allowing for effective, compile time linking of generated code from different languages. In particular, we
have been cautious not to create a whole-program compiler in disguise. Having this form of separate
compilation enables alternative compositions of languages, although we only have one concrete imple-
mentation, and example (DomainModel) of a language that is ready to be integrated into other DSLs.
The BusinessRules design builds upon this concept, albeit without a concrete implementation. Fur-
thermore, we have shown that integrating abstractions from different DSLs can be implemented in an
intuitive fashion. No knowledge whatsoever of the underlying implementation is required from the DSL
users. We have found that the interfaces that are necessary for the implementation of DSL interaction
are quite specific to the language. A general solution to the interaction problem could not be formulated.

The last research question posed with regard to interaction between DSLs is: ’How does interaction
affect the design of a DSL? ’. The most obvious answer to this question is that the DSL designer needs to
consider whether integrating another DSL is necessary or beneficial. If so, a natural way of integrating
abstractions from another DSL must found. We have provided two examples of this scenario: injecting
DomainModel definitions as an underlying type system into WebLayer and allowing BusinessRules
definitions to be called from WebLayer actions.

Furthermore, an (explicit) interface must be designed alongside the language definition itself, when
reuse of the language in different settings is desired. Less obvious is the fact that a DSL also has
an associated implicit interface. This implicit interface, a resultant of the underlying implementation
libraries or frameworks, introduces additional dependencies on DSL interaction. We have tried two
strategies to contain this problem. First strategy is choosing a standardized library as target for the
DSL (DomainModel uses JPA). The second is by creating the implicit interface as well as the explicit
interface during the design of a DSL (BusinessRules), rather than letting the libraries you work with
dictate the implicit interface. Neither of these strategies is perfect, though at least they show the impact
of interaction on DSL design, and the associated trade-offs.

The final research question given in the introduction of this thesis is: ’When and how should inter-
action between DSL and GPL code be implemented? ’. In second part of Chapter 5 we have looked at
the issue of integrating GPL code with DSL abstractions. This form of interaction is necessary to still
be able to use a DSL even when in itself the DSL is not sufficiently expressive. Rather than writing
GPL code that links directly with generated code by a DSL (an approach taken by most of the related
systems we surveyed), we propose a slightly different solution. In this solution, a DSL compiler also
controls the GPL code. In our example of extended types, this allows for GPL code to be reused across
many DSL projects, rather than being linked to a single project. Furthermore, the connection between
GPL code and DSL abstractions must be clear from the perspective of the DSL source as well, which
is an issue that is often overlooked.

Summarizing, we believe this thesis project has shown that creating an environment of multiple
interacting DSLs for technical domains is feasible. Our case study has confirmed that the development
of applications with layered architectures can significantly benefit from such an environment. Some
DSLs may be more amenable to reuse in such a setting than others, but we are confident that many

86

8.2 Future work

program families exist that can be readily decomposed into technical DSLs. Though requiring significant
effort and expertise, we believe that many software companies can benefit from the application of model
driven software development through interacting DSLs.

8.2 Future work

87

8 Conclusion

88

Bibliography

[1] David L. Atkins, Thomas Ball, Glenn Bruns, and Kenneth Cox. Mawl: A domain-specific language
for form-based services. IEEE Transactions on Software Engineering, 25(3):334–346, 1999.

[2] A.F. Blackwell. Cognitive dimensions of tangible programming techniques. In Proc. 1st Joint Conf.
Empirical Assessment of Software Eng. and the Psychology of Programming Interest Group (EASE
& PPIG 03), pages 391–405, 2003.

[3] Claus Brabrand, Anders Moller, and Michael I. Schwartzbach. The <bigwig> project. ACM Trans.
Inter. Tech., 2(2):79–114, 2002.

[4] Martin Bravenboer, René de Groot, and Eelco Visser. Metaborg in action: Examples of domain-
specific language embedding and assimilation using stratego/xt. In GTTSE, pages 297–311, 2006.

[5] Martin Bravenboer and Eelco Visser. Concrete syntax for objects. Domain-specific language em-
bedding and assimilation without restrictions. In Douglas C. Schmidt, editor, Proceedings of the
19th ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages, and Ap-
plications (OOPSLA’04), pages 365–383, Vancouver, Canada, October 2004. ACM Press.

[6] Luca Cardelli. Program fragments, linking, and modularization. In POPL ’97: Proceedings of
the 24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
266–277, New York, NY, USA, 1997. ACM Press.

[7] Stefano Ceri, Piero Fraternali, and Stefano Paraboschi. Design principles for data-intensive web
sites. SIGMOD Rec., 28(1):84–89, 1999.

[8] Aske Simon Christensen, Anders Moller, and Michael I. Schwartzbach. Extending Java for high-
level web service construction. ACM Trans. Program. Lang. Syst., 25(6):814–875, 2003.

[9] Thomas Cleenewerck. Component-based DSL development. In GPCE ’03: Proceedings of the 2nd
international conference on Generative programming and component engineering, pages 245–264,
New York, NY, USA, 2003. Springer-Verlag New York, Inc.

[10] Charles Consel. From a program family to a domain-specific language. In Domain-Specific Program
Generation, pages 19–29, 2004.

[11] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links : Web programming without
tiers. Technical report, 2005.

[12] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative programming: methods, tools, and
applications. ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 2000.

[13] René de Groot. Design and implementation of embedded domain-specific languages. Master’s
thesis, Universiteit Utrecht, Utrecht, The Netherlands, September 2005. INF/SCR-05-10.

[14] Edsger W. Dijkstra. The humble programmer. Commun. ACM, 15(10):859–866, 1972. Turing
Award lecture.

[15] Sergey Dmitriev. Language Oriented Programming: The next programming paradigm. http:
//www.onboard.jetbrains.com/articles/04/10/lop/, 2004.

[16] Sophia Drossopoulou and Susan Eisenbach. Describing the Semantics of Java and Proving Type
Soundness. In Formal Syntax and Semantics of Java, pages 41–82. Springer-Verlag, 1998.

89

http://www.onboard.jetbrains.com/articles/04/10/lop/
http://www.onboard.jetbrains.com/articles/04/10/lop/

Bibliography

[17] Martin Fowler. Language workbenches: the killer-app for domain specific languages? http:
//www.martinfowler.com/articles/languageWorkbench.html, 2005.

[18] Piero Fraternali. Tools and approaches for developing data-intensive web applications: a survey.
ACM Comput. Surv., 31(3):227–263, 1999.

[19] Paul Graunke, Shriram Krishnamurthi, Steve Van Der Hoeven, and Matthias Felleisen. Pro-
gramming the Web with high-level programming languages. Lecture Notes in Computer Science,
2028:122–??, 2001.

[20] Rick Hightower. The JSF lifecycle. http://www.ibm.com/developerworks/java/library/
j-jsf2/, 2005.

[21] Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv., 28:196, 1996.

[22] Paul Hudak. Modular domain specific languages and tools. In P. Devanbu and J. Poulin, editors,
Proceedings: Fifth International Conference on Software Reuse, pages 134–142. IEEE Computer
Society Press, 1998.

[23] I. Kurtev and L. Didonet Del Fabro. A dsl for definition of model composition operators. In Second
Workshop on Models and Aspects (ECOOP 2006), 2006.

[24] Avraham Leff and James T. Rayfield. WebRB: evaluating a visual domain-specific language for
building relational web-applications. SIGPLAN Not., 42(10):281–300, 2007.

[25] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In PLAN ’99: Proceedings
of the 2nd conference on Domain-specific languages, pages 109–122, New York, NY, USA, 1999.
ACM Press.

[26] F. Merillon, L. Reveillere, C. Consel, R. Marlet, and G. Muller. Devil: An IDL for hardware
programming, 2000.

[27] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to develop domain-specific
languages.

[28] Oberon Microsystems. Component Pascal language report. Technical report, 2006.

[29] Martin Nussbaumer, Patrick Freudenstein, and Martin Gaedke. Towards dsl-based web engineer-
ing. In WWW ’06: Proceedings of the 15th international conference on World Wide Web, pages
893–894, New York, NY, USA, 2006. ACM Press.

[30] Rinus Plasmeijer and Peter Achten. The implementation of iData. In IFL, pages 106–123, 2005.

[31] Joost Rommes. Syntax macros: attribute redefinitions. Master’s thesis, Universiteit Utrecht,
Utrecht, The Netherlands, July 2003. INF/SCR-03-31.

[32] Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop: a language for programming the web
2.0. In OOPSLA ’06: Companion to the 21st ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 975–985, New York, NY, USA, 2006.
ACM Press.

[33] Charles Simonyi. The death of computer languages, the birth of intentional programming, 1995.

[34] Charles Simonyi, Magnus Christerson, and Shane Clifford. Intentional software. In OOPSLA,
pages 451–464, 2006.

[35] Jeroen Snijders. Functional design patterns. Master’s thesis, Universiteit Utrecht, Utrecht, The
Netherlands, 2004.

[36] Daniel E. Stevenson and Andrew T. Phillips. Implementing object equivalence in Java using
the template method design pattern. In SIGCSE ’03: Proceedings of the 34th SIGCSE technical
symposium on Computer science education, pages 278–282, New York, NY, USA, 2003. ACM Press.

90

http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.ibm.com/developerworks/java/library/j-jsf2/
http://www.ibm.com/developerworks/java/library/j-jsf2/

Bibliography

[37] K. Stirewalt and S. Rugaber. Automating ui generation by model composition. In ASE ’98:
Proceedings of the 13th IEEE international conference on Automated software engineering, page
177, Washington, DC, USA, 1998. IEEE Computer Society.

[38] R. E. K. Stirewalt and S. Rugaber. The model-composition problem in user-interface generation.
Automated Software Engineering, 7:101–124, 2000.

[39] Clemens Szyperski. Component Software. Addison-Wesley Professional, November 2002.

[40] Alan L. Tharp. The impact of fourth generation programming languages. SIGCSE Bull., 16(2):37–
44, 1984.

[41] The GHC Team. GHC user’s guide - Section 4.6.2. http://www.haskell.org/ghc/docs/latest/
html/users guide/separate-compilation.html.

[42] Peter Thiemann. An embedded domain-specific language for type-safe server-side web scripting.
ACM Trans. Inter. Tech., 5(1):1–46, 2005.

[43] M.G.J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient annotated terms.
Software, Practice and Experience, 30(3):259–291, 2000.

[44] Arie van Deursen and Paul Klint. Little languages: little maintenance. Journal of Software
Maintenance, 10(2):75–92, 1998.

[45] Jeffrey van Helden and Niels Reyngoud. Functional design patterns. Master’s thesis, Universiteit
Utrecht, Utrecht, The Netherlands, 2005.

[46] Robert van Herk. WebFunctions. Master’s thesis, Universiteit Utrecht, Utrecht, The Netherlands,
2005.

[47] Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD thesis, Indiana University
Computer Science, May 2004.

[48] Eelco Visser. Syntax Definition for Language Prototyping (PhD thesis). PhD thesis, Amsterdam,
1997.

[49] Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools, and systems in
StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation, volume 3016
of Lecture Notes in Computer Science, pages 216–238. Spinger-Verlag, June 2004.

[50] Jos Warmer and Anneke Kleppe. Building a flexible software factory using partial domain specific
models. In OOPSLA Int. Workshop on Domain-specific modeling, 2006.

91

http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html
http://www.haskell.org/ghc/docs/latest/html/users_guide/separate-compilation.html

Bibliography

92

Appendix A

Implementation details

A.1 Syntax definitions

DomainModel

module DomainModel
imports languages/java-15/interfaces/Annotations

hiddens
context-free start-symbols

Domain

exports
sorts FreeText QuotedText DMId UpperDMId AllUpper QualifiedDMId

syntax
“\”” <FreeText-LEX> “\”” → <QuotedText-CF> {<cons(“QuotedText”)>}

lexical syntax
˜[\”]* → FreeText
[a-z] [a-zA-Z0-9\]* → DMId
[A-Z] [a-zA-Z0-9\]* → UpperDMId
[A-Z] [A-Z0-9\]* → AllUpper
[\ \t \n] → LAYOUT
“//” ˜[\n]* [\n] → LAYOUT

lexical restrictions
DMId-/- [a-zA-Z0-9\]
UpperDMId-/- [a-zA-Z0-9\]

exports
sorts Domain ConceptDecl EnumMember Concept ConceptMember DMAnno EnumType

ConceptOrNativeType ListType DMType Assoc

context-free syntax
“domainmodel” DMId ConceptDecl* → Domain {<cons(“Domain”)>}
“concept” UpperDMId “{” ConceptMember+ “}” → ConceptDecl {<cons(“ConceptDecl”)>}
DMId Assoc DMType “(” {DMAnno “,”}* “)” → ConceptMember {<cons(“ConceptMember”)>}
DMId Assoc DMType → ConceptMember {<cons(“ConceptMember”)>}
“::” → Assoc {<cons(“Native”)>}
“<>” → Assoc {<cons(“Composite”)>}
“->” → Assoc {<cons(“Reference”)>}
“{” {EnumMember “,”}* “}” → EnumType {<cons(“Enum”)>}
QuotedText “:” AllUpper → EnumMember {<cons(“EnumMember”)>}
UpperDMId → ConceptOrNativeType {<cons(“BuiltIn”)>}
“[” DMType “]” → ListType {<cons(“Collection”)>}
EnumType → DMType
ListType → DMType

93

A Implementation details

ConceptOrNativeType → DMType
Anno → DMAnno {<cons(“JavaAnnotation”)>}
DMId → DMAnno {<cons(“SimpleAnnotation”)>}

WebLayer DSL

module WebLayer
hiddens
context-free start-symbols

WebLayer

exports
sorts Id SimpleId UId QualifiedId FreeText QuotedText

syntax
“\”” <FreeText-LEX> “\”” → <QuotedText-CF> {<cons(“QuotedText”)>}

lexical syntax
[a-z] [a-zA-Z0-9\]* → Id
[A-Z] [a-zA-Z0-9\]* → UId
˜[\”]* → FreeText
[\ \t \n] → LAYOUT
“//” ˜[\n]* [\n] → LAYOUT

lexical restrictions
Id-/- [a-zA-Z0-9\]
UId-/- [a-zA-Z0-9\]

context-free restrictions
LAYOUT?-/- [\ \t \12 \n \r]

context-free syntax
Id → SimpleId {<cons(“SimpleId”)>}
SimpleId → QualifiedId
SimpleId “.” QualifiedId → QualifiedId {<cons(“QualifiedId”)>}

exports
sorts WebLayer Import BodyDecl SessionVarDecl PageDecl InitPage Param PageElem KeyVal

Action ActionBinding NavBinding TextExpr TextExprPart

context-free syntax
“weblayer” Id Import* BodyDecl* → WebLayer {<cons(“WebLayer”)>}
“using” Id Id → Import {<cons(“Import”)>}
PageDecl → BodyDecl
SessionVarDecl → BodyDecl
“var” UId SimpleId → SessionVarDecl {<cons(“SessionVarDecl”)>}
InitPage? “page” UId “(” {Param “,”}* “)” “{” PageElem+ “}” → PageDecl {<cons(“PageDecl”)>}
“initial” → InitPage {<cons(“InitialKeyword”)>}
UId SimpleId → Param {<cons(“ParamBinding”)>}
“table” Param “in” QualifiedId “{” KeyVal* “}” → PageElem {<cons(“Iterator”)>}
“table” Param “{” KeyVal* “}” → PageElem {<cons(“IteratorAll”)>}
“for” Param “in” QualifiedId “{” PageElem* “}” → PageElem {<cons(“Repeat”)>}
“for” Param “{” PageElem* “}” → PageElem {<cons(“RepeatAll”)>}
“header(” TextExpr “)” → PageElem {<cons(“Header”)>}
“text” “(” TextExpr “)” → PageElem {<cons(“TextExpr”)>}
TextExpr → PageElem {<cons(“TextExpr”)>}
“navigate” “(” TextExpr “,” NavBinding “)” → PageElem {<cons(“NavExpr”)>}
“action” “(” TextExpr “,” {Action “;”}* “)” → PageElem {<cons(“ActionBlock”)>}
“show” “(” QualifiedId “)” → PageElem {<cons(“Show”)>}
“show” “(” KeyVal+ “)” → PageElem {<cons(“Show”)>}
“input” “(” QualifiedId “)” → PageElem {<cons(“Input”)>}
“input” “(” KeyVal+ “)” → PageElem {<cons(“Input”)>}

94

A.2 Generated code

“edit” “(” QualifiedId “)” → PageElem {<cons(“Edit”)>}
“var” UId SimpleId → PageElem {<cons(“VarDecl”)>}
“form” “(” PageElem* “)” → PageElem {<cons(“Form”)>}
QuotedText “->” PageElem → KeyVal {<cons(“KeyVal”)>}
UId “(” {QualifiedId “,”}* “)” → NavBinding {<cons(“Navigation”)>}
“redirect(” NavBinding “)” → Action {<cons(“Redirect”)>}
QualifiedId “=” QualifiedId → Action {<cons(“Assign”)>}
QualifiedId “(” {QualifiedId “,”}* “)” → Action {<cons(“Call”)>}
{TextExprPart “+”}+ → TextExpr {<cons(“CompositeTextExpr”)>}
QuotedText → TextExprPart {<cons(“LitTextExpr”)>}
QualifiedId → TextExprPart {<cons(“RefTextExpr”)>}

A.2 Generated code

A.2.1 DomainModel

To illustrate the implementation of the DomainModel DSL, we present a verbatim translation of the
BlogEntry concept. This concept was introduced in Figure 3.3, the running example of Chapter 3.
Note that parts of the generated code are omitted because of space constraints. Comments show which
parts have been left out.

package blog . domainc las se s ;

import java . u t i l . ∗ ;
import javax . p e r s i s t e n c e . ∗ ;

@Entity public class BlogEntry
{

public BlogEntry ()
{ }

public BlogEntry (S t r ing t i t l e , S t r ing abs t rac t , S t r ing con t en t s
, Date date , L i s t<Tag> tags , L i s t<Reply> r e p l i e s)

{
this . t i t l e = t i t l e ;
this . a b s t r a c t = ab s t r a c t ;
this . c on t en t s = cont en t s ;
this . date = date ;
this . t a g s = tag s ;
this . r e p l i e s = r e p l i e s ;

}

private Long id ;

@Id @GeneratedValue public Long get Id ()
{

return id ;
}

public void s e t I d (Long id)
{

this . id = id ;
}

int versionNum ;

@Version @Column(name = ”OPTLOCK”) protected int getVersionNum ()
{

return versionNum ;
}

protected void setVersionNum (int versionNum) { . . }

Listing A.1: Translation of BlogEntry to Java

95

A Implementation details

private St r ing t i t l e ;

@Basic @Column(nu l l a b l e = fa l se) public St r ing g e tT i t l e ()
{

return t i t l e ;
}

public void s e tT i t l e (S t r ing t i t l e) { . . }

private St r ing ab s t r a c t ;

@Basic public St r ing getAbstract ()
{

return ab s t r a c t ;
}

public void s e tAbst rac t (S t r ing ab s t r a c t) { . . }

// Code fo r ” content s ” and ”date ” members omitted .

private List<Tag> t a g s ;

@ManyToMany(cascade = {CascadeType .PERSIST , CascadeType .MERGE})
public List<Tag> getTags ()
{

return t a g s ;
}

public void setTags (Li s t<Tag> t a g s) { this . t a g s = tag s ; }

public void addToTags (Tag b 0)
{

i f (this . t a g s == null)
{

this . t a g s = new ArrayList<Tag>() ;
}
this . t a g s . add (b 0) ;

}

public void removeFromTags (Tag c 0)
{

i f (this . t a g s != null)
{

this . t a g s . remove (c 0) ;
}

}

public enum Enum category
{

TECH(” Technica l ”) , NONTECH(”Other”) ;

private St r ing label ;

Enum category (S t r ing label) { this . label = label ; }

public St r ing getLabe l () { return label ; }

@Override public St r ing toS t r i ng () { return label ; }

public Enum category [] getValues () { return Enum category . va lue s () ; }
}

private Enum category ca t ego ry ;

@Basic @Enumerated (EnumType .ORDINAL) public Enum category getCategory ()
{

return ca t ego ry ;
}

public void setCategory (Enum category ca t ego ry) { this . c a t ego ry = catego ry ; }

Listing A.2: Translation of BlogEntry (continued)

96

A.2 Generated code

// Code fo r ” r e p l i e s−> [Reply]” member omit ted .

public @Override boolean equa l s (Object o)
{

i f (o != null && o instanceof BlogEntry)
{

Long own id = this . id ;
Long o th e r i d = ((BlogEntry) o) . ge t Id () ;
i f (own id != null)

return own id . equa l s (o t h e r i d) ;
else

return this == o ;
}
else

return fa l se ;
}

@Override public int hashCode () {
return get Id () != null ? get Id () . intValue () : super . hashCode () ;

}

@Transient public St r ing getToStr ing ()
{

return t oS t r i ng () ;
}

@Override public St r ing toS t r i ng ()
{

St r i ngBu i l d e r name = new St r i ngBu i l d e r () ;
i f (t i t l e != null)
{

name . append (t i t l e . t oS t r i ng ()) ;
}
name . append (” ”) ;
i f (date != null)
{

name . append (date . t oS t r i ng ()) ;
}
return name . t oS t r i ng () ;

}

}

Listing A.3: Translation of BlogEntry (continued)

97

A Implementation details

A.2.2 WebLayer

package org . b log . weblayer ;
// Import s ta tements omitted f o r the sake o f b r e v i t y

@Name(”ViewBlogComponent”) @Scope (ScopeType .CONVERSATION)
public class ViewBlogComponent implements S e r i a l i z a b l e
{

@In private EntityManager em;

@In private FacesMessages facesMessages ;

private org . b log . domainmodel . BlogEntry blogEntry be ;

@RequestParameter (” b logEntry beId ”) private Long blogEntry beId ;

private Long cached blogEntry beId ;

public Long getBlogEntry beId ()
{

i f (b logEntry beId == null)
return cached blogEntry beId ;

else
return blogEntry beId ;

}

public org . b log . domainmodel . BlogEntry getBlogEntry be ()
{

return blogEntry be ;
}

// Code fo r the second parameter (User u) omitted

public @Begin (j o i n = true) void i n i t i a l i z e ()
{

try
{

System . out . p r i n t l n (” I n i t i a l i z e i s c a l l ed , i n i t i a l i z e d = ” + i n i t i a l i z e d) ;
i f (b logEntry beId != null)
{

i f (b logEntry beId != cached blogEntry beId)
this . b logEntry be = em. f i nd (org . b log . domainmodel . BlogEntry . class

, getBlogEntry beId ()) ;
cached blogEntry beId = blogEntry beId ;

}
i f (u s e r u Id != null)
{

i f (u s e r u Id != cached use r u Id)
this . u s e r u = em. f i nd (org . b log . domainmodel . User . class , ge tUser uId ()) ;

cached use r u Id = use r u Id ;
}
i f (! i n i t i a l i z e d)

this . r e p l y r = new org . b log . domainmodel . Reply () ;
i t e r a t o r 3 = blogEntry be . getTags () ;
r epeat1 = blogEntry be . g e tRep l i e s () ;
i n i t i a l i z e d = true ;

}
catch (Nul lPo interExcept ion npe)
{

f acesMessages . add (”One or more e n t i t i e s could not be r e t r i e v e d ”) ;
npe . pr intStackTrace (System . e r r) ;
i n i t i a l i z e d = fa l se ;

}
catch (Exception exc)
{

f acesMessages . add (”Unhandled except ion occurred : ” + exc . t oS t r i ng ()) ;
exc . pr intStackTrace (System . e r r) ;

Listing A.4: Translation of ViewBlog page to Seam component

98

A.2 Generated code

i n i t i a l i z e d = fa l se ;
}

}

public boolean i n i t i a l i z e d = fa l se ;

public boolean g e t I n i t i a l i z e d ()
{

return i n i t i a l i z e d ;
}

private org . b log . domainmodel . Reply r e p l y r ;

public org . b log . domainmodel . Reply getRep ly r ()
{

return this . r e p l y r ;
}

List<org . b log . domainmodel . Tag> i t e r a t o r 3 ;

@DataModel (scope = ScopeType .PAGE)
public List<org . b log . domainmodel . Tag> g e t I t e r a t o r 3 ()
{

return i t e r a t o r 3 ;
}

List<org . b log . domainmodel . Reply> repeat1 ;

public List<org . b log . domainmodel . Reply> getRepeat1 ()
{

return repeat1 ;
}

public St r ing ac t i on3 ()
{

System . out . p r i n t l n (” ac t i on ” + ” act i on3 ” + ” c a l l e d ”) ;
try
{

getRep ly r () . s e tUser (getUser u ()) ;
getBlogEntry be () . addToReplies (ge tRep ly r ()) ;
em . p e r s i s t (getBlogEntry be ()) ;
em . f l u s h () ;
em . r e f r e s h (getBlogEntry be ()) ;

}
catch (javax . p e r s i s t e n c e . Optimist icLockExcept ion o l e)
{

f acesMessages . add (”There has been a concurrent update to the
ed i t ed data , p l e a s e rev iew new data”) ;

}
catch (I l l ega lArgumentExcept ion i a e)
{

f acesMessages . add (” Va l idat i on f a i l e d because a f i e l d was empty : ”
+ i a e . getMessage ()) ;

i a e . pr intStackTrace (System . e r r) ;
i n i t i a l i z e d = fa l se ;

}
catch (Exception exc)
{

f acesMessages . add (”An e r r o r occured : ” + exc . t oS t r i ng ()) ;
exc . pr intStackTrace (System . e r r) ;

}
i n i t i a l i z e d = fa l se ;
return ”/ViewBlog . xhtml?” + (” blogEntry beId ” + ”=”

+ cached blogEntry beId + ”&”
+ (” use r u Id ” + ”=” + cached use r u Id + ”&”)) ;

}
}

Listing A.5: Translation of ViewBlog page to Seam component (continued)

99

A Implementation details

<!DOCTYPE composition PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd" >

<ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets"

xmlns:h="http://java.sun.com/jsf/html" xmlns:f="http://java.sun.com/jsf/core"

xmlns:s="http://jboss.com/products/seam/taglib"

xmlns:a="https://ajax4jsf.dev.java.net/ajax" template="template.xhtml">

<!-- global error and validation messages for page -->

<ui:define name="globalMessages">

<h:messages globalOnly="true" styleClass="errors"/>

</ui:define>

<!-- content -->

<ui:define name="content">

<div class="section">

<s:div rendered="#{!ViewBlogComponent.initialized}">

<p> The page could not be rendered due to missing or

invalid information in the request parameters. </p>

</s:div>

<s:div rendered="#{ViewBlogComponent.initialized}">

<h1>

<h:outputText

value="#{ViewBlogComponent.blogEntry_be.title} (written on #{ViewBlogComponent.blogEntry_be.date})"

escaped="true"/>

</h1>

<h:outputText value="#{ViewBlogComponent.blogEntry_be.contents}" escaped="true"/>

<h:dataTable value="#{ViewBlogComponent.iterator3}" var="t">

<h:column>

<f:facet name="header">Assigned tags</f:facet>

<h:outputText value="#{t.tagName}" escaped="true"/>

</h:column>

</h:dataTable>

<h:outputText value="Reply to this post:" escaped="true"/>

<h:form>

<s:validateAll>

<f:facet name="afterInvalidField">

<s:div styleClass="errors">

<s:span>

Error: <s:message/>

</s:span>

</s:div>

</f:facet>

<f:facet name="aroundInvalidField">

<s:span styleClass="errors"/>

</f:facet>

<div class="input">

<div class="entry">

<div class="label">

<h:outputText value="Contents :" escaped="true"/>

</div>

<div class="input">

<s:decorate>

<h:inputText id="contents" required="false"

value="#{ViewBlogComponent.reply_r.contents}">

</h:inputText>

</s:decorate>

</div>

</div>

<div class="entry">

<div class="label">

<h:outputText value="Date :" escaped="true"/>

</div>

<div class="input">

<s:decorate>

<h:inputText id="date" value="#{ViewBlogComponent.reply_r.date}" required="false">

<s:convertDateTime pattern="dd/MM/yyyy"/>

</h:inputText>

Figure A.1: Translation of ViewBlog page to Facelets markup100

A.2 Generated code

<s:selectDate for="date" dateFormat="dd/MM/yyyy">

<h:graphicImage url="img/dtpick.gif" style="margin-left:5px;cursor:pointer"/>

</s:selectDate>

</s:decorate>

</div>

</div>

<div class="entry">

<div class="label">

<h:outputText value="User :" escaped="true"/>

</div>

<div class="input">

<s:decorate>

<h:selectOneMenu id="user" value="#{ViewBlogComponent.reply_r.user}" required="true">

<s:selectItems var="field" label="#{field.toString}"

value="#{AllUser}" noSelectionLabel="Please select : "/>

<s:convertEntity/>

</h:selectOneMenu>

</s:decorate>

</div>

</div>

<div class="entry">

<div class="label">

<h:outputText value="Level :" escaped="true"/>

</div>

<div class="input">

<s:decorate>

<h:selectOneMenu id="level" value="#{ViewBlogComponent.reply_r.level}">

<s:selectItems value="#{StaticAccessor[’org.blog.domainmodel.Reply.Enum_level’]}"

var="enum" label="#{enum.label}"

noSelectionLabel="Please select : "/>

<s:convertEnum/>

</h:selectOneMenu>

</s:decorate>

</div>

</div>

</div>

</s:validateAll>

<h:commandButton value="Add reply" action="#{ViewBlogComponent.action1()}"/>

</h:form>

<h:outputText value="Replies for post #{ViewBlogComponent.blogEntry_be.title} :" escaped="true"/>

<ui:repeat value="#{ViewBlogComponent.repeat1}" var="r">

<div>

<s:div rendered="#{r != null}">

<div class="output">

<div class="entry">

<div class="label">

<h:outputText value="Contents :" escaped="true"/>

</div>

<div class="output">

<h:outputText value="#{r.contents}" escaped="true"/>

</div>

</div>

.. remaining fields omitted for the sake of brevity ..

</s:div>

<s:div rendered="#{r == null}">

<i>empty</i>

</s:div>

</div>

</ui:repeat>

<s:link value="Home" view="/Blog.xhtml">

<f:param name="user_uId" value="#{ViewBlogComponent.user_uId}"/>

</s:link>

</s:div>

</div>

</ui:define>

</ui:composition>

Figure A.2: Translation of ViewBlog page to Facelets markup (continued) 101

A Implementation details

<!DOCTYPE pages PUBLIC "-//JBoss/Seam Pages Configuration DTD 1.2//EN"

"http://jboss.com/products/seam/pages-1.2.dtd" >

<page view-id="/ViewBlog.xhtml" action="#{ViewBlogComponent.initialize}"/>

Figure A.3: Generated configuration for ViewBlog page

<a:region>

<a:outputPanel id="tagsList">

<a:repeat var="listvar" value="#{NewBlogEntryComponent.blogEntry_be.tags}">

<h:outputText value="#{listvar} "/>

<a:commandButton ajaxSingle="true" value="Delete" reRender="tagsList"

action="#{Utils.ajaxRemove(NewBlogEntryComponent.blogEntry_be.tags, listvar)}"/>

</a:repeat>

</a:outputPanel>

<s:decorate>

<h:selectOneMenu id="tags" value="#{dev.nulll}"

valueChangeListener="#{NewBlogEntryComponent.tagsListListener}">

<s:selectItems var="field" label="#{field.toString}" value="#{AllTag}"

noSelectionLabel="Please select : "/>

<s:convertEntity/>

<a:support event="onchange" reRender="tagsList" bypassUpdates="true"/>

</h:selectOneMenu>

</s:decorate>

</a:region>

Figure A.4: Generated viewcode for edit element with list argument

package org . b log . weblayer . v a l i d a t i o n ;

import javax . f a c e s . v a l i d a t o r . Va l idator ;
import javax . f a c e s . v a l i d a t o r . Va l idatorExcept ion ;
import javax . f a c e s . a pp l i c a t i o n . FacesMessage ;
import javax . f a c e s . context . FacesContext ;
import javax . f a c e s . component . UIComponent ;
import org . j bo s s . seam . annotat ions .Name ;

@Name(”URLValidator”)
@org . j bo s s . seam . annotat ions . j s f . Va l idator (id = ”URLValidator”)
public class URLValidator implements Val idator , java . i o . S e r i a l i z a b l e
{

public void va l i d a t e (FacesContext context , UIComponent component , Object va lue)
throws Val idatorExcept ion

{
St r ing typed va lue = (St r ing) va lue ;
S t r ing message = org . b log . domainmodel . v a l i d a t i o n .URL. va l i d a t e (typed va lue) ;
i f (message != null)
{

FacesMessage fmessage = new FacesMessage () ;
fmessage . s e tDe t a i l (message) ;
fmessage . setSummary (message) ;
fmessage . s e t S e v e r i t y (FacesMessage .SEVERITY ERROR) ;
throw new Val idatorExcept ion (fmessage) ;

}
}

}

Listing A.6: Validator component for extended type URL

102

Appendix B

Model driven development
environments

In this appendix we look at two MDSD approaches in somewhat more detail than in our related work
section (Chapter 7). The first system, JetBrains Meta Programming System is rather experimental,
whereas the second, OptimalJ, is a commercially used toolset.

B.1 JetBrains Meta Programming System

The JetBrains Meta Programming System (MPS) advocates itself as an instance of a language work-
bench [?]. MPS is a corporately funded research project and is not yet commercially available (an
early access version is available though). In MPS, a programmer can define custom languages, and use
these languages to create programs (or solutions in MPS terminology). Arbitrary languages can be
mixed in this programming environment to create a solution. Languages are defined as a triple of three
components:

1. Structure

2. Editor

3. Semantics

An obvious missing item in this list is syntax. Instead, MPS works as a structured editor directly on
the abstract representation of languages. The reason for this approach is to avoid having to deal with
parsing problems that arise when mixing arbitrary languages. Instead of defining a syntax and parser
for a language, the programmer can now define an AST instead. The structure is expressed in terms
of concepts and relations between concepts. An editor must be defined as well. The editor definition
instructs MPS what the well-formedness rules are for the language described by the structure. In the
editor definition the programmer also specifies the visualization of concepts (from the corresponding
structure) and their mutual relations. MPS uses this definition to automatically generate a structured
editor for the language. Note that this editor is not a generic editor for arbitrary MPS languages, but
one specifically tailored to the underlying structure definition. According to JetBrains, this greatly
enhances the usability, since specialized facilities, for example, error-handling can be provided. MPS
editors are not diagram editors, as in some of the model driven approaches that feature visual languages.
The editor resembles a standard text editor, but changes are only allowed in pre-defined slots, according
to pre-defined rules in the structure and editor definition. An example can be seen in Figure B.1. The
borders indicate editable cells.

The last part that has to be defined are the semantics of the language. In MPS, these semantics are
defined by creating a mapping to another language. These mappings are called generators. The target
can be any language, ranging from assembler to JavaȦ pre-requisite is that this language is represented
in MPS as well. This means that you will have to re-create the target language (or just a part of it)
within MPS, in such a way that a straightforward 1-1 mapping exists from the concepts of the language
definition to the actual language. A base language that represents most of Java is already available.
Generators can be expressed using three idioms:

103

B Model driven development environments

Figure B.1: Structured editor in MPS

1. Templates

2. Query-and-generate

3. Traverse-and-generate

The first idiom is a target-oriented one: a template is defined in terms of the target language, con-
taining holes that are filled in at generation time. The three idioms can be mixed arbitrarily, so the
hole in a template can be filled by the result of a query-and-generate generator. Such a generator is
formulated as a query on the source structure. Specific information can be extracted and used to create
a construct in the target language. The last remaining generator idiom is traverse-and-generate. The
source structure is traversed, and each construct can trigger the generation of a target construct, much
like the way a traditional compiler functions.

Each of the components of the language triple are defined using languages that themselves are first-
class citizens in MPS. In other words, the meta-model of MPS is encoded in a bootstrapping manner.
As a result, the languages defined using this meta-model are interoperable at least on the structure
level. However, there are no guidelines as to how languages interact on the semantic level. It is still
up to the programmer to delve into the intricacies of the generation part of a language, to see how it
interacts with other languages.

Being the creators of the highly praised IntelliJ development environment, it is hardly surprising
that an important role is awarded to the editor in the Meta Programming System. Features such as
code completion and code navigation come for free in MPS user-defined languages. These features are
very nice, although not very important from a conceptual point of view. More useful features such as
facilitating domain specific analyses on languages are not considered. It is, for example, not clear if
and how one could impose a type system on languages defined in MPS. A conceptually strong point is
that language definitions can inherit from each other. However, a compelling example of this feature
is not yet available. Finally, after using it for a while, it is clear that MPS is far from being a stable
development environment. This holds for both the actual environment (the IDE) itself, as well as for
its ideas and their implementation.

104

B.2 OptimalJ

B.2 OptimalJ

OptimalJ is a model-driven development environment targeted at Java enterprise web-applications. It
is based on MDA standards, however, the environment is only targeted at web-applications. Conse-
quently, a lot of domain specific knowledge is encoded in the IDE, which is built on the Eclipse platform.
Only the domain class view is similar to the Business Class DSL of Ordina SWF (Section 7.2). At
the start of a new project, an architecture can be chosen. Also, a choice can be made amongst many
different implementing libraries for specific parts of the chosen architecture. The remaining guidance
offered to the programmer consists of architecture-aware wizards, in which the programmers fills in the
variabilities present in the chosen architecture. Only the domain model is created by means of a true
domain specific (visual) language.

Code is generated from the model, but again, not all of the code for an application is generated.
Since Java does not provide partial classes, OptimalJ introduces the notion of safe code blocks. These
blocks can be freely edited by the programmer after they are generated for the first time and are
indicated within the IDE. Consequently, OptimalJ guarantees these safe code blocks to be safe from
modification by the code generators in subsequent generation steps. However, changes in the code are
not reflected in the model, i.e., roundtrip engineering is not possible. The code generators all work
together to create the web-application, there is no inherent independence between different elements.
It is possible to adjust code generators or create new ones using OptimalJ Architect edition. This is
an interesting opportunity, since it allows the generators to be customized to the specifics of a certain
type of applications. OptimalJ recognizes that no single DSL definition will suit all needs. However, it
is undocumented what the extension possibilities in this regard exactly are.

105

	1 Introduction
	1.1 Setting the scene
	1.2 Models and abstraction
	1.3 Challenges in DSL development
	1.4 Research questions

	2 Modeling software
	2.1 Libraries and frameworks
	2.2 4GL languages
	2.3 Embedded DSLs
	2.3.1 Language assimilation
	2.3.2 Natural embedding
	2.3.3 Syntax macros
	2.3.4 Concluding remarks

	2.4 Language oriented programming
	2.4.1 Intentional programming
	2.4.2 Language workbenches

	2.5 Model Driven Architecture
	2.6 Our approach

	3 DomainModel DSL
	3.1 Language description
	3.1.1 Syntax
	3.1.2 Types and annotations

	3.2 Implementation
	3.2.1 Java Persistence Architecture
	3.2.2 Translating concepts
	3.2.3 Translating concept members
	3.2.4 Equals and hashCode implementation
	3.2.5 Semantic checks

	3.3 Concluding remarks

	4 WebLayer DSL
	4.1 Target libraries
	4.2 Language Description
	4.2.1 Text elements
	4.2.2 Iterative constructs
	4.2.3 Input elements
	4.2.4 Actions and forms
	4.2.5 Page and session variables

	4.3 Implementation
	4.3.1 Semantic checking
	4.3.2 Specializing generic constructs
	4.3.3 Translating pages
	4.3.4 Page navigation and data-flow
	4.3.5 Translating page elements
	4.3.6 Action language
	4.3.7 Session variables and validators

	4.4 Issues
	4.5 Concluding remarks

	5 Interaction aspects
	5.1 Interaction between DSLs
	5.1.1 Motivation
	5.1.2 Intended usage scenario
	5.1.3 Separate compilation and interface files
	5.1.4 Interface characteristics
	5.1.5 Issues
	5.1.6 Dependencies

	5.2 Interaction between DSL and user-written code
	5.2.1 Motivation
	5.2.2 Extended types
	5.2.3 Comparison
	5.2.4 Inlined Java annotations

	5.3 Concluding remarks

	6 BusinessRules DSL
	6.1 Language Description
	6.2 Interface
	6.3 Concluding remarks

	7 Related work
	7.1 Model composition
	7.2 Ordina Software Factory
	7.3 openArchitectureWare
	7.4 DSLs for the web
	7.4.1 Links
	7.4.2 bigwig/JWIG
	7.4.3 WASH/WebFunctions
	7.4.4 WebObjects

	7.5 Active Libraries

	8 Conclusion
	8.1 Reflection
	8.2 Future work

	Bibliography
	A Implementation details
	A.1 Syntax definitions
	A.2 Generated code
	A.2.1 DomainModel
	A.2.2 WebLayer

	B Model driven development environments
	B.1 JetBrains Meta Programming System
	B.2 OptimalJ

