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Abstract

Type systems are indispensable in modern higher-order, polymorphic languages.
An important explanation for Haskell’s and ML’s popularity is their advanced
type system, which helps a programmer in finding program errors before the
program is run. Although the type system in a polymorphic language is impor-
tant, the reported error messages are often poor. The goal of this research is to
improve the quality of error messages for ill-typed expressions.
In a unification-based system type conflicts are often detected far from the source
of the conflict. To indicate the actual source of a type conflict an analysis of
the complete program is necessary. For example, if there are three occurrences
where x::Int and only one where x::Bool, we expect that there is something
wrong with the occurrence of x::Bool. The order in which subexpressions oc-
cur should not influence the reported error. Unfortunately, this is not the case
for unification-based systems.
This article presents another approach to inferring the type of an expression. A
set of typing rules is given together with a type assignment algorithm. From the
rules and the program at hand we construct a set of constraints on types. This
set replaces the unification of types in a unification-based system. If the set is
inconsistent, some constraints are removed from the set and error messages are
constructed. Several heuristics are used to determine which constraint is to be
removed. With this approach we increase the chance that the actual source of a
type conflict is reported. As a result we are able to produce more precise error
messages.
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Chapter 1

Introduction

Polymorphic type systems are indispensable in modern programming languages.
An important explanation for Haskell’s and ML’s popularity is their advanced
type system combined with an inference system, which helps a programmer in
finding program errors before the program is run. We believe that programmer
productivity is substantially increased by a clear and advanced type system.
However, programmer productivity is hampered by the poor type error messages
of the compilers and interpreters for such languages. Consider for example the
following definition:

f = \x -> case x of
0 -> False
1 -> "one"
2 -> "two"
3 -> "three"

The error message produced by Hugs (an interpreter for Haskell) for this pro-
gram is:

ERROR "example.hs" (line 1): Type error in case expression
*** Term : "one"
*** Type : String
*** Does not match : Bool

In a case-expression all the right-hand sides must have the same type. If we
compare the types at the right-hand sides we see that there are three expressions
of type String and only one of type Bool. It is therefore reasonable to assume
that the expression of type Bool is the one that is incorrect. The error message
that is produced however strongly depends on the order in which the alternatives
for the case expression are given. If we swap the first two alternatives the error
message changes into:
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ERROR "example.hs" (line 1): Type error in case expression
*** Term : False
*** Type : Bool
*** Does not match : [Char]

Because the construction of an error message for an expression depends on the
order of subexpression, type errors can be confusing.

Type inference algorithms in current compilers are all based on the type
assignment algorithm in [Mil78] and [DM82]. A number of articles explain the
working of this algorithm. In [Jon99] a specification of a Haskell type-checker is
given. Because this specification is written in Haskell, it is very comprehensible,
especially for Haskell users. Although a lot of research has been done in the
field of type inferencing, the type inferencing algorithms in current compilers
suffer from the following problems:

• Every expression is assumed to have a correct type until an inconsistency
is found. This is a very local approach.

• An error message is often a very brief explanation why the expression is ill-
typed. It can be difficult to trace why a type is assigned to an expression.

• Only one type error message, the first inconsistency, is reported. Most
compilers for imperative languages can report several errors. We would
like to have the same behaviour in our compilers.

• No suggestions for improvements are given.

In this paper we present a different approach to type checking in order to
improve the generated error messages. Instead of applying substitutions in a uni-
fication algorithm, we collect constraints. While we are solving the constraints
we can tell if the set of constraints is consistent. An inconsistency in the set
implies that there is a type error in the expression. With a minimal correction
in the set of constraints we make the set consistent again. The advantages of
this approach are:

• The decision which subexpression has an incorrect type is made by taking
the whole program into account. We try to find as much evidence as
possible to determine the type of an expression. In fact we will do global
(instead of local) typing.

• The type inference program reports all inconsistencies in the constraint
set. Therefore we can have multiple error messages for an expression.

• The type error message tells us exactly where something is wrong and why.
We are interested in the source and an explanation of the type conflict.

Of course there is a trade off between speed and the quality of an error
message. In order to type check a program on a global level we have to keep
track of a lot of information. Hence, the new algorithm will be more time
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consuming. The goal of this research is to get good error messages, speed is not
a main issue.

The idea to construct a set of constraints on types while we are inferring
the type of an expression is not new. BANE (the Berkeley Analysis Engine)
is intended to construct constraint-based program analyses. [AH95], [AFFS98]
and [Aik99] explain how a set of constraints can be used to analyse a program. A
type inferencer for a lambda calculus is expressed in BANE, but no suggestions
are given how the constructed set of constraints can contribute to improving
error messages.

In section 5 we introduce equality graphs to keep equalities between assigned
type variables and type constants. Although in other articles graphs are used
to detect a type conflict, equality graphs have not been introduced so far. In
[GVS96] a set of constraints is constructed to suggest a correction of an ill-typed
expression. The constraints are translated into a graph, containing vertices
that arise due to the structure of a term and vertices that represent control
information. The structure of graphs constructed in [McA99] depends on the
type of the program at hand instead of the syntax tree. Vertices of the graph
represent the types of fragments of the code.

Some research has been done to give a clear explanation why a type is
assigned to an expression. In [BS93] an approach is presented for explaining
why a unification failure for two types occurred. This approach can be used in
an interactive system to explain why a type is assigned to an expression and it
helps the programmer to acquire a better understanding about the working of
the type system. A similar facility is desirable in our approach to type checking.

[McA98] discusses the unification of substitutions instead of the unification
of types. The problem of the example above, which shows that the order of the
alternatives of a case expression influences the error message, is referred to as a
left-to-right bias and is removed if we unify substitutions.

[WJ86] points out that in a unification-based system conflicts are typically
detected fairly far from the site of error. To avoid reporting misleading error
messages, a set of type equations is collected that can be inconsistent. Multiple
contradictory hypotheses about the type of a variable imply that the variable
predominantly has the type that satisfies most of the hypotheses. Unfortunately
which conflict is reported depends on the order in which rewrite rules are applied.
This approach resembles the approach presented in this paper since both try to
correct an inconsistency with a minimal correction. [Wan86] makes a similar
observation and presents an approach for finding the true source of a type error.
The algorithm keeps track of the reasons for the type checker to make deductions
about the types of variables.

In [Jun00] an inference algorithm is given that reports conflicting sites rather
than the site where a conflict is detected. Besides reporting conflicting sites,
our approach is able to give a good prediction which site is erroneous.
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This paper is organised as follows. Section 2 introduces an expression lan-
guage together with a type system. Six type inference rules are presented to
show which set of constraints is constructed for an expression. In section 3 we
discuss how the set of constraints is solved. In section 4 we prove that after the
set of constraints is solved, we have found the correct type for an expression.
We prove that our type inference rules are equivalent to the rules presented
in [DM82], which implies that our rules are sound and complete. In section 5
we discuss what to do if we have an inconsistent set of constraints. To restore
the consistency in a set of constraints we remove constraints from the set, using
some cost or profit function. The removal of a constraint results in the construc-
tion of an error message. Section 6 suggests some directions for future research.
Section 7 contains a summary of the results and some final remarks.
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Chapter 2

Collecting constraints

Functional programming languages use a type assignment algorithm to check if
an expression is well typed. Often such an algorithm is based on unification.
A unification algorithm fails and produces an error message if the expression is
ill-typed. This error message indicates that there is a possible type error at the
position where the unification failed. Unfortunately it often happens that the
actual error is somewhere else. With a different approach, which is more precise
than a unification algorithm, we try to report error messages for an ill-typed
expression that are more precise.

Instead of applying substitutions to types, a set of constraints is generated
from an expression. A constraint represents a delayed substitution. An expres-
sion is well typed if and only if the set of constraints is consistent. If the set is
inconsistent we have a lot of information to determine where the error is.

In this chapter we will focus on collecting the constraints for an expression.
In sections 2.1 and 2.2 we define a language for expressions and for types. In
section 2.3 we discuss how a constraint is represented. A set of type inference
rules is given in section 2.4. In section 2.5 the strategy behind the inference
rules is explained. Finally section 2.6 shows how constraints are collected for
an example expression.

2.1 Expression language

We start with the introduction of an expression language. We assume that there
is no syntactic-sugar in the expression. Although syntactic sugar is convenient
for programming languages, it does not introduce anything new when assigning
a type to an expression. The expression language is defined as:
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data Expr = Variable String
| Literal String
| Apply Expr Expr
| Lambda String Expr
| Case Expr Alternatives
| Let Declarations Expr

data Alternatives = Empty
| Alternative Expr Expr Alternatives

data Declarations = Empty
| Declaration String Expr Declarations

An expression can be a variable, a literal, an application, a lambda expression,
a case expression or a let expression. A variable is represented by a string and
should be bound. Literals are expressions with a constant type: for instance they
can be integers, characters or booleans. Function application is left associative,
which means that f x y is interpreted as (f x) y. Notice that an expression of
the form (\x y → expr) is just a shorthand for (\x → (\y → expr)).

Case expressions

A case expression can be seen as a selector function for data types. It has an
expression on which we are going to pattern match, and a number of alternatives.
For each case expression there is at least one alternative. An alternative is a
pattern together with an expression which has to be evaluated if the expression
matches the pattern. Some functional languages only allow a single constructor
in a pattern but this restriction is not necessary for our language. Because our
goal is to assign a type to an expression we are only interested in the type of
the pattern.

Let expressions

A let expression has a number of declarations together with a body. A declara-
tion contains a variable together with an expression. We do not allow patterns
in the left-hand-side of the declaration. This does not restrict the language since
a pattern is only syntactic sugar. All the variables in a declaration should be in
the same binding group. For instance: the expression

let id = \x -> x;
y = id 3;

in y

should be replaced by:

let id = \x -> x;
in let y = id 3;

in y
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because id and y are not in the same binding group.

Data types

Without a lot of effort our language has data types. A data type has one or more
constructors. Furthermore it can have a number of type variables. In Haskell
we can define a data type for a binary tree that has elements of an arbitrary
type a in its leaves:

data Tree a = Bin (Tree a) (Tree a)
| Leaf a

In this example the constructors Bin and Leaf are functions that create a value
of type Tree. Each constructor of a data type implies the existence of a function
with a given type. The types of the constructors of our binary tree are:

Bin :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a

It is easy to obtain the type of a constructor function from its data definition.
The constructor is a function that takes its arguments as parameters and returns
a value of the type for which it is defined. Because we can see a constructor
function as a normal function we treat it as if it were a defined variable. To
be able to recognise the difference between a constructor and a variable, we use
identifiers starting with a capital letter for constructors and identifiers starting
with a lower case letter for variables.

2.2 Type language

In section 2.1 we introduced an expression language. Not every expression
that is part of this language is meaningful. With a type checker we can reject
expressions that are ill-typed and construct an error message that explains why
the expression is rejected. A type is assigned to each well typed expression in
the expression language. First we give a representation of a type: a type can
be a variable, a constant or an application of two types.

data Type = Variable Int
| Constant String
| Apply Type Type

To distinguish type variables we give them numbers. Two variables with the
same number refer to the same type variable. For the representation of type
constants we use identifiers starting with a capital, for instance Constant "Int"
and Constant "Bool". Application is left associative which means that Pair
Int Bool is interpreted as (Pair Int) Bool. The type arrow (→) is not rep-
resented by a separate alternative in the definition of a type. The type Bool →
Int is represented as:
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Apply (Apply (Constant "->")
(Constant "Bool"))

(Constant "Int")

The type constant "->" is a primitive type that represents a type arrow. Because
the type arrow does not have a separate alternative, we have a more general
definition and this helps us later. Often when we want to present a type, we
map the type variables to a list of identifiers starting with a lowercase letter,
for instance [”a”, ”b”, ”c”, . . .]. The only reason for this is convenience.

2.3 Constraints

We want to transform the type information inside an expression into constraints.
A constraint is a relation between two types. We need two kinds of constraints
to capture all the type information.

The first type of constraints is the equality constraint. This constraint guar-
antees that after this constraint is solved, the two types are exactly equal. We
use (≡) to write down an equality, for instance (a ≡ Int) and (Int → Int ≡ a→
a). The equality constraint (Int ≡ Bool) can occur but is clearly inconsistent.
An equality constraint has some nice properties: it is reflexive, commutative
and transitive. These properties help us to reason about equalities.

Because let declarations are a part of our expression language, a type can
be polymorphic. Hindley-Milner uses type schemes to deal with polymorphism.
A type scheme is a type that can be preceded by a number of ∀ quantifiers.
For instance, the type of the polymorphic identity function is ∀a (a → a). At
this point we take a different approach. We do not allow ∀ quantifiers in our
type language, but instead we implicitly quantify every variable in a type. If
we want to make an instance of a possibly polymorphic type we use another
kind of constraint. We write a < b to express that type a is an instance of type
b. Because there can be monomorphic variables in b, we keep a set M for each
instance constraint, containing all the monomorphic variables in b. In the rest
of the paper we write a <M b.

2.4 Type inference rules

Now that we have defined the expression language, the type language and the
constraints, we can give type inference rules to assign a type to an expression.
The type inference rules are syntax directed: for each of the six alternatives of
the expression language there is one type rule. The rule (� e : τ, A) expresses
that expression e has type τ in the environment A. In the environment we store
type information about all the free variables in an expression.
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[V AR]
α is fresh

� x : α, [x �→ α]

constraints : no

The inference rule for a variable is straightforward: a new type variable α is
assigned as type. In the environment we store that type α has been assigned to
the variable x. No constraints are generated for a variable.

[LIT ] � literal : primitive type, ∅

constraints : no

The literals are the easiest expressions to type because they all have their own
(constant) type. For instance, the expression 3 has the primitive type Int. For
a literal the type environment is empty and no constraints are generated.

[APP ]

α is fresh
� f : τf , Af

� e : τe, Ae

� (f e) : α, Af ∪ Ae

constraint : τf ≡ τe → α

In general, the result of an application of a function of type a → b to an argument
of type a is a value of type b. In the algorithm of Damas and Milner we unify the
types τf and τe → α, where τf is the type of the function, τe is the type of the
argument and α is a fresh variable. Instead of unifying the two types we store
their equality in a constraint. The result of the application has type α. The
type environment for an application is the combination of the environments of
the sub-expressions. Because of this union it is possible that a variable occurs
twice (or more) in a type environment with bindings to different type variables.

[ABS]

α is fresh
� e : τe, A

� (\x → e) : α → τe, A\x

constraints : {σ ≡ α | (x �→ σ) ∈ A}

A lambda expression binds variables in an expression. All the variables that
are bound are present in the type environment, together with their assigned
type variable. We introduce a new type α as the type for the variable x. For
each variable that we bind we generate exactly one constraint: the type that we
assigned to the variable must be equal to α. In the new type environment we
remove all the variables that are bound by this lambda. We use the notation
A\x for this removal.
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[CASE]

α is fresh
β is fresh
� p : τp, Ap

� pi : τpi , Api (for 1 ≤ i ≤ n)
� ei : τei , Aei (for 1 ≤ i ≤ n)

(case p of
p1 → e1
· · ·
pn → en) : β, Ap

⋃
1≤i≤n

(Aei −Api )

constraints




α ≡ τp
α ≡ τpi (for 1 ≤ i ≤ n)
β ≡ τei (for 1 ≤ i ≤ n)
{σ ≡ τ | (x �→ σ) ∈ Api , (x �→ τ ) ∈ Aei} (for 1 ≤ i ≤ n)

For a case expression two fresh variables are created, α and β. Type α represents
the type of the patterns of a case expression. Because all the types of the
patterns must be equal, we construct the constraints α ≡ τp1 , α ≡ τp2 , · · · , α ≡
τpn . The switch expression also has this type: α ≡ τp. We do something similar
for the types of the expressions on the right-hand side of the alternatives. We
construct the constraints β ≡ τe1 , β ≡ τe2 , · · · , β ≡ τen , where β represents
the type of the right-hand side.

We also have to take into account that we can introduce variables in the
patterns that we can use in the expression on the right-hand side. For example,
consider the Haskell function that computes the number of leaves in a tree, as
defined on page 8:

leaves = \x -> case x of
Bin l r -> leaves l + leaves r
Leaf a -> 1

In this example the variable l is introduced in the pattern of the Bin and is used
in the expression on the right side. Variables that occur free in a pattern bind
the variables that occur free in the expression on the right. For each binding
we construct an equality constraint.

The type of a case expression is the type on the right-hand side of the al-
ternatives, which is β. The new environment is the environment of the switch
expression merged with the environments of the right-hand sides, where we leave
out all the variables that are bound in a pattern. Assumptions about construc-
tors that are in the environments of the patterns, should also be included in the
environment.
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[LET ]

αi is fresh (for 1 ≤ i ≤ n)
� ei : τei , Aei (for 1 ≤ i ≤ n)
� b : τb, Ab

� ( let v1 = e1;
· · ·
vn = en;

in b) : τb, A1 ∪ A2

constraints




{ αi ≡ τei | 1 ≤ i ≤ n }
{ x ≡ αi | (vi �→ x) ∈ (Ae1 ∪ . . . ∪ Aen) }
{ x <A2 αi | (vi �→ x) ∈ Ab }

where

{
A1 = Ab \ {v1 . . . vn}
A2 = (Ae1 ∪ . . . ∪ Aen) \ {v1 . . . vn}

The fresh type variables α1, α2, . . . , αn represent the types of the declarations.
The type of the expression in a declaration should be equal to the new type
variable that was assigned to this declaration, in other words: αi should be
equal to τei for every i ∈ [1 . . . n]. If one of the declared variables is used in
another declaration, we generate an equality constraint. The αi of the declared
variable should be equal to the type variable that is stored in the environment of
the expression where it is used. The reason that the types are equal is because
all the declarations are part of the same binding group.

We generate an instance constraint if one of the declared variables is used
in the body of the let expression. The variables that are free in the declarations
of the let (the variables in the environment) are monomorphic variables in the
instance constraint.

The type of a let expression is the type of the expression in the body. We
combine the environment of the body and the environments of the declarations,
but we leave out the assumptions about the declared variables.

Top-level constraints

With the six type rules we can generate a set of constraints for every possible
expression. In functional languages we are used to refer to functions defined
in other modules. In Haskell a set of prelude functions is imported to define
the most elementary operations. We would like to be able to do something
similar for our expression language. Suppose we have a set of types for the
prelude functions (and for other functions that are imported). In this set we
also include the types of the constructor functions that we use. An example of
such a set is:
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plus :: Int -> Int -> Int
map :: (a -> b) -> [a] -> [b]
even :: Int -> Bool
...
Empty :: [a]
Cons :: a -> [a] -> [a]
Bin :: Tree a -> Tree a -> Tree a
Leaf :: a -> Tree a
...

At top-level we generate an equality constraint for each variable that occurs in
this set and in the environment. For instance, for the assumption set [plus �→
τ0, Leaf �→ τ1] the following equality constraints are constructed:

τ0 ≡ Int → Int → Int
τ1 ≡ τ2 → Tree τ2

where τ2 is a fresh type variable.

2.5 Strategy

An advantage of the inference rules is that the type, the environment and the set
of constraints are collected using one bottom-up recursive walk over the expres-
sion tree. Because the inference rules are also syntax-directed, the algorithm
corresponding to the rules is a straightforward translation of the rules. There
are no special rules for type instantiation or type generalisation.

If you take a closer look at the inference rules you see that some of the
constraints that are constructed appear to be superfluous. Indeed we could
have constructed a smaller set of constraints which results in the same type for
a well typed expression. However, the goal for this new approach is not to type
well typed expressions, but to give a better error message in case an ill-typed
expression occurs. This improved error message pin-points the most likely spot
of the type error in the program we try to infer the type of.

Superfluous constraints are generated for lambda abstractions, case expres-
sions and let expressions. In an example the rule for a case expression is dis-
cussed. Justification for the extra constraints for lambda abstractions and let
expressions follows the same line of reasoning.

In the [CASE] rule the fresh variables α and β are introduced. Respectively
they correspond to the type of the left-hand side and the right-hand side of the
alternatives. Also the switch expression must have a type equal to α. Instead
of generating the constraints α ≡ τp, α ≡ τp1 , . . . , α ≡ τpn for n alternatives,
we can also generate the constraints τp ≡ τp1 , . . . , τp ≡ τpn . This trick reduces
the number of constraints and the number of type variables by one. If we do
the same for β we get a smaller constraint set. Consider the next ill-typed
expression:
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case True of
0 -> ...;
1 -> ...;
2 -> ...;

The constraints for this expression are:

α ≡ Bool(True)

α ≡ Int(0)

α ≡ Int(1)

α ≡ Int(2)

Between parentheses behind the types are the expressions from which the types
originate. This set of constraints is obviously inconsistent. However, only one
constraint has to be removed to restore the consistency. If we decrease the
number of constraints the following set of constraints is constructed:

Bool(True) ≡ Int(0)

Bool(True) ≡ Int(1)

Bool(True) ≡ Int(2)

There is still an inconsistency in the set of constraints, but this time we can not
restore the consistency by the removal of one constraint. In the previous set of
constraints we were still able to conclude that α (probably) has type Int and
not type Bool. In the optimised set we lost this valuable information. We use
an extra constraint to prevent that a type variable that can be incorrect, shows
up in many different constraints.

2.6 Example

The next example makes the rules more understandable. We show how con-
straints are generated for the expression:

let y = 3;
i = \x -> (x,y);

in (i True,i)

In this expression there are two occurrences of a tuple. A tuple is a data
structure containing two values. The notation for a tuple is syntactic sugar
and has to be replaced by a constructor. In our example we replace the tuple
(a, b) by the expression Tuple2 a b. The type of the constructor Tuple2 is
a → b → Tuple2 a b, which will be presented as the type a → b → (a, b). The
two let declarations do not belong to the same binding group. We move the
declaration of y to a nested let expression. The adjusted expression is:

let y = 3;
in let i = \x -> Tuple2 x y;

in Tuple2 (i True) i
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The expression can be analysed as two nested let-expressions. First we will walk
bottom-up through the two declarations collecting constraints, then we do the
same for the remaining expression. The first declaration, y = 3, doesn’t cause
any difficulties. Because the expression is a literal, no constraints are generated.

� 3 : Int, ∅
[LIT ]

We assign the new type variable τ0 to the declared variable y. If we later on
refer to y, we use τ0 as its type. Because the type of the declaration is Int, the
[LET ] rule gives us the first constraint:

#0 : τ0 ≡ Int

The second declaration, i = λx → Tuple2 x y, is a little bit more difficult.
Consider the first part of the derivation:

� Tuple2 : τ1, [Tuple2 �→ τ1]
[VAR] � x : τ2, [x �→ τ2]

[VAR]

� Tuple2 x : τ3, [Tuple2 �→ τ1, x �→ τ2]
[APP]

Two new type variables are assigned to the variables Tuple2 and x. The vari-
ables are put into the assumption set together with their assigned type. The
rule for application introduces the new type variable τ3 and returns this as the
type for the application. The relation between the types τ1, τ2 and τ3 is stored
in a constraint:

#1 : τ1 ≡ τ2 → τ3

The set of assumptions from the two subexpressions are merged together. We
continue with the derivation:

� Tuple2 x : τ3, [Tuple2 �→ τ1, x �→ τ2] � y : τ4, [y �→ τ4]
[VAR]

� Tuple2 x y : τ5, [Tuple2 �→ τ1, x �→ τ2, y �→ τ4]
� λx → Tuple2 x y : τ6 → τ5, [Tuple2 �→ τ1, y �→ τ4]

[ABS ]

[APP]

#2 : τ3 ≡ τ4 → τ5
#3 : τ6 ≡ τ2

We assign the type variable τ4 to variable y. The next application is similar
to the previous one: it introduces τ5 and adds #2 to the constraints. The
lambda abstraction introduces τ6 as a new type variable. All the assumptions
concerning variable x are removed from the assumption set. For the assumption
x �→ τ2 constraint #3 is generated. The result type of the expression is τ6 → τ5.
Again, a new type variable (τ7) is introduced in case we refer to the declared
variable i. Constraint #4 makes sure that τ7 and the derived type τ6 → τ5 are
equal.
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#4 : τ7 ≡ τ6 → τ5

Now we need a derivation for the expression Tuple2 (i true) . A new type
variable is assigned to the variable Tuple2:

� Tuple2 : τ8, [Tuple2 �→ τ8]
[VAR]

After this we make a derivation for i true. The variables τ9 and τ10 are intro-
duced and constraint #5 is generated:

� i : τ9, [i �→ τ9]
[VAR] � True : Bool, ∅ [LIT ]

� i T rue : τ10, [i �→ τ9]
[APP]

#5 : τ9 ≡ Bool → τ10

When we apply Tuple2 on (i true) constraint #6 is generated:

� Tuple2 : τ8, [Tuple2 �→ τ8] � i T rue : τ10, [i �→ τ9]
� Tuple2 (i T rue) : τ11, [Tuple2 �→ τ8, i �→ τ9]

[APP]

#6 : τ8 ≡ τ10 → τ11

We assign τ12 to the second occurrence of the variable i. When we apply
Tuple2 (i true) to i, the result for this expression is the type variable τ13 to-
gether with constraint #7:

� i : τ12, [i �→ τ12]
� Tuple2 (i T rue) : τ11, [Tuple2 �→ τ8, i �→ τ9]

� Tuple2 (i T rue) i : τ13, [Tuple2 �→ τ8, i �→ τ9, i �→ τ12]
[APP]

#7 : τ11 ≡ τ12 → τ13

Let’s think about the goal again: we want to show how a set of constraints is
generated for the expression:

let y = 3;
in let i = \x -> Tuple2 x y;

in Tuple2 (i True) i

We collected eight constraints (#0 . . .#7) and constructed the following three
derivations:

� 3 : Int, ∅
� λx → Tuple2 x y : τ6 → τ5, [Tuple2 �→ τ1, y �→ τ4]
� Tuple2 (i T rue) i : τ13, [Tuple2 �→ τ8, i �→ τ9, i �→ τ12]
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Furthermore we assigned τ0 to the declared variable y and τ7 to i. The let rule
should be applied twice to collect the last constraints and to find the type for
the complete expression.

� λx → Tuple2 x y : τ6 → τ5, [Tuple2 �→ τ1, y �→ τ4]
� Tuple2 (i T rue) i : τ13, [Tuple2 �→ τ8, i �→ τ9, i �→ τ12]

� let i = . . . ; in . . . : τ13, [Tuple2 �→ τ1, Tuple2 �→ τ8, y �→ τ4]
[LET ]

τ9 <{τ4} τ7
τ12 <{τ4} τ7

In the assumption set of the body of the let we find two assumptions about i, and
thus two instance constraints are generated for these two assumptions. Because
the variable y, used in the declaration of i, is bound outside the let expression
its type τ4 is in the set of monomorphic variables. The new assumption set
contains three assumptions.

� 3 : Int, ∅
� let i = . . . ; in . . . : τ13, [Tuple2 �→ τ1, Tuple2 �→ τ8, y �→ τ4]

� let y = . . . ; in . . . : τ13, [Tuple2 �→ τ1, Tuple2 �→ τ8]
[LET ]

τ4 <∅ τ0

We have found another instance constraint because of the occurrence of variable
y in the assumption set. There are no monomorphic variables for this constraint.
There are two assumptions left in the environment, both concerning variable
Tuple2. The polymorphic type for this constructor function is ∀α, β : α → β →
(α, β). Remember that this type is just a shorthand-notation. Two instances
are introduced for this polymorphic function and they are directly translated
into equality constraints. Because there are two polymorphic variables (α and
β) in the type, we have to introduce two new type variables for each instance.

#8 : τ8 ≡ τ14 → τ15 → (τ14, τ15)
#9 : τ1 ≡ τ16 → τ17 → (τ16, τ17)

The result is a set of ten equality constraints, three instance constraints and
the inferred type τ13. In chapter 4 we define the function Solve to solve a set
of constraints for a type. It is interesting to show that

Solve(C, τ13) =α ((Bool, Int), a→ (a, Int))

where C is the set of collected constraints. We’ll leave this proof to the interested
reader.
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Chapter 3

Solving constraints

The previous section described a method for constructing a set of constraints
from an expression. In this section we present an algorithm for solving the
set of constraints and for assigning a type to the expression. We assume that
the expression is well typed and that there is not an inconsistency in the set of
constraints. In chapter 5 we show how we can extend the type checker such that
it accepts ill typed expressions. We show how we can determine the source of
the error and give a method to solve an inconsistency in the set of constraints.

In order to find the type of the expression and to detect possible type errors,
we keep a state while we solve the constraints that have been collected. We
store the following information in the state:

• set of constraints: both the set of equality constraints and the set of
instance constraints are stored in the state. The constraints in the state
are the constraints that have not been taken into account yet.

• result type: the type assigned to the expression while collecting the
constraints should also be stored in the state. Because of the application
of substitutions, this type may change while we are solving the constraints.

• equality classes: an equality class is a tuple (V, C), where V is a set of
type variables and C is a set of type constants. All the type variables and
the type constants in an equality class have the same type. Every type
variable occurs exactly once in an equality class.

• erroneous constraints: we keep a set of constraints that cannot be
solved. The constraints in this set are translated into an error message
that is reported to the programmer.

In the initial state we store the constraints and the type of an expression. For
each type variable v we construct an equality class (v, ∅). The set of erroneous
constraints is empty. Each time one constraint is chosen and solved. Solving a
constraint means converting the information in a constraint to a modification

18



of the set of equality classes. Once the set of constraints is empty all type infor-
mation is inside the equality classes, and we present the type of the expression.

Solving a set of constraints consists of two parts: most constraints can be
simplified (translated into other constraints) or solved (translated into a modi-
fication of the equality classes). This process is called simplification of the state
and is explained in section 3.1. Some constraints require the decomposition of
a type variable and this is presented in section 3.2. In section 3.3 we give an
algorithm to solve the state. Finally, two examples in section 3.4 illustrate the
working of the algorithm.

3.1 Simplification

Most constraints can be solved or simplified in a straightforward way. Sim-
plifying a constraint means translating a constraint into one or more different
constraints. A constraint is solved if it is removed from the state and translated
into a modification of the equality classes. First the equality constraints are
discussed, then the instance constraints.

Equality constraints

In section 2.2 we defined a type language: a type can be a variable, a constant
or an application of two types. Because an equality constraint contains two
types, we give a rule for each of the nine possible combinations:

• Constant c1 ≡ Constant c2: this constraint can either be true or false.
If the constants c1 and c2 are equal we remove this constraint from the
set of constraints. On the other hand, if the constants are different we
cannot satisfy this constraint. The constraint is transferred from the set of
constraints to the set of erroneous constraints. Every erroneous constraint
will eventually be reported to the programmer.

• Constant c ≡ Variable v: we add constant c to the equality class
containing variable v. It is possible that the equality class of v already
contains a number of constants. We require that every type variable and
every constant in an equality class has the same type. What happens if the
set of constants, including c, contains different constants? Although the
class is obviously inconsistent we continue with our simplification. Later
on this inconsistency will be resolved.

• Constant c ≡ Apply s t: this constraint cannot be solved. The con-
straint is transferred from the set of constraints to the set of erroneous
constraints.

• Variable v1 ≡ Variable v2: the type variables v1 and v2 have to be in
the same equality class. We combine the class containing v1 and the class
containing v2 into a new equality class. A combination of two equality
classes is the union of the two sets of variables and the union of the two sets
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of constants. It is not a problem if the class contains different constants.
If the type variables v1 and v2 are already in the same equality class, we
don’t have to modify their equality class.

• Variable v ≡ Apply s1 s2: solving this constraint is postponed. This
constraint requires the decomposition of variable v, which is discussed in
3.2. We keep the constraint in the set and handle it later.

• Apply s1 s2 ≡ Apply t1 t2: this constraint can be replaced by two new
constraints: s1 ≡ t1 and s2 ≡ t2. If possible we simplify the two new
constraints.

There are of course three more cases, but since a ≡ b is equal to b ≡ a one can
change the order of types in an equality constraint.

Instance constraints

Instance constraints take care of the specialisation of polymorphic types. For
instance, to specialise ∀a, b : a → b → a we need a substitution for the two
type variables that are bound by the ∀ quantifier. If we use the substitution
[a := Int, b := a → a], the resulting type is Int → (a → a)→ Int. To solve an
instance constraint we do something similar. To solve the instance constraint
a <M b we have to wait until b is fixed.

Definition:

A type is fixed if all the equality classes, containing a type variable
from the type, are fixed. An equality class is fixed if none of its variables
appears in an equality constraint or appears on the left side in an instance
constraint. A type (or an equality class) that is fixed does not change
during the rest of the computation.

As soon as b is fixed (in the constraint a <M b) and there is no inconsistency in
the state, we can instantiate this type. If there is an inconsistency in the state,
it will eventually be resolved. Each polymorphic type variable is replaced by
a new type variable for each instance. A type variable t is polymorphic if and
only if:

• there are no constants in the equality class of t.

• none of the type variables in the equality class of t are in the monomorphic
set of the instance constraint.

Polymorphic type variables in the same equality class are replaced by the same
new type variable. After the polymorphic type variables on the right-hand side
of the instance constraint are replaced, we change the constraint into an equality
of two types.
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Example

In this example we show how we simplify an instance constraint. Consider the
following state:

State before simplification
Constraints #0: τ1 ≡ τ6 → τ7

τ1 <{τ0} (τ5 → τ2)→ τ4 → τ3

Equality classes ( {τ0, τ5} , ∅ )
( {τ1} , ∅ )
( {τ2 } , {Int} )
( {τ3, τ4} , ∅ )
( {τ6, τ7} , ∅ )

Result type τ0 → τ1

We can simplify the only instance constraint in this state because the type
variables on the right-hand side (τ2, τ3, τ4 and τ5) don’t occur in an equality
constraint or in the left side of an instance constraint. We determine which type
variables are polymorphic and which are not:

• τ2 is in the same equality class as the type constant Int: it is not poly-
morphic.

• τ5 is in the same equality class as τ0. Because τ0 is monomorphic, τ5 is
not a polymorphic type variable.

• τ3 and τ4 are polymorphic. Because they are in the same equality class,
only one new type variable is introduced to replace τ3 and τ4.

We introduce the new type variable τ8. The substitution [τ3 := τ8, τ4 := τ8] re-
places all the polymorphic type variables into new type variables. We apply the
substitution to the right-hand side of the instance constraint and we introduce
a new equality class for τ8. The final result of the simplification of the instance
constraint is the following state:
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State after simplification
Constraints #0: τ1 ≡ τ6 → τ7

#1: τ1 ≡ (τ5 → τ2)→ τ8 → τ8

Equality classes ( {τ0, τ5} , ∅ )
( {τ1} , ∅ )
( {τ2 } , {Int} )
( {τ3, τ4} , ∅ )
( {τ6, τ7} , ∅ )
( {τ8} , ∅ )

Result type τ0 → τ1

3.2 Decomposition

In the previous paragraph we discussed how a constraint can be simplified or
solved. The only constraints left are those of the form (Variable v ≡ Apply s t).
The following table summarizes how we simplify or solve an equality constraints:

Variable Constant Apply

Variable variables in
same class

variable and
constant in
same class

decomposition

Constant × error if con-
stants are
different

error

Apply × × split constraint
into two new
constraints

Evidently the constraint (Variable v ≡ Apply s t) expresses that the type
of variable v is an application of two types. In fact, all the type variables
in the equality class containing v are an application of two types. Substi-
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tuting a type variable into an application of two types is called decomposi-
tion. We can only decompose a variable if there is no constant in its equality
class. Let ({v1, v2, . . . , vn}, ∅) be the equality class of the variable v. First we
construct the substitution [v1 := s1 t1, v2 := s2 t2, . . . , vn := sn tn], where
{s1, s2, . . . , sn} and {t1, t2, . . . , tn} are new type variables. Next we apply this
substitution to the state. The equality class is replaced by two new equality
classes: ({s1, s2, . . . , sn}, ∅) and ({t1, t2, . . . , tn}, ∅).

Example

Consider the following state:

State before decomposition
Constraints #0: τ0 ≡ τ3 τ4

#1: τ1 ≡ List Int

Equality classes ( {τ0, τ1, τ2} , ∅ )
( {τ3} , ∅ )
( {τ4} , {Int} )

Result type τ2 → τ4

Because of constraint #0, type variable τ0 requires a decomposition. The other
type variables in the equality class of τ0 (τ1 and τ2) also require a decomposi-
tion. We introduce the type variables τ5, τ6, · · · , τ10 to construct the substitution
[τ0 := τ5 τ6, τ1 := τ7 τ8, τ2 := τ9 τ10]. When we apply the substitution to the
state (to the constraints and the result type), the type variables τ0, τ1 and τ2
disappear from the state. Two new equality classes are constructed to replace
the class of τ0. The state after decomposition is:

State after decomposition
Constraints #0: τ5 τ6 ≡ τ3 τ4

#1: τ7 τ8 ≡ List Int

Equality classes ( {τ5, τ7, τ9} , ∅ )
( {τ6, τ8, τ10} , ∅ )
( {τ3} , ∅ )
( {τ4} , {Int} )

Result type (τ9 τ10)→ τ4

3.3 Algorithm

In this section we provide an algorithm for solving a set of constraints. The
order in which the constraints are solved should not influence the outcome of
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the algorithm. There are a lot of possible orders to solve the two sets. An
important aspect of the algorithm is dealing with inconsistencies in the state.
First we define when there is an inconsistency in the state:

Definition:

A state is inconsistent if and only if one of the following conditions is
true:

• there is an equality class containing two different constants.

• there is a type variable v such that the equality class of v con-
tains a constant and there is an equality constraint (Variable v ≡
Apply s t), where s and t are two arbitrary types. Variable v is a
constant and should be decomposed at the same time.

In section 5 we discuss how an inconsistency can be removed from a state. The
following algorithm describes solving a set of constraints:

Algorithm
Step 1: Simplify constraints.

Step 2: If there is a variable avaiable for decomposition, we decom-
pose this variable. After the decomposition we go back to
step 1.

Step 3: If there is an inconsistency in the state, we remove con-
straints from the state until it is consistent. Afterwards we
go back to step 1.

Step 4: The set of constraints is empty and the state is consistent.
We present the result type and report the constructed error
messages.

Remarks on the algorithm:

• In step 1 both equality constraints and instance constraints are simpli-
fied until there are no more constraints left to simplify. After step 1 the
only equality constraints in the state are those of the form (Variable v
≡ Apply s t). The order in which the constraints are simplified is not
important.

• The result of the decomposition of a variable is a substitution. After this
substitution the set of constraints is simplified again.

• We wait as long as possible to solve an inconsistency, because the longer we
wait the more information is collected. When we solve the inconsistency
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we need as much information as possible.

• Termination of this algorithm is guaranteed because we are always able to
remove an inconsistency. At the end of the algorithm the set of constraints
is empty and there are no inconsistencies in the state.

All type information is now stored in the equality classes. The last step is to
extract information from the classes to present the type of the expression. We
construct a substitution for each type variable. Each type variable in an equality
class containing a constant, is replaced by this constant. For equality classes
without a constant we choose one type variable in the class. All the variables
in the class are replaced by this type variable.

Example

Consider the following state, where the set of constraint is empty.

Final state
Constraints empty

Equality classes ( {τ0, τ2} , ∅ )
( {τ1, τ4, τ5} , ∅ )
( {τ3} , {Int} )
( {τ6} , {Bool} )

Result type (τ0 → τ1)→ τ2 → τ3 → τ4

Before we report the result type we construct a substitution that corresponds
with the equality classes. The following substitution is constructed:

[τ0 := τ0, τ2 := τ0, τ1 := τ1, τ4 := τ1, τ5 := τ1τ3 := Int, τ6 := Bool]

When we apply this substitution to the result type, we get the type:

(τ0 → τ1)→ τ0 → Int→ τ1

To make the type more comprehensible, we map the type variables to the vari-
ables a, b, c, . . .. After this mapping the representation of a type is equal to the
representation of a type in Hugs. The type that is presented is:

(a→ b)→ a → Int→ b

3.4 Examples

In this section two examples are given to demonstrate how the type inference
algorithm works. The first step is to collect the constraints for an expression.
After this step we solve the constraints and finally we present the inferred type.

25



Example 1

The following expression is very straightforward to type:

\x -> case x of
1 -> ’a’;
2 -> ’b’;
3 -> ’c’;

To infer the type for this expression we construct the inference tree. The rules
give us a set of constraints and a type.

� x : τ0, [x �→ τ0]
[VAR]

� 1 : Int, ∅ [LIT ] �′ a′ : Char, ∅ [LIT ]

� 2 : Int, ∅ [LIT ] �′ b′ : Char, ∅ [LIT ]

� 3 : Int, ∅ [LIT ] �′ c′ : Char, ∅ [LIT ]

� case x of{. . .} : τ2, [x �→ τ0]
� λx → case x of{. . .} : τ3 → τ2, ∅ [ABS ]

[CASE ]

The following constraints are collected:

Constraints #0: τ1 ≡ τ0
#1: τ1 ≡ Int
#2: τ1 ≡ Int
#3: τ1 ≡ Int
#4: τ2 ≡ Char
#5: τ2 ≡ Char
#6: τ2 ≡ Char
#7: τ3 ≡ τ0

The first step in the algorithm is to simplify the constraints. Fortunately all the
constraints can be simplified. We don’t have to decompose a variable and there
is no inconsistency to be solved. The computed equality classes are:

Equality classes ( {τ0, τ1, τ3} , {Int} )
( {τ2} , {Char} )

Finally we have to apply the substitution [τ0 := Int, τ1 := Int, τ2 := Char, τ3 :=
Int] to the type τ3 → τ2. The type Int → Char is indeed the type we expect
for the expression.

Example 2
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The next example is a little bit more complicated. In this example there are
two instantiations of the polymorphic identity function. Because we use the
same example as Damas and Milner use in [DM82], we can spot the differences
between the two type inference algorithms.

let i = \x -> x ;
in i i

We use the typing rules to collect a set of constraints and to generate a type for
this expression.

� i : τ3, [i �→ τ3]
[VAR] � i : τ4, [i �→ τ4]

[VAR]

� i i : τ5, [i �→ τ3, i �→ τ4]
[APP]

� x : τ0, [x �→ τ0]
[VAR]

� λx → x : τ1 → τ0, ∅
[ABS ] � i i : . . .

� let i = λx → x; in i i : τ5, ∅
[LET ]

Constraints #0: τ1 ≡ τ0
#1: τ2 ≡ τ1 → τ0
#2: τ3 ≡ τ4 → τ5

τ3 <∅ τ2
τ4 <∅ τ2

As long as τ2 occurs in an equality constraint we cannot simplify the two in-
stance constraints. We start with simplifying constraint #0, which results in
combining the equality classes of τ0 and τ1. After this simplification there are
only constraints left that require the decomposition of a variable. In this exam-
ple we assume that simplifying the constraint (Variable v ≡ s → t) will produce
the substitution [v := v1 → v2], where v1 and v2 are new type variables. Because
the function arrow (→) is not a primitive in our type language, the substitution
actually is [v := v1 v2]. After applying the substitution to the constraint we
get v1 v2 ≡ (→ s) t. This requires an extra decomposition for the variable v1.
We do something similar during the simplification step: s1 → s2 ≡ t1 → t2 is
simplified into the equality constraints s1 ≡ t1 and s2 ≡ t2.

The decomposition for constraint #1 gives us the substitution [τ2 := τ6 →
τ7]. When the substitution is applied to the state we get:
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State during computation
Constraints #1: τ6 → τ7 ≡ τ1 → τ0

#2: τ3 ≡ τ4 → τ5
τ3 <∅ τ6 → τ7
τ4 <∅ τ6 → τ7

Equality classes ( {τ0, τ1} , ∅ )
( {τ3} , ∅ )
( {τ4} , ∅ )
( {τ5} , ∅ )
( {τ6} , ∅ )
( {τ7} , ∅ )

Result type τ5

After the substitution the type variable τ2 has completely disappeared from the
state. We can translate constraint #1 into two new constraints: τ6 ≡ τ1 and
τ7 ≡ τ0. The new constraints will result in an equality class containing τ0, τ1,
τ6 and τ7. The current state is:

State during computation
Constraints #2: τ3 ≡ τ4 → τ5

τ3 <∅ τ6 → τ7
τ4 <∅ τ6 → τ7

Equality classes ( {τ0, τ1, τ6, τ7} , ∅ )
( {τ3} , ∅ )
( {τ4} , ∅ )
( {τ5} , ∅ )

Result type τ5

Because the variables τ6 and τ7 don’t appear in the set of constraint any longer,
we can simplify the instance constraints into equality constraints. Because τ6
and τ7 are in the same class we have to make instances for the polymorphic type
∀α : (α → α). We will introduce a fresh variable for the two instances (τ8 and
τ9) to replace the α. After the instantiation the state is:
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State during computation
Constraints #2: τ3 ≡ τ4 → τ5

#3: τ3 ≡ τ8 → τ8
#4: τ4 ≡ τ9 → τ9

Equality classes ( {τ0, τ1, τ6, τ7} , ∅ )
( {τ3} , ∅ )
( {τ4} , ∅ )
( {τ5} , ∅ )
( {τ8} , ∅ )
( {τ9} , ∅ )

Result type τ5

The constraint #2 and #3 require the decomposition of τ3. After the substitu-
tion [τ3 := τ10 → τ11] and the simplification of #2 and #3 the type variables τ4,
τ5, τ8, τ10 and τ11 are in the same class. At this point the only constraint left is
#4 and to solve this we have to decompose τ4 into τ12 → τ13. All the variables
in the equality class of τ4 have to be decomposed too: [τ4 := τ12 → τ13, τ5 :=
τ14 → τ15, τ8 := τ16 → τ17, τ10 := τ18 → τ19, τ11 := τ20 → τ21]. The state after
this substitution is:

Final state
Constraints empty

Equality classes ( {τ0, τ1, τ6, τ7} , ∅ )
( {τ9, τ12, τ13 . . . τ21} , ∅ )

Result type τ14 → τ15

Because τ14 and τ15 are in the same class, the result is the type a→ a. This is
indeed the type that we expect for this function.
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Chapter 4

Correctness

In the previous chapters we presented an algorithm for inferring the type of
an expression. The question is whether for each expression the result of the
algorithm is equal to the result of other type inference algorithms. In this
chapter we compare our inference rules with the inference rules given by Hindley-
Milner and we show that the rules are equivalent. This implies that our rules
are both sound and complete.

Before we can compare the typing rules from [DM82] and the typing rules
from section 2.4, we have to restrict the expression language. The new ex-
pression language contains variables, applications, lambda expressions and let
expressions with one declared variable. Because only one variable can be de-
clared in a let expression, the typing rule for a let expression is simplified. In this
proof we skip case expressions and literals. The two sets of rules are presented
in table 1 and table 2.

This chapter is organised as follows. In section 4.1 we explain how we can
solve a type under a set of constraints on types. In section 4.2 we discuss the
differences between the assumption set in the Hindley-Milner type system and
the assumption set in the constraint-based type system. In section 4.3 we proof
that the rules of the two type systems are equivalent.

30



VAR: A′ �HM x : σ (x �→ σ in A′)

APP:

A′ �HM f : τ1 → τ2
A′ �HM e : τ1
A′ �HM (f e) : τ2

ABS:
A′\x∪ {x �→ τ1} �HM e : τ2
A′ �HM (λx → e) : τ1 → τ2

LET:

A′ �HM e : τ1
A′\x ∪ {x �→ τ1} �HM b : τ2
A′ �HM (let x = e in b) : τ2

INST:
A′ �HM e : σ
A′ �HM e : σ′ (σ > σ′)

GEN:
A′ �HM e : σ

A′ �HM e : ∀ασ (α not free in A′)

Table 1: Hindley-Milner type inference rules

VAR:
α is fresh

� x : α, [x �→ α]

APP:

α is fresh
� f : τf ,Af

� e : τe,Ae

� (f e) : α, Af ∪ Ae
τf ≡ τe → α

ABS:

α is fresh
� e : τe, Ae

� (\x → e) : α → τe, Ae\x
{α ≡ σ | (x �→ σ) ∈ Ae}

LET:

� e : τe, Ae

� b : τb, Ab

� (let x = e in b) : τb,
Ae ∪ (Ab\x)

{σ <Ae τe | (x �→ σ) ∈ Ab}

Table 2: Type inference rules with type constraints
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4.1 Solve

In this section we define how we solve a set of constraints for a type. The
function Solve is undefined for an inconsistent set of constraints. The type of
the function is:

Solve :: (Constraints, Type) → Type

Definition:

(1) Solve (∅, τ ) = τ

(2) Solve ({TypeV ar a ≡ b} ∪ C, τ) = Solve([a := b]C, [a := b]τ )

(3) Solve ({a b ≡ c d} ∪ C, τ) = Solve({a ≡ c, b ≡ d} ∪ C, τ)

(4) Solve ({TypeCon a ≡ TypeCon a} ∪ C, τ = Solve(C, τ)

(5) Solve ({a <M b} ∪ C, τ) = Solve({a ≡ [xi := yi]b} ∪ C, τ)
only if no type variables in b occur in an equality constraints
in C or in the left-hand side of an instance constraint in C,
where xi are all the type variables in b but not in M and
yi are all new type variables.

Rule (1) defines the function Solve for an empty set of constraints. Because
(≡) is commutative and Solve is only defined for a consistent set of constraints,
rules (2), (3) and (4) cover all consistent combinations in an equality constraints.
Rule (5) translates an instance constraint into an equality constraint.

Theorem 1:

Solve({a → b ≡ c→ d} ∪ C, τ) = Solve({a ≡ c, b ≡ d} ∪ C, τ)

Proof:

Use rules (3) and (4). �

Theorem 2:

Solve(C, a → b) = Solve(C, a) → Solve(C, b)

Proof:

Solving a set of constraints is constructing and applying a substitution.
For all substitutions S and types a and b: S(a → b) = S(a) → S(b).
Because we can distribute a substitution over (→), we can also distribute
the function Solve over (→). �
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Theorem 3:

Solve (C ∪ C ′, τ ) = Solve (C, τ) if there is no type variable in C ′ that
is also in C or in τ

Proof:

The constraints in C ′ construct substitutions about the type variables
in C ′. The application of this substitution does not influence C or τ . �

Theorem 4:

If Solve (C, τ1) =α Solve (C, τ2)
then Solve ({τ1 ≡ τ2} ∪ C, τ3) =α Solve (C, τ3)

Proof:

The substitution S, that is constructed by the constraint set C, has the
property S(τ1) =α S(τ2). The substitution that is constructed for the
equality constraint τ1 ≡ τ2 does not influence S and can be removed
from the set of constraints. �

4.2 Assumptions

Although we keep a set of assumptions in both sets of typing rules, we use the
sets quite differently. In the Hindley-Milner rules a set of assumptions is threaded
to subexpressions. A variable cannot occur more than once in the assumption
set. On the contrary, the assumption set in the new rules is collected bottom-up
and each occurrence of a free variable occurs exactly once in the assumption
set. A variable can occur several times in an assumption set.

In this section we define the function �, to give a relation between two
assumption sets, with the type:

� :: (Assumptions, Assumptions) → Constraints

Definition:

(τ ≡ τ ′) ∈ �(A,A′) ⇔ (x �→ τ ) ∈ A ∧ (x �→ τ ′) ∈ A′

We give some properties of the function �. With the definition of � we can
prove that the rules are correct.
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(1) �(A, ∅) = ∅

(2) �(A,A′) = �(A′,A)

(3) �(A ∪ {x �→ τ},A′) = �(A,A′) ∪ {τ ≡ τ ′ | (x �→ τ ′) ∈ A′}

(4) �(A\x,A′) = �(A\x,A′\x)

(5) �(A1 ∪ A2,A3) = �(A1,A3) ∪�(A2,A3)

The type language described in section 2.2 does not contain a ∀ quantifier.
Because the type system of Hindley-Milner can contain a ∀ quantifier, we have
to translate quantified types into types without a quantifier.

Solve (C ∪ {∀x.τ1 ≡ τ2}, τ3) = Solve (C ∪ {[x := y]τ1 ≡ τ2}, τ3)
where y is a fresh type variable

4.3 Proof of correctness

In this section we show that the type systems presented in table 1 and table 2
are equivalent. We use the function Solve to solve the set of constraints that
is collected. We use the function � to describe the relation of the assumption
sets of the two type systems. The set of constraints that is constructed for an
expression e is notated as Ce. The constraints for an expression are constructed
bottom-up, just like the type and the assumption set for an expression. Be-
cause everything is constructed bottom-up, the sets of type variables in two sub
expressions are always disjoint. This property is very important for the proof.

In the type system of Hindley-Milner there is a typing rule for generalising
types and a rule for instantiating types. In the constraint-based type system
the existence of polymorphism is handled completely different. An instance
constraint combines both the generalisation and the specialisation of a type.
The set of monomorphic variables, kept with an instance constraint, ensures
that we do not generalise type variables assigned to variables bound outside the
let expression.

Theorem 5 (Polymorphism):

In the Hindley-Milner type system, the polymorphic type of a let decla-
ration is present in the set of assumptions in the body of a let expression.
The definition of � justifies the equality constraint in the proof of the-
orem 6, replacing an instance constraint.

Proof:
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In the Hindley-Milner type system the generalisation rule quantifies all the type
variables that are not free in the assumption set. The application of this rule is
only necessary for the generalisation of the type of the declaration. The result
of instantiation of a polymorphic type is equal in the two type systems. �

In theorem 6 we use the notation � e : τ,A, C to express that type τ is assigned
to expression e and that assumption set A and constraint set C are collected.
The set C is implicitly present in the typing rules in table 2.

Theorem 6 (Correctness):

� e : τ,A, C ⇔ A′ �HM e : τ ′

such that Solve (C ∪�(A,A′), τ ) =α τ ′

Proof:

To proof theorem 6, we use induction on the expression. We use the abbreviation
i.h. for induction hypothesis.

variable

Solve (∅ ∪ �([x �→ α],A′), α) (x �→ σ) ∈ A′

= �, rule (3)
Solve ({α ≡ β | (x �→ β) ∈ A′} ∪ �(∅,A′), α) (x �→ σ) ∈ A′

= �, rules (1) and (2)
Solve ({α ≡ β | (x �→ β) ∈ A′}, α) (x �→ σ) ∈ A′

=
Solve ({α ≡ σ}, α)

= Solve, rule (2)
Solve (∅, σ)

= Solve, rule (1)
σ
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apply

i.h. : Solve (Cf ∪�(Af ,A′), τf) =α τ1 → τ2
Solve (Ce ∪�(Ae,A′), τe) =α τ1

Assumption: τf is a function (when satisfying the constraints Cf and
�(Af ,A′)), therefore τf = τf1 → τf2. We strengthen the first induction
hypothesis:

Solve (Cf ∪�(Af ,A′), τf1 → τf2) =α τ1 → τ2
= theorem 2

Solve (. . . , τf1)→ Solve (. . . , τf2) =α τ1 → τ2
=

i.h.* :
{

Solve (Cf ∪�(Af ,A′), τf1) =α τ1
Solve (Cf ∪�(Af ,A′), τf2) =α τ2

sub proof : Solve (Cf ∪ Ce ∪�(Af ∪ Ae,A′), τf1)
= �, rule (5)

Solve (Cf ∪ Ce ∪�(Af ,A′) ∪�(Ae,A′), τf1)
= theorem 3

Solve (Cf ∪�(Af ,A′), τf1)
=α i.h.*

τ1
=α i.h.

Solve (Ce ∪�(Ae,A′), τe)
= theorem 3

Solve (Cf ∪ Ce ∪�(Af ,A′) ∪�(Ae,A′), τe)
= �, rule (5)

Solve (Cf ∪ Ce ∪�(Af ∪ Ae,A′), τe)

Solve (Cf ∪ Ce ∪ {τf ≡ τe → α} ∪ �(Af ∪ Ae,A′), α)
= assumption

Solve (Cf ∪ Ce ∪ {τf1 → τf2 ≡ τe → α} ∪�(Af ∪ Ae,A′), α)
= theorem 1

Solve (Cf ∪ Ce ∪ {τf1 ≡ τe, τf2 ≡ α} ∪ �(Af ∪ Ae,A′), α)
= Solve, rule (2)

Solve (Cf ∪ Ce ∪ {τf1 ≡ τe} ∪ �(Af ∪ Ae,A′), τf2)
= theorem 4 and sub proof

Solve (Cf ∪ Ce ∪�(Af ∪ Ae,A′), τf2)
= �, rule (5)

Solve (Cf ∪ Ce ∪�(Af ,A′) ∪�(Ae,A′), τf2)
= theorem 3

Solve (Cf ∪�(Af ,A′), τf2)
= i.h.*

τ2
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lambda

i.h. : Solve (Ce ∪�(Ae,A′\x∪ {x �→ τ1}), τe) =α τ2

Solve (Ce ∪ {α ≡ σ | (x �→ σ) ∈ Ae} ∪ �(Ae\x,A′), α→ τe)
= �, rule (4)

Solve (Ce ∪ {α ≡ σ | (x �→ σ) ∈ Ae} ∪ �(Ae\x,A′\x), α→ τe)
= �, rule (3)

Solve (Ce ∪�(Ae,A′\x ∪ {x �→ α}), α→ τe)
=α

Solve (Ce ∪�(Ae,A′\x ∪ {x �→ τ1}), τ1 → τe)
= theorem 2

Solve (Ce ∪�(Ae,A′\x ∪ {x �→ τ1}), τ1)→ Solve (. . . , τe)
=

τ1 → Solve (Ce ∪�(Ae,A′\x ∪ {x �→ τ1}), τe)
=α i.h.

τ1 → τ2

let

i.h. : Solve (Ce ∪�(Ae,A′), τe) =α τ1
Solve (Cb ∪�(Ab,A′\x ∪ {x �→ τ1}), τb) =α τ2

Solve (Ce ∪ Cb ∪ {σ <Ae τe | (x �→ σ) ∈ Ab} ∪
�(Ae ∪ (Ab\x),A′), τb)

= theorem 5
Solve (Ce ∪ Cb ∪ {σ ≡ τe | (x �→ σ) ∈ Ab} ∪

�(Ae ∪ (Ab\x),A′), τb)
= �, rule (5)

Solve (Ce ∪ Cb ∪ {σ ≡ τe | (x �→ σ) ∈ Ab} ∪
�(Ae,A′) ∪�(Ab\x,A′), τb)

= i.h.
Solve (Ce ∪ Cb ∪ {σ ≡ τ1 | (x �→ σ) ∈ Ab} ∪

�(Ae,A′) ∪�(Ab\x,A′), τb)
= theorem 3

Solve (Cb ∪ {σ ≡ τ1 | (x �→ σ) ∈ Ab} ∪ �(Ab\x,A′), τb)
= �, rule (4)

Solve (Cb ∪ {σ ≡ τ1 | (x �→ σ) ∈ Ab} ∪ �(Ab\x,A′\x), τb)
= �, rule (3)

Solve (Cb ∪�(Ab,A′\x ∪ {x �→ τ1}), τb)
=α i.h.

τ2
�
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Chapter 5

Solving inconsistencies

In chapter 3 an algorithm for computing the type of an expression from a set of
constraints is given. In this chapter we discuss dealing with inconsistencies. In
order to decide which constraint is most likely to contain an error, we have to
keep some extra information. First we introduce a new data structure to store
additional information in an equality class. In section 5.2 we define (again) what
we mean with an inconsistency. In sections 5.3 and 5.4 two different strategies
are explained to remove an inconsistency in a state. In both cases an example
is given to clarify the definitions and the strategies. In section 5.5 we compare
the two approaches and discuss the advantages and disadvantages of the two
methods. Finally, in section 5.6 we explain how we generate an error message.

5.1 Equality graphs

Equality classes are continuously modified while we are solving the equality
constraints in the state. Instead of only storing which variables and constants
form an equality class, we also store why this is the case. From the algorithm we
see that there are only two possible operations on an equality class: a constant
is put in the same class as a variable or the equality classes of two variables are
combined into one new equality class. We use an undirected graph to represent
the equality classes. The graph has the following properties:

• a vertex corresponds to a type variable or a type constant in the state.

• an edge corresponds to the constraint from the initial state that is respon-
sible for the two types in the vertices being equal.

• a vertex containing a type constant has exactly one edge to a vertex con-
taining a type variable.

• each type variable in the state occurs exactly once in a vertex. A type
constant can occur in many vertices.
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• an equality class is represented by a connected component in the graph.

Consider the first example in 3.4 again and compare the equality class and
the graph in figure 5.1. As you can see the graph consists of two connected
components, each representing an equality class.

Int

Int

Intτ

0τ τ τ1 2

3

#0 #2 #5

#1

#3#7

#4

#6

Char

Char

Char

Figure 5.1: A graph containing two equivalence classes

Two types are in the same class if there is a path between the vertices containing
those types. In [CLR90] a definition of a path is given:

Definition:

A path of length k from a vertex u to a vertex u′ in a graph G = (V, E)
is a sequence < v0, v1, v2, · · · , vk > of vertices such that u = v0, u′ = vk

and (vi−1, vi) ∈ E for i = 1, 2, · · · , k. [. . .] The path contains the vertices
v0, v1, · · · , vk and the edges (v0, v1), (v1, v2), · · · , (vk−1, vk).

Because cycles can occur in the graph it is possible that there is an infinite
number of paths between two vertices. To avoid this we strengthen the definition
with the condition that a path can contain each vertex only once.

5.2 Consistency

In section 3.3 we defined when there is an inconsistency in a state. Now that
we are using graphs as a representation for an equality class we use the same
ideas. A state is inconsistent if there is an inconsistent equality graph. There
are two possibilities for a graph to be inconsistent:

• two different type constants are in the same connected component. In
other words: there is a path between two vertices containing different
type constants. This path is called an error path.

• a variable has to be decomposed, but it is also part of a connected com-
ponent containing a type constant. A variable v has to be decomposed
if and only if there is a constraint (Variable v ≡ Apply s t) in the state,
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where both s and t are arbitrary types. In other words: there is a path
between such a vertex containing type variable v and a vertex containing
a type constant. This path is called a decompose path.

To remove the inconsistency we should remove (at least) one edge for each error
and decompose path.

5.3 Approach 1: lowest total cost

We will throw away a set of edges from a graph to make it consistent again.
There is always such a set available: if we remove all edges the graph is cer-
tainly consistent. The problem is to throw away those edges for which the
corresponding error message makes sense to the programmer.

Definition of the cost function

We construct a cost function which returns for each edge the removal cost.

cost :: edge → N

We choose this cost function such that the higher the cost the more likely it
is that the equality, represented by the edge in the graph, is correct. On the
other hand, the lower the value the more evidence there is that this edge (or this
constraint) is the source of an inconsistency. Each constraint receives a trust
value when it is constructed. This trust value represents the trust we have in
a constraint before we start solving the constraints. For instance, a constraint
that is created because we use a prelude function receives a high trust value.
The cost function should ensure that:

• we destroy as few as possible good paths. A good path is a path between
two vertices containing the same type constant.

• it is expensive to remove an edge that is associated with a constraint that
has a high trust factor compared to the removal cost of an edge associated
with a constraint with a low trust factor.

The cost associated with the deletion of edge e, constructed by constraint c, is
defined as:

(1 + occurrences of e in a good path) ∗ trust(c)

Definition:
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A is a minimal set in graph G = (V, E) if and only if:

• A ⊆ E

• graph (V, E − A) is consistent

• ∀a∈A: (A\a) is not a minimal set in G

The set A, containing the edges that we remove from the graph, must satisfy
the following conditions:

• A is a minimal set

• for each minimal set B:
∑
a∈A

cost(a) ≤
∑
b∈B

cost(b)

Example

We want to solve the inconsistency in the following graph:

Bool

Int

Int

τ
#1

τ τ 2 τ0 1 3

#0

#2 #3 #4

#0

#4 dec

Figure 5.2: A graph with an inconsistency

Say that the trust values for the constraints are in the range from 1 to 5.
The edges labelled with #0 and #2 are drawn thicker to indicate that these
constraints have a high trust factor compared to the others. In the graph there
are two edges labelled with #0 and two edges labelled with #4. It is possible
that there are several edges labelled with the same constraint number; while
we are solving a constraint it can be split into two new constraints. From τ1
there is an edge to a vertex with dec. This is to suggest that equality constraint
#4 requires the decomposition of τ1. The line is dashed because the edge and
the constant dec are not in the actual graph, although that would have been
convenient for calculating the cost function. The motivation for the absence
of the decompose constant in the graph is that we want to separate the set
of constraints and the equality classes in the state. The constant dec is only
necessary for the calculation of the cost function. First we have to create a cost
function for this graph. There is only one good path present, that connects the
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two type constants Int. The edges for this path are labelled with #0 and #1.
This results in the following cost function:

good trust cost
#0 1 5 10
#1 1 1 2
#2 5 5
#3 1 1
#4 1 1

Before we calculate the minimal sets we need to find all the inconsistencies:

• there are two wrong paths: {#1,#2,#3,#0} and {#0,#2,#3,#0}.

• there are three decompose paths: {#4,#2,#1}, {#4,#2,#0} and {#4,
#3,#0}.

We can summarise these inconsistencies in a matrix: each row corresponds with
a wrong path or a decompose path, each row corresponds with a constraint.
The number of crosses in a column indicate the number of occurrences of the
constraint in paths that cause an inconsistency.

#0 #1 #2 #3 #4
× × × ×
× × ×

× × ×
× × ×
× × ×

A minimal set contains at least one constraint from each erroneous path. For
each set the total cost value is calculated:

minimal set total cost
{#0,#1} 12
{#0,#2} 15
{#0,#4} 11
{#2,#3} 6
{#2,#4} 6
{#3,#4} 2

The edges in the minimal set with the lowest total cost value, {#3,#4}, are
removed from the graph to solve the inconsistency. For each constraint that is
removed we produce an error message. In 5.6 we discuss constructing an error
message for an equality constraint that is removed from the set of constraints.
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5.4 Approach 2: greedy-choice

A different approach is to consider the profit of removing an edge from a graph
instead of its cost. From this point of view it is reasonable to remove the one
edge with the highest profit. The profit function we define in this section is
not the negation of the cost function because it also takes erroneous paths into
account, and not just the number of occurrences in good paths.

The approach that we discuss in this section is an example of a greedy al-
gorithm. In a greedy algorithm, we make whatever choice seems best at the
moment and then solve the subproblems arising after the choice is made. The
choice made by a greedy algorithm may depend on choices so far, but it cannot
depend on any future choices or on the solutions to subproblems ([CLR90]).
Unfortunately this problem doesn’t meet the greedy-choice property : the global
optimal solution cannot be found by constructing locally optimal solutions. Still
we can make some interesting observations when we use this technique.

Definition of the profit function

First we define the profit function. All the edges in an error path or a decompose
path should be penalised: we increase the profit function for these edges. The
longer an error path is the more edges we can remove to get rid of the error
path.

Definition:

Let P be the set of error paths in the equality graph, then Pe contains all
the paths in P that contain edge e. For some heuristic value Herror > 0
we define:

error(e) =
∑

p∈Pe

Herror

number of different edges in p

We introduce the heuristic valueHerror to represent the total profit for removing
one error path. Similar to the definition of error(e) we can introduce a heuristic
value Hdecompose > 0 for defining a function decompose(e) to penalise the edges
in a decompose path. To prevent that a good path is removed, the profit value
for an edge is decreased if the edge occurs in a good path. The definition for
the function good(e) is similar to error(e) and decompose(e), with the only
difference that Hgood < 0. Finally we use the trust value of the constraint to
calculate the profit value. The profit for removal of an edge e, generated by
constraint c, is:

error(e) + good(e) + decompose(e)
trust(c)

With this profit function we can determine which edge is removed:
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Definition:

We remove edge a ∈ E from graph G = (V, E) if and only if:

• ∀e∈E : profit(a) ≥ profit(e)

Example

We will use the same example as used in 5.3. Take a look again at the graph in
figure 5.2. First we need a set of heuristic values, let us assume that:

Herror = 24
Hgood = −12
Hdecompose = 24

Now we can calculate the profit value for each constraint. There are two error
paths, one good path and three decompose paths. Again we assume that the
constraints #0 and #2 have a high trust value and the other constraints have
a normal trust value.

error good decompose sub total trust profit
#0 14 -6 16 24 5 4.8
#1 6 -6 8 8 1 8.0
#2 14 16 30 5 6.0
#3 14 8 22 1 22.0
#4 24 24 1 24.0

Using the greedy method we decide that constraint #4 is erroneous. We remove
all the edges referring to this constraint in the graph. It is possible that an
equivalence class is split into two new classes because of the removal of an edge.
In this example variable τ3 is separated from the variables τ0, τ1 and τ2. Figure
5.3 shows the situation after constraint #4 has been removed.

Bool

Int

Int

τ
#1

τ τ 2 τ0 1 3

#0

#2 #3

#0

Figure 5.3: The graph after #4 has been removed
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Unfortunately the inconsistency has not been removed by throwing away one
constraint. In order to make another greedy step we have to recalculate the
profit table

error good decompose sub total trust profit
#0 14 -6 8 5 1.6
#1 6 -6 0 1 0.0
#2 14 14 5 2.8
#3 14 14 1 14.0

The graph is consistent again after the removal of constraint #3. Figure 5.4
shows the final graph.

Bool

Int

Int

τ
#1

τ τ 2 τ0 1 3

#0

#2

#0

Figure 5.4: The graph after #3 has been removed

5.5 Comparison of the approaches

We presented two approaches to remove an inconsistency. The first approach
uses a cost function and removes the minimal set with the lowest total cost
from the state. The second approach uses a profit function and removes only
the constraint with the highest profit. In this section we compare the two
approaches.

The inconsistency in figure 5.2 was used as an example to illustrate both
methods. The final result is in both cases the same: the constraints #3 and #4
are removed. This is not a coincidence because both approaches were designed
to remove erroneous paths in the graph and to save (as many as possible) correct
paths. Although the results are equal for this example, the two methods do not
remove the same set of constraints for every inconsistency.

The advantage of searching for a minimal set of constraints is that the state
is consistent if the constraints in this set are removed. A disadvantage is that
it can be expensive to compute every minimal set. In the worst case, the total
number of minimal sets for n constraints is exponential. Consider the graph
with n/2 erroneous paths: {#1,#2}, {#3,#4}, . . ., {#(n−1),#n}. This graph
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has 2n/2 different minimal sets. Fortunately, because the set of constraints is
generated from an expression, it is not reasonable to assume that we encounter
inconsistent graphs with such an extreme high number of minimal sets.

The disadvantage of the greedy approach is that after the constraint with
the highest profit is removed, the state does not have to be consistent. Worst
case, we have to make several greedy choices before we have a consistent state.
For each greedy step we have to calculate a new profit function. Again it is
not reasonable to assume that we have to make several greedy steps before we
have a consistent state. We only expect a limited number of type errors in an
expression. This approach performs best if only a small number of constraints
is to be removed.

5.6 Error messages

This chapter explains how we remove constraints to restore consistency in a
state. The price we have to pay for the removal of a constraint is the construction
of an error message. For each constraint that is removed we construct exactly
one error message. It is important to determine which typing rule generated the
erroneous constraint. The information in the error message depends on which
typing rule generated the constraint. For instance, if an erroneous equality
constraint is constructed in the typing rule for an application, we indicate that
this application is the source of a type error. If the function plus has type Int
→ Int → Int, the Hugs interpreter produces the following error message for
the function plus 3 True:

ERROR "example.hs" (line 4): Type error in application
*** Expression : plus 3 True
*** Term : True
*** Type : Bool
*** Does not match : Int

In this section we discuss how we can produce the same error message with the
constraint-based type inferencer. The initial state that is constructed for the
expression plus 3 True is:

Initial state
Constraints #0: τ0 ≡ Int → τ1

#1: τ1 ≡ Bool → τ2
#2: τ0 ≡ Int → Int → Int

Result type τ2

Constraint #0 and #1 are constructed in the rule for applications. Constraint
#2 is constructed for the variable plus that has type Int → Int → Int. We
assume that #2 has a high trust value. When we solve the set of constraints
we apply the substitution [τ0 := τ3 → τ4, τ4 := τ5 → τ6, τ1 := τ7 → τ8] to
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decompose variables, until we discover an inconsistency in the equality graph.
The following figure shows the inconsistent graph at this point:

3τ

τ τ

τ 7

6 8 τ

τ 5Int
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#0

#0

#0#2

#2

#2 #1

#1

Figure 5.5: Equality graph for plus 3 True

After an analysis of the graph, constraint #1 is nominated to be removed: the
graph is consistent again after the removal of constraint #1. In the initial state
constraint #1 is τ1 ≡ Bool → τ2. Before we can construct a nice error message
we have to take a look at the part of the inference tree that constructed this
constraint:

. . .

� plus 3 : τ1, [plus �→ τ0]
[APP] � True : Bool, ∅ [LIT ]

� (plus 3) True : τ2, [plus �→ τ0]
[APP]

If we apply the substitution in the final state to the types in constraint #1,
the result is the constraint (Int → Int ≡ Bool → τ2). This equality constraint
explains the inconsistency. If we apply all the substitutions to the assigned
type variables in the typing rules, we can construct a nice error message. For
instance, the type variable assigned to the expression plus 3, type variable τ1,
is substituted into Int → Int.

ERROR: Type error in application
*** plus 3 :: Int -> Int
*** True :: Bool
*** plus 3 True :: a

We can give a more specific error message because we see that the type of the
argument (Bool) is different from the type the function expects (Int). A better
error message for this example is:
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ERROR: Type error in argument of application
*** Expression : plus 3 True
*** Term : True
*** Type : Bool
*** Does not match : Int

It is also possible that the type of the function turns out to have a constant
type. If we try to assign a type to the expression 3 True we want a message
that is similar to the following error message:

ERROR: Type error in function of application
*** Expression : 3 True
*** Term : 3
*** Type : Int
*** Explanation : a function type was expected

For every constraint that is removed from the constraint set we create an ap-
propriate error message.
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Chapter 6

Future work

The motivation for this article is the obscurity of some of the error messages
generated by the Haskell interpreter. In this article we present a new approach to
generating error messages for ill-typed expressions that are easier to understand
for an inexperienced programmer. The trade off is that type inferencing takes
more time, also for well typed expressions. There are still a lot of things to
do before error messages are much easier to understand for an inexperienced
programmer. Research in improving error messages at the University of Utrecht
will continue. In this chapter some possibilities for future research are given.

Extending the expression language

The expression language that is used as input for the type inferencer is only a
small subset of the expressions accepted by Haskell. Only if we can type check
all the expressions that are accepted by Haskell, it can be useful to replace the
current type checker by the type checker described in this paper. Besides the
absence of syntactic sugar in our language, there are some features missing in
the language that require an implementation.

It is interesting to assign a type to an expression that is explicitly typed,
especially if the declared type does not match the type that was assigned to the
expression by the type checker. The declared type is the type the programmer
expects the expression to have. An explicit type gives us more type information
and makes it easier to correctly point out where the type error occurs. Explicit
typing is not only a tool to document a program, it also extends the expression
language. Consider the next Haskell function:

f :: (forall a . (a -> a)) -> (Char,Bool)
f i = (i ’a’,i True)

With a forall quantifier in an explicit type, lambda bound variables can have
a polymorphic type. This function is well typed only if it is explicitly typed.
We expect that explicit typing can increase the exactness of an error message
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considerably. Besides explicit typing there are some other features in Haskell
that are interesting to investigate:

• Type classes in Haskell add a lot of convenience for the programmer.
One of the benefits of type classes is overloading. We have not looked at
extending the algorithm such that we can use type classes in our expression
language.

• [GJ96] discusses a polymorphic type system for Extensible Records.

Soft typing

The presented constraint-based type system is static because it detects an
ill-typed expression at compile-time. There are also type systems that de-
tect ill-typed programs at run-time, they are called soft type systems ([CF91],
[AWL94]). If it is possible to give a constraint-based type checker that detects
errors dynamically, is still a question.

Type synonyms

Type synonyms introduce new names for existing types. They allow us to assign
more comprehensive types to expressions. Consider the next part of a program:

type Counter = Int

zeroCounter :: Counter
zeroCounter = 0

The type of the function zeroCounter is very intuitive. Unfortunately, the
Haskell type checker removes synonyms. For instance, the inferred type of the
expression (id zeroCounter) is Int. For this example the synonym Counter
is more appropriate. If we use type synonyms in the generated error messages,
we produce error messages that are easier to understand.

Type tracing

Often it is not clear why a certain type is assigned to an expression. The
possibility to ask for an explanation of the assigned type could be very helpful.
In [BS93] an implementation for this facility is presented. Because we construct
several equality classes, we can generate a similar explanation fairly easily: all
information that is needed is available in the classes.

Advanced output

The presentation of error messages in current Haskell interpreters is restricted
to ASCII output. A possible solution to avoid this restriction is to export the
error message to an output file. For instance, the error message is translated
into a XML document. When we present an document in XML we have the
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disposal of features (such as colour and style) that improve the presentation of
an error. Interaction between the programmer and the error message is another
improvement. The possibility to ask for the type of a variable in an expression,
or to ask why a certain type is assigned to an expression, can increase the
understanding of an error message.

Optimising data structures

Although speed is not a primary issue, it is important not to neglect efficiency
issues. Our current implementation is very time consuming, especially the de-
composition of variables costs a lot of time. For the definition of the function
foldr there are 28 type variables in the initial state. At the end there are 174
different type variables: 144 variables are introduced because of decomposition.
If we use a different data structure to represent equality classes (a structure
that doesn’t require decomposition of a variable), we get a more efficient imple-
mentation.

BANE

BANE is a toolkit to construct constraint-based program analyses. An example
of a simple type inferencer for a lambda calculus, expressed in BANE, is pre-
sented in [AFFS98]. It is interesting to see if we can use the toolkit to replace
the part in the implementation of our algorithm that is responsible for solving
the set of constraints.

Other heuristics

If we investigate why certain type errors occur frequently, we can add new
heuristics to our type system that construct clear error messages for common
mistakes. For instance, it happens often that two arguments are passed in the
wrong order to a function. It is easy to check if changing the order of arguments
resolves the inconsistency in the set of constraints.
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Chapter 7

Conclusion

The goal of this research is to improve the quality of error messages for ill-typed
expressions. The approach presented in this paper combines ideas from several
articles. Instead of unification on types a set of constraints is constructed, as
suggested in [AFFS98]. Six syntax-directed typing rules are used for the con-
struction of this set. The left-to-right bias, described in [McA98], is completely
removed because the order in which the constraints are solved is irrelevant. The
set of constraints generates an equality graph, containing each assigned type
variable. The decomposition of type variables, while solving the constraints,
explains the differences with graphs presented in [McA99] and [GVS96]. In case
of an ill-typed expression, the equality graphs gives us the possibility to ap-
ply several heuristics to determine the most likely source of the type conflict.
The heuristics described in this paper increase the exactness of the error mes-
sage considerably. With the information available in the equality graph we can
give an explanation of the type conflict that points out the conflicting sites. A
constraint-based approach to inferring the type of an expression is implemented
in Haskell.
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Appendix A

Collection of constraints

We use an attribute grammar to collect the constraints from an expression in
the implementation of the type inferencer. The grammar is a translation of the
type inference rules that were discussed in section 2.4.

The UU AG system, developed by Doaitse Swierstra, compiles this file into
a correct Haskell program. More information about the UU AG system can be
found at:

http://www.cs.uu.nl/groups/ST/Software/UU_AG/index.html

import Literal ( Literal, typeLiteral )

import Type ( Type, TypeVariable, TypeConstant, (.->.) )

import List ( partition )

\BT

data Constraint = Equality Type Type

| Instance Monos Type Type deriving Show

type Assumption = (Identifier,Type)

type Assumptions = [Assumption]

type Constraints = [Constraint]

type Identifier = String

type Mono = Type

type Monos = [Mono]
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bind :: (Type -> Type -> Constraint) -> Assumptions

-> Assumptions -> (Constraints,Assumptions)

bind combine table = foldr op ([],[])

where op a@(v,t) (cs,as)

= let x = filter ((v==).fst) table

in if null x then (cs,a:as)

else (map (combine t.snd) x++cs,as)

isConstructor :: String -> Bool

isConstructor [] = False

isConstructor (x:_) = isUpper x

\ET

\BC

DATA Expr

| Variable variable : Identifier

| Literal literal : Literal

| Apply fun : Expr arg : Expr

| Lambda variable : Identifier expr : Expr

| Case expr : Expr alts : Alternatives

| Let decls : Decls expr : Expr

DATA Alternatives

| Empty

| Alternative patt:Expr expr:Expr alts:Alternatives

DATA Decls

| Empty

| Decl variable:Identifier expr:Expr decls:Decls

SEM Expr [

| unique : Int -- type variable counter

| type : Type -- type

ass : Assumptions -- assumptions

cons : Constraints -- collected constraints

]

| Variable LHS.type = "alpha"

.ass = "[(variable,alpha)]"

.cons = "[]"

.unique = "lhs_unique+1"

LOC.alpha = "TypeVariable lhs_unique"

| Literal LHS.type = "TypeConstant (typeLiteral literal)"

.ass = "[]"

.cons = "[]"
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| Apply LHS.type = "alpha"

.ass = "fun_ass++arg_ass"

.cons = "new:fun_cons++arg_cons"

.unique = "arg_unique+1"

LOC.alpha = "TypeVariable arg_unique"

.new = "Equality fun_type (arg_type .->. alpha)"

| Lambda LHS.type = "alpha .->. expr_type"

.ass = "bs"

.cons = "new++expr_cons"

.unique = "expr_unique+1"

LOC.alpha = "TypeVariable expr_unique"

.new = "map (Equality alpha.snd) as"

.(as,bs) = "partition ((==variable).fst) expr_ass"

| Case LHS.type = "beta"

.ass = "expr_ass++alts_ass"

.cons = "new:expr_cons++alts_cons"

.unique = "alts_unique+2"

LOC.alpha = "TypeVariable alts_unique"

.beta = "TypeVariable (alts_unique+1)"

.new = "Equality alpha expr_type"

| Let LHS.type = "expr_type"

.ass = "bs++ds"

.cons = "as++cs++decls_cons++expr_cons"

LOC.monos = "map snd ds"

.(as,bs) = "bind (Instance monos) decls_env expr_ass"

.(cs,ds) = "bind (Equality ) decls_env decls_ass"

SEM Alternatives [ alpha : Type -- type of lhs

beta : Type -- type of rhs

| unique : Int -- type variable counter

| ass : Assumptions -- assumptions

cons : Constraints -- collected constraints

]

| Empty LHS.ass = "[]"

.cons = "[]"

| Alternative LHS.ass = "bs++cs++alts_ass"

.cons = "new++as++patt_cons++expr_cons++alts_cons"

LOC.new = "[ Equality lhs_alpha patt_type"

", Equality lhs_beta expr_type ]"

.(as,bs) = "bind Equality ds expr_ass"

.(cs,ds) = "partition (isConstructor.fst) patt_ass"
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SEM Decls [

| unique : Int -- type variable counter

| ass : Assumptions -- assumptions

cons : Constraints -- collected constraints

env : Assumptions -- alpha’s for the declarations

]

| Empty LHS.ass = "[]"

.cons = "[]"

.env = "[]"

| Decl LHS.ass = "expr_ass++decls_ass"

.cons = "new:expr_cons++decls_cons"

.env = "(variable,alpha):decls_env"

.unique = "decls_unique+1"

LOC.alpha = "TypeVariable decls_unique"

.new = "Equality alpha expr_type"

\EC
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