
Specifying Strategies for Exercises

Bastiaan Heeren 1 Johan Jeuring 1,2

Arthur van Leeuwen 2 Alex gerdes 1

1 Open Universiteit Nederland
2 Universiteit Utrecht, The Netherlands

July 30, 2008 (MKM’08)
Birmingham

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Overview

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Procedural skills

In many subjects students have to acquire procedural skills:
I Mathematics:

I calculate the value of an expression
I solve a system of linear equations
I differentiate a function
I invert a matrix

I Logic: rewrite a logical expression to disjunctive normal
form

I Computer Science: construct a program from a
specification using Dijkstra’s calculus

I Physics: calculate the resistance of a circuit
I Biology: calculate inheritance values using Mendel’s laws

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Tutoring tools for procedural skills

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Wisweb (Freudenthal Instituut)

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



LeActiveMath

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



MathXPert

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Aplusix

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Tutoring tools for procedural skills

I Tutoring tools for practicing procedural skills:
I generate exercises
I support stepwise construction of a solution
I select a rewriting rule, or apply a transformation
I determine whether a solution is correct/incorrect

I Such tools offer many advantages to users:
I work at any time
I select material and exercises
I a tool can select exercises based on a user-profile
I a tool can log user errors, and can report common errors

back to teachers
I a tool can give immediate feedback

I There exist many tools for practicing procedural skills
I How are procedures represented?

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Representing strategies

I Strategies (procedures) are almost always specified
informally

I If a tool can deal with a strategy, it is often hard-wired
I Different teachers sometimes use different strategies for

solving problems
I Strategies need to be adaptable and programmable
I If we want diagnose user errors, and give automatic

feedback based on a strategy for an exercise, we need an
explicit description of the strategy

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Rewriting to disjunctive normal form (1)

Rewrite rules for logical propositions:

¬¬p ⇒ p p ∧ (q ∨ r) ⇒ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ⇒ ¬p ∨ ¬q (p ∨ q) ∧ r ⇒ (p ∧ r) ∨ (q ∧ r)

¬(p ∨ q) ⇒ ¬p ∧ ¬q

I Exercise: bring proposition to disjunctive normal form

¬(¬(p ∨ q) ∧ r)

⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Exercise is solved in just two steps

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Rewriting to disjunctive normal form (1)

Rewrite rules for logical propositions:

¬¬p ⇒ p p ∧ (q ∨ r) ⇒ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ⇒ ¬p ∨ ¬q (p ∨ q) ∧ r ⇒ (p ∧ r) ∨ (q ∧ r)

¬(p ∨ q) ⇒ ¬p ∧ ¬q

I Exercise: bring proposition to disjunctive normal form

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Exercise is solved in just two steps

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Rewriting to disjunctive normal form (2)

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Rewriting to disjunctive normal form (3)

I A different derivation (same proposition):

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Same answer, more steps

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Three strategies for disjunctive normal form (1)

Monkey strategy
Apply rules for propositions exhaustively

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Three strategies for disjunctive normal form (1)

Monkey strategy
Apply rules for propositions exhaustively

Not very attractive, since it allows

¬¬(p ∨ q)
⇒ ¬(¬p ∧ ¬q)
⇒ ¬¬p ∨ ¬¬q
⇒ p ∨ ¬¬q
⇒ p ∨ q

instead of

¬¬(p ∨ q)
⇒ p ∨ q

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Three strategies for disjunctive normal form (2)

Algorithmic strategy
I Remove constants
I Unfold definitions of implication and equivalence
I Push negations inside (top-down)
I Then use the distribution rule

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Three strategies for disjunctive normal form (2)

Algorithmic strategy
I Remove constants
I Unfold definitions of implication and equivalence
I Push negations inside (top-down)
I Then use the distribution rule

Better, but it doesn’t take tautologies into account

(p ∨ q)↔ (p ∨ q)
⇒ ((p ∨ q) ∧ (p ∨ q)) ∨ (¬(p ∨ q) ∧ ¬(p ∨ q))
⇒ ...

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Three strategies for disjunctive normal form (3)
Expert strategy

I Apply the algorithmic strategy
I Whenever possible, use rules for tautologies and

contradictions

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Modelling intelligence

To model intelligence in a computer program, Bundy (The
Computer Modelling of Mathematical Reasoning, 1983)
identifies three important, basic needs:

1. The need to have knowledge about the domain
2. The need to reason with that knowledge
3. The need for knowledge about how to direct or guide that

reasoning

In our running example,
1. the domain consists of logical expressions
2. reasoning uses rewrite rules for logical expressions
3. strategies guide that reasoning

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Specifying a strategy

From the informal specifications of the strategies for DNF we
infer that we need the following concepts for specifying a
strategy:

I apply a basic rewrite rule (”∧ distributes over ∨”)
I sequence (”first . . . then . . . ”)
I choice (”use one of the rules for ¬”)
I apply exhaustively (”repeat . . . as long as possible”)
I traversals (”apply . . . top down”)

These concepts all appear in (program) transformation
languages such as Stratego: a similar language for specifying
strategies seems feasible

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



A strategy language

I The rewrite rules of the domain are the basic ingredients of
our strategies.

I A rule can be applied to a term. The application may
succeed or fail.

I On top of the basic rules we have the following basic
combinators:

Strategy combinators

1. Sequence s <?> t
2. Choice s <|> t
3. Unit elements succeed , fail
4. Labels label ` s
5. Recursion fix f

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Concepts

I Just as a rule, a strategy can be applied to a term
I Labels are used to mark positions in a strategy
I Combinators are inspired by context-free grammars
I In fact, this is an embedded domain specific language (in

Haskell) and more combinators can be added:

many s = fix (λx → succeed <|> (s <?> x))

repeat s = many s <?> not s

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Traversals

I once s applies strategy s once to one of the immediate
children of the argument term (specific for the domain)

once s (p ∧ q) = {p′ ∧ q | p′ ← s p} ∪ {p ∧ q′ | q′ ← s q}
once s (¬p) = {¬p′ | p′ ← s p}
once s True = ∅
...

With once we can now define:
I somewhere s: apply s once to a subterm
I bottomUp s: apply s bottom up
I topDown s: apply s top down

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Traversals

I once s applies strategy s once to one of the immediate
children of the argument term (specific for the domain)

once s (p ∧ q) = {p′ ∧ q | p′ ← s p} ∪ {p ∧ q′ | q′ ← s q}
once s (¬p) = {¬p′ | p′ ← s p}
once s True = ∅
...

With once we can now define:
I somewhere s: apply s once to a subterm
I bottomUp s: apply s bottom up
I topDown s: apply s top down

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



DNF strategies revisited (1)

Monkey strategy:

dnfStrategy1 = repeat (somewhere basicRules)

basicRules = label "Basic rules"
( constants <|> definitions

<|> negations <|> distribution)

constants = label "Constant rules"
( andTrue <|> andFalse <|> orTrue

<|> orFalse <|> notTrue <|> notFalse)

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



DNF strategies revisited (2)

Algorithmic strategy:

dnfStrategy2 =
label "step 1" (repeat (topDown constants))

<?> label "step 2" (repeat (bottomUp definitions))
<?> label "step 3" (repeat (topDown negations))
<?> label "step 4" (repeat (somewhere distribution))

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Using strategies for error diagnosis and feedback

Given a term, a strategy, and a step made by a student, we can
give several kinds of feedback:

I Feedback after a step
I Progress
I Strategy unfolding
I Hint
I Completion problems
I Buggy strategies

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



How

Conceptually:
I View the strategy specification as a grammar
I Solving an exercise is now constructing a sentence using

the grammar
I Prefix parsers can be used to diagnose errors and give

feedback
The details of how this is done is worth another presentation

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Related work

I Anderson: Rules of the mind
I VanLehn: Mind bugs – the origins of procedural

misconceptions
I Collections of condition-action rules
I Leading argument: the procedural language should be

psychologically plausible
I Our point: the diagnosis and feedback should be

psychologically plausible
I Our language satisfies VanLehn’s requirements
I In many other approaches, rules and strategies are

hard-wired into the tool

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)



Current status and future work

Current status:
I A library with which we can define strategy recognizers

See ideas.cs.uu.nl/trac/

I Tested on logic expressions, linear algebra, arithmetic
expressions, and relational algebra

I Used to a limited extent in some courses
I Most of the forms of error diagnosis and feedback
I Available as web services

Future work:
I Investigate strategies for constructing programs
I Give a formal account of strategies
I Flexible strategies
I Simplify adding a new domain

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)

ideas.cs.uu.nl/trac/


Conclusions

I We have introduced a strategy language with which we
can specify strategies in many domains

I A strategy is specified as a context-free grammar,
extended with some non-context-free constructs

I The formulation of a strategy as a context-free grammar
allows us to automatically calculate several kinds of
feedback and error diagnosis

I Separating strategy specification from error diagnosis and
feedback calculation makes it possible to calculate different
kinds of feedback

I Ours is not the first strategies for exercises language, but it
is the first that allows automatic calculation of different
kinds of error diagnosis and feedback

Heeren, Jeuring et al. – Specifying Strategies for Exercises (MKM’08)


