
Canonical Forms in Interactive Exercise
Assistants

Bastiaan Heeren 1 Johan Jeuring 1,2

1 Open Universiteit Nederland
2 Universiteit Utrecht, The Netherlands

11 July 2009 (MKM’09)
Grand Bend, Canada

2[Canonical Forms in Interactive Exercise Assistants]

DWO Math Environment §1

I Applet by Freudenthal Institute for linear equations

Buttons for the operations

No further hints
or feedback

The tool checks
each step

Different modes for
solving an exercise

3[Canonical Forms in Interactive Exercise Assistants]

Interactive exercises §1

Ideally, interactive exercise assistants do more than validating
submitted answers:

I Present worked-out examples
I Provide hints how to proceed
I Comment on the direction of a step

A prototype applet of
DWO, extended with our
feedback services

4[Canonical Forms in Interactive Exercise Assistants]

Finer control over symbolic simplification §1

A popular approach for exercise assistants is to delegate all
computations to a CAS:

X Gives good instant results
× Cannot be configured easily for finer control
× Not designed for interaction with exercise assistants

We follow Beeson’s guidelines:

I Cognitive fidelity: software solves problem as student does
I Glassbox computation: you can see how software solves the

problem
I Customization of software to level of user

4[Canonical Forms in Interactive Exercise Assistants]

Finer control over symbolic simplification §1

A popular approach for exercise assistants is to delegate all
computations to a CAS:

X Gives good instant results
× Cannot be configured easily for finer control
× Not designed for interaction with exercise assistants

We follow Beeson’s guidelines:

I Cognitive fidelity: software solves problem as student does
I Glassbox computation: you can see how software solves the

problem
I Customization of software to level of user

5[Canonical Forms in Interactive Exercise Assistants]

Our approach: strategies for exercises §1

I Strategies (MKM’08) specify how to solve an exercise
incrementally:

solveEquation = repeat (Merge<|>Distribute<|>NoDivision)
<∗> try VarLeft<∗> try ConRight<∗> try Scale

I Feedback can be calculated automatically from a strategy

I Challenges with mathematical domains are:
1. How to describe the rewrite rules without worrying about

the underlying representation
2. How to show “intuitive” terms only
3. Granularity of rewrite steps should match users background
4. How to recognize strategy steps performed by a student

I We propose to use views

5[Canonical Forms in Interactive Exercise Assistants]

Our approach: strategies for exercises §1

I Strategies (MKM’08) specify how to solve an exercise
incrementally:

solveEquation = repeat (Merge<|>Distribute<|>NoDivision)
<∗> try VarLeft<∗> try ConRight<∗> try Scale

I Feedback can be calculated automatically from a strategy
I Challenges with mathematical domains are:

1. How to describe the rewrite rules without worrying about
the underlying representation

2. How to show “intuitive” terms only
3. Granularity of rewrite steps should match users background
4. How to recognize strategy steps performed by a student

I We propose to use views

5[Canonical Forms in Interactive Exercise Assistants]

Our approach: strategies for exercises §1

I Strategies (MKM’08) specify how to solve an exercise
incrementally:

solveEquation = repeat (Merge<|>Distribute<|>NoDivision)
<∗> try VarLeft<∗> try ConRight<∗> try Scale

I Feedback can be calculated automatically from a strategy
I Challenges with mathematical domains are:

1. How to describe the rewrite rules without worrying about
the underlying representation

2. How to show “intuitive” terms only
3. Granularity of rewrite steps should match users background
4. How to recognize strategy steps performed by a student

I We propose to use views

6[Canonical Forms in Interactive Exercise Assistants]

Overview §1

1. Introduction

2. Views and canonical forms

3. Granularity of rewrite steps

4. Recognizing strategy steps

5. Conclusions

7[Canonical Forms in Interactive Exercise Assistants]

Views and canonical forms §2

data View a b = View{match :: a→ Maybe b, build :: b → a}

Examples:
3x − (1− x)

match
 [3x ,−1, x]

build
 4x − 1

1
3 + 1

4
match

7
12

build

7
12

I Simplification (first match, then build) returns the
canonical element, and has the following properties:
• Simplification is idempotent
• Simplification preserves semantics

I Based on views proposed by Wadler (POPL, 1987)
I Our views abstract over algebraic laws, and hide the

underlying representation

7[Canonical Forms in Interactive Exercise Assistants]

Views and canonical forms §2

data View a b = View{match :: a→ Maybe b, build :: b → a}

Examples:
3x − (1− x)

match
 [3x ,−1, x]

build
 4x − 1

1
3 + 1

4
match

7
12

build

7
12

I Simplification (first match, then build) returns the
canonical element, and has the following properties:
• Simplification is idempotent
• Simplification preserves semantics

I Based on views proposed by Wadler (POPL, 1987)
I Our views abstract over algebraic laws, and hide the

underlying representation

8[Canonical Forms in Interactive Exercise Assistants]

Abstract syntax §2

data Expr = Nat Integer
| Var String
| Negate Expr
| Expr :+: Expr
| Expr :×: Expr
| Expr :−: Expr
| Expr :/: Expr

I We use the functional programming language Haskell
I Close to concrete syntax (including syntactic sugar)
I Similar to OpenMath and MathML, but less verbose

9[Canonical Forms in Interactive Exercise Assistants]

Example: lowest common denominator §2

Determine the lcd of two fractions:

lcd :: Expr → Maybe Integer
lcd ((a :/: Nat b) :+: (c :/: Nat d)) = Just (lcm b d)
lcd = Nothing

Intuitive definition with pattern matching, but not suitable:

I Subtraction: 2
3 −

1
4

I Negation: −1
4 + 2

3 , or
1
−4 + 2

3

10[Canonical Forms in Interactive Exercise Assistants]

Introducing the plus view §2

Match a plus at top-level:

matchPlus :: Expr → Maybe (Expr ,Expr)
matchPlus (a :+: b) = Just (a, b)
matchPlus (a :−: b) = Just (a,Negate b)
matchPlus (Negate a) = do (x , y)← matchPlus a

Just (Negate x ,Negate y)
matchPlus = Nothing

I Based on algebraic laws:
a − b = a + (−b)
−(a + b) = (−a) + (−b)

I Not used: law for distribution

11[Canonical Forms in Interactive Exercise Assistants]

Builder for the plus view §2

(.+.) :: Expr → Expr → Expr
Nat 0 .+. b = b
a .+. Nat 0 = a
a .+. Negate b = a :−: b
a .+. b = a :+: b

plusView :: View Expr (Expr ,Expr)
plusView = View{match = matchPlus, build = uncurry (.+.)}

I Based on algebraic laws:
0 + a = a
a − b = a + (−b)

I Builder returns intuitive terms
I Similarly, we define views for division, constants, etc.

12[Canonical Forms in Interactive Exercise Assistants]

Improved definition for lcd §2
Composing views with arrow combinators:

(>>>) :: View a b → View b c → View a c
(∗∗∗) :: View a c → View b d → View (a, b) (c, d)
second :: View b c → View (a, b) (a, c)

New definition for the lcd of two fractions:

lcdView :: View Expr ((Expr , Integer), (Expr , Integer))
lcdView = let v = divView >>> second conView

in plusView >>> (v ∗∗∗ v)

lcd :: Expr → Maybe Integer
lcd e = do ((a, b), (c, d))← match lcdView e

Just (lcm b d)

12[Canonical Forms in Interactive Exercise Assistants]

Improved definition for lcd §2
Composing views with arrow combinators:

(>>>) :: View a b → View b c → View a c
(∗∗∗) :: View a c → View b d → View (a, b) (c, d)
second :: View b c → View (a, b) (a, c)

New definition for the lcd of two fractions:

lcdView :: View Expr ((Expr , Integer), (Expr , Integer))
lcdView = let v = divView >>> second conView

in plusView >>> (v ∗∗∗ v)

lcd :: Expr → Maybe Integer
lcd e = do ((a, b), (c, d))← match lcdView e

Just (lcm b d)

13[Canonical Forms in Interactive Exercise Assistants]

Summary §2

Summary:

I A view consists of two functions (match and build)
I A view specifies a canonical form
I Views can be combined, and they are reusable

The four challenges are:

1. How to describe the rewrite rules without worrying about
the underlying representation (discussed)

2. How to show “intuitive” terms only (discussed)
3. Granularity of rewrite steps should match users background
4. How to recognize strategy steps performed by a student

14[Canonical Forms in Interactive Exercise Assistants]

Granularity of rewrite steps §3

Assumptions about user level for “linear equation” exercise:

I Associativity is implicit (but preserve order if possible)
I Calculating with constants is a prerequisite
I Distribution of × over + is an explicit step

Hence, we choose the following operations on an equation:

1. Add term to both sides
2. Multiply both sides
3. Apply distribution law (“remove parentheses”)
4. Merge “similar” terms

Last two operations will be made more precise with views

14[Canonical Forms in Interactive Exercise Assistants]

Granularity of rewrite steps §3

Assumptions about user level for “linear equation” exercise:

I Associativity is implicit (but preserve order if possible)
I Calculating with constants is a prerequisite
I Distribution of × over + is an explicit step

Hence, we choose the following operations on an equation:

1. Add term to both sides
2. Multiply both sides
3. Apply distribution law (“remove parentheses”)
4. Merge “similar” terms

Last two operations will be made more precise with views

15[Canonical Forms in Interactive Exercise Assistants]

Order preserving summation §3

I Associativity of addition, but not commutativity
I List is the natural data structure
I Example:

3x − (1− x)
match
 [3x ,−1, x]

build
 3x − 1 + x

matchSum :: Expr → Maybe [Expr]
matchSum = Just ◦ f False
where f n (a :+: b) = f n a ++ f n b

f n (a :−: b) = f n a ++ f (¬ n) b
f n (Negate a) = f (¬ n) a
f n a = [if n then Negate a else a]

buildSum :: [Expr]→ Expr
buildSum = foldl (.+.) (Nat 0)

16[Canonical Forms in Interactive Exercise Assistants]

Merging similar terms §3

I Easier with sum view than with original representation
I Use product view for non-constant terms
I Example:

3x − (1− x) + 4
match
 [3x ,−1, x , 4]

merge
 [4x , 3]

build
 4x + 3

I Normalization is again a view: just combine merge with
the build function

I Details can be found in the paper

17[Canonical Forms in Interactive Exercise Assistants]

Recognizing strategy steps §4

I Syntactic equality is too strict for recognizing input
I Each view defines an equivalence relation
I Use different equivalence relations for recognizing

intermediate student answers:

• Use equation view for semantic equivalence:
4x + 3 = 3x + 5 match

 2

• Use linear view for normalizing the sides of an equation (in
the form a·x + b):

4(3x − 2)
match
 (12,−8)

• The sum view and product view are needed for recognizing
the distribution rule

18[Canonical Forms in Interactive Exercise Assistants]

Conclusions §5

I Views hide the underlying representation by abstracting
over algebraic laws

I A view corresponds to a level of detail
I Views are applicable to domains other than mathematics
I Views are reusable, and can be combined with standard

rewriting technology giving good results
I Multiple views can coexist in a strategy specification
I The presented techniques resulted in a working prototype

for solving linear equations by establishing a binding with
the DWO

	Introduction
	Views and canonical forms
	Granularity of rewrite steps
	Recognizing strategy steps
	Conclusions

