OpenUniversiteitNederland

Canonical Forms in Interactive Exercise Assistants

Bastiaan Heeren ¹ Johan Jeuring ^{1,2}

¹ Open Universiteit Nederland ² Universiteit Utrecht, The Netherlands

> 11 July 2009 (MKM'09) Grand Bend, Canada

DWO Math Environment

Interactive exercises

Ideally, interactive exercise assistants do more than validating submitted answers:

- Present worked-out examples
- Provide hints how to proceed
- Comment on the direction of a step

A prototype applet of DWO, extended with our feedback services

Finer control over symbolic simplification

A popular approach for exercise assistants is to delegate all computations to a CAS:

- $\checkmark~$ Gives good instant results
- × Cannot be configured easily for finer control
- $\times\,$ Not designed for interaction with exercise assistants

Finer control over symbolic simplification

A popular approach for exercise assistants is to delegate all computations to a CAS:

- $\checkmark~$ Gives good instant results
- × Cannot be configured easily for finer control
- \times Not designed for interaction with exercise assistants

We follow Beeson's guidelines:

- ► Cognitive fidelity: software solves problem as student does
- Glassbox computation: you can see how software solves the problem
- Customization of software to level of user

Our approach: strategies for exercises

§1

Strategies (MKM'08) specify how to solve an exercise incrementally:

Feedback can be calculated automatically from a strategy

Our approach: strategies for exercises

Strategies (MKM'08) specify how to solve an exercise incrementally:

- ▶ Feedback can be calculated automatically from a strategy
- Challenges with mathematical domains are:
 - 1. How to describe the rewrite rules without worrying about the underlying representation
 - 2. How to show "intuitive" terms only
 - 3. Granularity of rewrite steps should match users background
 - 4. How to recognize strategy steps performed by a student

Our approach: strategies for exercises

Strategies (MKM'08) specify how to solve an exercise incrementally:

- ▶ Feedback can be calculated automatically from a strategy
- Challenges with mathematical domains are:
 - 1. How to describe the rewrite rules without worrying about the underlying representation
 - 2. How to show "intuitive" terms only
 - 3. Granularity of rewrite steps should match users background
 - 4. How to recognize strategy steps performed by a student
- We propose to use views

Overview

1. Introduction

- 2. Views and canonical forms
- 3. Granularity of rewrite steps
- 4. Recognizing strategy steps
- 5. Conclusions

Views and canonical forms

data View $a b = View \{ match :: a \rightarrow Maybe b, build :: b \rightarrow a \}$

Examples:

Views and canonical forms

data View $a b = View \{ match :: a \rightarrow Maybe b, build :: b \rightarrow a \}$

Examples:

- $3x (1 x) \xrightarrow{\text{match}} [3x, -1, x] \xrightarrow{\text{build}} 4x 1$ $\frac{1}{3} + \frac{1}{4} \xrightarrow{\text{match}} \frac{7}{12} \xrightarrow{\text{build}} \frac{7}{12}$
- Simplification (first match, then build) returns the canonical element, and has the following properties:
 - Simplification is idempotent
 - Simplification preserves semantics
- Based on views proposed by Wadler (POPL, 1987)
- Our views abstract over algebraic laws, and hide the underlying representation

Abstract syntax

```
data Expr = Nat Integer
| Var String
| Negate Expr
| Expr :+: Expr
| Expr :×: Expr
| Expr :-: Expr
| Expr :/: Expr
```

- We use the functional programming language Haskell
- Close to concrete syntax (including syntactic sugar)
- Similar to OpenMath and MathML, but less verbose

Example: lowest common denominator

Determine the *lcd* of two fractions:

Intuitive definition with pattern matching, but not suitable:

▶ Subtraction:
$$\frac{2}{3} - \frac{1}{4}$$

▶ Negation: $-\frac{1}{4} + \frac{2}{3}$, or $\frac{1}{-4} + \frac{2}{3}$

₿

[Canonical Forms in Interactive Exercise Assistants]

Introducing the plus view

Match a plus at top-level:

 $\begin{array}{ll} matchPlus :: Expr \rightarrow Maybe (Expr, Expr) \\ matchPlus (a :+: b) &= Just (a, b) \\ matchPlus (a :-: b) &= Just (a, Negate b) \\ matchPlus (Negate a) &= \mathbf{do} (x, y) \leftarrow matchPlus a \\ Just (Negate x, Negate y) \\ matchPlus _ &= Nothing \end{array}$

Based on algebraic laws:

$$egin{array}{rcl} {a-b}&=&{a+(-b)}\ {-(a+b)}&=&(-a)+(-b) \end{array}$$

Not used: law for distribution

10

Builder for the plus view

$$(.+.) :: Expr \rightarrow Expr \rightarrow Expr$$

$$Nat 0 +. b = b$$

$$a +. Nat 0 = a$$

$$a +. Negate b = a :-: b$$

$$a +. b = a :+: b$$

plusView :: View Expr (Expr, Expr)
plusView = View { match = matchPlus, build = uncurry (.+.) }

Based on algebraic laws:

 $\begin{array}{rcl} 0+a & = & a \\ a-b & = & a+(-b) \end{array}$

- Builder returns intuitive terms
- Similarly, we define views for division, constants, etc.

[Canonical Forms in Interactive Exercise Assistants]

Improved definition for *lcd*

Composing views with arrow combinators:

$$(\Longrightarrow) :: View \ a \ b \rightarrow View \ b \ c \rightarrow View \ a \ c$$
$$(***) :: View \ a \ c \rightarrow View \ b \ d \rightarrow View \ (a, b) \ (c, d)$$
$$second :: View \ b \ c \rightarrow View \ (a, b) \ (a, c)$$

Improved definition for *lcd*

Composing views with arrow combinators:

New definition for the *lcd* of two fractions:

 $\begin{aligned} & lcdView :: View \; Expr \; ((Expr, Integer), (Expr, Integer)) \\ & lcdView = \mathsf{let} \; v = divView \; >>> second \; conView \\ & \mathsf{in} \; \; plusView \; >>> (v \; *** \; v) \end{aligned}$

 $lcd :: Expr \rightarrow Maybe Integer$ $lcd e = do ((a, b), (c, d)) \leftarrow match lcdView e$ Just (lcm b d)

12

Summary

Summary:

- A view consists of two functions (*match* and *build*)
- A view specifies a canonical form
- Views can be combined, and they are reusable

The four challenges are:

- 1. How to describe the rewrite rules without worrying about the underlying representation (discussed)
- 2. How to show "intuitive" terms only (discussed)
- 3. Granularity of rewrite steps should match users background
- 4. How to recognize strategy steps performed by a student

13

Granularity of rewrite steps

Assumptions about user level for "linear equation" exercise:

- Associativity is implicit (but preserve order if possible)
- Calculating with constants is a prerequisite
- Distribution of \times over + is an explicit step

<u>§</u>3

Granularity of rewrite steps

Assumptions about user level for "linear equation" exercise:

- Associativity is implicit (but preserve order if possible)
- Calculating with constants is a prerequisite
- Distribution of \times over + is an explicit step

Hence, we choose the following operations on an equation:

- 1. Add term to both sides
- 2. Multiply both sides
- 3. Apply distribution law ("remove parentheses")
- 4. Merge "similar" terms

Last two operations will be made more precise with views

<u>§</u>3

Order preserving summation

- Associativity of addition, but not commutativity
- List is the natural data structure
- ► Example:

 $3x - (1 - x) \xrightarrow{\text{match}} [3x, -1, x] \xrightarrow{\text{build}} 3x - 1 + x$

$$matchSum :: Expr \rightarrow Maybe [Expr]$$

$$matchSum = Just \circ f \ False$$

$$where \ f \ n (a :+: b) = f \ n \ a ++ f \ n \ b$$

$$f \ n (a :-: b) = f \ n \ a ++ f \ (\neg \ n) \ b$$

$$f \ n (Negate \ a) = f \ (\neg \ n) \ a$$

$$f \ n \ a = [if \ n \ then \ Negate \ a \ else \ a]$$

$$buildSum :: [Expr] \rightarrow Expr$$

$$buildSum = foldl (.+.) (Nat 0$$

15

Merging similar terms

Easier with sum view than with original representation

Use product view for non-constant terms

Example:

$$3x - (1 - x) + 4$$

$$\xrightarrow{\text{match}} [3x, -1, x, 4]$$

$$\xrightarrow{\text{merge}} [4x, 3]$$

$$\xrightarrow{\text{build}} 4x + 3$$

- Normalization is again a view: just combine *merge* with the *build* function
- Details can be found in the paper

16

Recognizing strategy steps

- Syntactic equality is too strict for recognizing input
- Each view defines an equivalence relation
- Use different equivalence relations for recognizing intermediate student answers:
 - Use equation view for semantic equivalence: $4x + 3 = 3x + 5 \xrightarrow{match} 2$
 - Use linear view for normalizing the sides of an equation (in the form a·x + b):
 4(3x 2) ^{match} (12, -8)
 - The sum view and product view are needed for recognizing the distribution rule

17

\$4

Conclusions

- Views hide the underlying representation by abstracting over algebraic laws
- A view corresponds to a level of detail
- Views are applicable to domains other than mathematics
- Views are reusable, and can be combined with standard rewriting technology giving good results
- Multiple views can coexist in a strategy specification
- The presented techniques resulted in a working prototype for solving linear equations by establishing a binding with the DWO