
Adapting Mathematical Domain Reasoners

Bastiaan Heeren 1 Johan Jeuring 1,2

1 Open Universiteit Nederland
2 Universiteit Utrecht, The Netherlands

9 July 2010 (MKM 2010)
Paris, France

2[Adapting Mathematical Domain Reasoners]

Introduction §1

I Mathematical learning environments typically offer a wide
variety of interactive exercises

I Exercise-specific parts are often delegated to specialized
domain reasoners

I Design principles for instructive feedback:
• Solve problems as the learner does
• Show how the software solves problems
• Make the system customizable

I Different groups of users have different customization
requirements

Examples of environments that use our domain reasoner...

2[Adapting Mathematical Domain Reasoners]

Introduction §1

I Mathematical learning environments typically offer a wide
variety of interactive exercises

I Exercise-specific parts are often delegated to specialized
domain reasoners

I Design principles for instructive feedback:
• Solve problems as the learner does
• Show how the software solves problems
• Make the system customizable

I Different groups of users have different customization
requirements

Examples of environments that use our domain reasoner...

3[Adapting Mathematical Domain Reasoners]

4[Adapting Mathematical Domain Reasoners]

5[Adapting Mathematical Domain Reasoners]

6[Adapting Mathematical Domain Reasoners]

Outline of presentation §1

1. Introduction

2. Case studies

3. Concepts and representation of knowledge

4. Adaptation and configuration

5. Conclusions

7[Adapting Mathematical Domain Reasoners]

Perspectives for customization §2

1. Learners
• Customize exercises to their level of expertise

2. Teachers
• Specific requests how an exercise should be solved
• Good understanding of learner’s capabilities
• Tailor exercises at a high level

3. Mathematical learning environments
• Front-end for practicing mathematical problem solving
• Many components are related to domain reasoners

4. Domain reasoners
• Reusability and maintainability of code
• Representation of (layered) mathematical knowledge

8[Adapting Mathematical Domain Reasoners]

Learner: change level of detail §2

I Learners want to change level of detail (presented by the
learning environment)
• Smaller steps, e.g.

√
20 =

√
4
√
5 = 2

√
5

• Only final answer

2x2 + 4x − 8 = 0
⇒ simplify polynomial

x2 + 2x − 4 = 0
⇒ quadratic formula (a = 1, b = 2, c = −4,D = 20)

x = −2+
√

20
2 or x = −2−

√
20

2
⇒ simplify roots

x = −1 +
√
5 or x = −1−

√
5

9[Adapting Mathematical Domain Reasoners]

Teacher: control solutions §2

I Teachers want to control how an exercise should be solved
• Technique used
• Step size in worked-out solutions

I Example: enable or disable “completing the square”

x2 + 4x − 4 = 0
⇒ complete square (lhs)

x2 + 4x + 4 = 8
⇒ take square (lhs)

(x + 2)2 = 8
⇒ square root (both sides)

x + 2 =
√
8 or x + 2 = −

√
8

⇒ simply roots
x = −2 + 2

√
2 or x = −2− 2

√
2

10[Adapting Mathematical Domain Reasoners]

Teacher: control solutions (continued) §2

I Use distributivity rule on both sides (in a single step)

−3(x − 2) = 3(x + 4)− 7
⇒ distributivity

−3x + 6 = 3x + 12− 7

I Use different number system
• 7

2 versus mixed number 3 1
2

• Complex numbers with existing rewrite strategy
I Approximate as a final step

. . .

x = −2 + 2
√
2 or x = −2− 2

√
2

⇒ approximate
x ≈ 0.828 or x ≈ −4.828

11[Adapting Mathematical Domain Reasoners]

Customization for learning environment §2

I Create new exercises by combining existing parts
• Example: solve linear system using an augmented matrix
• Example: solve an inequality by turning it into an equation
• Apply a set of rules exhaustively

I Integration with other components
• Customize level of detail in exercise according to

information from the student model
• Update student model with domain reasoner’s diagnosis

12[Adapting Mathematical Domain Reasoners]

Concepts in our domain reasoners §3

1. Rewrite rules
• Specify how terms can be manipulated
• Can represent common misconceptions (a.k.a. buggy rules)

2. Rewrite strategies
• Guides the process of applying rewrite rules
• Defined in a strategy language, which is similar to tactic

languages (theorem proving) and parser combinator libraries
3. Views and canonical forms

• For recognizing forms and defining notational conventions
• Composable into compound views
• Missing link between rules and strategies
• Examples: ax2 + bx + c = 0; 3 1

2 ; e1 + e2 + . . .+ en

Instances of these concepts are grouped together in an exercise

13[Adapting Mathematical Domain Reasoners]

Representation of knowledge §3

I All three concepts also correspond to mathematical
knowledge appearing in textbooks

I A representation is needed for each concept
• For communicating the internal structure
• For interpreting specifications and customizations passed to

the domain reasoner

Trade-offs in making exercise parts transparent:
I Restricts how parts are specified
I Hard to guarantee correctness, or to prevent excessive

computations
I Can negatively affect performance

13[Adapting Mathematical Domain Reasoners]

Representation of knowledge §3

I All three concepts also correspond to mathematical
knowledge appearing in textbooks

I A representation is needed for each concept
• For communicating the internal structure
• For interpreting specifications and customizations passed to

the domain reasoner

Trade-offs in making exercise parts transparent:
I Restricts how parts are specified
I Hard to guarantee correctness, or to prevent excessive

computations
I Can negatively affect performance

14[Adapting Mathematical Domain Reasoners]

Representing rewrite rules §4

I Most rewrite rules can be specified by means of a left and
right-hand side

I Also buggy rules can be specified this way
I Maps well onto OpenMath’s Formal Mathematical

Properties (FMP)

SquareSides: a2 = b2
 a = b or a = −b

15[Adapting Mathematical Domain Reasoners]

Representing rewrite strategies §4

I Strategies are specified using a small set of combinators
I Combinator approach allows for an almost literal

translation of strategy definitions
I Existing rules and substrategies can also be referenced by

name

lineq = label "linear equation" (prepare <∗> basic)

prepare = label "prepare equation"
(repeat (merge <|> distribute <|> removeDivision))

basic = label "basic equation"
(try varToLeft <∗> try conToRight <∗> try scaleToOne)

16[Adapting Mathematical Domain Reasoners]

Rewrite strategies in XML §4

I Substrategies can be
referenced by name

16[Adapting Mathematical Domain Reasoners]

Rewrite strategies in XML §4

I Substrategies can be
referenced by name

17[Adapting Mathematical Domain Reasoners]

Configuring rewrite strategies §4

I Use transformations to adapt an existing strategy
I Can be mixed freely with strategy combinators

Transformations:
• remove part of a strategy (no longer used)
• collapse a substrategy into a rule (single step)
• hide a part in derivation (implicit steps)

I Inverse operations: reinsert, expand, and reveal
I These transformations address several of the case studies

18[Adapting Mathematical Domain Reasoners]

More strategy transformations §4

More examples of convenient strategy configurations:

I A certain rule or substrategy must be used
• Example: using the technique of completing the square is

mandatory
I It is preferred to use a particular rule

• Same set of exercises can be solved
• Example: try to factor polynomial before applying the

quadratic formula
I Replace part of the strategy by another part

19[Adapting Mathematical Domain Reasoners]

Representing views and canonical forms §4

I Views are more difficult to represent: in general, a view is
just a pair of functions

I Possibilities:
• Define view as a confluent set of rewrite rules
• Define view as a rewrite strategy

I Arrow combinators (for combining views) and application
of higher-order views are represented like the strategy
combinators

Motivation: to substitute views in exercises for adapting the
mathematical domain reasoner.

20[Adapting Mathematical Domain Reasoners]

Conclusions §5

I Ability to adapt mathematical domain reasoners is very
desirable for learning environments, teachers, and learners

I Explicit representation is needed for all concepts that make
up an exercise

I These representation can be communicated, but also
interpreted

I Strategy transformations are convenient for configuring
existing strategies

Implementation and project webpage at http://ideas.cs.uu.nl/

	Introduction
	Case studies
	Concepts and representation of knowledge
	Adaptation and configuration
	Conclusions

