
PADL 2005, Long Beach, California JJ J I II J • ×

Type Class Directives

Bastiaan Heeren Jurriaan Hage

Institute of Information and Computing Sciences

Utrecht University

{bastiaan,jur}@cs.uu.nl

January 10, 2005



Overview 1 JJ J I II J • ×

Overview

I Introduction

I Type class directives

• The never directive

• The close directive

• The disjoint directive

• The default directive

I Implementation

I Generalization

I Specialized type rules

I Conclusion



Introduction 2 JJ J I II J • ×

Introduction

I Student exercise: decrement the elements of a list

f xs = map -1 xs



Introduction 2 JJ J I II J • ×

Introduction

I Student exercise: decrement the elements of a list

f xs = map -1 xs

I “If a program type checks, it works ... usually”

I The following type is inferred by ghci (without extensions):

f :: forall b a t.
( Num (t -> (a -> b) -> [a] -> [b])
, Num ((a -> b) -> [a] -> [b])
) => t -> (a -> b) -> [a] -> [b]

I This type is likely to cause problems at the site where f is used



Introduction 2 JJ J I II J • ×

Introduction

I Student exercise: decrement the elements of a list

f xs = map -1 xs

I “If a program type checks, it works ... usually”

I The following type is inferred by ghci (without extensions):

f :: forall b a t.
( Num (t -> (a -> b) -> [a] -> [b])
, Num ((a -> b) -> [a] -> [b])
) => t -> (a -> b) -> [a] -> [b]

I This type is likely to cause problems at the site where f is used

I More examples:

f1 xs = map (-1) xs
f2 n = [n] : [4,5,6]
f3 r = r * sin .2



Type class directives 3 JJ J I II J • ×

Type class directives

I Haskell declarations:

• class declarations: list superclasses (Ord ⊆ Eq)

• instance declarations: add type to a type class (Int ∈ Eq)

I We propose four directives to enrich the specification of H98 type classes

I Builds on the approach of an earlier paper:
“Scripting the type inference process” (ICFP’03)

• The directives for X.hs can be found in X.type



Type class directives 3 JJ J I II J • ×

Type class directives

I Haskell declarations:

• class declarations: list superclasses (Ord ⊆ Eq)

• instance declarations: add type to a type class (Int ∈ Eq)

I We propose four directives to enrich the specification of H98 type classes

I Builds on the approach of an earlier paper:
“Scripting the type inference process” (ICFP’03)

• The directives for X.hs can be found in X.type

I The directive approach proceeds in three steps:

1. Collect the class and instance declarations in scope

2. Check consistency between the directives and the declarations

3. Perform type inference using the directives



Type class directives – never 4 JJ J I II J • ×

The never directive (1)

I Is used to exclude a type from a type class

I Advantage: the directive is accompanied by a tailor-made error message

in .type file

never Eq (a -> b): functions cannot be tested for equality
never Num Bool: arithmetic on booleans is not supported



Type class directives – never 4 JJ J I II J • ×

The never directive (1)

I Is used to exclude a type from a type class

I Advantage: the directive is accompanied by a tailor-made error message

in .type file

never Eq (a -> b): functions cannot be tested for equality
never Num Bool: arithmetic on booleans is not supported

I If an instance for Num Bool is required to resolve overloading, the special
purpose error message is reported

f x = if x then x + 1 else x

(1, 19): arithmetic on booleans is not supported



Type class directives – never 5 JJ J I II J • ×

The never directive (2)

I Before type inference, we check the consistency of the directives with the class
and instance declarations

I An example:

instance Num Bool where ...

in .type file

never Num Bool: arithmetic on booleans is not supported

I For this inconsistency, we report the following:

The instance declaration for
Num Bool at (3,1) in A.hs

is in contradiction with the directive
never Num Bool defined at (1,1) in A.type



Type class directives – close 6 JJ J I II J • ×

The close directive (1)

I Close a type class: no new instances can be defined for that class

I Similar to the case-by-case never directive

I We give never precedence over close

I Advantage: compiler knows all instances of a closed type class

in .type file

close Integral: the only instances of Integral
are Int and Integer

I We can further exploit having the fixed set of instances...



Type class directives – close 7 JJ J I II J • ×

The close directive (2)

Two optimizations (both are optional):

I Create an error message for predicates concerning an empty type class

• Advantage: report mistakes early on

• Same reasoning applies to sets of closed type classes
e.g., (X a, Y a) and intersection of X and Y is empty



Type class directives – close 7 JJ J I II J • ×

The close directive (2)

Two optimizations (both are optional):

I Create an error message for predicates concerning an empty type class

• Advantage: report mistakes early on

• Same reasoning applies to sets of closed type classes
e.g., (X a, Y a) and intersection of X and Y is empty

I Improvement substitution for singleton type class

f :: (Bounded a, Num a) => a -> a

can be improved to

f :: Int -> Int

• Advantage: simpler types

• Disadvantage: not something to rely on in large programming projects



Type class directives – disjoint 8 JJ J I II J • ×

The disjoint directive

I The classes Integral and Fractional are intentionally disjoint

I Advantage: report mistakes early on

in .type file

disjoint Integral Fractional:
something which is fractional can never be integral

wrong x = (div x 2, x/2)

wrong :: (Fractional a, Integral a) => a -> (a,a)



Type class directives – disjoint 8 JJ J I II J • ×

The disjoint directive

I The classes Integral and Fractional are intentionally disjoint

I Advantage: report mistakes early on

in .type file

disjoint Integral Fractional:
something which is fractional can never be integral

wrong x = (div x 2, x/2)

wrong :: (Fractional a, Integral a) => a -> (a,a)

I Because Floating ⊆ Fractional, we implicitly have

disjoint Integral Floating



Type class directives – default 9 JJ J I II J • ×

The default directive

I Some seemingly innocent programs are in fact ambiguous

main = show []

I Haskell 98: defaulting for numeric type classes (conservative)

I ghci extends defaulting rules to standard classes (ad-hoc)



Type class directives – default 9 JJ J I II J • ×

The default directive

I Some seemingly innocent programs are in fact ambiguous

main = show []

I Haskell 98: defaulting for numeric type classes (conservative)

I ghci extends defaulting rules to standard classes (ad-hoc)

in .type file

default Num (Int, Integer, Float, Double)
default Show ((), String, Bool, Int)

I Defaulting can be considered a type class directive

I Unquestionably useful at times

I Always notify the programmer with a warning



Implementation 10 JJ J I II J • ×

Implementation: context reduction

I To implement the four type class directives, we change context reduction

I Performed at all generalization points

I Divided into three phases:

1. Simplify using instance declarations

• Eq Int → can be removed
• Eq (a, b) → split into (Eq a) and (Eq b)
• Num Bool → create an error message



Implementation 10 JJ J I II J • ×

Implementation: context reduction

I To implement the four type class directives, we change context reduction

I Performed at all generalization points

I Divided into three phases:

1. Simplify using instance declarations

• Eq Int → can be removed
• Eq (a, b) → split into (Eq a) and (Eq b)
• Num Bool → create an error message

2. Remove duplicates and superclasses

• {Eq a, Eq a} → remove duplicate
• {Eq a, Ord a} → remove (Eq a)



Implementation 10 JJ J I II J • ×

Implementation: context reduction

I To implement the four type class directives, we change context reduction

I Performed at all generalization points

I Divided into three phases:

1. Simplify using instance declarations

• Eq Int → can be removed
• Eq (a, b) → split into (Eq a) and (Eq b)
• Num Bool → create an error message

2. Remove duplicates and superclasses

• {Eq a, Eq a} → remove duplicate
• {Eq a, Ord a} → remove (Eq a)

3. Report ambiguities

• Eq a → create an error message if a is a polymorphic
type variable that does not occur in the type



Implementation 11 JJ J I II J • ×

Implementation: type class directives

I Context reduction with type class directives for Haskell 98

default
directives

1. Simplify
to hnf

P

never
directives

non-hnf
predicates

5. Detect
ambiguities

Q

ambiguous
predicates

2. Removal of
duplicates and
superclasses

3. disjoint
directives

4. close
directives

close
directives

standard
error message

specialized
error message

specialized
error message

additional
error message

additional
error message

(empty type class)

standard
error message

impr.
substitution

improvement
substitution

(singleton type class)



Generalization 12 JJ J I II J • ×

Generalization of directives

I Essentially, type class directives describe invariants over type classes

I Generalization: a small language to specify constraints on sets

Constraint ::= Type EltOp Set | Set SetOp Set
Set ::= BinOp Set Set | SetLiteral | Class
SetLiteral ::= {} | { Type (, Type)∗ }
EltOp ::= isin | isnotin
SetOp ::= <= | == | >=
BinOp ::= union | intersect | difference



Generalization 12 JJ J I II J • ×

Generalization of directives

I Essentially, type class directives describe invariants over type classes

I Generalization: a small language to specify constraints on sets

Constraint ::= Type EltOp Set | Set SetOp Set
Set ::= BinOp Set Set | SetLiteral | Class
SetLiteral ::= {} | { Type (, Type)∗ }
EltOp ::= isin | isnotin
SetOp ::= <= | == | >=
BinOp ::= union | intersect | difference

in .type file

Monad == {Maybe, [], IO}: only Maybe, [], and IO
are monads today.

Read == Show
intersect Egglayer Mammal <= {Platypus}

I The expressiveness must be limited for efficiency and decidability



Specialized type rules 13 JJ J I II J • ×

Specialized type rules (1)

map :: (a -> b) -> [a] -> [b]

I Reprogram type inference for map

• Change the order of unifications (when is an inconsistency found)

• Provide special type error messages (domain-specific)



Specialized type rules 13 JJ J I II J • ×

Specialized type rules (1)

map :: (a -> b) -> [a] -> [b]

I Reprogram type inference for map

• Change the order of unifications (when is an inconsistency found)

• Provide special type error messages (domain-specific)
in .type file

f :: t1; xs :: t2;
---------------------

map f xs :: [b];

t1 == a1 -> b1 : @f.pp@ is not a function
t2 == [a2] : @xs.pp@ is not a list
a1 == a2 : function @f.pp@ does not work on @a2@
b1 == b : function @f.pp@ does not return @b@

I Guarantee that underlying type system is unchanged
(a mistake is easily made)



Specialized type rules 14 JJ J I II J • ×

Specialized type rules (2)

spread :: (Ord a, Num a) => [a] -> a
spread xs = maximum xs - minimum xs

I Specialized type rule for spread with class assertions

in .type file

xs :: t1;
--------------------

spread xs :: t2;

t1 == [t3]: @xs.pp@ must be a list
t3 == t2: @expr.pp@ should return a value of type @t3@
Eq t2: @t2@ is not an instance of Eq, let alone Ord or Num
Ord t2: @t2@ should have a linear ordering imposed on it
Num t2: @t2@ should allow numerical operations

I Class assertions are listed and checked after unification constraints

I We can still check the correctness of the specialized type rules



Conclusion 15 JJ J I II J • ×

Related work

I Elements of our work can be found in earlier papers:

• Closed type classes were mentioned by Shields and Peyton Jones
“Object-oriented style overloading for Haskell”

• Glynn et al. describe disjoint type classes and complements using CHRs
“Type classes and constraint handling rules”

• Improvement substitutions are part of Mark Jones’s framework
“Simplifying and improving qualified types”

I All these efforts focused on the type system: we concentrate on providing
high-level support for high quality type error messages



Conclusion 16 JJ J I II J • ×

Conclusion and future work

I Advantages of the four type class directives:

• Tailor-made, domain-specific error messages for special cases

• Type schemes with a suspicious class context are rejected early on

• A limited set of instances helps to improve and simplify types

• An effective defaulting mechanism assists to disambiguate overloading



Conclusion 16 JJ J I II J • ×

Conclusion and future work

I Advantages of the four type class directives:

• Tailor-made, domain-specific error messages for special cases

• Type schemes with a suspicious class context are rejected early on

• A limited set of instances helps to improve and simplify types

• An effective defaulting mechanism assists to disambiguate overloading

I Future work:

• A small language to specify invariants (including some analysis)

• Explore directives for various extensions to the type class system

• A formal description of the directives


