Type Class Directives

Bastiaan Heeren Jurriaan Hage

Institute of Information and Computing Sciences
Utrecht University

{bastiaan,jur}@cs.uu.nl

January 10, 2005

PADL 2005, Long Beach, California « <« > » «[]0O

“Overview

» Introduction
» Type class directives

® The never directive

® The close directive

® The disjoint directive
® The default directive

» Implementation
» Generalization
» Specialized type rules

» Conclusion

Overview 1 “« 4> » «[] 0 X

““Introduction

» Student exercise: decrement the elements of a list

f xs = map -1 xs

Introduction 2 « <> » «[] O

“Introduction .

» Student exercise: decrement the elements of a list

f xs = map -1 xs

» “If a program type checks, it works ... usually”
» The following type is inferred by ghci (without extensions):
f :: forall b a t.

(Num (t -> (a -> b) -> [a] -> [b])

, Num ((a -> b) -> [a] -> [b])
) =>t -> (a -> b) -> [a] —> [b]

» This type is likely to cause problems at the site where f is used

Introduction 2 « <> » «[]0O

» Student exercise: decrement the elements of a list

f xs = map -1 xs

» “If a program type checks, it works ... usually”

» The following type is inferred by ghci (without extensions):
f :: forall b a t.
(Num (t -> (a -> b) -> [a] -> [b])

, Num ((a -> b) -> [a] -> [b])
) =>t -> (a -> b) -> [a] —> [b]

» This type is likely to cause problems at the site where f is used

» More examples:

f1 xs = map (-1) xs
f2 n = [n] : [4,5,6]
f3 r r * sin .2

Introduction 2 « <> » «[]0O

y

Type class directives

» Haskell declarations:

® class declarations: list superclasses (Ord C FEq)
® instance declarations: add type to a type class (Int € Eq)

» We propose four directives to enrich the specification of H98 type classes

» Builds on the approach of an earlier paper:
“Scripting the type inference process” (ICFP’'03)

® The directives for X.hs can be found in X.type

Type class directives 3 « <> » «[]0O

o

¢

Type class directives

» Haskell declarations:

® class declarations: list superclasses (Ord C FEq)
® instance declarations: add type to a type class (Int € Eq)

» We propose four directives to enrich the specification of H98 type classes
» Builds on the approach of an earlier paper:
“Scripting the type inference process” (ICFP’'03)
® The directives for X.hs can be found in X.type

» The directive approach proceeds in three steps:

1. Collect the class and instance declarations in scope
2. Check consistency between the directives and the declarations
3. Perform type inference using the directives

Type class directives 3 « <> » «[]0O

(" The never directive (1))

» Is used to exclude a type from a type class

» Advantage: the directive is accompanied by a tailor-made error message

in .type file

never Eq (a -> b): functions cannot be tested for equality
never Num Bool: arithmetic on booleans is not supported

Type class directives — never 4 « <> » «[]0O

(" The never directive (1))

» Is used to exclude a type from a type class

» Advantage: the directive is accompanied by a tailor-made error message

in .type file

never Eq (a -> b): functions cannot be tested for equality
never Num Bool: arithmetic on booleans is not supported

» If an instance for Num Bool is required to resolve overloading, the special
purpose error message is reported

f x = if x then x + 1 else x

(1, 19): arithmetic on booleans is not supported

Type class directives — never 4 « <> » «[]0O

never directi) >,

» Before type inference, we check the consistency of the directives with the class
and instance declarations

» An example:

instance Num Bool where

in .type file

never Num Bool: arithmetic on booleans is not supported

» For this inconsistency, we report the following:

The instance declaration for
Num Bool at (3,1) in A.hs
1s 1n contradiction with the directive
never Num Bool defined at (1,1) in A.type

Type class directives — never 5 « <> » «[]0O

(" The close directive (1) y

» Close a type class: no new instances can be defined for that class
» Similar to the case-by-case never directive
» We give never precedence over close

» Advantage: compiler knows all instances of a closed type class

in .type file

close Integral: the only instances of Integral
are Int and Integer

» We can further exploit having the fixed set of instances...

Type class directives — close 6 « <> » «[]0O

(" The close directive (2)

Two optimizations (both are optional):

» Create an error message for predicates concerning an empty type class

® Advantage: report mistakes early on

® Same reasoning applies to sets of closed type classes
e.g., (X a, Y a) and intersection of X and Y is empty

Type class directives — close 7 « <> » «[] 0O

o

(" The close directive (2)

Two optimizations (both are optional):

» Create an error message for predicates concerning an empty type class

® Advantage: report mistakes early on

® Same reasoning applies to sets of closed type classes
e.g., (X a, Y a) and intersection of X and Y is empty

» Improvement substitution for singleton type class

f :: (Bounded a, Num a) => a -> a
can be improved to
f :: Int -> Int

® Advantage: simpler types
® Disadvantage: not something to rely on in large programming projects

Type class directives — close 7 « <> » «[] 0O

o

‘ The disjoint directive »

» The classes Integral and Fractional are intentionally disjoint

» Advantage: report mistakes early on

in .type file

disjoint Integral Fractional:
something which is fractional can never be integral

wrong x = (div x 2, x/2)

wrong :: (Fractional a, Integral a) => a —> (a,a)

Type class directives —disjoint 8 « <> » «[]0O

(" The disjoint directive 9

» The classes Integral and Fractional are intentionally disjoint

» Advantage: report mistakes early on

in .type file

disjoint Integral Fractional:
something which is fractional can never be integral

wrong x = (div x 2, x/2)

wrong :: (Fractional a, Integral a) => a —> (a,a)

» Because Floating C Fractional, we implicitly have

disjoint Integral Floating

Type class directives —disjoint 8 « <> » «[]0O

" The default directive

» Some seemingly innocent programs are in fact ambiguous

main = show []

» Haskell 98: defaulting for numeric type classes (conservative)

» ghci extends defaulting rules to standard classes (ad-hoc)

Type class directives — default 9 « <> » «[]0O

" The default directive)

» Some seemingly innocent programs are in fact ambiguous

main = show []

» Haskell 98: defaulting for numeric type classes (conservative)

» ghci extends defaulting rules to standard classes (ad-hoc)

in .type file

default Num (Int, Integer, Float, Double)
default Show ((), String, Bool, Int)

» Defaulting can be considered a type class directive
» Unquestionably useful at times

» Always notify the programmer with a warning

Type class directives — default 9 « <> » «[]0O

y

Implementation: context reduction

» To implement the four type class directives, we change context reduction

» Performed at all generalization points

» Divided into three phases:

1. Simplify using instance declarations
® Eq Int — can be removed
® Eq (a, b) — splitinto (Eq a) and (Eq D)
® Num Bool — create an error message

Implementation 10 “« <> » «[] 0O

o

¢

Implementation: context reduction

» To implement the four type class directives, we change context reduction

» Performed at all generalization points
» Divided into three phases:
1. Simplify using instance declarations
® Eq Int — can be removed

® Eq (a, b) — splitinto (Eq a) and (Eq D)
® Num Bool — create an error message

2. Remove duplicates and superclasses
® {Eq a, Eq a} — remove duplicate
® {Eq a, Ord a} — remove (Eq a)

Implementation 10

« <> » «[]O0X

¢

Implementation: context reduction

» To implement the four type class directives, we change context reduction
» Performed at all generalization points
» Divided into three phases:

1. Simplify using instance declarations

® Eq Int — can be removed
® Eq (a, b) — splitinto (Eq a) and (Eq D)
® Num Bool — create an error message

2. Remove duplicates and superclasses
® {Eq a, Eq a} — remove duplicate
® {Eq a, Ord a} — remove (Eq a)

3. Report ambiguities

® Eq a — create an error message if a is a polymorphic
type variable that does not occur in the type

Implementation 10 “« <> » «[] 0O

“Implementation: type class directives

» Context reduction with type class directives for Haskell 98

N 2. Removal of .
1. Simplify . 3. disjoint 4. close 5. Detect
duplicates and R . . X S
to hnf directives directives ambiguities
superclasses
non-hnf ambiguous
predicates ' predicates
additional
never , specialized error message default ,
directives error message directives -
impr.
¥ substitution
additional L
' error message standard
iali empty type class error message
close , specialized (empty typ)
directives error message i
improvement
, standard substitution
error message (singleton type class)

Implementation 11 “« <> » «[] 0O

y

Generalization of directives

» Essentially, type class directives describe invariants over type classes

» Generalization: a small language to specify constraints on sets

Constraint
Set
SetLiteral
EltOp
SetOp
BinOp

Generalization

Type EltOp Set | Set SetOp Set
BinOp Set Set | SetLiteral | Class
{3 | { Type (, Type)" }

isin | isnotin

<= | == | >=

union | intersect | difference

12 «« <> » «[]0 X

o

‘" Generalization of directives)

» Essentially, type class directives describe invariants over type classes

» Generalization: a small language to specify constraints on sets

Constraint = Type EltOp Set | Set SetOp Set
Set = BinOp Set Set | SetLiteral | Class
SetLiteral == {} | { Type (, Type)* }
EltOp = isin | isnotin
SetOp = <= | == | >=
BinOp = union | intersect | difference
in .type file
Monad == {Maybe, [], I0}: only Maybe, [], and IO
are monads today.
Read == Show
intersect Egglayer Mammal <= <{Platypus}

» The expressiveness must be limited for efficiency and decidability

Generalization 12 “« <> » «[] 0O

#

Specialized type rules (1)

map :: (a -> b) -> [a] -> [b]
» Reprogram type inference for map

® Change the order of unifications (when is an inconsistency found)
® Provide special type error messages (domain-specific)

Specialized type rules 13 « 4> » «[]0O

i

(Specialized type rules (1) y

map :: (a -> b) -> [a] -> [b]
» Reprogram type inference for map

® Change the order of unifications (when is an inconsistency found)

® Provide special type error messages (domain-specific)
in .type file

tl == al -> bl : @f.pp@ is not a function

t2 == [a2] : @xs.pp@ is not a list
al == a2 : function Q@f .pp@ does not work on 0a2@
bl == : function Q@f.pp@ does not return @bAO

» Guarantee that underlying type system is unchanged
(a mistake is easily made)

Specialized type rules 13 « <> » «[]0O

(" Specialized type rules (2))

spread :: (Ord a, Num a) => [a] -> a
spread xs = maximum XS - minimum XS

» Specialized type rule for spread with class assertions
in .type file

spread xs :: t2;

tl == [t3]: Oxs.pp@ must be a list

t3 == t2: Qexpr.pp@ should return a value of type 0t30

Eq t2: 0t20@ is not an instance of Eq, let alone Ord or Num
Ord t2: 0t2Q@ should have a linear ordering imposed on it
Num t2: @t20 should allow numerical operations

» Class assertions are listed and checked after unification constraints

» We can still check the correctness of the specialized type rules

Specialized type rules 14 « <> » «[]0O

4

Related work

» Elements of our work can be found in earlier papers:
® (Closed type classes were mentioned by Shields and Peyton Jones
“Object-oriented style overloading for Haskell”

® Glynn et al. describe disjoint type classes and complements using CHRs
“Type classes and constraint handling rules”

® Improvement substitutions are part of Mark Jones's framework
“Simplifying and improving qualified types”

» All these efforts focused on the type system: we concentrate on providing
high-level support for high quality type error messages

Conclusion 15 “« <> » «[] 0O

¢

Conclusion and future work

» Advantages of the four type class directives:

® Tailor-made, domain-specific error messages for special cases

® Type schemes with a suspicious class context are rejected early on

® A limited set of instances helps to improve and simplify types

® An effective defaulting mechanism assists to disambiguate overloading

Conclusion 16 “« <> » «[] 0O

¢

Conclusion and future work

» Advantages of the four type class directives:

® Tailor-made, domain-specific error messages for special cases

® Type schemes with a suspicious class context are rejected early on

® A limited set of instances helps to improve and simplify types

® An effective defaulting mechanism assists to disambiguate overloading

» Future work:

® A small language to specify invariants (including some analysis)
® Explore directives for various extensions to the type class system
® A formal description of the directives

Conclusion 16 “« <> » «[] 0O

