
1. Introduction

Helium is a user-friendly compiler designed especially for learning the
functional programming language Haskell. Quality of the error messages
has been the main concern both in the choice of the language features and
in the implementation of the compiler. Helium is almost full Haskell with
as the most notable difference the absence of type classes. Our goal is to let
students learn functional programming more quickly and with more fun.
The compiler has been successfully employed in two introductory
programming courses at our institute.

Features

Warnings for several common mistakes

Positions of error messages are exact

Hints and suggestions to fix programs

A graphical interpreter

2. The Type Inferencer

Extra effort has been spent on producing concise and understandable type error
messages. As opposed to most modern compilers, the process of type
inferencing is constraint-based, which clearly separates the collection of type
constraints (the specification) from solving those constraints (the
implementation). Therefore, the type inferencer can not only simulate well
known algorithms such as W and M, but it can also solve constraints by using
type graphs. A type graph is an advanced data structure to represent a
substitution, which also keeps track of reasons for unifications. The extra
information that is available during type inferencing paves the way for better
type error messages.

3. The Lazy Virtual Machine

For a given source file, the Helium compiler produces an .lvm file, which can
be executed by the Lazy Virtual Machine. The LVM is specifically designed to
execute lazy (or non-strict) languages. It defines a portable instruction set and
file format, similar to for instance the Java Virtual Machine (JVM). The
instruction set is strongly based on the Spineless Tagless G- machine. At the

4. The Logger

A special logging facility has been set up to record compiled programs during
lab sessions for an introductory course on functional programming. The
students involved in this experiment have been informed about the logger in
advance, and, if desired, it can be turned off. The collection of recorded
programs not only reflects the problems that students encounter while learning
Haskell, but it also gives some insights in the learning process over time. By
analyzing this (anonymized) set of programs, we hope to further improve the
compiler.

5. Future Extensions

• Support for Haskell 98 type classes

• A basic GUI library

• Warnings and hints for incomplete pattern matches

• Recognizing standard functions, such as map and filter

• Additional heuristics to determine the most likely type error

Acknowledgements

We would like to thank Arthur Baars, Jeroen Fokker, Jurriaan Hage, Martijn
Lammerts, Andres Löh, Doaitse Swierstra and all the students who used
Helium for their help.

/H[�HUURU

3DUVH�

HUURU

6WDWLF�

HUURU

7\SH�HUURU

&RUUHFW

Bastiaan Heeren, Arjan van IJzendoorn, Daan Leijen
Rijk-Jan van Haaften, Arie Middelkoop

http://www.cs.uu.nl/helium

A typegraph for the function
main = xs : [4, 5, 6] (with xs :: [Int])

This vertex represents an (instantiated) version of
a → [a] → [a], which is the type for (:).

All the elements of a list should have the same type.
Type variable t1 unifies the types of all elements.

Inconsistency: xs (which is assigned the type [Int]) is
not of type Int (advocated by the three integer literals)

A program with a type error

The message given
by Helium

The message given by Hugs

1

2

2

3

3

1

4

4

Results of Compilations by Students

Speed comparison for three benchmarks

present time, the generated
code is unoptimized and
rather naive. In spite of this,
the runtime system performs
quite well in practice. It is
an order of magnitude faster
than Hugs, and only about
three times slower than un-
optimized GHC code.

Heuristics determine
the most likely site of
error and create a pre-
cise error message. In
many cases, a type
error is accompanied
by additional hints to
guide the programmer
in fixing ill-typed
programs. The pro-
cess of type inferen-
cing can be tuned by
supplying type in-
ference directives ex-
ternally.

1001532

0

1

2

3

4

nf ib 27 queens9 si eve1000

se
co

nd
s

ghc- opt

lvm -opt

ghc

lvm

hugs

Int

-> : ->

-> xs ->

main

t0 Int
4

5

Int6

Int

[][][]

[]

[4,5,6] xs:[4,5,6]

t1

