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Abstract

Type classes are perhaps the most exciting feature of Haskell’s type system. Although type classes were
only proposed as a solution for overloading identifiers, they have become an active research topic where
experimental type class extensions are still being proposed. On top of that, the underlying principles are
also used to encode various other extensions, such as extensible records, implicit parameters, and subtyping.
However, implementing type classes and type class extensions is not a trivial task. It is not only a matter
of type checking to resolve overloading, but also evidence for overloaded identifiers has to be inserted. A
uniform approach to easily formulate type class extensions side by side is missing. In addition, error messages
concerning type classes are difficult to understand or sometimes not present at all.

We propose a constraint-based framework for the resolution of overloading. Assumptions and proof obligations
are explicitly encoded into the constraint language of this framework. Furthermore, type class extensions can
be easily formulated using Constraint Handling Rules (CHRs). The confluence requirement is circumvented by
using only propagation CHRs, and by specifying design decisions in the form of heuristics. Using the resulting
framework, we show how various context reduction strategies can be specified side by side. Furthermore, we
explain how scoped instances and overlapping instances are naturally supported. We also show how functional
dependencies can be supported using the existing translation into CHRs.
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Chapter 1

Introduction

Take a look at the following sentence: “Shall we take a break?”. At first sight this is a very simple sentence,
however ‘break’ already has at least 28 different meanings. Luckily, we are able infer the meaning of break
from the context. However, this is not always the case. Consider the following example attributed to the
linguist Noam Chomsky: “Flying aircraft may be hazardous.” Does this sentence mean that it is hazardous
to be a pilot, or that airplanes themselves may be hazardous when flying? We cannot infer the meaning of
this sentence from the context and thus we need some additional context information. Inferring the meaning
of a word from the context is reminiscent of overloading in programming languages.

In a programming language we typically want to use the same function identifier for different operations; we
call such a function an overloaded function. An example of an overloaded function is the operator (≡): we
want to use this operator to compare two integers, but also to compare two floating point values, and perhaps
even to compare two strings for equality. Because the implementation of comparing two integers is different
from that of comparing two strings, the compiler must infer the meaning of the operator (≡) from the context.

There is an important difference between overloading and polymorphism. Overloaded functions execute
different code for different types of argument. Comparing two integers requires other code to be executed
than when comparing two strings. On the other hand, polymorphic functions execute the same code for
different types of arguments. For example, the function length ::∀ a ⇒ [a ]→ Int can be executed for all types
of lists. Defining equality as a polymorphic function is even impossible, because this would imply we would
be able to define equality between functions. Alternatively, an overloaded function can be implemented by
testing the type of the operands and then execute different code for integers and strings. This is not a very
elegant and extensible solution for overloading.

Type classes were introduced by Kaes [Kaes, 1988] and Wadler and Blot [Wadler and Blott, 1989] as a solution
for overloading identifiers. Their type class design was adopted by Haskell [Peyton Jones, 2003]. The original
design of type classes was conservative and for that reason a large number of extensions are proposed [Peyton
Jones et al., 1997]. Implementing those extensions in a compiler and experimenting with those extensions
is not very easy. In this thesis we propose a framework for resolving overloading in which various type
class extensions can be formulated. A requirement for this framework is that it must be relatively easy to
experiment with type class extensions and various design decisions.

1.1 Research problem

Much effort had gone into specifications [Hall et al., 1996, Faxén, 2002] and implementations [Augustsson,
1993, Jones, 1999] of Haskell type classes. However, no clear specifications and implementations of the various
extensions exist, let alone a framework in which we can easily formulate type classes and extensions to type
classes. We list some problems with type classes:

• There is no general framework which can be used by compilers to resolve overloading in Haskell. Instead
each compiler uses its own solution. This makes it difficult to experiment with type classes.

• Type classes, like many other language features, come with a price tag in terms of runtime efficiency.
In general, we want to optimize away such a cost when the corresponding feature is used.

• Error messages concerning type classes are often difficult to understand [Heeren and Hage, 2005].

1



1.4 Objectives

1.2 Objectives

The proposed research is to create a constraint-based framework in which we can formulate Haskell type classes
and its various extensions. As a proof of concept we use this framework in the compilers EHC [Dijkstra, 2005]
and Helium [Heeren et al., 2003b]. We first list the requirements of this framework:

• The framework must support Haskell 98 type classes.
• The framework must support multi-parameter type classes.
• The framework must support local instances and explicit passing of type class dictionaries, such as

formulated by Dijkstra and Swierstra [Dijkstra and Swierstra, 2005].
• The framework must be general enough for use in the compilers EHC and Helium to resolve overloading

and generate code for type classes.
• It must be easy to formulate type class extensions in the framework.
• The framework must be well documented and structured, so that people can easily use, adapt, and

experiment with the framework.

Second, we list additional requirements which are nice to implement, but the absence of which will not cause
this project to fail.

• It should be easy to incorporate optimizations [Augustsson, 1993] applied to the generated code into
the framework.
• Also the framework should be designed so that existing and future work on type class directives [Heeren

and Hage, 2005] can be integrated.
• It would be very nice to implement functional dependencies [Jones, 2000] in the framework or the

alternative solution in terms of associated types [Chakravarty et al., 2005b,a].

1.3 Contribution

Are we the first developing such a framework? Yes and no, for instance, Chameleon [Sulzmann and Wazny,
2001] is a Haskell-style language, which implements the ideas described by Stuckey and Sulzmann [Stuckey
and Sulzmann, 2002]. In Chameleon it is possible to define overloaded functions. However, Chameleon does
not support Haskell 98 type classes nor any type class extensions. Very interesting is the formulation of
overloading in rules and the way users can supply rules to experiment with the type system. In Chapter 3 we
review the work of Sulzmann et all. The second framework is Top [Heeren, 2005]. This is a constraint-based
type inferencer for Haskell designed to produce high quality type error messages. Top supports Haskell 98
type classes, but no type class extensions. The interesting part of Top is the way users can script the type
inference process [Heeren et al., 2003a] to give better type error messages and the formulation of overloading
resolution using constraints.

1.4 Structure of this thesis

In Chapter 2 we introduce type classes and qualifier entailment. We review in Chapter 3 a selection of the
literature concerning type classes. The following two chapters describe the current situation. This frame-
work must become part of the constraint-based type inferencer Top. Currently, Top is used by the Helium
compiler. In Chapter 4 we explain how overloading is resolved in Top. The framework we describe in this
thesis is also going to be used in EHC. Therefore, we explain in Chapter 5 how overloading is implemented
in EHC. In Chapter 6 we describe the first version of the framework. We explain how overloading resolu-
tion can be formulated with constraints and how those constraints can be solved with Constraint Handling
Rules [Frühwirth, 1998]. In Chapter 7 we extend the framework to translate a language with overloading into
a language without. Furthermore, we show how design decisions can be specified in the form of heuristics.
We explain in Chapter 8 how local instances can be formulated in our framework. In Chapter 9 we extend the
framework with improving substitution and show how the existing translation from functional dependencies
into CHRs can be used. Chapter 10 concludes.

2 Introduction



Chapter 2

Preliminaries

In this chapter we give some preliminary information concerning type classes and constraints. We first intro-
duce various aspects of type classes: class and instance declarations, context reduction, dictionary translation,
and ambiguities. In the last part of this chapter we introduce the entailment relation and qualified types.

2.1 Type classes

Type classes are proposed as a solution for overloading identifiers in Haskell. In this subsection we introduce
Haskell 98 type classes and describe how a language with overloading can be translated into a language
without overloading.

2.1.1 Class declarations

In Haskell 98, overloaded functions are declared as part of a class declaration:

class Eq a where
(≡) :: a → a → Bool
(6≡) :: a → a → Bool
x 6≡ y = not (x ≡ y)
x ≡ y = not (x 6≡ y)

This introduces a new type class predicate named Eq . Furthermore, two overloaded operators for equality (≡)
and inequality (6≡) are introduced. These operators are overloaded in the type variable a. The type variable
a is scoped over the class signature and the operator signatures. Also, default definitions are given for both
operators. Type classes can also be arranged in a hierarchy; we can declare for instance:

class Eq a ⇒ Ord a where
(6) :: a → a → Bool

A class declaration consists of two parts; the part before the ⇒ is called the context and the part after the
⇒ is called the head. Here the context specifies that Eq is a superclass of Ord . The superclass relation must
form a directed acyclic graph. In Figure 2.1 we present an overview of the standard Haskell classes.

2.1.2 Instance declarations

We can make a type an instance of a type class with the instance declaration. For example, the following
instance declarations show how equality and ordering on booleans is defined and how equality on lists is
defined.

instance Eq Bool where
True ≡ True = True
False ≡ False = True

≡ = False

3



2.1 Type classes

Figure 2.1: Standard Haskell classes

4 Preliminaries



Type classes 2.2

instance Ord Bool where
6 True = True

False 6 = True
6 = False

instance Eq a ⇒ Eq [a ] where
[ ] ≡ [ ] = True
(x : xs) ≡ (y : ys) = x ≡ y ∧ xs ≡ ys

≡ = False

In the first instance declaration we define equality on booleans. We only have to specify a definition for
equality, because we already have specified a default definition for inequality in the class declaration. The
third instance means that once we have equality on elements (Eq a), we know how to provide equality on
lists (Eq [a ]). This can also be seen in the definition of (≡), first equality on the first elements of the lists is
determined (x ≡ y), then the tails of the lists are compared for equality by a recursive call (xs ≡ ys). Note
that [[a ]] and [[[a ]]] are now also instances of Eq , so this instance declaration makes an infinite number of
types instances of Eq .

2.1.3 Functions and context reduction

The introduced type classes are used in the following functions for testing if a list is still ordered after an
insertion:

insert :: Ord a ⇒ a → [a ]→ [a ]
sort :: Ord a ⇒ [a ]→ [a ]
testInsert :: Ord a ⇒ a → [a ]→ Bool
testInsert x xs = let ys = insert x (sort xs)

in sort ys ≡ ys

The signature contexts of the above functions mention the earlier introduce type class Ord . Ord a in the
above signatures is a type class predicate or type class qualifier. This is an additional requirement on the type
variable a, restricting a to types that are instances of Ord . When inferring the type of the function testInsert ,
we must prove the predicate Ord a because the functions insert and sort are used; luckily we may assume
that there is an instance for Ord a because this predicate is also mentioned in the signature of testInsert .
However, the overloaded operator (≡) is also used (sort ys ≡ ys), so we also have to prove the predicate
Eq [a ]. The reason why we do not find this predicate in the signature is that Eq [a ] can be derived from Eq a
via the instance declaration for lists and Eq a can be derived from Ord a because Eq is a superclass of Ord .
This process is called context reduction, which is an optimization that minimizes the number of predicates
required in a type signature.

2.1.4 Dictionary translation

A Haskell program with overloading can be translated into a Haskell program without, using the dictionary
translation. In Figure 2.2 we show the translation of the example code snippets introduced in this chapter.
The class declarations are translated into datatype declarations and functions adding the default declarations
to a dictionary. Note how the superclass/subclass relation between Ord and Eq is visible in the field deq of
datatype DictOrd . The instance declarations are translated into functions constructing the dictionaries.

The predicate in the function testInsert is translated into an additional parameter. The caller of the function
testInsert has to provide this parameter and it can be used in the body. Finally, the overloaded functions
are selected from the dictionary parameter with exactly the same derivation as we saw when we performed
context reduction.

Preliminaries 5



2.2 Type classes

data DictEq a = DictEq {(≡) :: a → a → Bool
, (6≡) :: a → a → Bool }

data DictOrd a = DictOrd{(6) :: a → a → Bool
, deq :: DictEq a }

defDictEq :: DictEq a → DictEq a
defDictEq d = DictEq {(6≡) = λx y → not (((≡) d) x y)

, (≡) = λx y → not (((6≡) d) x y)}
defDictOrd :: DictOrd a → DictOrd a
defDictOrd d = DictOrd { }
dictEqBool :: DictEq Bool
dictEqBool = let d = (defDictEq d) {(≡) = λx y → case (x , y) of

(True,True) → True
(False, ) → True
( , ) → False }

in d
dictOrdBool :: DictOrd Bool
dictOrdBool = let d = (defDictOrd d){(6) = λx y → case (x , y) of

( ,True) → True
(False,False)→ True
( , ) → False

, deq = dictEqBool }
in d

dictEqList :: DictEq a → DictEq [a ]
dictEqList da = let d = (defDictEq d){(≡) = λx y → case (x , y) of

([ ], [ ]) → True
(x : xs, y : ys)→ ((≡) da) x y ∧

((≡) d) xs ys
( , ) → False }

in d
testInsert :: DictOrd a → a → [a ]→ Bool
testInsert d x xs = let ys = insert d x (sort d xs)

in ((≡) (dictEqList (deq d))) (sort d ys) ys

Figure 2.2: Haskell program resulting from the dictionary translation
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Caveats 2.3

2.2 Caveats

2.2.1 Ambiguous types and defaulting

Using Haskell overloading can cause ambiguous types. An ambiguous type is a type of the form ∀ a.ctx ⇒ τ ,
where a is occurring in ctx , but not in τ [Peyton Jones, 2003]. For example, the following function has an
ambiguous type:

am :: (Show a,Read a)⇒ String
am = let x = read "1.5"

in show x
read :: Read a ⇒ String → a
show :: Show a ⇒ a → String

The ambiguity arises because the use of am does not specify to which type a should be instantiated. The
reason for this is that a does not occur outside the context of the type scheme of am. This is a consequence
of the implicit nature of Haskell’s type inference system. Haskell provides several ways around this, which all
make explicit to what type a should instantiate. For instance, a programmer can annotate a value with an
explicit type, such as (x ::Double). Because such ambiguities often occur in the context of class Num, Haskell
provides a way to resolve them without explicit type annotations, the default declaration:

default (t1, ..., tn)

where n > 0 and tn must be an instance of the Num class. An ambiguous type variable v can be defaulted if:

• v appears in a predicate of the form C a, where C is a class, and

• at least one of these classes is Num, or a subclass of Num,

• all of the these classes are defined in the Haskell 98 Prelude.

The ambiguous type variable v is defaulted to the first type ti that is an instance of all the involved type
classes.

2.2.2 The monomorphism restriction

In addition to the usual Hindley-Milner restriction that a type variable can only be generalized if it does not
occur free in the environment, Haskell adds another restriction called the monomorphism restriction [Peyton
Jones, 2003]. A constrained type variable is not generalized when a binding group is restricted. Type variables
are constrained if there is a class predicate concerning that type variable. A binding group is unrestricted if:

• every variable in the group is bound by a function binding or a simple pattern binding, and

• an explicit type signature is given for every variable in the group that is bound by a simple pattern
binding.

Any monomorphic type variables that remain when type inference for an entire module is complete, are
considered ambiguous, and are resolved to particular types using the defaulting rules.

As a consequence, the inferred type for the function f x y = x + y is what we expect: Num a ⇒ a → a → a.
However, the type remains monomorphic if we define the same function with a simple pattern binding instead
of a function binding: f = λx y → x +y . A type is defaulted using the default declaration if the type remains
monomorphic after type inferencing the entire module. With the following default declaration:

default (Int ,Double)

the type of the function f is defaulted to Int → Int → Int , because Int is the first type in the default
declaration that is an instance of Num.

2.3 Entailment and qualified types

Type class predicates are an example of qualified types [Jones, 1992]. A qualifier places an extra restriction on
type variables. For example, the qualifier in the signature of testInsert : Ord a ⇒ a → [a ] → Bool , restricts
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2.3 Entailment and qualified types

P ⊇ Q
P 
e Q

(Mono)
P 
e Q Q 
e R

P 
e R
(Trans)

P 
e Q
SP 
e SQ

(Closed)

Figure 2.3: Basic rules for qualifier entailment

P 
e π1 π2 ∈ Q
(Class Q ⇒ π1) ∈ Γ

P 
e {π2}
(Super)

P 
e Q (Inst Q ⇒ π) ∈ Γ
P 
e {π}

(Inst)

Figure 2.4: Additional rules for entailment relation of type class qualifiers

a to the members of type class Ord . Other qualifiers are used to type extensible records [Jones and Peyton
Jones, 1999]:

• (r has l :: a) means that record r has a field l of type a.
• (r lacks l) means that the record r does not has a field l .

The entailment relation (
e) describes the relation between two finite sets of qualifiers. The meaning of
this relation depends on the qualifiers used. However, in Figure 2.3 we list three properties that hold for all
qualifiers. In these rules P ,Q , and R are sets of qualifiers and S is a substitution mapping type variables to
types.

The specific properties for type class qualifiers are listed in Figure 2.4. For each class declaration: class Q ⇒ π,
we add (Class Q ⇒ π) to the environment (Γ) and for each instance: instance Q ⇒ π, we add (Inst Q ⇒ π).
Let us first consider the Inst rule: A set of predicates P entails π if there is an instance Inst Q ⇒ π and
P 
e Q . Consider the following example derivation to illustrate the Inst rule. We assume that the instance
(Inst{Eq a } ⇒ Eq [a ]) is in the environment.

(Inst{Eq a } ⇒ Eq [a ]) ∈ Γ {Eq a } 
e {Eq a } (Mono)

{Eq a } 
e {Eq [a ]} (Inst)

{Eq v1} 
e {Eq [v1 ]} (Closed)

We search for a predicate π that matches the head of an instance when using the Inst rule. On the other
hand, when using the Super rule, we search for a predicate π2 that is part of the context. This is an important
difference between the Inst and the Super rule, because the arrow in a class declaration could easily be
misinterpreted as implication.
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Chapter 3

Literature on type classes

This chapter summarizes a selection of literature concerning type classes. First, to give some background
information for this thesis, and furthermore, to make a clear separation between our work and work of others.
We give a literature overview focusing on two aspects of type classes:

• Design; the design of type classes and various extensions to type classes.
• Constraints; the resolving of overloading using a constraint solver.

3.1 Design of type classes

Type classes were introduced by Wadler and Blot [Wadler and Blott, 1989] and Kaes [Kaes, 1988]. Their type
class design was adopted by Haskell [Peyton Jones, 2003]. In this chapter we give a chronological overview of
the various papers that have appeared about the design of type classes.

3.1.1 A system of constructor classes

The first extension, called constructor classes, was proposed by Jones [Jones, 1993]. This extension also allows
type constructors to be in a class. For example, the type class Monad is defined for types of kind ∗ → ∗, with
instances for [ ] and Maybe:

class Monad m where
return :: a → m a
(>>=) :: m a → (a → m b)→ m b

instance Monad Maybe where
return x = Just x
n >>= f = case n of

Nothing → Nothing
Just x → f x

Here m in the definition of the class Monad is a type of kind ∗ → ∗, a type-level function from proper types
to proper types. The type expression m a means m applied to a. Maybe and [ ] are both of kind ∗ → ∗ so we
can make them instances of Monad . This extension is part of Haskell 98.

3.1.2 A second look at overloading

Odersky, Wadler, and Wehr [Odersky et al., 1995] describe a simple restriction on type classes which ensures
that no ambiguities can arise. The restriction is that each function that is overloaded over type variable a
must have a type of the form a → t , where t may itself involve a. Their redesign of type classes is called
System O. Below we present a System O example which we cannot express with Haskell 98 type classes:

over first
inst first :: (a, b)→ a

9



3.1 Design of type classes

first (x , y) = x
inst first :: (a, b, c)→ a

first (x , y , z ) = x
ff :: (first :: a → b,first :: b → c)⇒ a → c
ff r = first (first r)

Note that we can express this example using multi-parameter type classes and functional dependencies which
we will explain later. System O has a number of advantages: one does not have to decide in advance which
operations belong together in a class and the definition of overloaded operators is less verbose. On the other
hand, the inferred types become more verbose because each overloaded function is mentioned separately in
the context.

3.1.3 Type classes: an exploration of the design space

Peyton Jones, Jones, and Meijer [Peyton Jones et al., 1997] argue that the original design of type classes is fairly
conservative. They discuss a number of design choices for each of the following aspects: multi-parameter type
classes, context reduction, overlapping instances, instance types, instance contexts, superclasses, improving
substitution, and class declarations. In the conclusion the authors take the following design decisions:

• Allow multi-parameter type classes.
• No limitations on superclass contexts.
• Allow the class variables to be constrained in the class-member type signatures.
• Forbid overlapping instance declarations.
• Allow arbitrary instance types in the head of an instance declaration, except that at least one must not

be a type variable.
• Allow repeated type variables in the head of an instance declaration.
• Restrict the context of an instance declaration to mention type variables only.
• Allow arbitrary contexts in types and type signatures.
• Use the instance context reduction rule only when forced by a type signature, or when the overloading

can be resolved at compile time.

The Haskell compiler GHC [Marlow and Peyton Jones, 2006] implements these design choices when enabling
extensions. Even overlapping instances are allowed with an additional flag. Furthermore, the design choice
that the context of an instance declaration may only mention type variables is relaxed. However, the predicates
in the context must have fewer constructors and variables (taken together and counting repetitions) than the
head.

3.1.4 Type classes with functional dependencies

Jones [Jones, 2000] shows that the use of multiple-parameter type classes often causes ambiguities and inac-
curacies. To tackle this problem the author introduces functional dependencies between parameters of type
classes. In the example below: a → b (a uniquely determines b), means that the relation between a and
b is a function. This means, for example, that it is forbidden to define both the instance D Int Bool and
D Int String .

class C a b
class D a b | a → b
class E a b | a → b, b → a

In the last class declaration the relation between a and b is a one-to-one mapping. So if there is an instance
E Int Bool there cannot be another instance where either a is Int , or b is Bool .

The example we gave for System O can also be expressed with multi-parameter type classes and functional
dependencies:

class First a b | a → b where
first :: a → b

instance First (a, b) a where
first (x , y) = x

instance First (a, b, c) a where
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first (x , y , z ) = x
ff :: (First a b,First b c)⇒ a → c
ff x = first (first x )

3.1.5 Making implicit parameters explicit

Dijkstra and Swierstra [Dijkstra and Swierstra, 2005] describe how dictionaries can be passed explicitly to
overloaded functions. Consider the function below that checks if a value is an element of a list. The predicate
Eq a in the type of the function elem corresponds to an implicit argument, the dictionary for the predicate
Eq a. If we use this function we do not have to supply the dictionary for Eq a, it is automatically inserted
by the compiler.

elem :: Eq a ⇒ a → [a ]→ Bool
elem x [ ] = False
elem x (y : ys) = x ≡ y ∨ elem x ys
test xs = elem 4 xs

However, if we want to use this function with another equality, for example modulo 2, we cannot specify
this, because it is not possible to influence the machinery that automatically inserts the dictionary. With the
extension described by Dijkstra and Swierstra it is possible to insert the dictionary implicitly and explicitly.
We can for example define a named instance of Eq Int where equality is defined modulo 2.

instance dEqIntMod :: Eq Int where
x ≡ y = primEqInt (x ‘mod ‘ 2) (y ‘mod ‘ 2)

test xs = elem {!dEqIntMod <: Eq Int !} 4 xs

Now we can explicitly insert the named dictionary between the {! ... !} signs, where otherwise the normal
dictionary for equality would be inserted. The authors present three different instance declaration:

instance Eq Int where ...
instance dEqIntMod <: Eq Int where ...
instance dEqIntMod :: Eq Int where ...

The first two instance declarations participate in the machinery for automatic dictionary translation, and the
last one does not. Additionally the last two instance declarations can be used to explicitly insert dictionaries
by referring to the introduced identifier to which the dictionary is bound.

3.2 Constraints and type classes

3.2.1 Type classes and constraint handling rules

Glynn, Stuckey, and Sulzmann [Glynn et al., 2000, Sulzmann, 2006] describe how class and instance dec-
larations can be translated into Constraint Handling Rules (CHRs). Furthermore, the authors show how
instance declarations can be checked with CHRs and how predicates can be simplified using CHRs. CHRs are
a high level declarative language extension especially designed for writing constraint solvers [Frühwirth, 1998].
CHRs are often embedded in a host language: constraints are defined in CHRs, but auxiliary computations
are executed in the host language. CHRs operate on a set of constraints and rewrite constraints into simpler
ones until they are solved.

The following propagation CHR is generated for a class declaration of the form: class Q ⇒ π.

π =⇒ Q

This propagation constraint means that the constraints Q can be inserted if π is an element of the constraint
set. A propagation CHR is applied only once to each constraint to prevent non-termination. The following
simplification CHR is generated for an instance declaration of the form: instance Q ⇒ π.

π ⇐⇒ Q

This simplification CHR means that π can be replaced with Q when π is an element of the constraint set. If
the set Q is empty it is abbreviated with true. CHRs are generated for all instance and class declarations in
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3.2 Constraints and type classes

a program. Instance declarations are correct when the generated CHRs form a confluent set. A set of rules
is confluent if from any given constraint set every possible order of rule applications ends in the same final
constraint set. For example, this is not the case with overlapping instances:

data Foo = Foo
instance Eq [Foo ] where

xs ≡ ys = length xs ≡ length ys

The following CHRs are generated for the above instance declaration and the standard instance declaration
for lists:

Eq [a ] ⇐⇒ Eq a
Eq [Foo ]⇐⇒ true

These rules are non-confluent because there are two possible derivations for solving the constraint Eq [Foo ].
However, if we would allow overlapping instances then we typically choose the most specific instance. The
most specific instance is instance Eq [Foo ] in this case.

The CHRs generated for class and instance declarations can be used to perform context reduction. However, an
additional step is needed to simplify constraints using the class hierarchy. The following CHRs are generated
for a class declaration of the form class (p1 , ..., πn)⇒ π to simplify constraints using the class hierarchy:

π, πi ⇐⇒ π

The CHRs resulting from the first translation simplify constraints using instance declarations and propagate
the class hierarchy to check instance declarations. The CHRs resulting from the second translation simplifies
constraints using the class hierarchy. To perform context reduction, constraints are first solved using the
CHRs resulting from the first translation and the result is solved with the CHRs resulting from the second
translation. The authors do not explain how explicit type signatures are checked with CHRs.

3.2.2 Implementing overloading in Chameleon

Stuckey and Sulzmann present a minimal extension of the Hindley/Milner system to support overloading of
identifiers [Stuckey and Sulzmann, 2002]. This approach relies on a combination of the HM(X) type system
framework with CHRs. This proposal provided the basis for the Chameleon language described by Sulzmann
and Wazny [Sulzmann and Wazny, 2001]. Chameleon supports only single overloaded definitions, so it is
not possible to group overloaded identifiers in classes and arrange those classes in a hierarchy. However, the
programmer can specify arbitrary additional conditions by providing CHR propagation rules in the program
text. With these user provided CHRs it is possible to mimic Haskell class hierarchies. Here we will focus on
the translation scheme described to resolve overloading in Haskell.

The authors use the same translation scheme as described in the previous subsection. Consider the following
example presented in the Chameleon paper:

class Eq a where
(≡) :: a → a → Bool

class Eq b ⇒ Foo a b where
foo :: b → a

instance Eq a ⇒ Foo [a ] a

The following CHRs are generated for the above class and instance declarations:

Foo a b =⇒ (Eq b)1 -- (Foo)
Foo [a ] a ⇐⇒ (Eq a)2 -- (FooInst)

A propagation CHR is generated for the declaration of class Foo and a simplification CHR is generated for
the instance declaration. The overloaded functions (≡) and foo are used in the following definition:

f :: (Foo a b)6 ⇒ b → (Bool , a)
f x = (foo4 [x ] ≡3 x , foo5 x )

Analyzing the function f results in the following constraints:

{(Eq b)3, (Foo [b ] b)4, (Foo a b)5, (Foo a b)6}
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Each constraint is annotated with a location identifier. Applying the generated CHRs to the constraints
results in the following constraint set:

{(Eq b)3, (Eq b)4,2, (Foo a b)5, (Eq b)5,1

, (Foo a b)6, (Eq b)6,1}

The constraints are annotated with justifications to keep track of the history of CHR applications. The first
four constraints are called inferred constraints whereas the last two constraints result from the type signature.
Propagated inferred constraints are discarded. An example of such a discarded constraint is (Eq b)5,1 which
results from applying the propagation rule 1 to the constraint at location 5. The last step is to match the
remaining inferred constraints against annotated constraints: (Foo a b)5 is matched against (Foo a b)6 and
(Eq b)3, (Eq b)4,2 against (Eq b)6,1. The justifications are used to generate evidence for the remaining inferred
constraints.

The authors admit that there is some non-determinism when matching inferred constraints against annotated
constraints and solving constraints with CHRs. However, they do not remove this non-determinism because
the different solutions denote the same result.

3.2.3 CHRs and functional dependencies

Duck, Peyton Jones, Stuckey, and Sulzmann give a reformulation of functional dependencies in terms of
CHRs [Duck et al., 2004, Sulzmann et al., 2007]. For example, consider the following class and instance
declarations:

class Coll c e | c → e where
empty :: c
insert :: e → c → c
member :: e → c → Bool

instance Ord a ⇒ Coll [a ] a where
empty = [ ]
insert = (:)
member = elem

The improvement rules for the functional dependency c → e are expressed with the following CHRs:

Coll c e,Coll c d =⇒ e ≡ d
Coll [a ] b =⇒ a ≡ b

The first rule is generated for the functional dependency c → e and expresses that if there are two constraints
over the same type c, then it must be that e and d are the same type. The second rule is generated for the
instance declaration. The authors have verified that the termination and consistency conditions [Jones, 2000]
are sufficient to guarantee sound and decidable type inference. They even show how those conditions can be
safely relaxed.

3.2.4 Type class directives

Heeren and Hage [Heeren and Hage, 2005] propose a number of directives to improve type error messages
concerning Haskell type classes. The authors introduce directives besides class and instance declarations to
describe type classes. These directives are used to improve error messages concerning type classes. With
these directives one is able to exclude a type from a type class, allow only a finite number of types in a type
class, and express that the types in two type classes are disjoint. Below are some example directives:

never Eq (a → b) : "functions cannot be tested for equality"
never Num Bool : "arithmetic on booleans isn’t supported"
close Integral : "the only Integral instances are Int and Integer"
disjoint Integral Fractional : "something which is fractional can never be integral"

Directives are checked during context reduction and the associated error message is presented if a directive
does not hold.
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Chapter 4

Overloading in Helium

Helium [Heeren et al., 2003b] is a compiler designed with the emphasis on high quality type error messages.
Helium is suitable for teaching students functional programming because the type errors are clear and precise.
It supports most of Haskell 98: the most notable omission is that the user cannot specify class and instance
declarations. However, Helium supports overloading with a finite set of built-in classes and instances. Helium
uses the constraint solver Top [Heeren, 2005] for type inferencing and checking. In this chapter we will focus
on how overloading is resolved in Helium and Top.

4.1 The type system

The type system of Helium is rather standard and has the following structure:

Type:
τ ::= a (type variable)
| T (type constant)
| τ1 τ2 (type application)

Context:
P ::= (π1, ...., πn) (n > 0)
Type class qualifier:
π ::= C τ
Type scheme:
σ ::= ∀ ā.P ⇒ τ

The types in this type system are partitioned in polymorphic types (σ) and monomorphic types (τ). A type
variable is an identifier starting with a lowercase letter. In this chapter we use the infinite list of identifiers
(v1, ..., vn) as type variables. Both a type constant (T ) and a class name (C ) are identifiers starting with an
uppercase letter. Type application allows us to write useless types like (Int Bool). Actually, we need a kind
system to check well-formedness of types, but we assume that we only deal with well-formed types. Type
schemes with an empty context: ∀ ā.()⇒ τ are written as: ∀ ā.τ .

4.2 Constraint based type inferencing

Helium collects type constraints by analyzing the abstract-syntax tree of a Haskell program. This results in a
tree of constraints which has the same shape as the abstract-syntax tree of the program. This tree is flattened
into a list using a flattening strategy. The resulting constraints are solved by Top.

In this section we explain how these constraints are solved. First, we consider equality constraints, and then
we show how constraints for polymorphism are solved.
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4.2 Constraint based type inferencing

4.2.1 The equality constraint

An equality constraint specifies that two monomorphic types must be equal:

Constraints:
c ::= τ1 ≡ τ2 (equality)

For instance, consider the following function:

f x y z = if x
then y
else z

Analyzing the if-then-else part of this function yields the following result:

A = [x 7→ v1, y 7→ v2, z 7→ v3 ]
C = {v1 ≡ Bool

, v2 ≡ v4

, v3 ≡ v4}

A is an assumption set relating monomorphic types to identifiers and C is the constraint set. These constraints
specify that the guard must have type Bool and that the then and else branch must have the same type. The
solver maintains a state while solving these constraints. This state consists of a substitution which maps type
variables to types:

state ::= S
S ::= [v1 7→ τ1, ..., vn 7→ τn ]

Helium solves equality constraints by generating substitutions under which the two types are syntactically
equivalent. The mapping v1 7→ Bool is added to the substitution to solve the first constraint of the example.
The second constraint has two solutions: either v2 is mapped to v4, or v4 is mapped to v2. The same holds
for the last constraint. Which of the two solutions is chosen does not matter. Helium chooses to map the left
hand side to the right hand side. This results in the following solution for the list of example constraints:

S = [v1 7→ Bool , v2 7→ v4, v3 7→ v4 ]

It is not allowed for a type variable of one component of an equality constraint to occur in the other component.
For example consider the following constraint:

v5 ≡ Maybe v5

One could come up with the substitution [v5 7→ Maybe v5 ] as solution, but this will result in an infinite
type. In other words, the substitution must be idempotent. This restriction is called ‘the occurs check’.

4.2.2 Constraints for polymorphism

To support polymorphism we need to add another layer to the type system. Beside monomorphic types (τ)
and polymorphic types (σ) we add ρ types which are either type schemes (σ) or type scheme variables (σv).
Furthermore, we extend the state with an environment which maps type scheme variables to type schemes:

state ::= (S ,Σ)
Σ ::= [s1 7→ σ1, ..., sn 7→ σn ]

We use the infinite list of identifiers (s1, ..., sn) as type scheme variables. Also, three constraints are added to
the constraint language to support polymorphism:

Constraints:
c ::= τ1 ≡ τ2 (equality)
| σv := Gen (M, τ) (generalization)
| τ := Inst (ρ) (instantiation)
| τ := Skol (M, ρ) (skolemization)

In the remainder of this subsection we will explain in more detail how polymorphism constraints are used and
solved.
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The generalization constraint

A generalization constraint generalizes a type with respect to a set of type variables that should remain
monomorphic (M). For instance, Helium generates the following constraints for the function: id x = x .

A = [id 7→ v0, x 7→ v3 ]
C = {v0 ≡ v2 → v1

, v3 ≡ v2

, v3 ≡ v1

, id := Gen ([ ], v0)}

The first constraint states that the binding id is a function. The second constraint states that the variable
x should have the same type as the argument of the function. The third constraint states that x should
have the same type as the result of the function. The last constraint generalizes the binding and maps the
type-scheme variable id to the resulting type scheme. Consider the state of the solver just before considering
the last constraint:

S = [v0 7→ v1 → v1, v3 7→ v1, v2 7→ v1 ]
Σ = [ ]

Solving a generalization constraint σv := Gen (M, τ) consists of four steps:

• First, the substitution is applied to the set of type variables that should remain monomorphic (M) and
the type τ . As a result the constraint becomes: id := Gen ([ ], v1 → v1).

• Second, the type variables that are going to be generalized are computed: ā = ftv (τ)− ftv (M), in this
case v1.

• The third step is to generalize the type τ over the set of type variables ā.

• And finally the generalized type is stored in the environment under the type-scheme variable σv, in this
case id .

For our current example this will result in the following state:

S = [v0 7→ v1 → v1, v3 7→ v1, v2 7→ v1 ]
Σ = [id 7→ ∀ a.a → a ]

Under this solution the equality constraints hold and the type for the function id is inferred to be ∀ a.a → a.

The instantiation constraint

An instantiation constraint states that type τ should be an instance of a type scheme. For example, the
following constraints are generated for the expression (id 1, id ’c’):

A = [ ]
C = {v4 := Inst (∀ a.a → a)

, v4 ≡ Int → v3

, v7 := Inst (∀ a.a → a)
, v7 ≡ Char → v6

, (v3, v6) ≡ v2}

The polymorphic function id is instantiated twice: once for an argument of type Int and once for an argument
of type Char .

Solving an instantiation constraint τ := Inst (ρ) consists of three steps:

• First, if ρ is a type scheme variable, the type scheme is looked up in the environment. In this example
the type schemes are already known.

• Second, the type scheme is instantiated by replacing the universally (∀) quantified variables with fresh
type variables.

• Finally, an equality constraint is generated between τ and the instantiated type.

Consider the first instantiation constraint of the above example. The type scheme of this constraint is
instantiated with the fresh type variable v10. This results in the equality constraint v4 ≡ v10 → v10 which
means that v4 is a function with one argument where the type of the argument is equal to the type of the
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result. In the same way, the type scheme of the second instantiation constraint is instantiated with the fresh
type variable v11 resulting in the constraint v7 ≡ v11 → v11. Solving the equality constraints results in the
following solution:

S = [v2 7→ (Int ,Char), v3 7→ Int , v4 7→ Int → Int , v6 7→ Char , v7 7→ Char → Char , v10 7→ Int
, v11 7→ Char ]

Σ = [ ]

Under this solution the equality constraints holds.

The skolemization constraint

A skolemization constraint states that type τ should be equal to a skolemized type scheme. A type scheme
can be skolemized by instantiating it with fresh type constants. We use v for type variables and c for type
constants. The difference between the two is that a type constant cannot be unified with another type constant
whereas a type variable can be unified with a type constant. Let us define the identity function again, but
now with an explicit type signature.

id :: ∀ a.a → a
id x = x

Helium generates the following constraints for this function:

A = [id 7→ v0, x 7→ v3 ]
C = {v0 ≡ v2 → v1

, v0 := Skol ([ ],∀ a.a → a)
, v3 ≡ v2

, v3 ≡ v1}

If we compare these constraint to the constraints generated when not giving a type signature, a skolemization
constraint is generated instead of a generalization constraint. Also the order of the constraints differ: the
generalization constraint did appear after the constraints for analyzing the body of the function id , but the
skolemization constraint appears before. In fact the generalization constraint must appear after the constraints
for analyzing the body, but the position of the skolemization constraint does not matter.

The following three steps are needed to solve a skolemization constraint τ := Skol (M, ρ):

• First, if ρ is a type-scheme variable, the type scheme is looked up in the environment.

• Second, the universally (∀) quantified variables are replaced with fresh type constants.

• Third, the fresh type constants and M are stored together so that we can check afterwards that the
type constants do not escape via a type variable inM.

• Finally, an equality constraint between τ and the skolemized type is generated.

The type scheme of the constraint v0 := Skol ([ ],∀ a.a → a) is skolemized with the fresh type constant c5.
The last step in solving the skolemization constraint is that we generate the constraint: v0 ≡ c5 → c5. Solving
the list of equality constraints will result in the following substitution:

S = [v0 7→ c5 → c5, v1 7→ c5, v2 7→ c5, v3 7→ c5 ]

4.3 Constraints for overloading

In this section we explain how overloading is resolved in Top. To support overloading we extend the constraint
language with two additional constraints:

Constraints:
c ::= τ1 ≡ τ2 (equality)
| σv := Gen (M, τ) (generalization)
| τ := Inst (ρ) (instantiation)
| τ := Skol (M, ρ) (skolemization)
| Prove (π) (prove qualifier)
| Assume (π) (assume qualifier)
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Constraints for overloading 4.3

The Prove constraint means that we have the obligation to proof the qualifier π. This means that evidence
should be constructed of type π at the location in the abstract-syntax tree where the Prove constraint occurs.
An Assume constraint means that we can assume the qualifier π. This means that evidence is available of
type π.

To solve these constraint we extend the state with the following components:

state ::= (S ,Σ,Πprove,Πassume,Πgen)
Π ::= {π1, ..., πn}

Πprove is a set of qualifiers that must be proven and Πassume is a set of qualifiers that can be assumed. In
the remainder of this chapter we explain what the meaning of the list of qualifiers Πgen is.

4.3.1 Generating overloading constraints

Assume and Prove constraints are not generated by Helium, but result from solving instantiation and skolem-
ization constraints. Consider the following example to illustrate this:

elem :: Eq a ⇒ a → [a ]→ Bool
elem x [ ] = False
elem x (y : ys) = x ≡ y ∨ elem x ys

Notice that this function has an explicit type signature and that the overloaded functions (≡) and elem
are used in the body of elem. In this example we do not consider every generated constraint, but only the
following skolemization and instantiation constraints:

C = {v0 := Skol ([ ],∀ a.Eq a ⇒ a → [a ]→ Bool)
, v1 := Inst (∀ a.Eq a ⇒ a → a → Bool)
, v2 := Inst (∀ a.Eq a ⇒ a → [a ]→ Bool)}

First, the type signature is skolemized: v0 := Skol ([ ],∀ a.Eq a ⇒ a → [a ] → Bool). The quantified
type variable is replaced with a fresh type constant: Eq c3 ⇒ c3 → [c3 ] → Bool . Finally, an Assume
constraint is generated for every qualifier in the skolemized type. So for the above type signature the constraint
Assume (Eq c3) is generated.

Second, the function (≡) is instantiated: v1 := Inst (∀ a.Eq a ⇒ a → a → Bool). The quantified type is
instantiated with a fresh type variable: Eq v4 ⇒ v4 → v4 → Bool . Finally, a Prove constraint is generated for
every qualifier in the instantiated type. So for the first instantiation constraint Prove (Eq v4) is generated.
Likewise, the quantified type of the third constraint is instantiated using the fresh type variable v5 and the
constraint Prove (Eq v5) is generated. The type variables v4 and v5 will be substituted to c3 later in the type
inference process.

To sum it up, instantiation generates a Prove constraint for every qualifier of the instantiated type scheme.
Skolemization generates an Assume constraint for every qualifier of the skolemized type scheme.

4.3.2 Solving overloading constraints

Solving a Prove or an Assume constraint is rather straightforward. For a Prove constraint the qualifier π is
inserted into the set of qualifiers to prove (Πprove). In the same way the qualifier of an Assume constraint is
inserted into the set of qualifiers that can be assumed (Πassume).

Simplification

The question that arises now is what happens with the set of assumed qualifiers and the set of qualifier to
proof . The answer is that the constraints are solved during the simplification step. In principle this step can
be applied at any point in the solving process. Top executes this step just before generalizing and just after
solving the last constraint. For example, consider the function elem again:

elem :: Eq a ⇒ a → [a ]→ Bool
elem x [ ] = False
elem x (y : ys) = x ≡ y ∨ elem x ys
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4.3 Constraints for overloading

When the constraints for the above function are solved the state is:

S = [v1 7→ c1, v2 7→ c1, v0 7→ c1 → [c1 ]→ Bool , v18 7→ c1 → c1 → Bool , ...]
Σ = [ ]
Πprove = {Eq v1,Eq v2}
Πassume = {Eq c1}
Πgen = { }

The last step of the constraint solver is to simplify the set of qualifiers to prove (Πprove). The set of predicates
to prove must be empty when the solver is finished, otherwise overloading is not resolved. Simplification
consists of three steps. First, the substitution is applied to the qualifiers. In our example the type variables
are substituted to the type variable constant c1:

Πprove = {Eq c1}
Πassume = {Eq c1}

Second, the prove qualifiers are simplified using instance declarations and the class hierarchy. The last step is
that the prove qualifiers entailed by the assume qualifiers are removed. In this example the assume qualifier
Eq c1 entails the prove qualifier Eq c1, because they are equal. This means that the prove qualifier Eq c1

can be removed. There are no prove qualifiers left so overloading is resolved in the function elem and the
simplification step is finished.

Generalization

Simplification is part of the steps needed to solve the generalization constraint σv := Gen (M, τ). Consider
the following example:

f x y = if x > y
then show x
else g x y

g x y = f (succ x ) y

For the above program the following constraints are generated; we only consider the generalize and instanti-
ation constraints.

A = [x 7→ v1, y 7→ v1 ]
C = {v1 → v1 → Bool := Inst (∀ a.Ord a ⇒ a → a → Bool) -- (>)

, v1 → String := Inst (∀ a.Show a ⇒ a → String) -- (show)
, v1 → v1 := Inst (∀ a.Enum a ⇒ a → a) -- (succ)
, f := Gen ([ ], v1 → v1 → String)
, g := Gen ([ ], v1 → v1 → String)}

Because the functions f and g are mutually recursive, the constraints of the body’s of the functions are
analyzed before both functions are generalized. The first constraint is generated for the instantiation of the
operator (>), the second for the function show , and the third for the function succ. The last two constraints
generalize f and g , respectively.

There are eight steps needed to solve a generalization constraint σv := Gen (M, τ):

1. simplification
2. substitution
3. ā = ftv (τ)− ftv (M)
4. Π1 = {π | π ← Πprove, (ftv π ∩ ā) 6≡ [ ]}
5. Π2 = {π | π ← Πgen , (ftv π ∩ ā) 6≡ [ ]}
6. Πprove = Πprove −Π1

7. Πgen = Πgen ∪ Π1

8. σv 7→ ∀ ā.(Π1 ∪ Π2)⇒ τ

We first solve the first generalization constraint: f := Gen ([ ], v1 → v1 → String). The overloading state
before solving this constraint is:

Πprove = {Ord v1,Show v1,Enum v1}
Πassume = { }
Πgen = { }
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Conclusion 4.4

First, we simplify the predicates with the earlier described simplification step and then we apply the substi-
tution. The type variable over which we can generalize is v1. This results in the following sets of qualifiers:

Π1 = {Ord v1,Show v1,Enum v1}
Π2 = { }

The set Π1 is subtracted from the set of proof predicates and inserted into the set of predicates that have
been generalized. Finally, the generalized type is: ∀ a.(Ord a,Show a,Enum a) ⇒ a → a → String . Before
we consider the last constraint: g := Gen ([ ], v1 → v1 → String), the overloading state is:

Πprove = { }
Πassume = { }
Πgen = {Ord v1,Show v1,Enum v1}

Again the type variable over which we can generalize is v1. The difference now is that filtering the set of
prove qualifiers yields the empty set. However, filtering the set of generalized qualifiers yields the predicates
we expect:

Π1 = { }
Π2 = {Ord v1,Show v1,Enum v1}

Now again the result of the generalization is the type scheme: ∀ a.(Ord a,Show a,Enum a) ⇒ a → a →
String . As we have seen the generalized qualifiers are stored into the set of generalized qualifiers (Πgen)
because they can show up in multiple type schemes.

4.4 Conclusion

If we only look at the implementation, the most beautiful aspect of Helium and Top is the elegant way of using
constraints for type inference and overloading. The use of constraints enables a nice separation of concerns:
Helium generates the constraints, Top solves the constraints, and Helium uses the result of the solver. It is
also possible to use the constraint solver stand-alone to experiment with it. Also, Helium can be asked to
print the constraints of a program.

Not only the types should be inferred and checked for resolving overloading, but also code or evidence should
be generated. Evidence is not part of the solve result of Top, while Top has all the information to generate
evidence. Only the types are in the result and Helium must reconstruct context reduction to generate evidence.
This is the first point that could be improved.

A second point for improvement is that inside Top and Helium an environment with instance and class
declarations is used to perform context reduction. Helium and Top could be further decoupled by using
Constraint Handling Rules (CHRs) to represent this information. CHRs are a much clearer specification of
the meaning of class and instance declarations. Furthermore, CHRs can be easily extended to support various
type class extensions.

A third remark is about the generalization constraint. A generalization constraint in Top now only covers
one type τ to generalize. But a binding group may consist of more than one type that should be generalized.
Helium solves this by generating multiple generalization constraints in sequence. However, for solving such a
sequence Top must store a set of generalized qualifiers because they could be needed by subsequent general-
izations. We could get rid of the set of generalized qualifiers (Πgen) by adapting the generalization constraint
to generalize a set of types.
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Chapter 5

Overloading in EHC

In this chapter we explain how overloading is implemented in the Essential Haskell Compiler (EHC) [Dijkstra,
2005, Dijkstra and Swierstra, 2005]. First, we introduce the language EH and its type system. Second, we
explain how the resolution of overloading is implemented. Finally, we conclude with a discussion of the strong
and weak points of EHC.

5.1 The language EH

EHC is designed to experiment with advanced features such as higher ranked types, existential types, type
classes, partial type signatures, and records. On the other hand, the compiler is also an educational platform
for teaching students how a compiler is implemented. Therefore, the compiler consists of ten ordered versions,
each adding new features on top of its preceding version. Also, syntactic sugar is kept to a minimum.
In Figure 5.1 we present the concrete syntax of EH associated with version 9, which resembles desugared
Haskell 98 [Peyton Jones, 2003]. In the next section we present the type system and the syntax of σ and π
types. In this section we explain three major differences with respect to Haskell 98.

5.1.1 Instance declarations

EH offers two additional forms of instance declarations besides the one already known from Haskell 98:

• A named instance is not used by the compiler for the automatic resolution of overloading, but the
dictionary is bound to the identifier i . This identifier can then be used for the value introduced instance,
but also as an explicitly passed dictionary to a function, of which we show examples hereafter.

• A value introduced instance adds a dictionary to the collection of instances that are used by the compiler
for the automatic resolution of overloading.

There is a third form (instance i <: π̄ ⇒ π where d̄) which is syntactic sugar for the named instance
combined with the value introduced instance:

instance i :: π̄ ⇒ π where d̄
instance i <: (π̄ ⇒ π)

First the dictionary is bound to i . Then the dictionary is added to the instances that are used for the
automatic resolution of overloading. In other words, the named introduced instance means the same as the
instance declaration we know from Haskell 98, but the resulting dictionary is also bound to an identifier.

5.1.2 Explicit implicit application and abstraction

A Haskell 98 compiler automatically inserts additional dictionary parameters as a result of overloading resolu-
tion and the programmer cannot influence this. However, in EHC the programmer can overrule the automatic
resolution by passing a dictionary explicitly. In the following example we introduce a type class for equality
and an two instances for Eq Int :
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5.1 The language EH

Value expressions:
e ::= int | char (literals)
| i (variable)
| let d̄ in e (local definitions)
| e e (application)
| λi → e (abstraction)
| e {!e <: π!} (explicit implicit application)
| λ {!i <: π!} → e (explicit implicit abstraction)

Declarations of bindings:
d ::= i :: σ (value type signature)
| i = e (value binding)
| data σ = Iσ (datatype)
| class π̄ ⇒ π where d̄ (class)
| instance π̄ ⇒ π where d̄ (introduced instance)
| instance i :: π̄ ⇒ π where d̄ (named instance)
| instance e <: π (value introduced instance)
| instance i <: π̄ ⇒ π where d̄ (named introduced instance)

Figure 5.1: Syntax of EH version 9

let class Eq a where
eq :: a → a → Bool

instance Eq Int where
eq = primEqInt

instance eqDeg :: Eq Int where
eq = λx y → eq (mod x 360) (mod y 360)

in (eq 90 450
, eq {!eqDeg <: Eq Int !} 90 450)

The first instance for Eq Int is standard, the second is not. Checking two angles for equality would not work
with the default instance so we declare a named instance for equality modulo 360. The instance for equality
on degrees does not participate in the automatic resolution of overloading because it is only a named instance.
However, the programmer can explicitly pass the Eq Int dictionary for degrees to the function eq . Evaluating
the above expression yields (False,True).

5.1.3 Local instances

In EH it is also possible to declare instances locally. Named instances can be used as normal values, and
participate in the usual scoping rules. However, for instance declarations participating in the automatic
resolution a different strategy must be used. For example, when instances overlap, the innermost instance, as
defined by lexical scoping, takes precedence over the outermost. Two instances overlap when they are for the
same class and if there is a substitution (S ) which unifies the heads of the instances.

(C σ) overlaps (D σ′) if
C ≡ D ∧ S σ ≡ S σ′

where
S = bind
bind ::= v 7→ σ

The following EHC program illustrates local instances:

let class Eq a where
eq :: a → a → Bool

instance eqD <: Eq Int where
eq = primEqInt
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The type system 5.2

Types:
σ ::= Int | Char (literals)
| v (type variable)
| T (type constant)
| σ σ (type application)
| ∀ v̄.σ (universally quantified type)
| ∃ v̄.σ (existentially quantified type)
| π̄ ⇒ σ (implicit abstraction)

Predicates:
π ::= C σ (predicate)
| π ⇒ π (predicate transformer/abstraction)
| $ (predicate wildcard variable)

Figure 5.2: Type language of EH version 9

test1 = eq 90 450
test2 = let instance eqDeg <: Eq Int where

eq = λx y → primEqInt (mod x 360) (mod y 360)
in eq 90 450

in (test1 , test2 )

The two instances in the above program overlap because they unify under the empty substitution. In the
body of the function test1 the instance named eqD will be used because it is the only valid instance in scope.
However, the instance named eqDeg will be used in the body of the function test2 because it is the innermost
valid instance. Note that class declarations are global in EHC just like in Haskell.

Finally, note that all bindings in a let expression are analyzed together, so a let expression in EHC is equal
to a binding group in Haskell.

5.2 The type system

The type system of EH implements features like higher ranked types, existential types, type classes, partial
type signatures, and records. The type language is presented in Figure 5.2. Three features of this type system
deserve special attention.

5.2.1 Higher ranked types

The type system allows higher ranked types. The rank of a type is the depth at which universal quantifiers
appear on argument position (contra-variantly). For instance, a rank-0 type is a monomorphic type without
quantifiers. A rank-1 type is only quantified on the outermost level, for instance, ∀ a.a → a. A rank-2 type
is a function with a polymorphic argument, for instance:

hr :: (∀ a.a → a)→ (Char , Int)
hr = λid → (id ’c’, id 1)

EHC allows also ranks higher than 2. In other word, EHC supports higher ranked types. Note that EHC
does not infer higher ranked types, but checks these types by propagating type annotations. Type inference
for ranks higher than 2 is even undecidable.

5.2.2 Quantifiers and predicates everywhere

Quantifiers and predicates may occur at the right-hand side of the function type constructor (→). EHC places
the quantifiers and predicates as close as possible to the place where the quantified type variables occur. This
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5.3 Implementation of overloading

differs from Haskell 98 which allows quantifiers only at the leftmost position in a type (implicitly). To illustrate
this, consider the following function:

index = λxs n → if n ≡ 0
then head xs
else index (tail xs) (n − 1)

A Haskell 98 compiler infers the following type for this function (ignoring the monomorphism restriction):

∀ a b.Num a ⇒ [b ]→ a → b

On the other hand EHC infers:

∀ b.[b ]→ ∀ a.Num a ⇒ a → b

5.2.3 Higher order predicates

Packaged as an instance declaration, higher order predicates are already available; for example the instance
declaration for lists actually takes an instance for its arguments:

instance Eq a ⇒ Eq [a ] where ...

This instance declaration is translated into a function that creates a dictionary for Eq [a ] from a dictionary
for Eq a. Such a function is called a dictionary transformer. EHC allows not only predicates in the context,
but also predicate transformers:

g :: (∀ a.Eq a ⇒ Eq [a ])⇒ Int → [Int ]→ Bool
g = λp q → [p ] ≡ q

The predicate transformer argument is used to resolve overloading in the above function.

5.3 Implementation of overloading

The richer type language of EH unfortunately implies a more complex implementation. In particular, allowing
predicates to occur anywhere in a type means that EH has to anticipate for dictionaries to pass and be passed
at arbitrary argument positions. This is illustrated by the following example:

index :: ∀ b.[b ]→ ∀ a.Num a ⇒ a → b
index = λxs n → if n ≡ 0

then head xs
else index (tail xs) (n − 1)

main = index $·
1 "class" $·

2 4 $·
3

There are three possible positions where dictionaries could be inserted at the place where the function index
is used. Compare this with Haskell 98 which only allows dictionaries before the first parameter of an identifier
(position $1). In EH predicate positions correspond directly to argument passing of dictionaries, a type
therefore describes the parameter passing order. EHC instantiates the type of the function index to [Char ]→
∀ a.Num a ⇒ a → Char . No dictionaries have to be inserted at position 1 because there is no predicate before
[Char ] in the type. Furthermore, EHC instantiates ∀ a.Num a ⇒ a → Char when the second parameter
is applied to the function. The type variable a is instantiated to Int and the predicate Num Int has to be
proven. For that reason, the dictionary corresponding to the predicate Num Int has to be inserted at position
$2 in the abstract-syntax tree. No dictionary has to be inserted at position $3.

5.3.1 Predicate substitution

The above features of EH prevent us from using the standard solution for resolving overloading, because
predicates may occur at any position in a type. Instead, resolving of overloading is implemented using a
substitution which on top of mapping type variables to types, also describes where which predicates have to
be inserted:
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Implementation of overloading 5.3

bind ::= v 7→ σ
| $ 7→ (π,$)
| $ 7→ ∅

This substitution not only maps type variables (v) to types (σ), but also maps predicate variables ($) to
predicates (π). For example, consider the use of index again:

main = index $·
1 "class" $·

2 4 $·
3

Predicate variables are distributed over the abstract-syntax tree during the type inference process. The
information that becomes available during type inferencing is represented in the substitution. For instance,
the solution for the above program is the following substitution:

S = {$1 7→ ∅, $2 7→ (Num Int , $4), $3 7→ ∅, $4 7→ ∅}

Positions in the abstract-syntax tree where no predicates have to be proven are mapped to the empty set.

5.3.2 Type matching

The type of an EH expression is inferred and checked by performing a subsumption check at each node of the
abstract-syntax tree. The subsumption check matches the expected type (σk) against the actual type (σ) of
an expression:

σ 6 σk

The substitution (S ) is one of the results of this function.

Consider again the following fragment:

main = index "class" 4

We present the steps that are performed by the subsumption check to type the use of the function index
below. At the left hand side of the subsumption check (6) we see the type of the function index . The right
hand side shows the type constructed from analyzing the abstract-syntax tree and the fact that a predicate
may occur anywhere. In the rightmost column we show which constraints are added to the substitution S .

∀ b.[b ] → ∀ a.Num a ⇒ a → b 6 $1 ⇒ [Char ]→ $2 ⇒ Int → $3 ⇒ v6

[v7 ]→ ∀ a.Num a ⇒ a → v7 6 $1 ⇒ [Char ]→ $2 ⇒ Int → $3 ⇒ v6 $1 7→ ∅
[v7 ]→ ∀ a.Num a ⇒ a → v7 6 [Char ]→ $2 ⇒ Int → $3 ⇒ v6 v7 7→ Char

∀ a.Num a ⇒ a → Char 6 $2 ⇒ Int → $3 ⇒ v6

Num v8 ⇒ v8 → Char 6 $2 ⇒ Int → $3 ⇒ v6 $2 7→ Num v8

v8 → Char 6 Int → $3 ⇒ v6 v8 7→ Int
Char 6 $3 ⇒ v6 $3 7→ ∅
Char 6 v6 v6 7→ Char

The following steps are taken to check the use of the function index :

• The function index is instantiated with a fresh type variable (v7).
• No predicate is present in the left hand side which could bind to $1, so $1 binds to the empty set of

predicates.
• The type variable v7 is bound to Char.
• The type of function index is again instantiated with a fresh type variable (v8).
• The predicate variable $2 is bound to the predicate Num v8.

The subsumption check proceeds until the type is checked or an error is found. The subsumption check also
result in a list of predicates that must be proven in order to resolve overloading. The context must provide
a proof for the predicate Num Int because this predicate occurs at the left hand side of the above example.
The proof can not yet be given, so it is delayed until later, in particular when dealing with the enclosing let.

5.3.3 Context-reduction rules

EHC generates a rule for each class and instance declaration. These rules are used to perform context
reduction and to construct the code that has to be inserted. A rule consists of the following components:

Rule (σ, ϑ,name, i , c)
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5.4 Conclusion

A rule has a type (σ), code for constructing evidence (ϑ), a name, a unique identifier, and a number indicating
the cost of applying the rule. The unique identifier (i) is a tuple consisting of a number identifying the scope
in which the class or instance declaration occurs and a number identifying the rule itself. The cost (c) consist
of the level of the rule and the cost of constructing a dictionary with this rule. For a class declaration of the
form: class (π1, ..., πn)⇒ π the following rules are generated given a context identifier (contextId):

i ∈ (1 ... n) :
u fresh
Rule (π → πi, ϑ, , (contextId , u), 1)

The first component of the rule π → πi is the type of the coercion function that selects a superclass from
the subclass dictionary. The second component is the coercion function itself. The scope where this class
declaration is introduced is identified with contextId . The rule is further uniquely identified with the identifier
u. The last component indicates that the cost of applying this rule is 1.

For an instance declaration of the form: instance (π1, ..., πn) ⇒ π the following rule is generated given a
dictionary name (nm) and a context identifier (contextId):

u fresh
Rule (π1 → ...→ πn → π, ϑ,nm, (contextId , u), 2 ∗ n)

For an instance declaration only one rule is generated. The first component of the rule is the type of the
function for constructing the dictionary. The second component is the code for applying the construction
function itself. The third component is the name of the construction function. The instance rule is identified
with contextId and a unique identifier. Finally, the cost of applying the rules is the number of predicates in
the context of the instance declaration times 2.

5.4 Conclusion

A nice aspect of EHC is that it implements an advanced type system in combination with very experimental
type-class extensions. Also the encoding of class and instance declarations in rules is an elegant abstraction.

The resolution of overloading with such an advanced type system is complex and not yet sufficiently docu-
mented in the literature [Dijkstra, 2005, Dijkstra and Swierstra, 2005]. It is a challenge to precisely describe
how overloading can be resolved with the type system of EHC.

EHC allows qualifiers and predicates at the right hand side of the function type (→). Consequently, dic-
tionaries have to be inserted not only after an instantiated variable, but at almost every position in the
abstract-syntax tree. The question is if this feature justifies the complexities it introduces. There are two
important reasons to support this feature. First, this feature allows us to write shorter programs:

f :: (∀ a.Eq a ⇒ a → a)→ ...
g :: ∀ b.b → ∀ a.Eq a ⇒ a → a
x = f (g 2)

The following program expresses the same fragment in a language that does not allow qualifiers and predicates
at arbitrary positions in a type:

g :: ∀ a b.Eq a ⇒ b → a → a
x = let g ′ = g 2 in f g ′

In this fragment we must first bind the application (g 2) in a let to trigger generalization. Second, the
combination of this feature with existential types has not yet been fully explored, but it is expected that
it offers a flexible mechanism for constructing records with higher ranked functions taking predicates, an
essential ingredient for module systems.

The encoding of class and instance declarations in rules is elegant. However, the code where predicates are
simplified and resolved using these rules is very complex and proved to be difficult to understand. Deep
knowledge about the resolving of overloading is encoded in this algorithm and the challenge is to use a solver
without specific knowledge of type classes.

Finally, the syntax for explicit implicit application and explicit explicit abstraction is a bit verbose [Dijkstra
and Swierstra, 2005]. Besides specifying the value of the predicate also the type has to be given:{!dictEqInt <:
Eq Int !}. It would be nice if we can do the same without this additional predicate annotation.
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Chapter 6

A framework for overloading
resolution

In this chapter we present the initial version of a framework for the resolution of overloading. This version
resolves overloading and reports unresolved predicates as an error. In the next chapters we extend this version
to support code generation, local instances, and other type class extensions.

6.1 Introduction

Multiple compilers should be able to use our framework to resolve overloading. This means that we cannot
depend on how a particular compiler uses this framework. We accomplish this by introducing two abstractions:

First, we formulate the resolution of overloading as a constraint problem. Constraint programming yields
several advantages [Aiken, 1999]: The most important advantage is separation of concerns; that is, the spec-
ification is separated from the implementation. Generation of constraints is the specification of the analysis;
solving of constraints the implementation. The constraints are generated by a compiler and this framework
computes a solution for those constraints. Furthermore, class and instance declarations are translated into
Constraint Handling Rules (CHRs) and the framework uses these CHRs to solve the constraints.

Second, we do not make any assumption about the structure of the predicate language. Instead, we require
that a number of functions are implemented on the predicates. This is accomplished by using type classes as
the abstraction mechanism in our implementation.

In this chapter we formulate the overloading problem in terms of a constraint language. Then we show
how CHRs can be used to solve overloading constraints and present a translation from class and instance
declarations into CHRs. Finally, we describe the implementation of this framework and show the interaction
between CHR solving and generalization.

6.2 Constraints for overloading

In this section we explain how the problem of resolving overloading can be formulated into a constraint
language. Our approach is based on the formulation in Top [Heeren, 2005]. We use two different types of
constraints: First, the (Assume π) constraint which means that we have an assumption for the qualifier π.
Second, the (Prove π) constraint which means that we have a proof obligation for the qualifier π. For the
moment we do not give a precise specification of a qualifier, but leave it abstract. However, in the examples
we use type class qualifiers to explain the meaning of the constraints.

C ::= Prove π
| Assume π

Overloading is resolved if all Prove constraints are entailed by Assume constraints. Consider for example the
equality function (≡) of type ∀ a.Eq a ⇒ a → a → Bool . If we use this function, then its type is instantiated
with a fresh type variable, say v1. We have to proof that equality is defined on the type v1 because the type
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6.3 Resolving overloading with CHRs

class qualifier Eq a is part of the type scheme. For that reason, we generate the constraint Prove (Eq v1) after
instantiating the type. Later in the type inference process we may infer that v1 is actually of type Int . If we
assume that the standard instance for equality on integers is defined, then we are able to solve Prove (Eq Int)
because { } 
e {Eq Int }. In this chapter we use the entailment relation (
e) introduced in Chapter 2 (figures
2.3 and 2.4).

It is not always possible to directly fulfill proof obligations. Consider for example the following function:

max x y
| x > y = x
| otherwise = y

The overloaded operator > is used in the function max . This operator has the type ∀ a.Ord a ⇒ a → a →
Bool and is instantiated with the fresh type variable v2. We do not acquire more type information for the
type variable v2, so we end up with the constraint Prove (Ord v2). The inferred type for the function max
is v2 → v2 → v2. After generalizing this type we get the type scheme: ∀ a.Ord a ⇒ a → a → a. The
type class qualifier Ord a is part of the generalized type because there was a remaining Prove constraint
concerning the type variable v2. Because the type class qualifier Ord v2 is generalized, we add the constraint
Assume (Ord v2) and then {Ord v2} 
e {Ord v2} trivially holds.

We also generate Assume constraints for each qualifier in the context of an explicitly typed function. Consider
for example the following function:

elem :: Ord a ⇒ a → [a ]→ Bool
elem x [ ] = False
elem x (y : ys) = x ≡ y ∨ elem x ys

The type signature of the function elem is skolemized using a fresh type constant, for example c1. Skolemiza-
tion of the type signature results in the constraint Assume (Ord c1). The use of the two overloaded functions
(≡) and elem result in the constraints Prove (Eq v1) and Prove (Ord v2), respectively. Later in the type
inference process we infer that the type variables v1 and v2 are equal to c1. We then have to solve the
following set of constraints: {Assume (Ord c1),Prove (Eq c1),Prove (Ord c1)}. Overloading in the function
elem is resolved because the qualifier in the Assume constraint entails the qualifiers in the Prove constraints:
{Ord c1} 
e {Eq c1,Ord c1}.

Definition 6.1 (Constraint Satisfaction). Satisfaction of Prove and Assume constraints is defined as
follows. Consider a solution Θ which consists of a set of assumed qualifiers ΠΘ. A Prove constraints is satisfied
if the corresponding qualifier is entailed by the set of assumed qualifiers ΠΘ.

Θ `s Prove π =def ΠΘ 
e Θ(π)
Θ `s Assume π =def Θ(π) ∈ ΠΘ

Furthermore, an Assume constraint is solved if the assumed qualifier is an element of ΠΘ.

6.3 Resolving overloading with CHRs

Until now we have only given a declarative specification of entailment. In this section we investigate whether
it is possible to formulate the entailment check with Constraint Handling Rules (CHRs).

6.3.1 Constraint handling rules

CHRs [Frühwirth, 1998] are a high-level declarative language extension especially designed for writing con-
straint solvers. CHRs are often embedded in a host language: constraints are defined in CHRs, but auxiliary
computations are executed in the host language. CHRs operate on a set of constraints and rewrite constraints
into simpler ones until they are solved. We use two types of CHRs with the following syntax:

H1, ...,Hi ⇐⇒ G1, ..., Gj | B1, ..., Bk (simplification)
H1, ...,Hi =⇒ G1, ..., Gj | B1, ..., Bk (propagation)
(i > 0, j > 0, k > 0)

The constraints (H1, ...,Hi) are the head of a CHR, the conditions (G1, ..., Gj) are the guard of a CHR,
and the constraints (B1, ..., Bk) are the body of a CHR. The empty constraint set is abbreviated with true.
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Operationally, a simplification rule replaces the set of constraints in the head by the constraints in the body
when the conditions in the guard are satisfied. A propagation rule adds the constraints in the body if the
constraints in the head are present and the conditions in the guards are satisfied. A propagation rule can
be applied infinitely many times, but non-termination is avoided by applying a propagation rule only once
to every constraint in the constraint set. CHRs can be given a declarative semantics [Frühwirth, 1998]. A
simplification is a logical equivalence if the guards are satisfied:

∀ x̄ ∀ ȳ ((G1 ∧ ... ∧ Gj)→ (H1 ∧ ... ∧ Hi ↔ ∃ z̄ (B1 ∧ ... ∧ Bk))

Similarly, a propagation is an implication if the guards are satisfied:

∀ x̄ ∀ ȳ ((G1 ∧ ... ∧ Gj)→ (H1 ∧ ... ∧ Hi → ∃ z̄ (B1 ∧ ... ∧ Bk)))

The sequences of variables x̄ and ȳ are scoped over the whole CHR. The variables x̄ occur in the head of a
CHR and the variable ȳ in the guard. On the other hand, the variables z̄ are only scoped over the body of a
CHR.

6.3.2 Formulating entailment with CHRs

The entailment relation (P 
e Q) allows us to check whether it is possible to deduce the predicates in Q
from those in P. We have to perform two steps to formulate this relation into CHRs: The first step is called
simplification where we try to find the minimum set of predicates P given Q where P 
e Q . This step is
also called context reduction. The second step is only performed if there are Assume constraints, and checks
whether the set of predicates P from the first step are entailed by the predicates in the Assume constraints.
Simplification is applied to Prove constraints and the entailment check matches Prove constraints against
Assume constraints.

Simplification

Simplification itself consists of three steps: removal of duplicate constraints, simplification using instance
declarations, and simplification using the class hierarchy. We get removal of duplicate constraints for free,
because the CHR solver operates on a set of constraints.

To simplify Prove constraints we generate CHRs for each class and instance declaration. In this section we
present a number of example translations. In the next section we present the systematic translation. Consider
the following class declarations:

class Eq a -- (C1)
class Eq a ⇒ Ord a -- (C2)
class Ord a ⇒ Real a -- (C3)
instance Eq a ⇒ Eq [a ] -- (I1)

The following CHRs are generated for these declarations (note that a is an implicitly universally quantified
variable in each CHR):

Prove (Eq a) ,Prove (Ord a) ⇐⇒ Prove (Ord a) -- (C2)
Prove (Ord a),Prove (Real a)⇐⇒ Prove (Real a) -- (C3)
Prove (Eq [a ]) ⇐⇒ Prove (Eq a) -- (I1)

If we apply the rule above on the constraint set {Prove (Eq [v1 ]),Prove (Ord v1),Prove (Real v1)} we could
get the following derivation:

{Prove (Eq [v1 ]),Prove (Ord v1),Prove (Real v1)}
−→I1 {Prove (Eq v1) ,Prove (Ord v1),Prove (Real v1)}
−→C2 {Prove (Ord v1) ,Prove (Real v1)}
−→C3 {Prove (Real v1)}

First, the rule I1 is applied, then C2 , and finally C3 , but the following derivation is also possible:

{Prove (Eq [v1 ]),Prove (Ord v1),Prove (Real v1)}
−→C3 {Prove (Eq [v1 ]),Prove (Real v1)}
−→I1 {Prove (Eq v1) ,Prove (Real v1)}
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This shows that the rules are not confluent. A set of rules is confluent if from any given state every possible
order of rule applications ends in the same final state. By adding the following rule we make our rules
confluent:

Prove (Eq a),Prove (Real a)⇐⇒ Prove (Real a)

This means that we have to add a rule for every superclass of a class, and not only for the direct superclasses.
In other words, we have to explicitly add the transitive closure of the superclass relation to the CHRs used
for simplification.

Entailment

Until now we have only presented the rules to simplify Prove constraints. The second step is to check whether
the predicates in the Prove constraints match with the predicates in the Assume constraints. Therefore we
introduce the following CHR:

Prove p,Assume p ⇐⇒ Assume p -- (E)

This rule means that the proof obligation p can be removed if we have an assumption for p. Note that this
rule abstracts over the predicate language used. Recall the function elem:

elem :: Eq a ⇒ a → [a ]→ Bool
elem x [ ] = False
elem x (y : ys) = x ≡ y ∨ elem x ys

If the explicit type signature of elem is skolemized with the fresh type constant c1 we eventually have to solve
the set of constraints: {Prove (Eq c1),Assume (Eq c1)}. This set can easily be solved by applying rule E .
But giving the following signature for elem is also correct:

elem :: Real a ⇒ a → [a ]→ Bool

The current rules are not sufficient to solve this problem. We not only have to simplify proof obligations, but
also propagate assumptions. If there is an assumption for Ord a then also all superclasses of Ord a can be
assumed. Therefore we introduce a propagation CHR for each class declaration:

class Eq a ⇒ Ord a -- (C2)
class Ord a ⇒ Real a -- (C3)
Assume (Ord a) =⇒ Assume (Eq a) -- (CA2)
Assume (Real a) =⇒ Assume (Ord a) -- (CA3)

Now we are able to solve the following set of constraints:

{Prove (Eq c1),Assume (Real c1)}
−→CA3 {Prove (Eq c1),Assume (Real c1),Assume (Ord c1)}
−→CA2 {Prove (Eq c1),Assume (Real c1),Assume (Ord c1),Assume (Eq c1)}
−→E {Assume (Real c1),Assume (Ord c1),Assume (Eq c1)}

The predicates in the Assume constraints entail those in the Prove constraints if there are no Prove constraints
left after solving.

We have shown how we can formulate the entailment check with CHRs. In the next section we present the
first implementation of the framework together with functions for generating CHRs from class and instance
declarations.

6.3.3 A Haskell CHR solver

In order to solve constraints with CHRs we have implemented a basic CHR solver in Haskell. This solver is used
by the framework, but could also be replaced by another CHR solver. We do not explain the implementation
of this solver, but only present the interface. We represent a CHR with the following datatype:

data CHR c s = CHR{head :: [c ]
, guard :: (s → Maybe s)
, body :: [c ]
}
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The datatype CHR is parametrized with two type variables: c represents the type of the constraint, s
represents the type of the substitution. A successful match of the head of a CHR with actual constraints
results in a substitution. Variables in the head of the CHR are bound to values in this substitution. The
guard is a function which gets this substitution as a parameter. The guard returns a new substitution if the
conditions in the guards are satisfied, otherwise the guard returns Nothing . This substitution is applied to
the body of the CHR after the substitution resulting from the head is applied.

We introduce two operators to construct simplification and propagation CHRs, respectively:

infix 1⇐⇒,=⇒
(⇐⇒), (=⇒) :: Monoid s ⇒ [p ]→ [p ]→ CHR p s
hs ⇐⇒ bs = CHR hs emptyGuard bs
hs =⇒ bs = hs ⇐⇒ (hs ++ bs)
emptyGuard :: Monoid s ⇒ t → Maybe s
emptyGuard = const (Just mempty)
infixr 0 .
(.) :: CHR p s → (s → Maybe s)→ CHR p s
(.) (CHR hs bs) g = CHR hs g bs

We represent both propagation and simplification rules with the CHR datatype. A propagation rule is
immediately translated into a simplification rule when constructing it with the operator (=⇒). This is
achieved by appending the head of the propagation rule to the body of the simplification rule. These operators
construct CHRs with a guard that always returns the empty substitution. Note that the identifier mempty is
from the Monoid class. A guard can be attached to a CHR with the operator (.).

The following type class is used to support matching of constraints:

class (Ord c,Monoid s)⇒ Matchable c s | c → s where
match :: c → c → Maybe s
subst :: s → c → c
match x y | x ≡ y = Just mempty

| otherwise = Nothing
subst = flip const

The default implementation of this class is matching on syntactic equality. An instance of this class must be
given for the type of the constraints used. Also more advanced forms of matching with patterns are possible.
The function match is not symmetric, in other words, there are two values: x , y where match x y 6≡ match y x .
The function match expects a constraint as left hand side and a constraint of the head of a CHR as right hand
side. The head constraint is matched against the constraint and when the match is successful a substitution
is returned. The following QuickCheck [Claessen and Hughes, 2000] property should hold:

propMatch c h =
case match c h of

Just s → property (c ≡ subst s h)
Nothing → property ()

A constraint c should be equal to the resulting substitution applied to the head if the constraint matches
with the head. The asymmetry is also the reason why there is no need to instantiate a CHR first with fresh
variables as with instantiating type schemes. The substitution is only applied to the CHR and not on the
constraints, therefore the variables of a CHR will never leak to the constraints.

Finally, we introduce the function that solves a set of constraints given a list of CHRs:

chrSolve :: Matchable c s ⇒ [CHR c s ]→ Set c → Set c

For convenience, we also introduce a function that solves a list of constraints using CHRs. Internally, the list
is converted into a set and visa versa:

chrSolveList :: Matchable c s ⇒ [CHR c s ]→ [c ]→ [c ]
chrSolveList chrs cs = Set .toList (chrSolve chrs (Set .fromList cs))
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6.4 Implementation

We have described a constraint language for specifying the overloading problem. Furthermore, we have shown
how CHRs can be used to check entailment. This section describes the implementation of those ideas in our
first version of the framework. We explain how we represent the constraint language in Haskell. Then we
present a systematic translation from class and instance declarations into CHRs. Finally, we show how
constraints are solved using CHRs.

This section is also a literate Haskell module:

import CHRSolver
import Control .Monad .State
import qualified Data.Set as Set
import Data.List (intersect)

Besides some standard Haskell libraries we import the CHR solver presented in the previous section.

6.4.1 Constraint language

A constraint is either a proof obligation or an assumption:

data Constraint p = Prove p | Assume p
deriving (Eq ,Ord)

instance Functor Constraint where
fmap f (Prove p) = Prove (f p)
fmap f (Assume p) = Assume (f p)

The type variable p represents the type of the predicate. We also make the type Constraint an instance of
Functor so we can easily map functions over a Constraint . Furthermore, we make Constraint an instance of
Matchable:

instance Matchable p s ⇒ Matchable (Constraint p) s where
match (Prove p) (Prove q) = match p q
match (Assume p) (Assume q) = match p q
match = Nothing
subst s (Prove p) = Prove (subst s p)
subst s (Assume p) = Assume (subst s p)

Prove and Assume constraints only match when the predicates in these constraints match. So we require
that matching is defined on the type of the predicate language.

6.4.2 Translation to CHRs

For the resolution of overloading we have to translate class and instance declarations into CHRs. Class and
instance declaration are translated into:

1. CHRs for propagating the class hierarchy and removing entailed constraints.

2. CHRs for simplifying constraints using the class hierarchy.

3. CHRs for simplifying constraints using instance declarations.

We introduce some type synonyms before presenting the systematic translation:

type Rule p s = CHR (Constraint p) s

The type synonym Rule is a CHR on the earlier defined constraint language. We also introduce type synonyms
for instance and class declarations:

type ClassDecl p = ([p ], p)
type InstanceDecl p = ([p ], p)

Both are tuples where the first component is the context and the second component is the head of the
declaration.
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Step 1: CHRs for propagating the class hierarchy and removing entailed constraints.

We start with the translation from a class declaration into CHRs:

genAssumeChrs :: Matchable a s ⇒ ClassDecl a → [Rule a s ]
genAssumeChrs (context , head) =

let solve = [Assume head ,Prove head ]⇐⇒ [Assume head ]
propSuper = [Assume head ] =⇒ map Assume context

in [solve, propSuper ]

For each class declaration we generate a simplification CHR. This simplification removes a Prove con-
straint if there is an assumption in the set for the same predicate. We do not remove the assumption,
because it can be used to solve another Prove constraint. Furthermore, a propagation CHR is generated
that propagates assumptions for the context of a class declaration if there is an assumption for the head.
The simplification rule is generated for each class declaration, but in fact we could use the general rule:
Prove p,Assume p ⇐⇒ Assume p. Adding such a rule would introduce an additional substitution from
variables to predicates and because we do not need this rule in the remainder of this thesis we omit it for
simplicity. The function application genAssumeChrs ([Eq a,Show a ],Num a) results from translating the
class declaration class (Eq a,Show a)⇒ Num a. This function application evaluates to the following list of
CHRs:

[Assume (Num a),Prove (Num a)⇐⇒ Assume (Num a)
,Assume (Num a) =⇒ Assume (Eq a),Assume (Show a)]

Step 2: CHRs for simplifying constraints using the class hierarchy.

The propagation rules generated for the class declarations encode the class hierarchy. In this step we use the
rules of step 1 to generate CHRs for the simplification of Prove constraints using the class hierarchy.

genClassChrs :: Matchable a s ⇒ [ClassDecl a ]→ [Rule a s ]
genClassChrs clsDecls =

let assumeChrs = concatMap genAssumeChrs clsDecls
simplChrs = concatMap (genClassSimplChrs assumeChrs) clsDecls

in assumeChrs ++ simplChrs
genClassSimplChrs :: Matchable a s ⇒ [Rule a s ]→ ClassDecl a → [Rule a s ]
genClassSimplChrs rules (context , head) =

let superClasses = chrSolveList rules (map Assume context)
simpl (Assume sClass) = [Prove head ,Prove sClass ]⇐⇒ [Prove head ]

in if elem (Assume head) superClasses
then error ("Cyclic class hierarchy")
else map simpl superClasses

We perform the following steps for each class declaration: First we translate the predicates in the context into
Assume constraints. Then the assume constraints are solved using the rules for the propagation of the class
hierarchy. Solving those constraints result in a constraint set consisting of all superclasses of the predicate
head . The class hierarchy is cyclic if the head of the class declaration is an element of the superclass set. If this
is not the case, a simplification CHR is generated for each class in this set. In this way we obtain a confluent
rule set while checking if the class hierarchy is acyclic. For example, consider the following application of the
function genClassSimplChrs for the class: class (Ord a,Num a)⇒ Real a.

genClassSimplChrs
[Assume (Real a) =⇒ Assume (Num a),Assume (Ord a)
,Assume (Num a) =⇒ Assume (Eq a),Assume (Show a)
,Assume (Ord a) =⇒ Assume (Eq a)]
([Ord a,Num a ],Real a)

Evaluating this expression results in:

[Prove (Real a),Prove (Ord a)⇐⇒ Prove (Real a)
,Prove (Real a),Prove (Num a)⇐⇒ Prove (Real a)
,Prove (Real a),Prove (Eq a)⇐⇒ Prove (Real a)
,Prove (Real a),Prove (Show a)⇐⇒ Prove (Real a)]
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Step 3: CHRs for simplifying constraints using instance declarations.

To simplify Prove constraints using instances we generate the following CHR for each instance declaration:

genInstanceChrs :: Matchable a s ⇒ [InstanceDecl a ]→ [Rule a s ]
genInstanceChrs =

let genSimpl (context , head) = [Prove head ]⇐⇒ map Prove context
in map genSimpl

For each instance we generate a rule where the head of the instance is simplified into the context of the
instance. Finally, we concatenate the rules for class and instance declarations:

genChrs :: Matchable a s ⇒ [ClassDecl a ]→ [InstanceDecl a ]→ [Rule a s ]
genChrs classes insts =

let classChrs = genClassChrs classes
instChrs = genInstanceChrs insts

in classChrs ++ instChrs

6.4.3 Constraint solving

The solver maintains a state when solving constraints. This state consists of two components:

data SolveState p s =
SolveSt{constraints :: ConstrSet p

, rules :: [Rule p s ]
}

type ConstrSet p = Set .Set (Constraint p)

The first component of the state is a set of both Prove and Assume constraints. The second component is a
list of CHRs for the constraint language. The initial state of the solver consists of an empty constraint set
and a list of CHRs generated for the class and instance declarations in the program.

Solving a constraint is straightforward: it consists of inserting the constraint into the constraint set:

solveConstraint :: (MonadState (SolveState p s) m,Matchable p s)⇒ Constraint p → m ()
solveConstraint c =

modifyConstrSet (Set .insert c)
modifyConstrSet f =

modify (λs → s{constraints = f (constraints s)})

Both Assume and Prove constraints are inserted into the constraint set. Recall the definition of constraint
satisfaction:

Θ `s Prove π =def ΠΘ 
e Θ(π)
Θ `s Assume π =def Θ(π) ∈ ΠΘ

As we have seen in this chapter Prove constraints result from instantiating type schemes and Assume con-
straints result from skolemizing type schemes of explicitly typed functions. We immediately solve an Assume
constraint by inserting it into the constraint set. But a Prove constraint is only solved if it is entailed by the
Assume constraints.

The following function solves Prove constraints by removing them from the constraint set if they are entailed
by the Assume constraints:

simplify :: (MonadState (SolveState p s) m,Matchable p s)⇒ m ()
simplify =

do rls ← gets rules
modifyConstrSet (chrSolve rls)

This function can be applied at any stage in the type-inference process. Overloading is resolved if there
are only Assume constraints left in the constraint set after the last simplification. Prove constraints that
eventually remain are reported to the user as an error.

The description of the framework would be complete if every function in a Haskell program would be explicitly
typed because then all Assume constraints also are explicitly given. However, for functions without a type
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signature we have to infer a minimal set of Assume constraints that entail the Prove constraints of the function
body. Predicates should be generalized if the predicate and the type that must be generalized have free type
variables in common. Therefore, we introduce a type class for substitutables:

class Eq v ⇒ Substitutable a v s | a → v , a → s where
ftv :: a → [v ]
substitute :: s → a → a

instance Substitutable p v s ⇒ Substitutable (Constraint p) v s where
ftv (Prove p) = ftv p
ftv (Assume p) = ftv p
substitute s (Prove p) = Prove (substitute s p)
substitute s (Assume p) = Assume (substitute s p)

The overloaded function ftv computes a list of type variables of type v given a value of type a and the function
substitute applies a substitution s. The following function returns the predicates that should be generalized
given a list of type variables that are going to be generalized.

getProveObligations :: (MonadState (SolveState p s) m,Substitutable p v s)⇒ [v ]→ m [p ]
getProveObligations tps =

do prvs ← gets constraints
let g = not.null .intersect tps.ftv

isProve (Prove ) = True
isProve = False
unProve (Prove p) = p

return [unProve p | p ← (Set .toList prvs), isProve p, g p ]

The predicates are selected with the function g . This function returns true if the intersection of the free type
variables and tps is not empty.

We present the steps needed to generalize a type to illustrate the interaction between a compiler and the
framework during this step. We assume the compiler using this framework has a substitution S and an
environment Σ. Generalizing a type consists of the following steps given type τ and a set of type variables
that should remain monomorphic M.

• The substitution S is applied to τ , M, and the constraint set. This ensures that the type information
acquired during the analysis of the binding group is applied.
• The constraints are simplified by invoking the function simplify . Simplification ensures that the con-

straints are reduced to head normal form so that the minimal set of Prove constraints needed to resolve
overloading is constructed.

• The type variables that are going to be generalized are computed by removing the variables inM from
the free type variables in τ .
• The function getProveObligations is used to select the predicates that should be part of the generalized

type. This function gets the set of type variables computed in the previous step as argument.
• The type τ is generalized together with the selected predicates and stored into the environment Σ.
• Finally, the generalized predicates are added as assumptions to the constraint set. This makes the

inferred context available as assumptions, so the prove constraints can be solved.

6.5 Conclusion

In this chapter we have shown that is possible to formulate the resolution of overloading as a constraint problem
using Prove and Assume constraints. Furthermore, we have shown how those constraints can be simplified
using Constraint Handling Rules (CHRs). We not only presented CHRs to simplify Prove constraints, but
also presented CHRs that remove Prove constraints when entailed by Assume constraints. We have presented
a systematic translation from class and instance declarations into CHRs and during this translation we also
check if the class hierarchy is acyclic. On top of that, we have also implemented a domain specific language
for CHRs together with a basic CHR solver in Haskell. The most important observation is that we have
presented a framework for resolving overloading without having concrete knowledge about the structure of a
predicate. This ensures that multiple compilers can use this framework.
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Chapter 7

Evidence translation

In this chapter we extend the framework with evidence translation. This means that we also construct
evidence associated with the solution of proof obligations.

7.1 Introduction

The translation of a language with overloading into a language without is called evidence translation. There
are two well-known translation schemes described in the literature. The first one is the so-called dictionary
translation scheme [Wadler and Blott, 1989] where overloaded functions are translated into functions with
additional dictionary parameters. The second translation scheme is based on partial evaluation [Jones, 1995a]
where overloaded functions are translated into several specialized versions. This framework aims at supporting
the first translation scheme.

The CHRs presented in the previous chapter only check whether Prove constraints are entailed by Assume
constraints. However, to generate evidence we need to keep track of how constraints are solved. Further-
more, we explain how non-confluency is avoided by generating all correct reduction alternatives for solving
a constraint. In the next section we give motivation for these changes and modify the translation from class
and instance declarations into CHRs. Solving constraints with these new CHRs results in a set of all possible
reductions. In the section 7.4 we explain how these reductions and other information needed to generate
evidence are represented in a graph. Finally, we show how heuristics can be used to choose between different
reduction alternatives in the graph. As an illustration, we show how overlapping instances can be supported
using the framework.

7.2 Translation to CHRs

In this section we adapt the translation from class and instance declarations into CHRs. We first show how the
derivation steps performed by the CHR solver can be traced. Then we explain why every correct alternative
for simplifying a constraint must be generated and how this is achieved. We do not give a new systematic
translation because the main idea of the translation to CHRs stays the same.

7.2.1 Tracing CHR derivations

In order to generate evidence, we have to consider the derivation steps needed to arrive at a solution. For
example, consider the following function for testing whether a list is still ordered after an insertion:

testInsert :: Ord a ⇒ a → [a ]→ Bool
testInsert x xs = let ys = insert x (sort xs)

in sort ys ≡ ys

When type checking this function, the explicit type signature is skolemized with some type constant (c1).
After analyzing the body of the function we discover that we have to solve the following constraint set:
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{Assume (Ord c1),Prove (Ord c1),Prove (Eq [c1 ])}

The following derivation is possible if we assume that the standard class and instance declarations for Eq and
Ord are available:

{Assume (Ord c1),Prove (Ord c1), Prove (Eq [c1 ])}
−→ {Assume (Ord c1),Assume (Eq c1),Prove (Ord c1),Prove (Eq [c1 ])}
−→ {Assume (Ord c1),Assume (Eq c1),Prove (Eq [c1 ])}
−→ {Assume (Ord c1),Assume (Eq c1),Prove (Eq c1)}
−→ {Assume (Ord c1),Assume (Eq c1)}

Overloading is resolved, because there are no Prove constraints left in the set of constraints. However, to
generate code we need to know how we arrived at the final set of constraints. For example, consider the
translated version of the function testInsert :

testInsert :: DictOrd a → a → [a ]→ Bool
testInsert d x xs = let ys = insert d x (sort d xs)

in ((≡) (eqList (eqOrd d))) (sort d ys) ys

We need to know which intermediate steps are needed to deduce Eq [c1 ] from Ord c1 to generate the code in
the above function for using the equality (≡) operator.

To achieve this, we let each CHR generate an additional Reduction constraint. This constraint is used to
record a derivation step. Let us first extend the constraint language with a Reduction constraint:

C ::= Prove π
| Assume π
| Reduction π info [π1, ..., πn ]

A Reduction constraint consists of three components: a predicate that is reduced, an annotation, and the
predicates that are the result of the reduction. A Reduction constraint means that it is possible to reduce
the first component to the predicates that form the third component. At the same time it means that the
first component can be constructed using the evidence associated with the predicates that form the third
component. The third component of a reduction constraint is a list, because a predicate can be reduced to
zero or more predicates and we want to remember the predicate order. For example, the predicate Eq Bool is
reduced to the empty list, but the predicate Eq (v1, v2) reduced to [Eq v1,Eq v2 ]. The reduction constraints
can be annotated with information. This information consists, for example of identifiers for generating code,
information for generating type-error messages, or information which is used by heuristics to make a choice.

Consider the class and instance declarations below:

class Eq a ⇒ Ord a
instance Eq a ⇒ Eq [a ]

For these declarations we generate the following CHRs:

Assume (Ord a) =⇒ Assume (Eq a), Reduction (Eq a) "eqOrd" [Ord a ]
Prove (Ord a),Prove (Eq a)⇐⇒ Prove (Ord a),Reduction (Eq a) "eqOrd" [Ord a ]
Prove (Eq [a ]) ⇐⇒ Prove (Eq a), Reduction (Eq [a ]) "eqList" [Eq a ]

The reduction constraints in the rules are annotated with the identifier of the dictionary transformer that
performs the reverse step required for evidence construction. Applying these rules on the set of constraint we
considered earlier will result in the following constraint set:

{Assume (Ord c1),Assume (Eq c1)
, Reduction (Eq c1) "eqOrd" [Ord c1 ]
, Reduction (Eq [c1 ]) "eqList" [Eq c1 ] }

This constraint set contains two reduction constraints which give information how Eq [c1 ] can be deduced
from Ord c1. This information can be used to generate evidence. We do not have enough information yet to
perform the complete translation: however, we can already generate code for constructing dictionaries.

7.2.2 Derivation alternatives and confluence

A problem occurs when we simplify constraints with CHRs: constraint sets exist where different derivations
lead to the same answer. For example, consider the constraint set {Prove (Eq [v1 ]),Prove (Ord [v1 ])}. Two

40 Evidence translation



Translation to CHRs 7.2

derivations are possible: the first derivation simplifies the constraints by first using instances and then using
the class hierarchy:

{Prove (Eq [v1 ]),Prove (Ord [v1 ])}
−→ {Prove (Eq v1), Prove (Ord [v1 ]),Reduction (Eq [v1 ]) "eqList" [Eq v1 ]}
−→ {Prove (Eq v1), Prove (Ord v1), Reduction (Eq [v1 ]) "eqList" [Eq v1 ]

,Reduction (Ord [v1 ]) "ordList" [Ord v1 ]}
−→ {Prove (Ord v1),Reduction (Eq [v1 ]) "eqList" [Eq v1 ]

,Reduction (Ord [v1 ]) "ordList" [Ord v1 ],Reduction (Eq v1) "eqOrd" [Ord v1 ]}

The second derivation simplifies the constraints by reversing the preference for instances and classes; first the
class hierarchy is used, then the available instances:

{Prove (Eq [v1 ]), Prove (Ord [v1 ])}
−→ {Prove (Ord [v1 ]),Reduction (Eq [v1 ]) "eqOrd" [Ord [v1 ]]}
−→ {Prove (Ord v1), Reduction (Eq [v1 ]) "eqOrd" [Ord [v1 ]]

,Reduction (Ord [v1 ]) "ordList" [Ord v1 ]}

Both derivations are correct and lead to the same answer. However, it is not desirable that different derivations
are chosen for the same constraint set in a non-deterministic way. The problem becomes even more evident
with extensions such as overlapping instances. Consider the following overlapping instances example:

data Unit = Unit
instance Eq [Unit ] where

xs ≡ ys = length xs ≡ length ys
instance Eq a ⇒ Eq [a ] where ...

The CHRs generated for these instance declarations are:

Prove (Eq [a ]) ⇐⇒ Prove (Eq a)
Prove (Eq [Unit ])⇐⇒ true

Two non-confluent derivations are possible when we try to solve the constraint Prove (Eq [Unit ]). One
derivation results in the empty constraint set and the other derivation results in {Prove (Eq Unit)}. The
most specific instance is preferred if there are multiple possibilities when using overlapping instances, but
a CHR solver chooses one of the two derivations in a non-deterministic way. A solution proposed for this
problem is to add guards to the simplification rules [Stuckey and Sulzmann, 2002]:

Prove (Eq [a ]) ⇐⇒ a 6≡ Unit | Prove (Eq a)
Prove (Eq [Unit ])⇐⇒ true

This results in a confluent rule set. However, the design decision that the most specific instance is preferred
is not really clear from the rules because the guard is added to the CHR generated for the ‘normal’ instance
and not for the overlapping instance. Furthermore, guards can become very complex especially when using
overlapping instances in combination with other type-class extensions, such as multi-parameter type classes
or local instances.

To solve this problem we propose another solution: We use CHRs to generate every possible type-correct
derivation. This means that we do not make a choice, but just generate all the possibilities. With the
reductions generated from this process we construct a graph and a heuristic chooses a solution from this
graph. With this approach we separate the process of finding possible solutions from the process of selecting
the preferred solution.

The systematic translation from class and instance declarations into CHRs has to be adapted to generate
every correct alternative. We never let CHRs remove constraints from the constraint set to achieve confluent
derivations and to avoid encoding extensions in guards of CHRs. Therefore, every applicable CHR will be
applied to a constraint. This means that we cannot use simplification CHRs anymore because they replace
constraints by other constraints and thereby remove constraints from the constraint set. We have to modify
the systematic translation with respect to the following points:

• The rule Assume p,Prove p ⇐⇒ Assume p is not used anymore, because it removes constraints from
the constraint set.

• Other simplification CHRs are replaced by propagation CHRs.
• We let each CHR generate reduction constraints to trace the reduction step performed.
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Because these changes are relatively small we do not present the systematic translation again. Instead, we
give some examples of the adapted translation. Consider the class declaration for numbers:

class (Eq a,Show a)⇒ Num a

The following CHRs are generated for this class declaration:

Assume (Num a) =⇒ Assume (Eq a),Reduction (Eq a) "eqNum" [Num a ]
, Assume (Show a),Reduction (Show a) "showNum" [Num a ]

Prove (Eq a),Prove (Num a) =⇒ Reduction (Eq a) "eqNum" [Num a ]
Prove (Show a),Prove (Num a) =⇒ Reduction (Show a) "showNum" [Num a ]

The first rule adds the superclasses of Num to the constraint set and adds the corresponding reduction
constraints. The second and the third rule add a reduction from superclass to subclass if there are proof
obligations for both classes. Again consider the overlapping instance declarations:

data Unit = Unit
instance Eq [Unit ] where

xs ≡ ys = length xs ≡ length ys
instance Eq a ⇒ Eq [a ] where ...

For these instance declarations we generate the following rules:

Prove (Eq [a ]) =⇒ Prove (Eq a),Reduction (Eq [a ]) "eqList" [Eq a ]
Prove (Eq [Unit ]) =⇒ Reduction (Eq [Unit ]) "eqListUnit" [ ]

The new rules for the overlapping instances are confluent, because the rules do not remove constraints from the
set anymore. We obtain the following result if we apply these rules on the constraint set {Prove (Eq [Unit ])}.

{Prove (Eq [Unit ])
, Reduction (Eq [Unit ]) "eqList" [Eq Unit ]
, Prove (Eq Unit)
, Reduction (Eq [Unit ]) "eqListUnit" [ ]}

The result of solving the constraint does not immediately tell us if overloading is resolved. Moreover, there
are two possible and correct solutions present in the constraint set. That is the reason why we represent the
reductions in a graph and select one of the solutions using a heuristics in the next section.

7.3 Simplification graphs

In this section we explain how we represent the information needed to generated evidence in a graph. The
reductions and predicates represented in this graph are shared as much as possible. Also different context-
reduction alternatives can be expressed in the graph. In this section we first explain the structure of a graph.
Then we show how graphs are used in the framework. This section and the following section present a literate
Haskell module for the second version of the framework:

import AGraph
import CHRSolver
import Control .Monad .State
import Data.List (nub,maximumBy)
import qualified Data.Map as Map (Map, empty , insertWith, foldWithKey , keys, assocs)

Two imported modules deserve special attention. The module AGraph is a wrapper module for the functional
graph library [Erwig, 2001] and the module CHRSolver is the Haskell CHR solver introduced in Section 6.3.

7.3.1 Graph representation

We represent reductions and information needed to generate evidence in a directed graph. A directed graph
G is an ordered pair G = (V ,A) with

• A set of nodes V , and
• a set of pairs of nodes A, representing directed edges.
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Figure 7.1: Simplification graph for the function testInsert with a restricting signature

The idea behind simplification graphs is that nodes represent predicates and edges between nodes represent
reductions. Edges are annotated with meta-information, such as unique identifiers and error messages. Again,
consider the function testInsert , but now with a restricting type signature:

testInsert :: (Ord a)a1 ⇒ (Int , a)→ [(Int , a)]→ Bool
testInsert x xs = let ys = insertp1 x (sortp2 xs)

in sortp3 ys ≡p4 ys

The type signature of this function is skolemized with a fresh type constant, say c1. After analyzing the
function body we have to solve the constraints Assume (Ord c1) occurring at position a1 , Prove (Ord (Int , c1))
at positions p1 , p2 , p3 , and Prove (Eq [(Int , c1)]) at position p4 . Solving these constraints results in the
simplification graph presented in Figure 7.1. There is one special type of node besides the node for predicates:

data Node p = Pred p
| And [p ]
deriving (Eq ,Ord)

instance Show p ⇒ Show (Node p) where
show (Pred p) = show p
show (And [ ]) = "True"
show (And ) = "And"

Multiple outgoing edges from the Pred node represent different reduction alternatives. For example, in
Figure 7.1 we see that there are two alternatives for reducing the predicate Eq (Int , c1). As opposed to the
Pred node, multiple outgoing edges from an And node means that each edge is needed to resolve the predicate.
For example, the predicate Ord (Int , c1) is reduced to Ord Int and Ord c1 in Figure 7.1. The list of predicates
needed by the And constructor seems to be unnecessary, because this information is already available in the
graph. However, this list of predicates is needed to remember the order of the predicates we reduce to. For
example, we must remember which predicate is needed for which component of a tuple. An And node without
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outgoing edges means that overloading is resolved at this point. We abbreviate this special case of And with
true.

true :: Node p
true = And [ ]

We use the inductive graph library [Erwig, 2001] to represent graphs in Haskell. However, in this context
it is not very interesting to explain the interface of this library. Therefore, we present the wrapper module
(AGraph) exporting only the following functions:

emptyAGraph :: Ord a ⇒ AGraph a b
insertEdge :: Ord a ⇒ (a, a, b) → AGraph a b → AGraph a b
insertEdges :: Ord a ⇒ [(a, a, b)]→ AGraph a b → AGraph a b
deleteEdge :: Ord a ⇒ (a, a) → AGraph a b → AGraph a b
successors, predecessors :: Ord a ⇒ AGraph a b → a → [(b, a)]

AGraph stands for A(nnotated) Graph. Such a graph consists of two types of annotations: annotations on
nodes (a) and annotations on edges (b). The function insertEdge inserts an edge between nodes and inserts
the nodes if they are not already present. The function deleteEdge deletes all directed edges from the first
node to the second node. With the function successors and predecessors it is possible to inspect the graph.
In this section we use the following type synonym for AGraph’s of Node’s:

type Graph p info = AGraph (Node p) info

7.3.2 Representation of constraints

In the previous section we have presented a third constraint beside the Prove and Assume constraint:

data Constraint p info = Prove p
| Assume p
| Reduction p info [p ]
deriving (Eq ,Ord)

The Reduction constraint is a special constraint because it is only used internally; a user of the framework is
not allowed to use it. Reduction constraints result from solving Prove and Assume constraints with CHRs and
are used to construct simplification graphs. Furthermore, the Reduction constraint is the only constraint with
an info component. This info component can be used to store meta-information, such as unique identifiers
and error messages. We also make the constraint language an instance of the type class Matchable.

instance (Matchable p s,Ord info)⇒ Matchable (Constraint p info) s where
match (Prove p) (Prove q) = match p q
match (Assume p) (Assume q) = match p q
match = Nothing
subst s (Prove p) = Prove (subst s p)
subst s (Assume p) = Assume (subst s p)
subst s (Reduction p i ps) = Reduction (subst s p) i (map (subst s) ps)

To generate evidence and to represent information needed to generate evidence we have to extend the state
of the solver:

data SolveState p s info =
SolveSt{rules :: [CHR (Constraint p info) s ]

, heuristic :: Heuristic p info
, constraints :: Constraints p info
, evidence :: EvidenceMap p info
}

type Constraints p info = Map.Map (Constraint p info) [info ]
type EvidenceMap p info = Map.Map info (Evidence p info)
modifyConstraints f = modify (λs → s{constraints = f (constraints s)})
modifyEvidence f = modify (λs → s{evidence = f (evidence s)})
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The state is extended with two components: a heuristic and an evidence map. In the next section we explain
how the heuristic and the evidence map are used. Furthermore, the constraint set in the state is replaced by
a map from constraints to occurrences of constraints. Evidence has to be generated for each occurrence of
a constraint. Each occurrence of a constraint is tupled with information uniquely identifying the constraint
occurrence. For example, a unique identifier may serve this purpose. Additionally, location information for
type error messages could be included as well. Solving a list of constraints just consists of mapping the
function solveConstraint in the monad:

solveConstraints :: (MonadState (SolveState p s info) m,Matchable p s,Ord info)
⇒ [(Constraint p info, info)]→ m ()

solveConstraints = mapM solveConstraint
solveConstraint (c, i) = modifyConstraints (Map.insertWith (++) c [i ])

The function solveConstraint expects a constraint tupled with information. A constraint is inserted into the
constraint map together with the information packed into a singleton list. Information lists are concatenated
when a constraint is already in the map. This means that there can be multiple occurrences of the same
constraint. There are a number of advantages of representing constraints annotated with information in a
map. For instance, constraints that occur multiple times have to be solved only once. Furthermore, using the
constraint map and the simplification graph we may share evidence.

7.3.3 Simplification of constraints

Everything comes together when simplifying constraints. Simplification can be applied at any stage during
the type inference process, just as with the previous version of the framework. The difference is that we
now only use CHRs to generate Reduction constraints. These Reduction constraints are represented in a
simplification graph and a heuristic solves constraints by choosing a solution. To illustrate simplification,
consider the function testInsert again:

testInsert :: (Ord a)a1 ⇒ (Int , a)→ [(Int , a)]→ Bool
testInsert x xs = let ys = insertp1 x (sortp2 xs)

in sortp3 ys ≡p4 ys

The following list of constraints is generated for the function testInsert :

[(Assume (Ord c1) , a1 ), (Prove (Ord (Int , c1)) , p1 ), (Prove (Ord (Int , c1)), p2 )
, (Prove (Ord (Int , c1)), p3 ), (Prove (Eq [(Int , c1)]), p4 )]

Solving the above list of constraints result in the following constraint map:

{Assume (Ord c1) 7→ [a1 ],Prove (Ord (Int , c1)) 7→ [p1 , p2 , p3 ],Prove (Eq [(Int , c1)]) 7→ [p4 ]}

Simplification of these constraints is performed with the function simplify :

simplify :: (MonadState (SolveState p s info) m,Matchable p s,Ord info)⇒ m ()
simplify =

do chrs ← gets rules
cnstrs ← gets constraints
let initGraph = Map.foldWithKey addAssumption emptyAGraph cnstrs

reductions = chrSolveList chrs (Map.keys cnstrs)
graph = foldr addReduction initGraph reductions

modifyConstraints (const Map.empty)
mapM (constructEvidence graph) (Map.assocs cnstrs)

First, Assume constraints are added to the empty graph by folding the following function over the constraint
map:

addAssumption :: Ord p ⇒ Constraint p info → [info ]→ Graph p info → Graph p info
addAssumption (Assume p) is = insertEdges (zip3 (repeat (Pred p)) (repeat true) is)
addAssumption = id

An Assume constraint is represented in the graph as an edge from the assumed predicate to the true node.
An edge is inserted for each occurrence of an assumption. For example, the assumption for Ord c1 annotated
with a1 is present in Figure 7.1. The next step is to generate Reduction constraints by solving the constraints
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using CHRs. The resulting reductions are inserted into the graph by folding the following function over the
set of constraints:

addReduction :: Ord p ⇒ Constraint p info → Graph p info → Graph p info
addReduction (Reduction p i [q ]) = insertEdge (Pred p,Pred q , i)
addReduction (Reduction p i ps) = let andNd = And ps

edges = map (λq → (andNd ,Pred q , i)) ps
in insertEdges ((Pred p, andNd , i) : edges)

addReduction = id

The function addReduction consist of three cases: The first case is not required, but improves the readability
of the graphs by not inserting intermediate And nodes. In the second case we add a list of edges: one edge
from the predicate to an And node and n edges from the And node to the predicates we reduce to. Nothing
is done for other constraints in the third case. Prove and Assume constraints propagated by CHRs are
discarded. The following reductions are generated when solving the constraints resulting from the function
testInsert :

{Reduction (Ord (Int , c1)) "ordTuple" [Ord Int ,Ord c1 ],Reduction (Eq Int) "eqInt" [ ]
, Reduction (Eq [(Int , c1)]) "eqList" [Eq (Int , c1)], Reduction (Ord Int) "ordInt" [ ]
, Reduction (Eq (Int , c1)) "eqTuple" [Eq Int ,Eq c1 ], Reduction (Eq c1) "eqOrd" [Ord c1 ]
, Reduction (Eq (Int , c1)) "eqOrd" [Ord (Int , c1)], Reduction (Eq Int) "eqOrd" [Ord Int ]
}

Inserting these reductions result in the graph presented in Figure 7.1. The last step of the simplification
function is to generated evidence for each entry in the constraint map using the function constructEvidence.
The function constructEvidence determines which constraints are solved and which constraints remain unre-
solved using the generated simplification graph and heuristics. Therefore we initialize the constraint map to
the empty map so that the function constructEvidence can add the remaining constraints. In the following
section we explain how heuristics are formulated and how the function constructEvidence is implemented.

7.4 Heuristics

The simplification graphs presented in the previous chapter contain the information needed to construct
evidence. However, in order to generate evidence we have to make choices between different context reduction
alternatives. We have chosen to isolate such choices in heuristics. In this section we first explain how we have
formulated heuristics. Then we show the implementation of heuristics in the solver. Finally, we present some
example heuristics to show how different context-reduction strategies can be emulated and how overlapping
instances are resolved.

7.4.1 Formulation of heuristics

The task of a heuristic is to choose between context reduction alternatives. For example, a choice between
overlapping instances, scoped instances, or superclass versus instance. However, in some cases a heuristic
must also be able to stop context reduction. In such a situation no alternative is chosen, even if there exist
alternatives. For example, consider the function testInsert , now without a type signature:

testInsert x xs = let ys = insertp1 x (sortp2 xs)
in sortp3 ys ≡p4 ys

The constraints Prove (Ord v1) at positions p1 , p2 , p3 and Prove (Eq [v1 ]) at position p4 are generated
for this function. Simplifying those constraints result in the leftmost graph of Figure 7.2. GHC [Marlow
and Peyton Jones, 2006] infers the type (Ord a,Eq [a ]) ⇒ a → [a ] → Bool for the above function whereas
Haskell 98 compilers would infer the type Ord a ⇒ a → [a ] → Bool . GHC stops context reduction at a
certain point to maximize the possibilities for using overlapping instances. Furthermore, it is not always the
case that the same choices are made for all the occurrences of a predicate. For example, the programmer
could annotate an occurrence of a predicate to choose a different context reduction strategy.

Complicated heuristics could be applied to the simplification graph to maximize sharing. However, we choose
to generate evidence for each Prove constraint separately and thereby not sharing intermediate computations.
A heuristic has the following type and is part of the state of the solver:
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Figure 7.2: Simplification graphs for the function testInsert

type Heuristic p info = [info ]→ Alts p info → [(info,Evidence p info)]

A heuristic is a function that gets a list of the occurrences of the predicate as first parameter. The second
argument of this function is a datatype representing the reduction alternatives for the predicate we must
prove:

data Alts p info = Alts{predicate :: p, alts :: [Red p info ] }
data Red p info = Red {info :: info, context :: [Alts p info ]}

The datatype Alts consists of a predicate that must be proven and a list of reduction alternatives (alts). A
heuristic can decide to stop context reduction or to choose one of these reduction alternatives. The datatype
Red consists of the information annotated on the edges of the graph and the list of predicates we reduced to.
A value of this datatype is extracted from a simplification graph in the following way:

alternatives :: Ord p ⇒ Graph p info → p → Alts p info
alternatives gr = recOr

where recOr p = Alts p (map recAnd (successors gr (Pred p)))
recAnd (i ,n) = Red i (map recOr (preds n))
preds n = case n of

Pred q → [q ]
And qs → qs

The result of a heuristic is an association list mapping occurrences of predicates to evidence. Evidence has
the shape of a tree:

data Evidence p info = Proof p info [Evidence p info ]
| Unresolved p

unresolved :: Eq p ⇒ Evidence p info → [p ]
unresolved (Unresolved p) = [p ]
unresolved (Proof ps) = nub (concatMap unresolved ps)

A Proof means that a predicate p can be constructed from a list of evidence. Furthermore, a Proof is
annotated with information. However, it is not always possible to construct evidence at once. Sometimes
there are still proof obligations left. The Unresolved constructor is used when we are not (yet) able to prove
a predicate p. The function unresolved returns the predicates that are unresolved in an evidence tree. The
following function updates unresolved predicates if later in the type-inference process more information about
these predicates is acquired:

updateUnresolved :: Eq p ⇒ Evidence p info → Evidence p info → Evidence p info
updateUnresolved e (Unresolved ) = e
updateUnresolved (Proof p i qs) e = Proof p i [updateUnresolved q e | q ← qs ]
updateUnresolved u@(Unresolved q) e@(Proof p )
| q ≡ p = e
| otherwise = u

Evidence translation 47



7.4 Heuristics

The first parameter of this function is evidence that is updated and the second parameter is evidence that is
inserted.

7.4.2 Application of heuristics

In the section 7.3 we have presented the simplification function. The last step of this function is to map the
function constructEvidence over the constraint map. The function constructEvidence generates evidence for
the different occurrences of the constraint by using a heuristic to choose a solution from the simplification
graph:

constructEvidence :: (MonadState (SolveState p s info) m,Matchable p s,Ord info)
⇒ Graph p info → (Constraint p info, [info ])→ m ()

constructEvidence graph (Prove p, infos) =
do hrstc ← gets heuristic

let trees = hrstc infos (alternatives graph p)
modifyEvidence (λem → foldr insertEvidence em trees)
solveConstraints (concatMap remaining trees)

constructEvidence (c, infos) =
solveConstraints (zip (repeat c) infos)

The above function generates evidence for Proof constraints. Other constraints are immediately inserted into
the constraint map with the function solveConstraints. To construct evidence, the heuristic is fetched from
the state and bound to an identifier. In the next step, the heuristic is applied to the occurrences and the
alternatives for reducing predicate p. The result of the heuristic is an association list from occurrences to
evidence. The evidence is inserted in the map by folding the following function over the result of the heuristic:

insertEvidence :: (Eq p,Ord info)
⇒ (info,Evidence p info)→ EvidenceMap p info → EvidenceMap p info

insertEvidence = uncurry (Map.insertWith updateUnresolved)
remaining :: Eq p ⇒ (info,Evidence p info)→ [(Constraint p info, info)]
remaining (i , tree) = zip (map Prove (unresolved tree)) (repeat i)

Evidence is updated with the function updateUnresolved if there already is an entry for info in the map.
Finally, Prove constraints are generated for the unresolved predicates in the evidence trees with the function
remaining . Those constraints are solved with the function solveConstraints we have discussed earlier in this
chapter.

7.4.3 Haskell 98 heuristic

In Haskell 98 [Peyton Jones, 2003] the context of a type must be in head normal form (HNF). This means
that the type mentioned in a predicate may only consist of a type variable or the application of a type variable
to one or more types. For instance, the predicates in the context of the following type are in HNF:

test :: (Monad m,Eq (m Char))⇒ m Char → Bool

However, the predicate in the following type is not in HNF:

test :: Eq (Maybe a)⇒ Maybe a → Bool

Furthermore, different occurrences of the same predicate always have the same solution in Haskell 98. There-
fore, we introduce a special type synonym for such heuristics together with a conversion function:

type SimpleHeuristic p info = Alts p info → Evidence p info
toHeuristic :: SimpleHeuristic p info → Heuristic p info
toHeuristic h infos alts = zip infos (repeat (h alts))

A simple heuristic does not depend on information attached to the occurrences of a predicate. Furthermore,
a simple heuristic can be converted to a heuristic by just repeating the solution for each occurrence of the
predicate. A heuristic must choose at each node between i different choices for each of the j following nodes.
In the worst case the heuristic has to choose between ij choices. We call j the branching factor. In general
want to keep the branching factor as small as possible. Simple heuristics with the smallest branching factor
(1) can be defined with the following function:
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localChoice :: Eq info ⇒ (p → [info ]→ [info ])→ SimpleHeuristic p info
localChoice choose (Alts p reds) =

let redinfos = choose p (map info reds)
in case filter ((‘elem‘redinfos).info) reds of

[ ] → Unresolved p
[(Red i rs)]→ Proof p i (map (localChoice choose) rs)

→ error "Alternatives left"

Besides the fact that the heuristic for Haskell 98 can be expressed as a local heuristic, it also has the property
that the different reduction alternatives form a total order. This means that each pair of alternatives can be
compared for ordering. Therefore we introduce a function that creates a simple heuristic from an ordering
function:

binChoice :: Eq info ⇒ (info → info → Ordering)→ SimpleHeuristic p info
binChoice order = localChoice (const local)

where local [ ] = [ ]
local is = [maximumBy order is ]

We annotate the different constraints with values of the following datatype:

data Annotation = ByInstance String
| BySuperClass String
| ProveObl Int
| Assumption Int
deriving (Eq ,Ord)

The constructors ByInstance and BySuperclass are used to annotate the CHRs generated for instance and class
declarations respectively. The constructor arguments of type String identify the corresponding dictionaries
or dictionary transformers. Prove constraints are annotated with ProveObl and Assume constraints are
annotated with Assumption. The integer arguments uniquely identify occurrences of Prove and Assume
constraints.

Using these annotations we can define the following heuristic for Haskell 98:

haskell98 :: Annotation → Annotation → Ordering
haskell98 (ByInstance ) = GT
haskell98 (ByInstance ) = LT
haskell98 (BySuperClass ) = GT
haskell98 (BySuperClass ) = LT
haskell98 (Assumption ) = GT
haskell98 (Assumption ) = LT
haskell98 (ProveObl ) = GT
haskell98 (ProveObl ) = LT
h98Heuristic :: Heuristic p Annotation
h98Heuristic = toHeuristic (binChoice haskell98 )

Predicates in Haskell 98 compilers are first simplified using instances. This will ensure that the predicates
are solved or that they are simplified to predicates in HNF. If possible, the predicates are simplified using the
class hierarchy and then using an assumption. Note that Haskell 98 dictates that assumptions must always
be in HNF.

Recall the graph generated for the function testInsert presented in Figure 7.2. The predicate Ord v1 in
this graph cannot be simplified further and remains. However, Eq [v1 ] can be simplified to Ord v1 and the
Haskell 98 heuristic chooses for this simplification. This will result in the following state of the solver:

constraints = {Prove (Ord v1) 7→ [p1 , p2 , p3 , p4 ]}
evidence = {p1 , p2 , p3 7→ Unresolved (Ord v1)

, p4 7→ Proof (Eq [v1 ]) "eqList" [Proof (Eq v1) "eqOrd" [Unresolved (Ord v1)]]}

In a compiler this is usually the point where generalization is performed. The result is that the remaining
proof obligations concerning the generalized type are assumed to hold. In this example, the constraint
(Assume (Ord v1), a1 ) is added. Simplifying the new set of constraints result in the graph in the middle of
Figure 7.2. After constructing more evidence the state of the solver will be:
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constraints = {Assume (Ord v1) 7→ [a1 ]}
evidence = {p1 , p2 , p3 7→ Proof (Ord v1) "a1" [ ]

, p4 7→ Proof (Eq [v1 ]) "eqList" [Proof (Eq v1) "eqOrd" [Proof (Ord v1) "a1" [ ] ]]}

It is easy to see that this result can be used to generate the following translated version of testInsert :

testInsert a1 x xs = let ys = insert a1 x (sort a1 xs)
in ((≡) (eqList (eqOrd a1 ))) (sort a1 ys) ys

7.4.4 GHC heuristic

As we have mentioned earlier, GHC [Marlow and Peyton Jones, 2006] utilizes another context reduction
strategy than the one Haskell 98 dictates. This deviation from Haskell 98 is needed to support various
extensions in GHC such as overlapping instances and arbitrary contexts in types and type signatures [Peyton
Jones et al., 1997]. Haskell 98 compilers reduce the context as far as possible before generalization. In contrast,
GHC delays context reduction using instance declarations as long as possible. A predicate is only reduced
when it can be resolved locally (tautological predicate) or when forced by a type signature. GHC first tries
to reduce predicates using the following local heuristic:

ghcBinSolve :: Annotation → Annotation → Ordering
ghcBinSolve (Assumption ) = GT
ghcBinSolve (Assumption ) = LT
ghcBinSolve (BySuperClass ) = GT
ghcBinSolve (BySuperClass ) = LT
ghcBinSolve (ByInstance ) = GT
ghcBinSolve (ByInstance ) = LT
ghcBinSolve (ProveObl ) = GT
ghcBinSolve (ProveObl ) = LT
ghcSolve :: Eq p ⇒ SimpleHeuristic p Annotation
ghcSolve = binChoice ghcBinSolve

The most notable difference between the heuristics of Haskell 98 and GHC is the way they reduce predicates
using instance declarations. Haskell 98 reduces predicates first with instance declarations, but GHC reduces
predicates only with instance declarations if there are no other alternatives left. The reason that this is
possible is that GHC allows arbitrary contexts in type signatures. If GHC would first reduce using instances,
it could possibly not find assumptions introduced by type signatures. GHC uses another heuristic when there
are still Unresolved nodes in the solution found by the ghcSolve heuristic:

ghcLocalReduce :: a → [Annotation ]→ [Annotation ]
ghcLocalReduce reds = let p (BySuperClass ) = True

p = False
in filter p reds

ghcReduce :: Eq p ⇒ SimpleHeuristic p Annotation
ghcReduce = localChoice ghcLocalReduce

This heuristic only reduces a predicate using the class hierarchy. Context reduction is stopped if context
reduction using the class hierarchy is not possible even when there are other alternatives. We introduce the
try combinator to combine both heuristics:

try :: Eq p ⇒ SimpleHeuristic p info → SimpleHeuristic p info → SimpleHeuristic p info
try f g a | null (unresolved e) = e

| otherwise = g a
where e = f a

The try combinator applies the first heuristic and only when there are unresolved nodes in the result, the
second heuristic is applied. Now we are able to construct a heuristic that emulates the context-reduction
behavior of GHC:

ghcHeuristic :: Eq p ⇒ Heuristic p Annotation
ghcHeuristic = toHeuristic $

try ghcSolve
ghcReduce
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The ghcHeuristic still has a branching factor of one because the two sub heuristics both have a branching factor
of one. Two passes are needed for this heuristic to find a solution, but the pass of the second heuristic will
never evaluate more reduction alternatives than the first pass. Using this heuristic for resolving overloading
in the function testInsert results in the rightmost graph of Figure 7.2 after generalization. Using this heuristic
results in the following translated version of testInsert :

testInsert (a2 , a3 ) x xs = let ys = insert a2 x (sort a2 xs)
in ((≡) a3 ) (sort a2 ys) ys

7.4.5 Overlapping instances heuristic

Until now we did not explain how to resolve overlapping instances using this framework. We have chosen
to encode overlapping instances in heuristics instead of using guards in CHRs. Here we explain how to
extend a local heuristic to support overlapping instances. First, we need to encode more information into the
annotation for instances:

data Annotation p = ByInstance String p
| ...

We add the head of an instance declaration to the annotation. The most specific instance is chosen when
multiple instances are applicable for simplifying a predicate. Note that the context of an instance declaration
is not used in this process. The following function determines what the most specific predicate is:

specificness :: Matchable c s ⇒ c → c → Ordering
specificness p q =

case match p q of
Nothing → LT
Just → case match q p of

Nothing → GT
Just → error "no most specific instance"

This function is defined in terms of the one way unification function match. More about this function can
be found in Section 6.3. The predicate q is more specific than p if p does not match with q . For example,
Eq [[a ]] is more specific than Eq [a ] because there is no substitution to get Eq [a ] from Eq [[a ]]. The most
specific instance cannot be determined if the predicate p matches q and the other way around. This is for
example the case with the predicates Eq (a, Int),Eq (Int , a).

Finally, a heuristic can easily be extended to support overlapping instances. For example, by adding the
following case to the Haskell 98 heuristic:

haskell98 :: Annotation p → Annotation p → Ordering
haskell98 (ByInstance p) (ByInstance q) = specificness p q
haskell98 (ByInstance ) = GT
haskell98 (ByInstance ) = LT
haskell98 ... = ...

7.5 Conclusion

In this chapter we have shown how our framework supports the translation of a program with overloading
into a program without overloading. Furthermore, we have presented different heuristics to show how easy
it is to experiment with different design decisions. To achieve this we trace CHR derivations using reduction
constraints. However, CHR derivations can sometimes be non-deterministic or even non-confluent. We avoid
these problems by generating every type-correct reduction alternative for solving a constraint. From these
reduction constraints we construct simplification graphs. These graphs enable us to share predicates as much
as possible and to represent different reduction alternatives. Another advantage of these graphs is that they
nicely visualize the problem. We use heuristics to choose a solution from a simplification graph for each Prove
constraint. With these heuristic we are able to emulate Haskell 98 and GHC context reduction. We also show
that heuristics can easily be extended to support type class extensions such as overlapping instances.
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Chapter 8

Local instances

This chapter describes how the framework can be used to resolve overloading in the context of local in-
stances [Dijkstra, 2005]. Local instances can be used, for example, to encode dynamically scoped vari-
ables [Lewis et al., 2000]. This extension also allows the programmer to shadow instances that are imported
from other modules.

8.1 Introduction

Consider the following example program to illustrate the problem:

class Eq a where
(≡) :: a → a → Bool

instance Eq Int where
(≡) = primEqInt

test1 = 90 ≡ 450
test2 = let instance Eq Int where

x ≡ y = primEqInt (mod x 360) (mod y 360)
in 90 ≡ 450

With local instances, two instances for Eq Int are available: one in the global scope and one in the local
scope. The global instance must be used to resolve overloading in the function test1 because that is the only
instance in scope. A local instance declaration shadows an instance declaration introduced at an outer level,
and thus the local instance for Eq Int is used to resolve overloading in the function test2 .

We could choose to not solve local instances using our framework and leave this to the compiler that uses
this framework. This can be achieved by simplifying predicates at each scope using our framework together
with an environment containing the instances in scope. However, we choose to formulate local instances using
constraints.

• Therefore, we annotate each predicate with a scope identifier and encode the lexical scoping rules into
CHRs. The number of design decisions increases when allowing local instances. Again, we do not encode
design decisions into the constraints and CHRs.

• Instead, we generate every correct context reduction alternative and let a heuristic choose the preferred
solution. Correct in this sense means that the rules must respect lexical scoping, but not shadowing.
For instance, it is correct to use the global instance for Eq Int in the function test2 , however, using the
local instance in the function test1 is not correct.

8.2 Lexical scoping

Lexical or static scoping is a static property of a program. This makes it easier to reason about code, because
it allows the programmer to reason as if variable bindings are carried out by substitution.
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8.4 Entailment

P 
e {πt } t ‘visibleIn‘ s
P 
e {πs }

(Scope)
P 
e Q (Inst Q ⇒t π) ∈ Γ t ‘visibleIn‘ s

P 
e {πs }
(Inst)

Figure 8.1: Entailment rule for scoping and the adapted rule for instances

The structure of lexical scopes in a program can be represented with a tree corresponding to the nesting
structure of the source text. A scope is then defined as the path of the root to a node. We represent a tree
path with a list of integers. The length of this list is equal to the depth of the scope and each child is identified
by an integer which is unique within the directly enclosing parent scope. The empty list identifies the global
scope.

type TreePath = [Int ]
isPrefixOf :: Eq a ⇒ [a ]→ [a ]→ Bool
(x : xs) ‘isPrefixOf ‘ (y : ys) = x ≡ y ∧ xs ‘isPrefixOf ‘ ys
[ ] ‘isPrefixOf ‘ = True

‘isPrefixOf ‘ [ ] = False
visibleIn :: TreePath → TreePath → Bool
visibleIn = isPrefixOf

We can use the standard function isPrefixOf to check if something from scope s is visible in scope t . For
convenience, we abbreviate isPrefixOf with visibleIn. For example, [ ] is visible in every scope and [1, 2] is
visible in [1, 2, 2]. In the following sections, we use tree paths to annotate predicates with their scope.

8.3 Entailment

We first adapt the entailment relation before giving a translation into CHRs. Each predicate π is annotated
with a scope identifier s (πs). For a Prove constraint this means that π must be proven using the CHRs
visible in scope s. An assumption of π in scope s means that π is available in scope s. In Figure 8.1 we
present new entailment rules to replace the rules presented in Chapter 2 (figures 2.3 and 2.4).

The Scope rule states that P entails π in scope s if P entails π in a parent scope t . For example, consider the
constraint set {Assume (Ord a[1]), Prove (Ord a[1,1])}. There is an assumption available for Ord a and in an
inner scope Ord a must be proven. We have to use the Scope rule to proof that {Ord a[1]} 
e {Ord a[1,1]}.
Another situation where we need this rule is with the constraint set {Prove (Ord a[1,2]), Prove (Ord a[1,1])}.
Two proof obligations concerning the same predicate occur in two sibling scopes. The duplicate predicates in
this set can be removed, because {Ord a[1]} 
e {Ord a[1,1] Ord a[1,2]}.

The Inst rule in Figure 8.1 is the adapted version of Figure 2.4. This rule states that only instances in scope
can be used to resolve overloading. Note that the predicates Q in the Inst rule are instantiated to scope s.
For example, the entailment relation {Eq a[1,1]} 
e {Eq [a ][1,1]} holds when (Inst{Eq a } ⇒[ ] Eq [a ]) ∈ Γ.

8.4 Translation to CHRs

We now present a translation from class and instance declaration into CHRs. First, we explain which CHRs
must be generated for instance declarations. Then we present two alternative encodings of the Scope rule.

8.4.1 Instance declarations

To implement the Inst rule of Figure 8.1, we have to adapt the translation from instance declarations into
CHRs. We generate the following CHR for each instance declaration: instance (π1, . . , πn)⇒ π, in scope ς.
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(Ord c1, [1])

True

a3

(Ord c1, [])
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(Eq [c1], [1,1])
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(Eq c1, [1,1])

eqList

(Ord [c1], [1,2])

(Ord [c1], [1])
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(Ord c1, [1,2])
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ordList
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(Eq [c1], [])

scope

(Eq c1, [1])

eqList scope eqOrd

(Eq c1, [])

eqList

eqOrd

scope eqOrd

Figure 8.2: Simplification graph generated using the first encoding of the Scope rule

Prove (π, s) =⇒ ς ‘visibleIn‘ s
| Reduction (π, s) (ByInstance π ς) [(π1, s), ..., (πn, s)]
, Prove (π1, s), ...,Prove (πn, s)

The reduction constraint generated by this rule is annotated with the head of the instance declaration and
a scope identifier. This annotation is used in the next section to define a heuristic for local instances. The
difference with the translation presented in the previous chapter is that the predicates are annotated with a
scope and that a guard checks whether the rule is in scope. For example, the following rule is generated for
the global instance instance Eq a ⇒ Eq [a ]:

Prove (Eq [a ], s) =⇒ [ ] ‘visibleIn‘ s
| Reduction (Eq [a ], s) (ByInstance "eqList" [ ]) [(Eq a, s)]
, Prove (Eq a, s)

8.4.2 First encoding of scoping

We only need the following CHR to implement the Scope rule of Figure 8.1:

Prove (p, s) =⇒ not (null s) | Prove (p, init s),Reduction (p, s) (ByScope (init s)) [(p, init s)]

This CHR means that a predicate can be reduced to a predicate in the parent scope. The guard prevents the
rule to be applied in the global scope, because the global scope does not have a parent scope. With this rule
we encode the Scope rule in a very concise way corresponding directly to the Scope entailment rule. Note that
the generated reduction constraint is annotated with the scope we reduce to. This annotation is used in the
next section to define a heuristic for local instances. In Figure 8.2 we present the graph generated when using
this rule for solving the constraints {Assume (Ord c1, [1]),Prove (Ord [c1 ], [1, 2]),Prove (Eq [c1 ], [1, 1])}.
The drawback of this CHR is that it is applicable to every proof obligation that is not in the global scope.
This means that many reduction alternatives are generated which are not always very useful. For that reason,
we propose a second encoding of scoping.

8.4.3 Second encoding of scoping

We propose an alternative encoding of the Scope rule to reduce the number of alternatives generated. The
idea behind the new rules is that a reduction to a parent scope is only inserted when this results in further
constraint simplification. The following situations are reasons to insert a scope reduction:

Local instances 55



8.4 Translation to CHRs

(Ord c1, [1])
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Figure 8.3: Simplification graph generated using the second encoding of the Scope rule

• When two Prove constraints concerning the same predicate appear in different scopes.
• When two Prove constraints concerning the same type appear in different scopes, where one predicate

is a subclass of the other.

In both cases constraints can be simplified by removing duplicates or by simplification using the class hierarchy.
Later in this section we will discover a third reason to insert scope reductions. We introduce the following
CHR to detect and handle the first situation:

Prove (p, s),Prove (p, t) =⇒ not (s ‘visibleIn‘ t)
| Prove (p, commonPrefix s t)
, Reduction (p, s)

(ByScope (commonPrefix s t))
[(p, commonPrefix s t)]

The head of this CHR matches if there are two prove constraints in different scopes concerning the same
predicate p. A reduction for the first constraint is only generated when the scope of the first constraint is
not visible in the scope of the second constraint. This guard is needed to prevent cycles in the simplification
graphs resulting from reductions from the first constraint to itself. Note that a single constraint never matches
both the first and the second pattern of the head at the same time. However, when a constraint matches
multiple patterns of a head, the constraint will be matched against each pattern in sequence when possible.
The greatest common prefix of two scopes is computed with the following function:

commonPrefix :: Eq a ⇒ [a ]→ [a ]→ [a ]
commonPrefix (x : xs) (y : ys) | x ≡ y = x : commonPrefix xs ys

| otherwise = [ ]
commonPrefix = [ ]

The second situation where scope reductions are inserted is when two Prove constraints exist in different scopes
which can be reduced using the class hierarchy. To detect this situation, the following rules are generated for
each predicate pair (π1, π) where π1 is a superclass of π.

Prove (π, s),Prove (π1, t) =⇒ not (s ‘visibleIn‘ t)
| Prove (π, commonPrefix s t)
, Reduction (π, s)

(ByScope (commonPrefix s t))
[(π, commonPrefix s t)]

Prove (π, s),Prove (π1, t) =⇒ not (t ‘visibleIn‘ s)
| Prove (π1, commonPrefix s t)
, Reduction (π1, t)

56 Local instances



Heuristic 8.5

(ByScope (commonPrefix s t))
[(π1, commonPrefix s t)]

These rules are very similar to the one for Prove constraints concerning the same predicates. Again, we
annotate the generated reduction constraint with the scope we reduce to. The difference is that we have to
generate the above rules for each superclass of a class. For example, the following rules are generated for the
declaration class Eq a ⇒ Ord a:

Prove (Ord a, s),Prove (Eq a, t) =⇒ not (s ‘visibleIn‘ t)
| Prove (Ord a, commonPrefix s t)
, Reduction (Ord a, s)

(ByScope (commonPrefix s t))
[(Ord a, commonPrefix s t)]

Prove (Ord a, s),Prove (Eq a, t) =⇒ not (t ‘visibleIn‘ s)
| Prove (Eq a, commonPrefix s t)
, Reduction (Eq a, t)

(ByScope (commonPrefix s t))
[(Eq a, commonPrefix s t)]

One rule is generated to add a scope reduction for the class and one to add a scope reduction for the superclass.

There is a third situation in which we insert a scope reduction: when there is an assumptions and a prove
obligation for the same predicate. The following rule is added to detect this situation.

Prove (p, s),Assume (p, t) =⇒ s 6≡ t
, t ‘visibleIn‘ s
| Reduction (p, s) (ByScope t) [(p, t)]

To sum up, we have to modify the systematic translation with respect to the following points:

• A guard must be added in the translation of instance declaration to check if the instance is in scope.
• A CHR must be added to simplify Prove constraints concerning the same predicate in different scopes.
• A CHR must be added to simplify a Prove constraint and an Assume constraint concerning the same

predicate in different scopes.
• CHRs must be generated for the transitive closure of the superclass relation to simplify Prove constraints

in different scopes where one predicate is a subclass of the other.

In Figure 8.3 we present the graph generated when using the new translation for solving the constraints
{Assume (Ord c1, [1]),Prove (Ord [c1 ], [1, 2]),Prove (Eq [c1 ], [1, 1])}. Compared to Figure 8.2, the number
of edges is decreased considerably because no superfluous reductions are generated anymore.

8.5 Heuristic

We also have to define a new heuristic to choose the preferred solution. For example, we must encode that
a local instance shadows a global instance. The different constraints are annotated with the values from the
following datatype:

data Annotation = ByInstance String TreePath
| BySuperClass String
| Assumption Int
| ByScope TreePath
deriving (Eq ,Ord)

The difference with the annotations presented in Subsection 7.4.3 is that we have added a constructor for
scoping and that the constructor ByInstance has an additional field of type TreePath. The field TreePath is
added to identify the scope of the used instance declaration. Reductions generated by the CHRs for scoping
are annotated with ByScope. The field TreePath of the constructor ByScope is the scope where the predicate
is reduced to. Using these annotations we define the following heuristic:

scoped :: Annotation → Annotation → Ordering
scoped (ByInstance s) (ByInstance t) = (length s) ‘compare‘ (length t)
scoped (BySuperClass ) = GT
scoped (BySuperClass ) = LT
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(Eq c1, [1])

True

a3

(Eq c1, [1,1])

scope

(Eq c1, [1,1,1])

scope

scope

Figure 8.4: Multiple alternatives for reducing to a parent scope.

scoped (Assumption ) = GT
scoped (Assumption ) = LT
scoped (ByScope s) (ByScope t) = (length s) ‘compare‘ (length t)
scopedHeuristic = toHeuristic $ binChoice scoped

The rule that a local instance shadows a global instance is encoded in the first case of the function scoped .
Instances are ordered by comparing the depth of the scope. Predicates are first reduced using instances, the
class hierarchy, and assumptions. A predicate is only reduced to a parent scope when there are no other
options left.

In the last case of the heuristic we also compare the depth of the scopes. The reason for this is that there
are sometimes multiple alternatives for reducing a predicate to a parent scope. For example, the graph in
Figure 8.4 results from the following constraint set:

{Prove (Eq c1, [1, 1, 1]),Prove (Eq c1, [1, 1]),Assume (Eq c1, [1])}

Two alternatives for reducing the predicate (Eq c1, [1, 1, 1]) are generated: one resulting from the Prove
constraint in the parent scope and the other resulting from the Assume constraint. We annotate both
alternatives with different values to be able to make a deterministic choice.

8.6 Conclusion

In this chapter we have given entailment rules for scoped instances. We use the entailment rules as the
starting point for a first translation. Although the first translation is correct, many redundant reductions
are generated. As an alternative, we have presented a second translation to minimize the number of such
reductions.

We emphasize that every possible reduction is generated and represented in a graph. This maximizes the
opportunities to experiment with scoped instances by testing different heuristics. For example, a programmer
could indicate that a constraint must be resolved with instances from the global scope. The heuristic presented
in this chapter nicely illustrates how the rule for preferring local instances can be encoded.

This chapter also shows the flexibility of the framework. We have used predicates annotated with scope
identifiers and also showed how additional features can be implemented with small modifications in the
translation.
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Chapter 9

Improving substitution

Until now we have only considered resolution of overloading by means of simplification. In this chapter we
extend the framework with improvement of constraint sets.

9.1 Introduction

We have shown how overloading can be resolved using CHRs and heuristics. For example, proof obligations for
type class qualifiers are simplified using instance declarations and the class hierarchy. Besides simplification,
constraint sets can also be solved by means of improvement [Jones, 1995c]. We give some examples to illustrate
what improvement is and why we need it.

The first description of type classes [Wadler and Blott, 1989] already mentions multi-parameter type classes.
However, multi-parameter type classes often lead to ambiguities and delayed detection of type errors. As a
solution, functional dependencies were introduced [Jones, 2000]. Functional dependencies allow the program-
mer to explicitly define relations between type class parameters. The following standard example illustrates
multi-parameter type classes and functional dependencies:

class Coll c e | c → e where
empty :: c
insert :: e → c → c
member :: e → c → Bool

Coll is a type class for homogeneous collections, where c represents the type of the collection and e the type
of the elements. Assume that we use this type class without the functional dependency c → e. The first
ambiguity occurs when using the function empty with type (Coll c e)⇒ c because the type variable e occurs
in the context but not in the type. Second, the types assigned to insert and member are more liberal than
we expect. For example, consider the following function:

test xs = insert ’c’ (insert False xs)

The type (Coll v1 Bool ,Coll v1 Char) ⇒ v1 → v1 is inferred for this function instead of the type error we
expect for inserting two values of different types into the same collection. With functional dependencies these
problems can be solved because now we are able to specify that the type of the collection uniquely determines
the type of the elements (c → e). In other words, if we have two type class predicates Coll c a and Coll c b,
then a must be equal to b because both constraints have type c as the first parameter. The substitution
{a 7→ b} is then an improvement for the type class predicate Coll c a. Type checking the function test with
the functional dependency result in the type error we expected because Int is not equal to Bool .

Functional dependencies are tricky because they can lead to inconsistencies and non-termination. Therefore,
Sulzmann et al. [Duck et al., 2004, Sulzmann et al., 2007] formulate functional dependencies in terms of CHRs.
By making use of CHRs the authors prove that under some sufficient conditions, functional dependencies allow
for sound, complete, and decidable type inference. In this chapter we extend the framework with improvement
and show how the proposed translation of Sulzmann et al. can be used.
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9.3 Definition of improvement

S τ1 = S τ2

S 
e {τ1 ≡ τ2}
(Elimination)

(P =⇒ τ1 ≡ τ2) ∈ Γ S 
e {τ1 ≡ τ2}
SQ 
e SP

(Introduction)

Figure 9.1: Introduction and elimination of equality predicates

9.2 Definition of improvement

Improving a set of qualifiers P results in an improving substitution S . Improvement can be applied at any
stage during the type inference process. Intuitively, applying an improving substitution on a predicate set
P replaces unsatisfiable predicates by satisfiable predicates. Formally, this is defined in terms of satisfiable
instances [Jones, 1995c]:

bPcQ = {SP | S ∈ Subst ,Q 
e SP }

The satisfiable instances of P with respect to Q are bPcQ . S improves P when bPcQ ≡ bSPcQ . Compared
to simplification, the evidence for improvement is the resulting substitution. The difference is that often a
choice can be made to apply a simplification step; however, the substitution generated by improvement is a
fact that must be respected. This substitution must be applied to the predicates and types in the framework
and in the compiler that uses this framework. For example, consider the following function for inserting two
elements into a collection:

insTwo x y c = insert x (insert [y ] c)

The constraints {Prove (Coll v1 v2),Prove (Coll v1 [v3 ])} result from the two usages of insert in this function.
The inferred type for this function without the functional dependency would be (Coll v1 v2,Coll v1 [v3 ]) ⇒
v2 → v3 → v1 → v1. One of the two constraints is not satisfiable, because we cannot give evidence in the
form of two functions inserting elements of different types into a collection of the same type. Luckily, the
functional dependency of the type class Coll results in the improving substitution {v2 7→ [v3 ]}. Applying
the improving substitution on the earlier inferred type results in the type Coll v1 [v3 ]⇒ [v3 ]→ v3 → v1 → v1

for the function insTwo.

9.3 Approach

We use the following approach to add improvement to our framework. Prove constraints can be solved by
simplification using the class hierarchy and using instance declarations. We encode simplification in terms of
CHRs generating every correct context reduction alternative. Evidence in the form of a tree is generated from
reduction alternatives for each Prove constraint. Simplification is a method for solving Prove constraints. We
add improvement as an additional method for solving Prove constraints. The evidence for solving a Prove
constraint using improvement is a substitution instead of an evidence tree.

No single Prove constraint can be solved using both simplification and improvement. For example, the
constraint Prove (v1 ≡ v2) cannot be solved using simplification in the case of type class predicates. However,
the improving substitution {v1 7→ v2} is a solution for this constraint. We do not make any assumption
about the predicate language of the compiler that uses our framework. However, in practice, the predicate
language requires some form of equality predicates:

π := τ1 ≡ τ2

| ...

The leftmost rule in Figure 9.1 specifies when an equality predicate is solved. An equality predicate is solved
when there is a substitution S where S τ1 and S τ2 are syntactically equivalent. The compiler that uses our
framework has to specify how a Prove constraint can be solved using improvement. Usually, this will consist
of a function unifying both components of the equality predicate (τ1 and τ2).

The rightmost rule in Figure 9.1 specifies how equality predicates are introduced. An equality predicate
is introduced when it is implied by a matching CHR. In this way, the described translation for functional
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dependencies into CHRs [Duck et al., 2004, Sulzmann et al., 2007] can easily be used in this framework. We
explain the translation using a well known example. Consider the following class declaration for encoding a
family of zip functions:

class Zip a b c | c → a, c → b where
zip :: [a ]→ [b ]→ c

A CHR is generated for each functional dependency:

Prove (Zip a b c),Prove (Zip d e c) =⇒ Prove (a ≡ d)
Prove (Zip a b c),Prove (Zip d e c) =⇒ Prove (b ≡ e)

The parameters a and b of the type class Zip are uniquely determined by c. Therefore, the fresh variables
d and e are introduced in the CHRs for a and b respectively. Proof obligation for equality predicates are
generated when there are two Prove constraints in the constraint set mentioning the same type c. CHRs are
also generated for each instance of a class with functional dependencies:

instance Zip a b [(a, b)] where
zip (x : xs) (y : ys) = (x , y) : zip xs ys
zip = [ ]

The following CHRs are generated for the instance declaration in combination with the functional dependen-
cies:

Prove (Zip d e [(a, b)]) =⇒ Prove (d ≡ a)
Prove (Zip d e [(a, b)]) =⇒ Prove (e ≡ b)

The type [(a, b)] in the instance declaration uniquely determines the type variables a and b. Therefore, proof
obligations for equality predicates are generated when a Prove (Zip d e [(a, b)]) is matched in the constraint
set. The big advantage of translating functional dependencies into CHRs is that all improvements are made
explicit.

On two points we deviate from the translation described by Sulzmann et al. The first deviation is that we
use explicit Prove constraints. Second, we do not propagate functional dependencies from superclasses. For
example, consider the following class declaration:

class Zip a b c ⇒ C a b c

The following CHR is generated for the class declaration when using the translation described by Sulzmann
et al:

C a b c =⇒ Zip a b c

This CHR propagates the class hierarchy and thereby also the improvement CHRs of the superclasses. For ex-
ample, the constraint (C v1 v2 [(Int ,Bool)]) will also trigger the improvement CHRs generated for functional
dependencies of type class Zip. The result of applying the CHRs on the constraint (C v1 v2 [(Int ,Bool)]) is
then:

{C v1 v2 [(Int ,Bool)]
,Zip v1 v2 [(Int ,Bool)]
, v1 ≡ Int
, v2 ≡ Bool }

However, the class hierarchy is not propagated in the translation scheme we proposed. This means that the
CHRs generated for functional dependencies of class π must also incorporate the functional dependencies of
the superclasses of class π.

9.4 Implementation

In this section we extend the framework to support improvement. This extension does not influence the
earlier described work on evidence translation and can be described independently. However, there exist some
interaction between simplification and improvement which we will describe at the end of this section. First,
we have to extend the state of the solver to store the list of CHRs describing the improvement relation.

data SolveState p s info =
SolveSt{rules :: [CHR (Constraint p info) s ]
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, imprRules :: [CHR (Constraint p info) s ]
, ...
}

We could combine the lists of CHRs for improvement and simplification into one list. However, we separate
those lists because improvement and simplification are two different steps and it is more clear to describe
both relations separately. Improvement can be applied at any stage during the type inference process with
the following function:

improve :: (MonadState (SolveState p s info) m,Matchable p s,Ord info,Substitutable p v a)
⇒ (p → Maybe a)→ m a

improve impr =
do rls ← gets imprRules

cnstrs ← gets constraints
let equalities = chrSolveList rls (Map.keys cnstrs)

(s, cnstrs ′) = foldr (imprSubst impr) (mempty , cnstrs) equalities
modifyConstraints (const cnstrs ′)
return s

The above function is parametrized with the function impr . This function parameter must be supplied by the
compiler using this framework and is required to find an improvement for predicates. The function improve
first generates equality constraints by applying the CHRs for improvement. Then, the function imprSubst is
folded over the generated constraints. This function constructs the improving substitution from the generated
constraints using the impr function.

imprSubst :: (Ord p,Ord info,Substitutable p v a)⇒ (p → Maybe a)→ Constraint p info
→ (a,Constraints p info)→ (a,Constraints p info)

imprSubst impr c@(Prove p) (s, cs) =
case impr (substitute s p) of

Nothing → (s, Map.insertWith (++) c [ ] cs)
Just s ′ → (s ′ ‘mappend ‘ s,Map.delete c cs)

imprSubst c (s, cs) = (s, Map.insertWith (++) c [ ] cs)

Assume constraints are solved by just inserting them into the constraint map. Solving a Prove constraint
consists of the following steps. First, the improving substitution thus far is applied to predicate p. Then,
the function impr is applied to the result of applying the substitution. The function impr tries to find an
improving substitution for solving the constraint and gives the following result:

• The function evaluates to Nothing . This means that this predicate cannot be solved using an improving
substitution.

• Otherwise, the function returns an improving substitution and thereby solving the predicate.

For example, consider the following function from the introduction again:

test xs = insert ’c’ (insert False xs)

The constraints {Prove (Coll v1 Char),Prove (Coll v1 Bool)} are generated for this function. Solving
these constraints with the CHR Prove (Coll a b),Prove (Coll a c) =⇒ Prove (b ≡ c) for improvement
results in the constraint Prove (Char ≡ Bool). There is no improving substitution for solving the constraint
Prove (Char ≡ Bool) so this constraint will remain unresolved and can be reported as an error.

It is possible that improvement can lead to new simplifications and the other way around. For example,
consider the following example program:

class Coll c e | c → e where
empty :: c
insert :: e → c → c
member :: e → c → Bool

instance Ord a ⇒ Coll [a ] a where
empty = [ ]
insert = (:)
member = elem

replaceHead ( : xs) y = insert y xs

The following CHRs are generated for this program:
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Prove (Coll a b),Prove (Coll a c) =⇒ Prove (b ≡ c) -- (C1)
Prove (Coll [a ] b) =⇒ Prove (a ≡ b) -- (I1)
Prove (Coll [a ] a) =⇒ Prove (Ord a)

, Reduction (Coll [a ] a) "collList" [Ord a ] -- (I1)

The first two CHRs are improvement rules generated for the class and instance declaration respectively and
the last CHR is a simplification CHR generated for the instance declaration for list collections. The constraint
Prove (Coll [v1 ] v2) is generated for the use of the overloaded function insert in the function replaceHead .
The following function applies simplification and improvement in a fix-point computation:

fixImprove :: (MonadState (SolveState p s info) m,Matchable p s,Ord info,Substitutable p v a)
⇒ (p → Maybe a)→ a → m a

fixImprove impr s =
do simplify

s ′ ← improve impr
if s ′ ≡ mempty

then return s
else do applySubstitution s ′

fixImprove impr (s ‘mappend ‘ s ′)
applySubstitution :: (MonadState (SolveState p s info) m,Ord p,Ord info,Substitutable p v > a)

⇒ a → m ()
applySubstitution s =

do modifyConstraints (Map.mapKeysWith (++) (substitute s))
modifyEvidence (Map.map (substitute s))

First, the constraints are simplified. In the current example no simplification CHR can be matched against the
constraint Prove (Coll [v1 ] v2). Second, the constraints are improved which results for the current example in
the substitution {v2 7→ v1}. The substitution is applied to the constraints and a recursive call to fixImprove
takes place. Now, a simplification can be applied to the substituted constraint Prove (Coll [v1 ] v1) resulting in
the constraint Prove (Ord v1). No improvement rule can be matched against Prove (Ord v1) so the resulting
substitution is empty and the fix-point is reached.

9.5 Conclusion

In this chapter we have given a short introduction to improvement and explained why improvement is useful.
For example, multi-parameter type classes are mostly useful in the context of functional dependencies. Func-
tional dependencies can be translated into CHRs [Duck et al., 2004, Sulzmann et al., 2007]. The advantage
of this translation is that CHRs make the improvements generated by functional dependencies explicit. We
have explained how this translation can be used in our framework with some minor modifications.

The framework now supports improvement and simplification of qualified types. Thereby, we have given
an implementation for the theoretical framework of Jones [Jones, 1992, 1995c,b]. However, improvement
is in some sense an ad-hoc extension of our framework. We did not mention how improvement scales in
combination with other extensions such as overlapping instances or local instances. It would be nice to express
improvements in the simplification graphs. Improvements are then generated depending on the solution chosen
by heuristics. This would be an interesting research topic and we think our framework provides a solid basis
for this research.
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Chapter 10

Conclusion and future work

We have presented a constraint-based framework for the resolution of overloading. In this chapter we first
list the contributions of our work and then give an overview of future work.

10.1 Conclusion

The framework presented in this thesis was preceded by a prototype. We tested and implemented this proto-
type in the type checker ‘Typing Haskell in Haskell’ [Jones, 1999] and in the constraint-solver Top [Heeren,
2005]. Class and instance declarations were translated into rules constructing a simplification graph. Evidence
could be generated from this graph. However, we used a tailor made rule language instead of the more general
CHRs, and the heuristic was hard-coded in the evidence generation algorithm.

In Chapter 6 we presented a first version of the framework. We showed how entailment of Haskell 98 type
classes can be expressed in terms of CHRs. Furthermore, a systematic translation was presented from class
and instance declarations into CHRs. We also check if the class hierarchy is acyclic during this translation. On
top of that, we have also implemented a domain specific language for CHRs together with a basic CHR solver
in Haskell. In Chapter 7 we presented the final version of the framework. We let each CHR generate reduction
constraints to trace the derivation steps needed to arrive at a solution. Furthermore, we use CHRs to generate
every possible and correct context reduction alternative. This is achieved by only using propagation CHRs.
The context reduction alternatives generated by CHRs are represented in a graph and a heuristic chooses a
solution to resolve overloading. These heuristics allows one to easily experiment with different design decisions.
To illustrate this, we presented heuristics emulating the context reduction behavior of Haskell 98 and GHC.
Furthermore, we presented a heuristic for the resolution of overlapping instances.

In Chapter 8 we explained how overloading can be resolved in the context of local instances. First, we
presented new entailment rules for scoped instances, and then we introduced a new predicate language by
annotating predicates with a scope identifier. To generate correct alternatives we adapted the translation from
class and instance declarations into CHRs. We only introduced one new CHR for scoping and add a guard
to the CHRs generated for instance declarations. However, the CHR for scoping generates many redundant
reductions. For this reason, we also presented an alternative encoding of scoping in terms of CHRs.

In Chapter 9 we extended the framework with improvement. Thereby, we have given an implementation
for the theoretical framework of Jones [Jones, 1992, 1995c,b]. This extension allows one to use the existing
translation of functional dependencies into CHRs [Duck et al., 2004, Sulzmann et al., 2007] in this framework.
Furthermore, it is also possible to resolve other qualified types using this framework such as extensible
records [Jones and Peyton Jones, 1999].

Finally, we have shown that almost every type-class extension can be formulated in this framework. For
example, we have explained how overlapping instances, local instances, multi-parameter type classes, and
functional dependencies can be encoded.
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Type class directives

Type class directives [Heeren and Hage, 2005] are proposed to improve type error messages concerning type
classes. Consider the following example directives:

never Eq (a → b) : "functions cannot be tested for equality"
never Num Bool : "arithmetic on booleans is not supported"
close Integral : "the only Integral instances are Int and Integer"
disjoint Integral Fractional : "something which is fractional can never be integral"

The above directives can easily be translated into the following CHRs:

Prove (Eq (a → b)) =⇒ error "functions cannot be tested for equality"
Prove (Num Bool) =⇒ error "arithmetic on booleans is not supported"
Prove (Integral a) =⇒ a /∈ {Int , Integer }

| error "the only Integral instances are Int and Integer"
Prove (Integral a),Prove (Fractional a)

=⇒ error "something which is fractional can never be integral"

The directives can be applied in the framework by adding the above rules to the CHRs for simplification.
However, we did not describe how to handle the errors resulting from resolving overloading. We expect that
the type error infrastructure of Top can be inherited by integrating this framework with Top.

Type class directives can also lead to improving substitutions, because more information about the set of
types in a class is available. It is interesting to examine how directives in combination with improvement can
be encoded using this framework.

Existential types and type classes

Combining existential types and type classes results in significant expressive power [Läufer, 1996]. GHC [Mar-
low and Peyton Jones, 2006] supports existentially quantified data constructors with arbitrary contexts:

data Showable = forall a.Show a ⇒ Showable a
showable (Showablea1 x ) = showp1 x
test = map showable [Showablep2 ’c’,Showablep3 "Hello World",Showablep4 False ]

Surprisingly, the keyword forall is used to existentially quantify a variable. The reason for this decision is
that the type ∀ a.Show a ⇒ a → Showable is assigned to the constructor Showable. This construction allows
for packaging heterogeneous values in a list and using the functions of type class Show on those values. The
following constraints are generated to resolve overloading for the above fragment:

{Prove (Show Char)p2 ,Prove (Show String)p3 ,Prove (Show Bool)p4
, Assume (Show c1)a1 ,Prove (Show c1)p1 }

Predicates must be proven when the constructor Showable is used and can be assumed when pattern matching
on Showable. Operationally, this means that the dictionary for Show must be stored in the constructor
Showable.

EH [Dijkstra, 2005] allows a more direct encoding of existential types without the need for packing and
unpacking using a datatype. Instead, a type is closed (packed) by annotating a value with an existential
type signature and an existential type is opened (unpacked) when binding an existential type to an identifier.
Consider the following EH fragment expressing the above example:

showable :: (∃ a.Show a ⇒ a)→ String
showable = λxa1 → showp1 x
test = map showable [’c’p2 , "Hello World"p3 ,Falsep4 ] :: [∃ a.Show a ⇒ a ]

The types in the list are hidden by the explicit type signature and opened by binding each element to the
variable x in the function showable. The constraint set generated for the above example is exactly the same
as the one presented for the GHC example. The constraints resulting from these examples can be solved
using our framework. Also the type system of EH already checks and propagates existential types. However,
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the evidence translation scheme for existentially quantified predicates is not yet described and implemented.
Furthermore, the meaning of multi-parameter type classes with both existentially and universally quantified
types variables is not yet clear.

Recursive bindings

In this thesis we did not address a minor issue occurring when generating evidence for (mutually) recursive
bindings. Consider the following recursive binding:

elem x [ ] = False
elem x (y : ys) = x ≡p1 y ∨ elem x ys

In this function the overloaded operator (≡) is used. After analyzing the body of the function elem we
have to solve the constraint Prove (Eq v1) at location p1 in the abstract-syntax tree. We infer the type
Eq a ⇒ a → [a ]→ Bool for the function elem because we cannot simplify the predicate Eq v1 further. The
result is that the function elem expects a dictionary as evidence for using the operator (≡). There are two
alternatives for generating evidence for an overloaded recursive function: elem1 and elem2 .

elem1 dictEq = elem ′

where elem ′ x [ ] = False
elem ′ x (y : ys) = ((≡) dictEq) x y ∨ elem ′ x ys

elem2 dictEq x [ ] = False
elem2 dictEq x (y : ys) = ((≡) dictEq) x y ∨ elem2 dictEq x ys

The first translation yields efficient code because the recursive call does not have to pass the dictionary for
Eq . A drawback is that the translation scheme is complex, especially for mutually recursive bindings. The
second translation is more straightforward, but a problem occurs with this translation. Evidence has to be
inserted for the recursive call to elem2 . However, no Prove constraint was generated for this recursive call
because the type of elem is not yet known when analyzing the body of the function. Therefore, no evidence
is generated for the recursive call.

A solution is to extend the predicate language with predicate variables. Those predicate variables relate places
where predicates are possibly needed to places where predicate possibly must be inserted. For example, the
name of the function elem could be used as predicate variable. The additionally generated constraint for the
recursive call to elem would then be Prove (elem). A substitution from elem to {Eq v1} is added when the
type of the function elem is inferred. After applying the substitution on the constraints we still are able to
prove the predicate using the framework. Of course using a function identifier as a predicate variable is not the
best choice because identifiers possibly shadow each other. We deliberately did not implement a mechanism
for predicate substitution in the framework because this problem depends on the evidence translation scheme
of the compiler. Furthermore, the framework is not able to solve predicate variables until they are substituted.

Resolution of other qualified types

In this thesis we presented a number of entailment rules together with algorithmic versions of these rules in
terms of CHRs. There are many entailment relations described in the literature, such as for extensible records
and subtyping [Jones, 1995b]. It would be interesting to examine if other forms of qualified types could be
encoded into CHRs and could be resolved with this framework. It is already proven that extensible records
can be encoded in terms of type classes with some common extensions such as multi-parameter type classes
with functional dependencies [Kiselyov et al., 2004]. Therefore, it should also be possible to directly encode
extensible records in the presented framework.

Non-termination

In this thesis we used simplification and propagation CHRs:

H1, ...,Hi ⇐⇒ G1, ..., Gj | B1, ..., Bk (simplification)
H1, ...,Hi =⇒ G1, ..., Gj | B1, ..., Bk (propagation)
(i > 0, j > 0, k > 0)

We assumed the following condition on CHRs:
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fv (H1, ...,Hi) ⊇ fv (B1, ..., Bk)

The function fv computes the variables occurring in the constraints. The variables in the head of a CHR must
always be a superset of the variables in the body. Not fulfilling this condition often results in non-termination.
For that reason this condition was also dictated by the initial proposal for functional dependencies [Jones,
2000]. These conditions are called the Coverage Condition and the Bound Variable Conditions in the context
of functional dependencies. However, these conditions can safely be relaxed [Duck et al., 2004, Sulzmann
et al., 2007]. For example, consider the following class and instance declarations:

class F a
class E a b | a → b
instance E a b ⇒ F a
instance E Int Float

The first instance declaration violates the Coverage Condition because the set {a } is not a superset of {a, b}.
However, the CHRs resulting from these declarations are confluent and terminating because the variable
b is fixed by a using the functional dependency. The simplification CHR generated for the first instance
declaration must introduce a fresh type variable for b:

Prove (F a)⇒ b fresh | Prove (E a b)

Future work is to add support for generating fresh type variables in the body of a CHR.

Furthermore, compilers that allow users to experiment with advanced type class extensions usually fix the
number of simplification and improvement steps performed to a certain depth. The reason for this is to avoid
non-termination of the compiler. Such a mechanism is not present in the presented framework.

Improving substitutions

In Chapter 9 we have given a short introduction to improvement and explained why improvement is useful.
Furthermore, we explained how we extended our framework to support improvement. However, improvement
is in some sense an ad-hoc extension of our framework. We did not mention how improvement scales in
combination with other extensions such as overlapping instances or local instances. It would be nice to express
improvements in the simplification graphs. Improvements are then generated depending on the solution chosen
by heuristics. This would be an interesting research topic and we think our framework provides a solid basis
for this research.
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Thom W. Frühwirth. Theory and practice of constraint handling rules. Journal of Logic Programming, 37
(1-3):95–138, October 1998.

Kevin Glynn, Peter J. Stuckey, and Martin Sulzmann. Type classes and constraint handling rules. In First
Workshop on Rule-Based Constraint Reasoning and Programming, July 2000.

Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type classes in Haskell.
ACM Transactions on Programming Languages and Systems, 18(2):109–138, 1996.

Bastiaan J. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht, The Netherlands,
September 2005.

Bastiaan J. Heeren and Jurriaan Hage. Type class directives. In Daniel Hermenegildo, Manuel; Cabeza, editor,
PADL ’05: Proceedings of the 7th International Symposium on Practical Aspects of Declarative Languages,
volume 3350 of LNCS, pages 253–267. PADL, Springer-Verlag, January 2005.

Bastiaan J. Heeren, Jurriaan Hage, and S. Doaitse Swierstra. Scripting the type inference process. In ICFP’03:
Proceedings of the eighth ACM SIGPLAN International Conference on Functional Programming, pages 3 –
13, New York, 2003a. ACM Press.

Bastiaan J. Heeren, Daan Leijen, and Arjan van IJzendoorn. Helium, for learning Haskell. In Haskell’03:
Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 62 – 71, New York, 2003b. ACM Press.

69



Mark P. Jones. A theory of qualified types. In Bernd Krieg-Bruckner, editor, ESOP ’92: Proceedings of the
4th European Symposium on Programming, volume 582, pages 287–306. Springer-Verlag, New York, N.Y.,
1992.

Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymorphism. In FPCA
’93: Proceedings of the Conference on Functional Programming Languages and Computer Architecture,
pages 52–61, New York, 1993. ACM Press.

Mark P. Jones. Dictionary-free overloading by partial evaluation. Lisp and Symbolic Computation, 8(3):
229–248, 1995a.

Mark P. Jones. Qualified types: theory and practice. Cambridge University Press, New York, NY, USA, 1995b.

Mark P. Jones. Simplifying and improving qualified types. In FPCA ’95: Proceedings of the 7th International
Conference on Functional Programming Languages and Computer Architecture, pages 160–169, New York,
NY, USA, June 1995c. ACM Press.

Mark P. Jones. Typing Haskell in Haskell. In Haskell’99: Proceedings of the ACM SIGPLAN Workshop on
Haskell, New York, September 1999. ACM Press.

Mark P. Jones. Type classes with functional dependencies. In ESOP ’00: Proceedings of the 9th European
Symposium on Programming, volume 1782, pages 230–244, London, UK, March 2000. Springer-Verlag.

Mark P. Jones and Simon L. Peyton Jones. Lightweight extensible records for Haskell. In Haskell’99: Pro-
ceedings of the ACM SIGPLAN Workshop on Haskell, 1999.

Stefan Kaes. Parametric overloading in polymorphic programming languages. In ESOP ’88: Proceedings of
the 2nd European Symposium on Programming, volume 300 of LNCS, pages 131–144. Springer, 1988.
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