
Recognizing Strategies

Bastiaan Heeren 1 Johan Jeuring 1,2

1 Open Universiteit Nederland
2 Universiteit Utrecht, The Netherlands

14 July 2008 (WRS’08)
Castle of Hagenberg, Austria

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Overview

Introduction to exercise assistants

Strategies for exercises

A strategy recognizer

Conclusions

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Introduction to exercise assistants

I A rewrite system for logical propositions:

¬¬p ⇒ p p ∧ (q ∨ r) ⇒ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ⇒ ¬p ∨ ¬q (p ∨ q) ∧ r ⇒ (p ∧ r) ∨ (q ∧ r)

¬(p ∨ q) ⇒ ¬p ∧ ¬q

I Exercise: bring proposition to disjunctive normal form

¬(¬(p ∨ q) ∧ r)

⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Exercise is solved in just two steps

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Introduction to exercise assistants

I A rewrite system for logical propositions:

¬¬p ⇒ p p ∧ (q ∨ r) ⇒ (p ∧ q) ∨ (p ∧ r)

¬(p ∧ q) ⇒ ¬p ∨ ¬q (p ∨ q) ∧ r ⇒ (p ∧ r) ∨ (q ∧ r)

¬(p ∨ q) ⇒ ¬p ∧ ¬q

I Exercise: bring proposition to disjunctive normal form

¬(¬(p ∨ q) ∧ r)
⇒ ¬¬(p ∨ q) ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Exercise is solved in just two steps

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Introduction to exercise assistants (2)

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Introduction to exercise assistants (3)

I A different derivation (same proposition):

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Same answer, more steps

Expert strategy for DNF exercise:
I First push negations inside (top-down)
I Then use the distribution rule

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Introduction to exercise assistants (3)

I A different derivation (same proposition):

¬(¬(p ∨ q) ∧ r)
⇒ ¬((¬p ∧ ¬q) ∧ r)
⇒ ¬(¬p ∧ ¬q) ∨ ¬r
⇒ ¬¬p ∨ ¬¬q ∨ ¬r
⇒ p ∨ ¬¬q ∨ ¬r
⇒ p ∨ q ∨ ¬r

I Same answer, more steps

Expert strategy for DNF exercise:
I First push negations inside (top-down)
I Then use the distribution rule

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Strategies for exercises
We have defined a strategy language for exercises with:

1. Transformation rules
2. Sequence s <?> t
3. Choice s <|> t
4. Unit elements succeed , fail
5. Labels label ` s
6. Recursion fix f

I Labels are used to mark positions in a strategy
I Combinators are inspired by context-free grammars
I In fact, this is an embedded domain specific language (in

Haskell) and more combinators can be added:

many s = fix (λx → succeed <|> (s <?> x))

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Strategies for exercises (2)

I A strategy specification for the DNF exercise:

negations = deMorganAnd <|> deMorganOr <|> doubleNeg

dnf = label `0 (label `1 (repeat (topDown negations))
<?> label `2 (repeat (somewhere andOverOr))
)

I The strategy contains four rewrite rules
I repeat is a greedy variation of the many combinator
I topDown and somewhere are traversal combinators

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Strategy recognition and grammars

I t0 initial term (or exercise)
I t1, t2, . . . terms submitted by the student
I r0, r1, . . . rules recognized by the system

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .

Strategy recognition: Is the sequence of rules “valid” according
to the strategy?

Key observation: tracking intermediate rewrite steps is a pars-
ing problem:

“Is the sequence of rules a prefix of a sentence in the
language generated by the strategy?”

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Strategy recognition and grammars

I t0 initial term (or exercise)
I t1, t2, . . . terms submitted by the student
I r0, r1, . . . rules recognized by the system

t0
r0−→ t1

r1−→ t2
r2−→ t3

r3−→ . . .

Strategy recognition: Is the sequence of rules “valid” according
to the strategy?

Key observation: tracking intermediate rewrite steps is a pars-
ing problem:

“Is the sequence of rules a prefix of a sentence in the
language generated by the strategy?”

Heeren and Jeuring – Recognizing Strategies (WRS’08)

A strategy recognizer

I Our paper discusses the design and implementation of a
strategy recognizer

I Why not reuse an existing parser library?

1. Only interested in sequences of rules that can be
applied successively to some initial term

2. Also prefixes have to be recognized
3. Error diagnosis is important for high-quality feedback
4. Recognizer must deal with labels
5. Strategy should be serializable

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Representing grammars

I A data type for grammars:

data Grammar a = Grammar a :?: Grammar a
| Grammar a :|: Grammar a
| Rec Int (Grammar a)
| Symbol a | Var Int | Succeed | Fail

I Smart constructors for simplification:

(<|>) :: Grammar a→ Grammar a→ Grammar a
Fail <|> t = t
s <|> Fail = s
(s :|: t) <|> u = s :|: (t <|> u)
s <|> t = s :|: t

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Representing grammars

I A data type for grammars:

data Grammar a = Grammar a :?: Grammar a
| Grammar a :|: Grammar a
| Rec Int (Grammar a)
| Symbol a | Var Int | Succeed | Fail

I Smart constructors for simplification:

(<|>) :: Grammar a→ Grammar a→ Grammar a
Fail <|> t = t
s <|> Fail = s
(s :|: t) <|> u = s :|: (t <|> u)
s <|> t = s :|: t

Heeren and Jeuring – Recognizing Strategies (WRS’08)

The function empty

Is the empty sequence in the language?

empty :: Grammar a→ Bool
empty (s :?: t) = empty s ∧ empty t
empty (s :|: t) = empty s ∨ empty t
empty (Rec i s) = empty s
empty Succeed = True
empty = False

I There is no need for empty to inspect recursive
occurrences of a grammar

I Straightforward definition for the other cases

Heeren and Jeuring – Recognizing Strategies (WRS’08)

The function firsts

Which symbols can appear first in a sentence, and what is the
remaining grammar?

firsts :: Grammar a→ [(a, Grammar a)]
firsts (s :?: t) = [(a, s′ <?> t) | (a, s′)← firsts s] ++

(if empty s then firsts t else [])
firsts (s :|: t) = firsts s ++ firsts t
firsts (Rec i s) = firsts (replaceVar i (Rec i s) s)
firsts (Symbol a) = [(a, succeed)]
firsts = []

I We unfold a recursive grammar with replaceVar
I With empty and firsts we can run a strategy, and trace

submitted steps

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Running a strategy

run :: Grammar (Rule a)→ a→ [a]
run s a = [a | empty s]

++ [c | (r , t)← firsts s, b ← apply r a, c ← run t b]

I Results are returned in a depth-first manner
I What about labels in the strategy?

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Labeled strategies

Labels are excluded from the Grammar data type, which makes
it simpler to manipulate grammars

I Two mutually recursive types:

data LabStrat ` a = Label ` (Strategy ` a)

type Strategy ` a = Grammar (Either (Rule a) (LabStrat ` a))

I Rules are tagged Left , nested labels are tagged Right
I For convenience, all smart constructors are overloaded to

circumvent tagging

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Labeled strategies (2)

I We can now trace where we are in the strategy:

data Step ` a = Enter ` | Step (Rule a) | Exit `

withSteps :: LabStrat ` a→ Grammar (Step ` a)
withSteps (Label ` s) = symbol (Enter `)

<?> mapSymbol f s
<?> symbol (Exit `)

where
f = either (symbol ◦ Step) withSteps

I Enter ` and Exit ` are administrative steps
I Some strategy combinators introduce administrative rules

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Tracing with labels: an example

dnf = label `0 (label `1 (repeat (topDown negations))
<?> label `2 (repeat (somewhere andOverOr))
)

I Running dnf on ¬(¬(p ∨ q) ∧ r) with steps returns:

[Enter `0, Enter `1, Step deMorganAnd ,
Step not , Step down, Step doubleNeg, Step up,
Step not ,

Exit `1,
Enter `2, Step not ,
Exit `2,

Exit `0]

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Extensions

Our paper discusses some extensions:

1. Parallel strategies
I Without the problems usually encountered

2. Removing left recursion
I Because our grammars can be inspected

3. Serializing the remaining strategy
I For establishing a binding with other e-learning

environments

These extensions illustrate the flexibility of our approach

Heeren and Jeuring – Recognizing Strategies (WRS’08)

Conclusions

I The paper presents the design and implementation of a
strategy recognizer

I Tracking student steps can be viewed as a parsing problem
I Experience in parsing context-free languages can be

transferred to exercise assistants
I Our grammar representation is observable, also during

parsing, which helps in diagnosing errors

We are very much interested in learning more about
“recognizing strategies” in different areas

Heeren and Jeuring – Recognizing Strategies (WRS’08)

	Introduction to exercise assistants
	Strategies for exercises
	A strategy recognizer
	Conclusions

