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Overview 

– Motivation: the health-care domain 

– Probabilistic graphical models 

– Recent research projects 

– Identification of states in probabilistic automata 

• state-based representation of Bayesian networks 

• score-based structure learning 

• treatment of patients with psychotic depression 

– Conclusions and plans 
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Challenge 

How can we deal with all this  

knowledge and data? 
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How does AI help? 

Genetics Clinical 

Complex Data 

Lots of knowledge 

Knowledge 

base Papers 

Prob(Flu | Fever) = ? 

Reasoning about data 

Predictive modelling 

MassSize > 10  Cancer 
Etc.  

Pattern recognition 

Smoking  Cancer  



Solution direction 

4/7/03   MI   

Date     Diag.  Date     Med.   Dose 

2/2/01  Vioxx    10mg 

Temporal aspects? Cancer? 

1. Dealing with uncertainty 

2. Grip on the most important relations 

3. Understandable models 

4. Efficient reasoning 
 



Uncertainty 

• Dutch book argument (agents whose degrees of belief don’t 

satisfy these axioms will be subject to Dutch Book bets where the 

agent will inevitably lose money) 

 

• Joint distributions over a set of n variables have 2n parameters 

 

• Key insight  in the 80s: exploit independence assumptions 

(probabilistic graphical models) 

 

 

• Let φ, ψ be inconsistent 

propositional formulas, then: 

1. 0 <= P(φ) 

2. P(true) = 1 

3. P(φ or ψ) = P(φ) + P(ψ) –             

P(φ  and ψ) 
 



Introduction Bayesian networks 

Polution Smoker 

Lung 

cancer 

X-ray Dyspnoea 

P(P=low)=0.90 P(S=yes)=0.25 

P S P(L=yes|V,R) 

high yes 0.05 

high no 0.02 

low yes 0.03 

low no 0.001 

L P(X=pos|L) 

yes 0.90 

no 0.20 

L P(D=yes|L) 

yes 0.65 

no 0.30 

Factorisation: 

P(P,S,L,X,D) = P(X|L) P(D|L) P(L|P,S) P(P) P(S) 



e-Health: supporting self-management 



Pre-eclampsia network 



Continuous-time Models 

X1 X2 

Move from discrete-time to continuous-time 

…. 

Models a distribution P(Xi, Xj, …, Xk) for any set of time points {i,j,…,k} 

 

 

 

Some interests: 

• Building continuous-time models 
      Maarten van der Heijden, Arjen Hommersom. Causal Independence Models  

      for Continuous Time Bayesian Networks. The Seventh European Workshop  

      on Probabilistic Graphical Models, 2014 

• Combining different time granularities 
      Manxia Liu, Arjen Hommersom, Maarten van der Heijden, Peter Lucas 

      Hybrid-Time Bayesian Networks. ECSQARU, 2015. 



Epidemiology of multimorbidity 

• 2/3rd of patients older than 65 years have at least two chronic conditions 

• problem of multimorbidity 

• Complexity increases exponentially with # of diseases 

• Traditional statistical tools cannot deal with this problem! 

Multilevel temporal Bayesian networks can model longitudinal change in multimorbidity 

M Lappenschaar, A Hommersom, PJF Lucas, J Lagro, S Visscher. 

Journal of clinical epidemiology (2014). 



Probabilistic Logic Programming 

• Programming language + random variables 

• Reason about distribution over executions  (As going from 

hardware circuits to programming languages) 

• ProbLog: Probabilistic logic programming/datalog  

• Example: Gene/protein interaction networks Edges 

(interactions) have probability “Does there exist a path 

connecting two proteins?”  
 

 
 path(X,Y) :- edge(X,Y).  

 path(X,Y) :- edge(X,Z), path(Z,Y). 

 

 

• Cannot be expressed in first-order logic  
 

 

• Need a full-fledged programming language!  



Why logic? 

• Probabilistic model 

      

 

 

• As a probabilistic graphical model: 

• 26 pages; 728 variables; 676 factors 

• 1000 pages; 1,002,000 variables; 1,000,000 factors 

 

• Highly intractable?  

• Using probabilstic syllogisms and first-order resolution  

• Lifted inference in milliseconds! 

 

• Medical Bayesian networks exhibit large amounts of symmetries that 

can be exploited 

• Large diagnostic networks ranging between 135 and 1041 

variables) may be reduced between 75-85% (Is Medical 

Reasoning Relational? ILP Conference, Nancy, 2014) 

 

FacultyPage(x) ∧ Linked(x,y) ⇒ CoursePage(y) 

 



Continuous values in probabilistic logic 

In many practical medical application, we also have continuous variables 

 

 

 

Gluc_if_DM ~ N(7.5,3.8) 

Gluc_if_notDM ~ N(5.79, 0.98) 

 

hba1c(1.4 + 0.92 * Gluc_if_DM + N(0, 3.3)) <- dm 

hba1c(0.6 + 0.9 * Gluc_if_notDM + N(0, 0.3)) <- not(dm) 

 

e <- hba1c(H), H > 7.2 

Compute hard bounds on probabilities in this general context: 

 
 0.416 < P(dm | e) < 0.554 

 

Constraints can be made arbitrarily small 

 

S. Michels, A.J. Hommersom, P.J.F. Lucas, M. Velikova. A New Probabilistic  

Constraint Logic Programming Language Based on a Generalised Distribution 

Semantics. Accepted for AI Journal, 2015. 



Learning logical rules from data 

- PALGA: 63M pathology excerpts from the 

Netherlands 

- Goal: discovering novel disease associations 

Example: 
  diagnosis(P, auto-immune disease, T1)  

∧ topography(P, liver, T2)   

∧ morphology(P, fibrosis, T3) ⇒ cholangitis(P, T) 

 

where T1, T2, T3 < T 

 

 

 

 

 
Tim Op De Beeck, Arjen Hommersom, Jan Van Maarten van der Heijden, Jesse Davis, 

Peter Lucas, Lucy Overbeek, and Iris Nagtegaal. Mining Hierarchical Pathology Data 

Using Inductive Logic Programming. Artificial Intelligence in Medicine (AIME) 

Conference, 2015.  



Structure-learning HBNMMs 

 
 

or: Identifying States in Probabilistic Automata  

Arjen Hommersom - joint work with Marcos Bueno, Peter Lucas, 

Sicco Verwer, Martijn Lappenschaar, and Joost Janzing 

 



Motivation 

• Probabilistic automata: suitable for identifying 

probabilistic processes given sequences of events (or 

sequences of actions/words/etc.) 
• certain probabilistic automata (PDFA) are polynomially 

trainable 

• PNFA are identifiable in the limit with probability 1 

 

• Key problem: identify number of states and transitions 

between them 

 

• States itself are black boxes 

 

• CAREFUL project: identify states as well 



Outline 

1. State-based representation of Bayesian networks: 

HBNMM 

 

2. Score-based structure learning 

 

3. Application: treatment of patients with psychotic 

depression 



Probabilistic automata and HMMs 

Hidden Markov models = PNFAs without final probabilities 

For example, the HMM: 

can be translated to the PA (and back): 



HBNMM 

• Represent Pi (S1, …, Sn) by a Bayesian network Bi 

• Problem: how to learn both transitions and the structure of 

these Bi? 

• Learning structures within HMMs ≈ learning states in PAs 



Learning Problem 

Given a fixed set of states Q, where |Q| = n, let 

• T be the the transition probabilities P(Q0) and P(Qt+1|Qt) 

• B = {Bi | 1 ≤ i ≤ n} be a set Bayesian networks associated 

to each state 

• M = (T, B) the HMM-BN model with K parameters (details 

omitted in this talk) 

• D a dataset, complete for S1, .., Sn but varying length of 

sequences 

 

We aim to find the model with the best score: 

 S(M) = log P(D | M) - Pen(K) 

where P(D | M) = L(M) is called the likelihood and Pen is 

some penalty function 

→ algorithms that learn good Bayesian networks exist 



Learning Challenges 

• Problem 1 (hidden variables): variables Qt are 

unobserved → score will not decompose, which makes 

exact methods intractable 

• Model selection EM algorithm (Friedman) for 

learning structure in the presence of missing data 

 

 

• Problem 2 (dynamics): sequences may be long and 

data is not available for each time t 

• Learning can be decomposed per state 

• Structure learning only involves observed variables 



Algorithm 
Assuming the penalty can be decomposed (for most scores it can): 

 

S(M) = log L(M) - Pen(K) 

         = log L(T) + ∑i(log L(Bi ) - Pen(Ki)) - const 

         = log L(T) + ∑i S(Bi ) – const 

 

which leads to the following procedure: 



Complexity of learning 

• Mixture of structure learning and the Baum-Welch 

algorithm for finding unknown parameters of an HMM 

 

• Computing the E-step relatively easy:  quadratic in 

number of states, linear in data size 

 

• M-step: linear in states, NP-hard learning problem 

• Optimizing expected score not harder than 

optimizing the score; we just have a weighted 

likelihood 

• Very feasible for states with limited number of 

variables 



Experiments with artificial data 

Comparison with regular HMM and conditional Chow-Liu structures (Kirshner, UAI’2004) 



Treatment of psychotic depression 

• Data of 122 patients obtained by a randomized 

controlled trial 

 

• At start of treatment, all patients were diagnosed with 

DSM-IV-TR psychotic major depression 

 

• Three types of treatments evaluated: venlafaxine, 

imipramine (antidepressants) or venlafaxine+quetiapine 

(antidepressant + antipsychotic) 

 

• Previous research focused on Hamilton score 

 

• Primary finding: venlafaxine+quetiapine is more 

effective than venlafaxine alone 



Psychotic depression data 

• Collected for 8 weeks (20 patients dropped out 

earlier) 

• Symptoms recorded each week 

• 17 items rating the severity of the depression: 

• mood 

• feelings of guilt 

• suicide thoughts 

• insomnia 

• agitation 

• etc. 

• Sum of these 17 items is called the Hamilton score 

(lower = better) 

• Two psychotic symptoms (hallucinations, 

delusions) 



Intended contributions 

• In general: obtain more insight compared to regression 

models 

 

• Identify different patient groups that somehow behave 

differently (responders – non-responders) 

 

• Identify most important factors that determine recovery 

 

• Explain differences in outcomes between treatments 

 

• Improve fitting of models (linear vs non-linear) 



Part of the model (13 states) 



Hamilton score per state 



Example state (S1) 



Comparison between treatments 



Outcomes per state 



Conclusions 

• Significant challenges in analysing (medical) data 

– complexity, uncertainty 

• Introduction of a Bayesian-network based probabilistic 

automaton 

• Application to treatment psychotic depression 

• Research directions from OU point of view: 

– Smart technologies in health care services 

– Currently involved in BISS-SIC: first trial project for developing 

smart interaction centers 

• Improving services with AI techniques 

• Development of intelligent services 

 


