
Ask-Elle

An Adaptable Programming Tutor for
Haskell Giving Automated Feedback

Bastiaan Heeren

April 26, 2016

OU Research Seminar

Presentator
Presentatienotities
Recent journal article. IJAIED prominent place for ITS research.
Summary of work on Ask-Elle (PhD Alex) and description of three experiments. Thomas was UU Master student

1. list of exercises

2. exercise description

3. student program

4. high-level hint

5. bottom-out hint

Presentator
Presentatienotities
Screenshot. How does the tutor work? Question marks for ‘holes’.

Why use an ITS?

Evaluation studies have indicated that:

 ITS with stepwise development is almost as effective as a
human tutor (VanLehn 2011)

 More effective when learning how to program than “on your
own” with compiler, or pen and paper (Corbett et al. 1988)

 Requires less help from teacher while showing same
performance on tests (Odekirk-Hash and Zachary 2001)

 Increases self-confidence of female students (Kumar 2008)

 Immediate feedback of ITS is preferred over delayed
feedback common in classroom settings (Mory 2003)

Presentator
Presentatienotities
Paper is not about measuring learning effects. However, there is evidence in literature that ITS’s work.

Type of exercises

 Determines how difficult it is to generate feedback

 Classification by Le and Pinkwart (2014):

− Class 1: single correct solution

− Class 2: different implementation variants

− Class 3: alternative solution strategies

 Ask-Elle offers class 3 exercises

Presentator
Presentatienotities
What type of exercises are offered by the tutor? Classification of problem’s well-definedness

Ask-Elle’s contribution

The design of a programming tutor that:

1. offers class 3 exercises

2. supports incremental development of solutions

3. automatically calculates feedback and hints

4. allows teachers to add exercises and adapt feedback

Our approach:

 strategy-based model tracing

 property-based testing

 compiler technology for FP languages

Presentator
Presentatienotities
It’s the combination that makes Ask-Elle unique (as well as our approach).

Overview

 Session: student & teacher

 Design

 Experiment 1: assessment

 Experiment 2: questionnaire

 Experiment 3: student program analysis

 Conclusions

Presentator
Presentatienotities
First an example session, from two viewpoints (student & teacher). A few words on the design (but not on the strategy language). Three experiments for understanding how good Ask-Elle (and its feedback) really is.

Example
Student session

32 + 8 + 2 = 42

 Available hints:
we follow the foldl approach

Presentator
Presentatienotities
A typical example. Three top-level hints (we assume the first approach).
The prelude is Haskell’s standard library with many useful functions.

Session
Student session

a hole (expression)

Presentator
Presentatienotities
You start with a hole.

Session (continued)
Student session

standard compiler error
by Helium

Presentator
Presentatienotities
Compiler is used in the background (Helium).
Semantic errors are caught by property-based testing (counterexamples)

Model solutions
Teacher session

 Teachers can supply model solutions

Presentator
Presentatienotities
Three different approaches: left-to-right, inner product, tupling with length.

Recognising solutions
Teacher session

can be recognised by:

 Aggressive normalisation

 Semantic equality of programs is undecidable

 For example:

Presentator
Presentatienotities
In general an undecidable problem (equivalence of lambda terms), but we are only dealing with beginner’s program’s.
The three model solutions are a good basis.

Adapting feedback
Teacher session

description of the solution

textual feedback annotations

enforce use of library function

alternative definition

Presentator
Presentatienotities
Annotations for tweaking the feedback and recognition

Properties
Teacher session

f is the student program

 Used for reporting counter-examples

round-trip property

Presentator
Presentatienotities
QuickCheck: property-based testing and random input generation.

Ask-Elle’s design
Design

Presentator
Presentatienotities
Service-based approach. Step 4: strategies, normalisation. Step 6: we record every interaction with the tutor.

Experiment 1:

 Assessing Student Programs

Presentator
Presentatienotities
Ask-Elle as an assessment tool (off-line, complete programs only)

Automated assessment

 Many tools use some form of testing

 Problems with testing: how do you know …

1. you have tested enough (coverage)?

2. that good programming techniques are used?

3. which algorithm was used?

4. the executed code has no malicious features?

 Strategy-based assessment solves these problems

Assessing student programs

Presentator
Presentatienotities
Most programming ITS tools are based on input-output testing. Simple, effective, but it has some disadvantages.

Classification (by hand)

 Good: proper solution (correctness and design)

 Good with modifications: solutions augmented with
sanity checks (e.g. input checks)

 Imperfect: program contains imperfections: e.g.
superfluous cases, length (x:xs) - 1

 First-year FP course at UU (2008)

− 94 submissions for fromBin

− 64 are good, 8 good with modifications (total: 72)

Assessing student programs

Presentator
Presentatienotities
Not involved in this courses. fromBin was one of many functions of a lab assignment.
How many of the 72 programs can be recognized based on provided model solutions?

Results

 62 of 72 (86%) are recognized based on 4 model solutions

 No false positives

 Model solutions: foldl (18), tupling (2), inner product (2)

 Explicit recursion (40), which is simple but inefficient

 Example of program that was not recognized:

Assessing student programs

Presentator
Presentatienotities
Nice result. We detected some imperfections that were missed by the student assistants.

Experiment 2:

 Questionnaire

Presentator
Presentatienotities
How do students value the tutor?

Questionnaire

 FP bachelor course at UU (September 2011) with 200 students

 Approx. 100 students used the tutor in two sessions (week 2)

 Forty filled out the questionnaire (Likert scale, 1-5)

 Experiment was repeated for:

− FP experts from the IFIP WG 2.1 group

− Student participants of the CEFP 2011 summer school

Questionnaire

Presentator
Presentatienotities
Participation of students with these kinds of experiments is problematic.

Results
Questionnaire

Presentator
Presentatienotities
Positive: complete solutions.
Negative: step-size (refinement of one step at the time was a requirement)

Evaluation of open questions

Remarks that appear most:

 Some solutions are not recognised by the tutor

 Incorrect solution? Give counterexample

 The response of the tutor is sometimes too slow

 Special ‘search mode’

Questionnaire

Presentator
Presentatienotities
Many students had the impression that their solution was correct (but was not recognized as such). Prove them wrong with a counterexample.

Experiment 3:

 Student Program Analysis

Presentator
Presentatienotities
Added counterexamples. In how many cases can we still not decide about correctness? Why not?

Classification (by Ask-Elle)

Correctness:

 For full program: expected input-output behaviour

 For partial program: can be refined to correct, full program

Categories:

 Compiler error (Error)

 Matches model solution (Model)

 Counterexample (Counter)

 Undecided, separated into Tests passed and Discarded

Analysis

Presentator
Presentatienotities
Tests passed -> should have been recognised by a model solution?
Discarded -> problem not ‘defined’ enough

Questions related to feedback quality

 How many programs are classified as undecided?

 How often would adding a program transformation help?

 How often would adding a model solution help?

 How often do students add irrelevant parts?

 How many of the programs with correct input–output
behaviour contain imperfections (hard to remove)?

 How often does QuickCheck not find a counterexample,
although the student program is incorrect?

(precise answers in paper)

Analysis

Correct (but no match)

Cases:

1. The student has come up with a way to solve the exercise
that significantly differs from the model solutions

2. Ask-Elle misses some transformations

3. The student has solved more than just the programming
exercise (e.g. extra checks)

4. The student implementation does not use good
programming practices or contains imperfections

Analysis

Presentator
Presentatienotities
(1) Add model solutions; (2) add transformation.

Incorrect (but no counterexample)

Cases:

1. Tests passed. All test cases passed. By default, 100 test
cases are run with random values for each property.

2. Discarded. Too many test cases are discarded. By default,
more than 90% is considered to be too many.

Analysis

Presentator
Presentatienotities
Probably correct if it is a complete program; more careful about partial programs (because of test bias)
Clear sign that the program is not yet defined enough

Results
 September 2013 at UU: 5950 log entries from 116 students

 Exercise attempts (last program) and interactions

 Recognized: Model / (Model + Passed + Discarded)

 Classified: (Model + Error + Counter) / Total

Analysis

Presentator
Presentatienotities
Deal with sequences of submissions
Recognized and classified are quality metrics.
21.8% attempts stop with a syntax error :-(
Interactions scores slightly better (but many small, incomplete programs)
Goal: to reduce number of programs in ‘Tests passed’

Missing program transformations

Analysis (by hand) of 436 interactions in ‘Tests passed’:

 Remove type signature (94)

 Recognise more prelude functions and alternative
definitions (37); followed by beta-reduction (39)

 Formal parameters versus lambda’s, eta-conversion (75)

 Alpha-conversion bug (48), wildcard (19)

 Better inlining (26)

 Substituting equalities a==b (26)

 Removing syntactic sugar (22)

 (…)

Analysis

Presentator
Presentatienotities
A lot of work (by Thomas). Also: combinations of transformations that are missing.

Updated results

original results

Analysis

Presentator
Presentatienotities
Potential of approach …

Conclusions

 Ask-Elle supports the incremental development of
programs for class 3 programming exercises

 Feedback and hints are automatically calculated
from teacher-specified annotated model solutions
and properties

 Main technologies: strategy-based model tracing
and property-based testing.

 With improvements from last experiment:

− recognise nearly 82% of (correct) interactions

− classify nearly 93% of interactions

Presentator
Presentatienotities
Summary

Future work

 Other programming languages and paradigms

 Measure learning effects and effectiveness

 Draw up a feedback benchmark

 Abstract model solutions (recursion patterns)

 Contracts for blame assignment

 Systematic literature review on feedback in
learning environments for programming

− Part 1 to be presented at ITiCSE 2016 (69 tools)

Presentator
Presentatienotities
Started with a tutor for imperative programming (Hieke Keuning, NWO lerarenbeurs)
Hard to compare feedback: create a benchmark with international experts

	Ask-Elle��An Adaptable Programming Tutor for Haskell Giving Automated Feedback
	Dianummer 2
	Dianummer 3
	Why use an ITS?
	Type of exercises
	Ask-Elle’s contribution
	Overview
	Example
	Session
	Session (continued)
	Model solutions
	Recognising solutions
	Adapting feedback
	Properties
	Ask-Elle’s design
	Experiment 1:��	Assessing Student Programs
	Automated assessment
	Classification (by hand)
	Results
	Experiment 2:��	Questionnaire
	Questionnaire
	Results
	Evaluation of open questions
	Experiment 3:��	Student Program Analysis
	Classification (by Ask-Elle)
	Questions related to feedback quality
	Correct (but no match)
	Incorrect (but no counterexample)
	Results
	Missing program transformations
	Updated results
	Conclusions
	Future work

