# Generation of hints, next steps and complete solutions for axiomatic Hilbert style proofs

Josje Lodder 31-05-2016



# **Research questions**

- How can we provide feedback and feedforward in e-learning tools to support students with their tasks in logic
- How effective are these tools?
- We restrict these questions to the following subjects
  - standard equivalences and normal forms
  - Hilbert style axiomatic proofs
  - structural induction

topic of this talk



## Hilbert style axiomatic proofs

To prove  $\Sigma \vdash \phi$  you can use :

• 3 axioms:

$$\begin{array}{ll} \mathsf{A} & \varphi \to (\psi \to \varphi) \\ \mathsf{B} & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ \mathsf{C} & (\neg \ \psi \to \neg \ \varphi) \to (\varphi \to \psi)) \end{array}$$

• Assumptions

 $\varphi \vdash \varphi$ 

Modus Ponens

If  $\Phi \vdash \phi$  and  $\Delta \vdash \phi \rightarrow \psi$  then  $\Phi, \Delta \vdash \psi$ 

• Deduction theorem

If  $\Sigma, \varphi \vdash_{\mathsf{S}} \psi$  then  $\Sigma \vdash_{\mathsf{S}} \varphi \to \psi$ 



# Example proof

Proof for  $p \rightarrow (q \rightarrow r), p \rightarrow q \vdash_{S} p \rightarrow r$ 

1
$$p \rightarrow (q \rightarrow r) \vdash_{S} p \rightarrow (q \rightarrow r)$$
assumption2 $\vdash_{S} (p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$ axiom b3 $p \rightarrow (q \rightarrow r) \vdash_{S} (p \rightarrow q) \rightarrow (p \rightarrow r)$ MP 1, 24 $p \rightarrow q \vdash_{S} p \rightarrow q$ assumption5 $p \rightarrow (q \rightarrow r), p \rightarrow q \vdash_{S} p \rightarrow r$ MP 3, 4



### **Alternative proof**

Proof of  $p \rightarrow (q \rightarrow r), p \rightarrow q \vdash_{S} p \rightarrow r$ 

1. 
$$p \rightarrow (q \rightarrow r) \vdash_{S} p \rightarrow (q \rightarrow r)$$

2.  $p \vdash_{s} p$ 

3. 
$$p \rightarrow (q \rightarrow r), p \vdash_{S} q \rightarrow r$$

4.  $p \rightarrow q \vdash_{S} p \rightarrow q$ 

5.  $p \rightarrow q$ ,  $p \vdash_{\mathsf{S}} q$ 

6.  $p \rightarrow (q \rightarrow r), p \rightarrow q, p \vdash_{\mathsf{S}} r$ 

7.  $p \rightarrow (q \rightarrow r), p \rightarrow q \vdash_{S} p \rightarrow r$ 

assumption assumption MP 1, 2 assumption MP 2, 4

MP 3, 5

Deduction 6



# Desired features of an e-learning tool for stepwise exercises

- Stepwise solution of an exercise
- Feedback on mistakes
  - syntactical mistakes
  - rule mistakes
  - strategic mistakes
- Hints and next steps
- Complete solutions

you need a solution strategy !

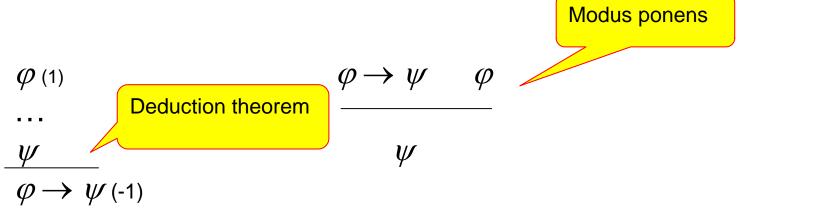


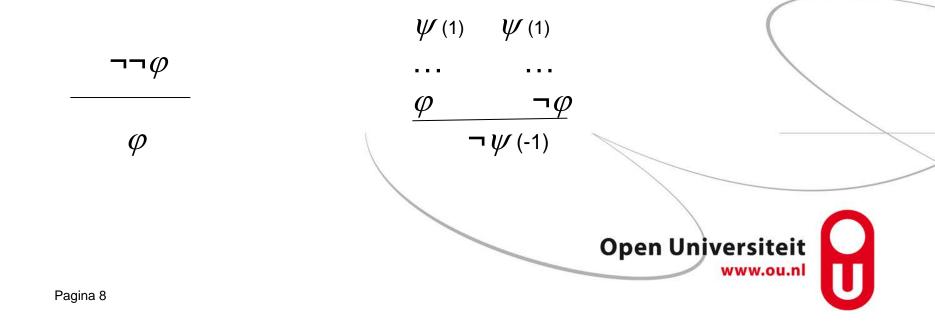
# Strategies for constructing axiomatic proofs

- Constructive completeness proof:
  - produces extremely long proofs
- Translation of semantic tableau method in axiomatic proof (Harrison)
  - only indirect proofs: to prove  $\Sigma \vdash \phi$ , show first:  $\Sigma, \neg \phi \vdash \bot$



# **Natural deduction**





# Strategy for constructing natural deduction proofs (Bolotov)

Find a proof of  $\Sigma \vdash \phi$  via a set of transformations of  $\Sigma' \vdash \Delta, \phi$ where  $\Sigma'$  is the current set of assumptions, and  $\Delta, \phi$  a stack of goals.

Transformations:

- $\Sigma \vdash \Delta, \rho$   $\Rightarrow$   $\Sigma, \neg \rho \vdash \Delta, \rho$ , false
- $\Sigma \vdash \Delta, \neg \varphi \implies \Sigma, \varphi \vdash \Delta, \neg \varphi,$ false
- $\Sigma \vdash \Delta, \varphi \rightarrow \psi \implies \Sigma, \varphi \vdash \Delta, \varphi \rightarrow \psi, \psi$

Before adding a new goal, check whether the current goal is reached, by applying modus ponens and double negation to the set of assumptions and reached goals.



# Strategy for constructing natural deduction proofs (Bolotov) (2)

- If no rules are applicable use assumptions:
- $\Sigma, \neg \varphi \vdash \Delta$ , false  $\Rightarrow$   $\Sigma, \neg \varphi \vdash \Delta$ , false,  $\varphi$
- $\Sigma, \varphi \to \psi \vdash \Delta$ , false  $\Rightarrow$   $\Sigma, \varphi \to \psi \vdash \Delta$ , false,  $\varphi$



# Strategy for axiomatic proofs

We use

- a stack of goals:  $\Sigma \vdash \phi$
- a set of availables A: prooflines: nr,  $\Sigma \vdash \varphi$  (motivation, [nrs])
- a partial proof P

Repeat the following steps:

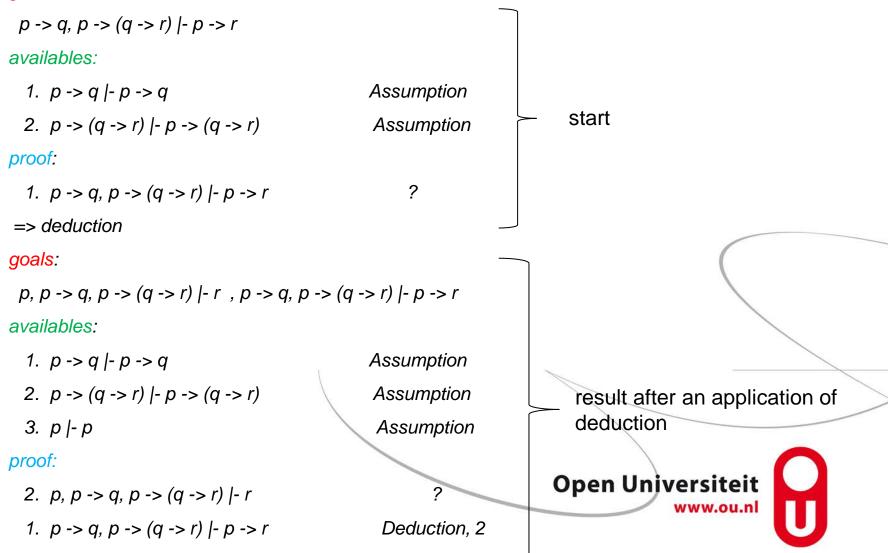
- Close A under modus ponens and double negation
- Check if a goal is reachable: delete reached goals from the stack and add them to A
- Add the subproof of this goal to *P*.
- Use the transformation rules to create new goals, add the new goal to P
- Use the assumptions to create new goals if no other rule is applicable
- Use predefined subproofs for double negation and contradiction rules.



Pagina 11

# **Example**

goals:



# **Example (continued)**

```
=> modus-ponens
goals:
 p, p -> q, p -> (q -> r) |- r
 p -> q, p -> (q -> r) |- p -> r
availables:
  1. p -> q |- p -> q
                                                   Assumption
 2. p -> (q -> r) |- p -> (q -> r)
                                                   Assumption
 3. p |- p
                                                   Assumption
 4. p, p -> q |- q
                                                   Modus Ponens, 1, 3
 5. p, p -> (q -> r) |- q -> r
                                                   Modus Ponens, 2, 3
                                                                                      Goal is reached
 6. p, p -> q, p -> (q -> r) |- r
                                                   Modus Ponens, 5, 4
proof:
                                                    ?
 2. p, p -> q, p -> (q -> r) |- r
 1. p -> q, p -> (q -> r) |- p -> r
                                                    Deduction, 2
                                                                         Open Universiteit
                                                                                         www.ou.nl
```

# **Example (completion)**

=> impl-intro

#### goals:

availables:

| 1. | p -> q  - p -> q                | Assumption         |
|----|---------------------------------|--------------------|
| 2. | p -> (q -> r)  - p -> (q -> r)  | Assumption         |
| 3. | p  - p                          | Assumption         |
| 4. | p, p -> q  - q                  | Modus Ponens, 1, 3 |
| 5. | p, p -> (q -> r)  - q -> r      | Modus Ponens, 2, 3 |
| 6. | p, p -> q, p -> (q -> r)  - r   | Modus Ponens, 5, 4 |
| 7. | p -> q, p -> (q -> r)  - p -> r | Deduction, 6       |

#### proof:

3.  $p \rightarrow q \mid -p \rightarrow q$ 4.  $p \rightarrow (q \rightarrow r) \mid -p \rightarrow (q \rightarrow r)$ mption5.  $p \mid -p$ mption6.  $p, p \rightarrow q \mid -q$ mption7.  $p, p \rightarrow (q \rightarrow r) \mid -q \rightarrow r$ us Ponens, 1, 32.  $p, p \rightarrow q, p \rightarrow (q \rightarrow r) \mid -r$ lus Ponens, 2, 31.  $p \rightarrow q, p \rightarrow (q \rightarrow r) \mid -p \rightarrow r$ 

Assumption

Assumption

Assumption

Modus Ponens, 3, 5

Modus Ponens, 4, 5

Modus Ponens, 7, 6

Deduction, 2



## **Add heuristics**

Now we can produce proofs, but these proofs use the axioms only in subproofs concerning negations or contradicions. An e-learning tool should also help students to recognize applicable axioms.

Therefore we introduce heuristics:

In the step;

Close A under modus ponens and double negation

add:

applicable/useful versions of axiom A, axiom B and axiom C

Example: if goal =  $\Sigma \vdash \varphi \rightarrow \psi$  and  $\Sigma \vdash \neg \varphi$  in availables,

add instances to the availables::

 $\vdash \neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ 

 $\vdash (\neg \psi \to \neg \varphi) \to (\varphi \to \psi)$ 

(axiom A) (axiom C)

Open Universiteit

Pagina 15

# Example

# availables:

1. 
$$p \rightarrow q \mid -p \rightarrow q$$
  
2.  $p \rightarrow (q \rightarrow r) \mid -p \rightarrow (q \rightarrow r)$   
3.  $\mid -(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$   
4.  $p \rightarrow (q \rightarrow r) \mid -(p \rightarrow q) \rightarrow (p \rightarrow r)$   
5.  $p \rightarrow q, p \rightarrow (q \rightarrow r) \mid -p \rightarrow r$ 

proof:

2. 
$$p \rightarrow q \mid -p \rightarrow q$$
  
3.  $p \rightarrow (q \rightarrow r) \mid -p \rightarrow (q \rightarrow r)$   
4.  $\mid -(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$   
5.  $p \rightarrow (q \rightarrow r) \mid -(p \rightarrow q) \rightarrow (p \rightarrow r)$   
1.  $p \rightarrow q, p \rightarrow (q \rightarrow r) \mid -p \rightarrow r$ 

# How good is the strategy (1)?

• Comparison with metamath proof list:

| X, P.1 of                  | Theorem List - N |                                                                                                                                                                                                                                                                                                                 | <b>- x</b> |
|----------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| $\leftarrow \rightarrow c$ | C 🗋 us.me        | tamath.org/mpegif/mmtheorems1.html#mm9s 📲                                                                                                                                                                                                                                                                       | ☆ 🔳        |
|                            |                  | nelle navigatie je bladwijzers op deze bladwijzerbalk. <u>Bladwijzers nu importeren</u>                                                                                                                                                                                                                         | ladwijzers |
| AXIOIII                    | ax-mp 8          | Note: In some web page displays such as the Statement List, the symbols "&" and "=>" informally indicate the relationship between the hypotheses and the assertion (conclusion), abbreviating the English words "and" and "implies." They are not part of the formal language. (Contributed by NM, 5-Aug-1993.) |            |
|                            |                  | $\vdash arphi \ \& \ arphi(arphi 	o \psi) \ \Rightarrow \ arphi \ \psi$                                                                                                                                                                                                                                         |            |
|                            |                  | 1.2.3 Logical implication                                                                                                                                                                                                                                                                                       |            |
| The result                 | ts in this secti | on are based on implication only, and avoid ax-3. In an implication, the wff before the arrow is called the "antecedent" and the wff after the arrow is called the "consequent.                                                                                                                                 |            |
|                            |                  | ing descriptive terms very loosely: A "closed form" or "tautology" has no \$e hypotheses. An "inference" has one or more \$e hypotheses. A "deduction" is an inference in wh<br>conclusion share the same antecedent.                                                                                           | nich       |
| Theorem                    | mp2b 9           | A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.)                                                                                                                                                                                                                                  |            |
|                            | •                | $\vdash \varphi ~~\&~ \vdash (\varphi \rightarrow \psi) ~~\&~ \vdash (\psi \rightarrow \chi) ~~\Rightarrow~ \vdash \chi$                                                                                                                                                                                        |            |
| Theorem                    | <u>ali</u> 10    | Inference derived from axiom <u>ax-1</u> 5. See <u>ald</u> 22 for an explanation of our informal use of the terms "inference" and "deduction." See also the comment in <u>syld</u> 40. (Contribution by NM, 5-Aug-1993.)                                                                                        | uted       |
|                            |                  | $\vdash arphi \; \Rightarrow \; \vdash (\psi  ightarrow arphi)$                                                                                                                                                                                                                                                 |            |
| Theorem                    | <u>mp1i</u> 11   | Drop and replace an antecedent. (Contributed by Stefan O'Rear, 29-Jan-2015.)                                                                                                                                                                                                                                    |            |
|                            | -                | $\vdash arphi$ & $\vdash (arphi 	o \psi) \; \Rightarrow \; \vdash (\chi 	o \psi)$                                                                                                                                                                                                                               |            |
| Theorem                    | <u>a2i</u> 12    | Inference derived from axiom <u>ax-2</u> 6. (Contributed by NM, 5-Aug-1993.)                                                                                                                                                                                                                                    |            |
|                            |                  | $\vdash (\varphi \rightarrow (\psi \rightarrow \chi)) \; \Rightarrow \; \vdash ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$                                                                                                                                                             |            |
| Theorem                    | imim2i 13        | Inference adding common antecedents in an implication. (Contributed by NM, 5-Aug-1993.)                                                                                                                                                                                                                         |            |
|                            |                  | $\vdash (\varphi \rightarrow \psi) \; \Rightarrow \; \vdash ((\chi \rightarrow \varphi) \rightarrow (\chi \rightarrow \psi))$                                                                                                                                                                                   |            |
|                            |                  |                                                                                                                                                                                                                                                                                                                 |            |

## **Proofs without deduction theorem**

- Use the proof of the deduction theorem to rewrite proofs with deduction in proofs without this rule.
- Apply this rewriting only in necessary cases
- Clean up rewritten proofs.
- Simple rewriting the first example proof (with deduction) produces a 20 line proof, 'smart' rewriting produces our second 5-line proof.



# **Comparison metamath-org**

| thm     | #metamath | #deduction | #smartnoo | deduction |                                        |
|---------|-----------|------------|-----------|-----------|----------------------------------------|
| mp2b    |           | 5          | 5         | 5         |                                        |
| ali     |           | 3          | 2         | 3         | results until now:                     |
| mpli    |           | 5          | 4         | 5         |                                        |
| a2i     |           | 3          | 3         | 3         | <ul> <li>24 proofs compared</li> </ul> |
| imim2i  |           | 5          | 7         | 5         | • 22 proofs up to order equal to our   |
| mpd     |           | 5          | 7         | 5         | proofs                                 |
| syl     |           | 7          | 6         | 7         | •                                      |
| mpi     |           | 7          | 6         | 7         | <ul> <li>2 shorter proofs</li> </ul>   |
| id1     |           | 5          | 2         | 5         |                                        |
| ald     |           | 7          | 5         | 7         | (                                      |
| a2d     |           | 7          | 6         | 7         |                                        |
| sylcom  |           | 9          | 10        | 9         |                                        |
| syl5com |           | 15         | 9         | 15        |                                        |
| com12   |           | 9          | 8         | 9         |                                        |
| syl5    |           | 23         | 9         | 19        |                                        |
| syl6    |           | 11         | 9         | 11        |                                        |
| pm2.27  |           | 13         | 5         | 13        |                                        |
| mpdd    |           | 11         | 9         | 11        |                                        |
| mpid    |           | 17         | 11        | 17        |                                        |
| pm2.43i |           | 9          | 5         | 9         |                                        |
| pm2.43a |           | 11         | 9         | 11        | Open Universiteit 🦳                    |
| pm2.43  |           | 15         | 6         | 11        | www.ou.nl                              |
| imim2d  |           | 13         | 10        | 13        |                                        |
| imim2   |           | 7          | 8         | 7         |                                        |

# How good is the strategy (2)

- Compare the generated proof with student solutions
- Can we use this strategy to provide hints/next steps

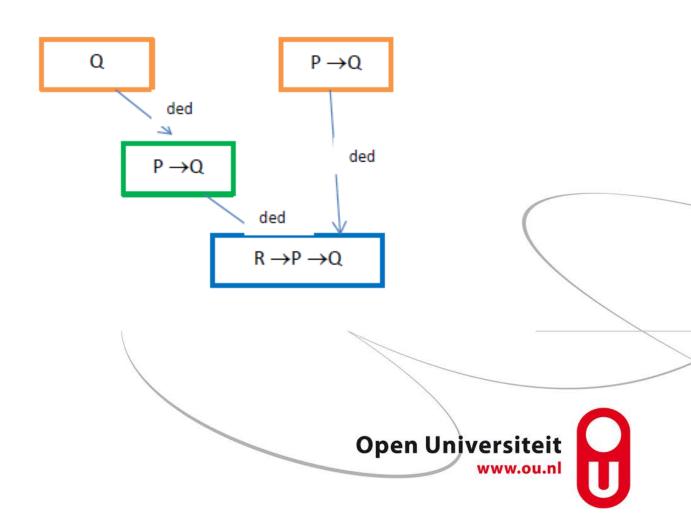


# Linear proofs vs proof DAGs

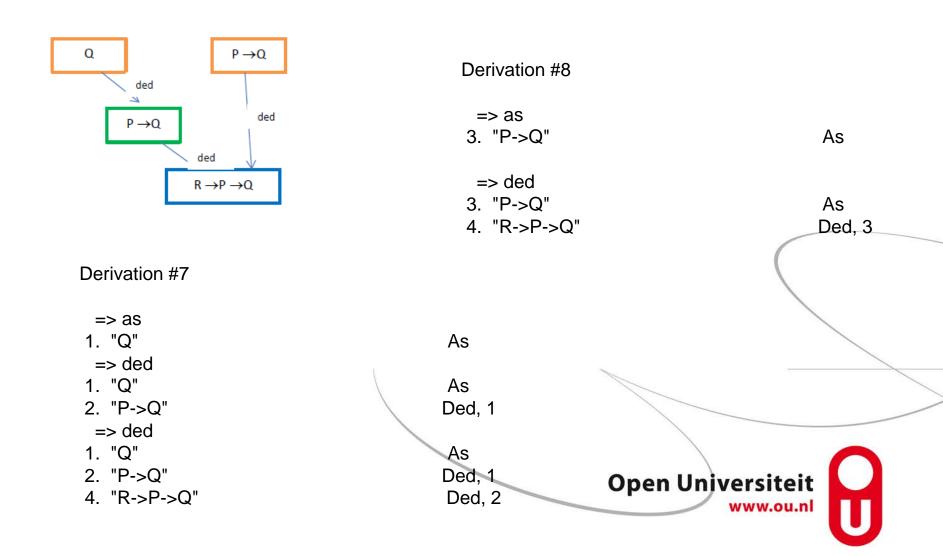
- We can use this strategy to generate complete proofs, and we could also use it to give hints and next steps, also if a student constructs a different solution, by adding the steps of the student to the availables
- We cannot use it within the IDEAS frame work to monitor the steps of the student.
- Our solution:
  - the availables form a proof-DAG from which we can extract linear proofs
  - we expand the availables
  - from this extended proof-DAG we construct a non-deterministic strategy which produces different solutions
  - we can use this strategy to recognize the steps of the student.



# Example DAG



# Example of strategygeneration



# LogAx

| Axioma<br>Nieuw | ve opgave (N)                  |                      |   |                             |                                                                           |
|-----------------|--------------------------------|----------------------|---|-----------------------------|---------------------------------------------------------------------------|
| 1               | p -> q  - p -> q               | Aanname              | х | Regel Modus                 | s Ponens                                                                  |
| 2               | r  - r                         | Aanname              | Х | $(\Sigma \vdash_{S} \phi),$ | $(\Delta \vdash_S \phi \to \psi) \vdash \Sigma \cup \Delta \vdash_S \psi$ |
| 3               | r -> p  - r -> p               | Aanname              | х | φ                           | stapnr                                                                    |
| 999             | p -> q, r -> p  - r -> q       |                      | х | $\phi \rightarrow \psi$     | stapnr                                                                    |
| 1000            | p -> q  - (r -> p) -> (r -> q) | Deductiestelling 999 |   | Ψ                           | stapnr                                                                    |
|                 |                                |                      |   | e Hint                      | Pas toe                                                                   |
|                 | Pagina 24                      |                      |   | Open U                      | niversiteit<br>www.ou.nl                                                  |

# Hints, next steps and feedback in LogAx

- Use the strategy to provide different level hints:
  - goal
  - rule
  - next step
- Use the collection of common mistakes to provide feedback
- Evaluation:
  - do students learn from using LogAx?
  - do students make less mistakes in choosing applicable rules?
  - do students make more mistakes in correctly applying rules?



Dank voor jullie aandacht!

