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Research questions

« How can we provide feedback and feedforward in e-learning tools
to support students with their tasks in logic

» How effective are these tools?

« We restrict these questions to the following subjects
— standard equivalences and normal forms

— Hilbert style axiomatic proofs

' i ic of this talk
— structural induction \[mp'co this ta }
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Hilbert style axiomatic proofs

To prove X F ¢ Yyou can use:

e 3 axioms:

A @ — (v — o)
B (0> (w—>2)—> (0> vw) > (90— )
C Cy—>-0)->(@—>y)

 Assumptions
oF o

e Modus Ponens
If - eand AF ¢ —> v then ©,AF vy

 Deduction theorem
If 2 oFsythen 2. oo w
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Example proof

Prooffor p—>(Q—r),p—o>qgFsp—or

1 p=>@—>nNkFsp—>(@—>T) assumption
2 Fs(P—>@—>1N) > ((P—>a9)—>(P—>0) axiom b
3 po>Q-onNkFs(p>9—->@(PE—r) MP 1, 2
4 pP—>gqksp—q assumption
5 p—>(@—-orn,p—o>gqksp—or MP 3, 4
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Alternative proof

Proofof p—>(Q—r1),p—>qtgp—r

1. p>@—>nNksp>@—r) assumption
2. pkgp assumption
3. p>@—-on,pkFsqor MP 1,2
4. p->qkFsp—q assumption
5. p—>q,pksq MP 2, 4
6. p>(Q—on,p—>qg,pksr MP 3,5
7. p>@—>n,po>qkgp—or Deduction 6
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Desired features of an e-learning tool for stepwise exercises

» Stepwise solution of an exercise
 Feedback on mistakes

— syntactical mistakes

— rule mistakes

— strategic mistakes
e Hints and next steps

 Complete solutions

you need a solution strategy ! ]
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Strategies for constructing axiomatic proofs

« Constructive completeness proof:
— produces extremely long proofs

« Translation of semantic tableau method in axiomatic proof
(Harrison)

— only indirect proofs: to prove X + o, show first: Z, - - L
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Natural deduction

Modus ponens }

¢7ﬂ) ¢)_9.V/ ¢)
ADeduction theorem }
A W
®—> Y1
o yae
—r1¢7
% QP
¢ al/Z&)
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Strategy for constructing natural deduction proofs (Bolotov)

Find a proof of £ F ¢ via a set of transformations of ' - A, ¢

where X’ is the current set of assumptions, and A, ¢ a stack of goals.

Transformations:

= XFAP = X, = p FA,p, false
= XFA @ = >, 0 A -, false
s YFA oY = X, 0FAN o> vy,

Before adding a new goal, check whether the current goal is reached, by
applying modus ponens and double negation to the set of assumptions and
reached goals.
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Strategy for constructing natural deduction proofs (Bolotov) (2)

e If no rules are applicable use assumptions:

= XY ,—ptF A false = >,k A false, ¢
= 3, 90— yk A false = >, 0> wh A, false, ¢
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Strategy for axiomatic proofs

We use
e astackofgoals:ZF ¢

 asetof availables A: prooflines: nr,Z+ ¢ (motivation, [nrs])

e  apartial proof P

Repeat the following steps:

 Close A under modus ponens and double negation

 Check if a goal is reachable: delete reached goals from the stack and add them to A
* Add the subproof of this goal to P.

* Use the transformation rules to create new goals, add the new goal to P

* Use the assumptions to create new goals if no other rule is applicable

Use predefined subproofs for double negation and contradiction rules.
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Example
goals:
p->q,p->(@Q->nl-p->r
availables:
1. p->ql|-p->q Assumption
2.p->(Q->nN]-p->(g->r) Assumption
proof:
1.p->q,p->(Q->n|-p->r ?
=> deduction
goals:

p,p->q,p->@->nNl|-r,p->q9,p->@->n|-p->r
availables:

1. p->ql-p->q Assumption

2.p->Q->nN|-p->(q->r) Assumption

3. pl-p Assumption
proof:

2. p,p->q,p->(q->1)[|-r ?

1. p->q,p->(Q->n|-p->r Deduction, 2

——

start

result after an application of
deduction
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Example (continued)

=> modus-ponens

goals:
P,p->0q,p->(q->1)]|r
p->q,p->(q->1[-p->r

availables:

1.

6.

a ~ w0 N

p->ql-p->¢
p->(q->1|-p->(q->r)
pl-p

p,p->ql-q
p,p->(@->1)|-q->r
p,p->q,p->(q->r1)|r

proof:

2.
1.

pP->ap->@->nl|r
p->ap->@Q->nlp->r
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Assumption
Assumption
Assumption
Modus Ponens, 1, 3
Modus Ponens, 2, 3

Modus Ponens, 5, 4

?

Deduction, 2

%[ Goal is reached }
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Example (completion)

=> impl-intro proof:
goals: 3. p>qgl-p->q Assumption
availables: 4. p->(q->nN]-p->(g->r Assumption
1. p->ql-p->q Assumption 5. pl-p Assumption
2. p->(q->n|-p->(g->r) Assumption 6. p,p->9l-q Modus Ponens, 3,5
3. pl-p Assumption 7. p,p->(Q->n|-g->r Modus Ponens, 4, 5
4. p,p->q|-9q Modus Ponens, 1, 3 2. p,p->q,p->(Q->1)|-r Modus Penens, 7, 6
5. p,p->(@Q->n|-qg->r Modus Ponens, 2, 3 1L.p->qg,p->@->nN|-p->r Deduction, 2
6. p,p->q,p->(q->rn)|-r Modus Ponens, 5, 4
7.p->q,p->(q->r)|-p->r Deduction, 6
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Add heuristics

Now we can produce proofs, but these proofs use the axioms only in subproofs
concerning negations or contradicions. An e-learning tool should also help
students to recognize applicable axioms.

Therefore we introduce heuristics:
In the step;

Close A under modus ponens and double negation
add:

applicable/useful versions of axiom A, axiom B and axiom C

Example: ifgoal =X+ ¢ > wand X F —¢ in availables,
add instances to the availables::

- (my o —0) > (0= v (axiom-C) Open Universiteit
www.ou.nl
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Example

availables:
1. p->ql-p->q
2.p->(@->nl|-p->(q->r)
3. |-(p->(@->1)->(P->aq)->(p->71))
4. p->@->nl-(P->q)->{pP->r1
5.p->q,p->(Q->n|-p->r

proof:
2. p->ql-p->q
3. p->(@->nl|-p->(q->r)
4. |-(p->@->1)->((P->09) ->(p->1))
5.p->(@->n]-(p->0)->(p->1)
1. p>q,p->(Q@->nN|-p->r
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Assumption
Assumption

Axiom b

Modus Ponens, 3, 2

Modus Ponens, 4, 1

Assumption
Assumption

Axiom b

Modus Ponens, 4,3

Modus Ponens, 5, 2
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How good is the strategy (1)?

. Comparison with metamath proof list:

Nn P. 1 of Theorem List - Me

€& - C | [} us.metamath.org/mpegif/mmtheoremsl.htm#mm3s

i Apps  Plaats voor een snelle navigatie je bladwijzers op deze bladwijzerbalk. Bladwijzers nu importeren...

[ Andere bladwijzers

AXIUI AX-THEY
Note: In some web page displavs such as the Statement List. the symbols "&" and "==" mformally indicate the relationship between the hypotheses and the assertion

(conclusion). abbreviating the English words "and" and "implies." They are not part of the formal language. (Contributed by NM. 5-Aug-1993)

Fe & Fle—d) = F

1.2.3 Logical implication
The results in this section are based on implication only, and avoid ax-3. In an implication. the wif before the arrow is called the "antecedent” and the wif after the arrow 1s called the "consequent.”

We will use the following descriptive terms verv loosely: A "closed form" or "tautology" has no $e hypotheses. An "inference” has one or more $e hypotheses. A "deduction” 1s an inference in which

the hypotheses and the conclusion share the same antecedent.

Theorem| mp2bs |A double modus ponens inference. (Contributed by Mario Cameiro. 24-Jan-2013.)

Fo &k Fle—d) & Flp—%) = Fx

. Inference derived from axiom ax-1s. See ald 22 for an explanation of our informal use of the terms "mference” and "deduction.” See also the comment in syld <0, (Contributed
Theorem | ali®e o NM. 5-Aug 1993)

o = F(d—w)

Theoreml mpli 1 |Drop and replace an antecedent. (Contributed by Stefan O'Rear. 29-Jan-2013))

Foe & Fle—14) = Flx—9)

Theorelnl a2i12 Inference derived from axiom ax-2 5. (Contributed by NM, 5-Aug-1993))

Flie—=(d—=xl) = Flle—=¥)—=(e—x))

Theoreml imim2i 13 |I11fe1'euce addimg common antecedents m an implication. (Contributed by NM. 5-Aug-1993 )

Fle =) = Pl —©) = (=)

-




Proofs without deduction theorem

» Use the proof of the deduction theorem to rewrite proofs with deduction in
proofs without this rule.

«  Apply this rewriting only in necessary cases

« Clean up rewritten proofs.

« Simple rewriting the first example proof (with deduction) produces a 20
line proof, ‘smart’ rewriting produces our second 5-line proof.
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Comparison metamath-org

thm
mp2b
ali

mpli

a2i
imim2i
mpd

syl

mpi

idl

ald

a2d
sylcom
syl5com
coml12
syl5

syl6
pm2.27
mpdd
mpid
pm2.43i
pm2.43a
pm2.43
imim2d

imim2

#metamath

O N N U 9N 0w wou;

N e N ) =
N W Uk, 0O N R W R W o Wum

#deduction

A U1 N OO DN N W s NN WD

=
o

© U O VU 0 v

11

(€]

10

#smartnodeduction

O N N U 9NN 0wl won,

e S e i e =
N W R R 0N R W, 0o un

results until now:

24 proofs compared

22 proofs up to order equal to our
proofs

2 shorter proofs
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How good is the strategy (2)

e« Compare the generated proof with student solutions

e Can we use this strategy to provide hints/next steps
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Linear proofs vs proof DAGs

 We can use this strategy to generate complete proofs, and we could also
use it to give hints and next steps, also if a student constructs a different
solution, by adding the steps of the student to the availables

« We cannot use it within the IDEAS frame work to monitor the steps of the
student.

e  Qur solution:

— the availables form a proof-DAG from which we can extract linear
proofs

— we expand the availables

— from this extended proof-DAG we construct a non-deterministic
strategy which produces different solutions

— we can use this strategy to. recognize the steps of the student

Open Universiteit
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Example DAG

P—Q
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Example of strategygeneration

Derivation #7

=> as

1. "Q"

=> ded

1. "Q"

2. "P->Q"
=> ded

1. "Q"

2. "P->Q"

4. "R->P->Q"

Derivation #8

=>as
3. "P->Q"

=> ded
3. "P->Q"
4, "R->P->Q"

As

As
Ded, 1

As
Ded;1
Ded, 2
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LogAXx

Axiomatisch

Nieuwe opgave (N} -

1 pP->ql-p->q
2 r|-r
3 r-=pl-r-=p
999 p->q.r-=>p|-r->gq

1000 p-=ql-(r-=p)-={r->q)
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Aanname

Aanname

Aanname

Deductiestelling 999

Regel Modus Ponens

(Z+s0). (Ars@—u)-FUlArsy

P stapnr
P—y stapnr

Y stapnr
@ Hint
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Hints, next steps and feedback in LogAx

 Use the strategy to provide different level hints:
— goal
— rule

— next step

e Use the collection of common mistakes to provide feedback

« Evaluation:
— do students learn from using LogAXx?
— do students make less mistakes in choosing applicable rules?

— do students make more mistakes in correctly applying rules?
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Dank voor jullie aandacht!
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