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Research questions 

• How can we provide feedback and feedforward in e-learning tools 
to support students  with their tasks in logic  

• How effective are these tools? 

 

• We restrict these questions to the following subjects 

– standard equivalences and normal forms 

– Hilbert style axiomatic proofs  

– structural induction 
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topic of this talk 



Hilbert style axiomatic proofs 

To prove  Σ   ϕ   you can use : 

• 3 axioms: 
 A       ϕ → (ψ → ϕ) 
 B (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ))  
 C (¬ ψ → ¬ ϕ) → (ϕ → ψ))  

 
• Assumptions 

 
 ϕ   ϕ 
 
• Modus Ponens 
          If  Φ   ϕ and ∆   ϕ → ψ  then  Φ, ∆   ψ 

 
• Deduction theorem 
          If    Σ, ϕ S ψ then Σ  S ϕ → ψ  
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Example proof 

Proof for  p → (q → r), p → q S p → r 

 
1 p → (q → r)  S p → (q → r)   assumption 

2  S (p → (q → r)) → ((p → q) → (p → r))  axiom b 

3  p → (q → r)  S (p → q) → (p → r)   MP 1, 2  

4  p → q  S p → q    assumption 

5 p → (q → r), p → q S p → r   MP 3, 4 
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Alternative proof 

Proof of  p → (q → r), p → q S p → r 

 
1. p → (q → r)  S p → (q → r)  assumption 

2.  p  S p     assumption 

3. p → (q → r), p  S q → r   MP 1, 2 

4. p → q  S p → q    assumption 

5. p → q , p  S q     MP 2, 4 

6. p → (q → r), p → q , p S  r  MP 3, 5 

7. p → (q → r), p → q S p → r  Deduction 6 

 

 
 

Pagina 5 



Desired features of an e-learning tool for stepwise exercises 

• Stepwise solution of an exercise 

• Feedback on mistakes 

– syntactical mistakes 

– rule mistakes 

– strategic mistakes 

• Hints and next steps   

• Complete solutions   
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you need a solution strategy ! 



Strategies for constructing axiomatic proofs 

• Constructive completeness proof: 

– produces extremely long proofs 

• Translation of semantic tableau method in axiomatic proof 
(Harrison) 
– only indirect proofs: to prove Σ   ϕ, show first: Σ, ¬ϕ  ⊥ 
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Natural deduction 
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ϕ (1) 

… 
ψ                    
ϕ → ψ (-1) 

 

ϕ → ψ      ϕ 
  
       ψ                    
 

      ¬¬ϕ 
  
        ϕ                   
 

ψ (1)     ψ (1) 

…         … 
ϕ             ¬ϕ                  
       ¬ψ (-1) 

 

Deduction theorem 

Modus ponens 



Strategy for constructing natural deduction proofs (Bolotov) 

Find a proof of Σ   ϕ via a set of transformations of Σ’  ∆, ϕ  

where Σ’ is the current set of assumptions, and  ∆, ϕ  a stack of goals. 

 

 Transformations:  
 Σ  ∆, p      ⇒    Σ, ¬ p   ∆, p, false 

 Σ  ∆, ¬ϕ  ⇒    Σ, ϕ   ∆, ¬ϕ, false 

 Σ  ∆, ϕ → ψ  ⇒  Σ, ϕ  ∆, ϕ → ψ, ψ  

 

Before adding a new goal, check whether the current goal is reached, by 
applying modus ponens and double negation to the set of assumptions and 
reached goals.  
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Strategy for constructing natural deduction proofs (Bolotov) (2) 

• If no  rules are applicable use assumptions: 
 

 Σ , ¬ϕ  ∆, false      ⇒     Σ , ¬ϕ  ∆, false, ϕ  

 Σ, ϕ → ψ  ∆, false  ⇒     Σ, ϕ → ψ  ∆, false, ϕ 
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Strategy for axiomatic proofs 

We use  
• a stack of goals: Σ   ϕ  

• a set of availables A: prooflines:  nr, Σ   ϕ    (motivation, [nrs]) 

• a partial proof P 

 

Repeat the following steps: 

• Close A under modus ponens and double negation 

• Check if a goal is reachable: delete reached goals from the stack and add them to A 

• Add the subproof of this goal to P. 

• Use the transformation rules to create new goals, add the new goal to P 

• Use the assumptions to create new goals if no other rule is applicable 

 

• Use predefined subproofs for double negation and contradiction rules. 
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Example 
goals: 

  p -> q, p -> (q -> r) |- p -> r   

availables: 

   1.  p -> q |- p -> q                                       Assumption 

   2.  p -> (q -> r) |- p -> (q -> r)                      Assumption 

proof: 

   1.  p -> q, p -> (q -> r) |- p -> r                           ? 

 => deduction 

goals: 

  p, p -> q, p -> (q -> r) |- r  , p -> q, p -> (q -> r) |- p -> r  

availables: 

   1.  p -> q |- p -> q                                       Assumption 

   2.  p -> (q -> r) |- p -> (q -> r)                      Assumption 

   3.  p |- p                                                       Assumption 

proof: 

   2.  p, p -> q, p -> (q -> r) |- r                                   ? 

   1.  p -> q, p -> (q -> r) |- p -> r                      Deduction, 2 

start 

result after an application of  
deduction 



Example (continued) 

=> modus-ponens 

goals: 

  p, p -> q, p -> (q -> r) |- r   

  p -> q, p -> (q -> r) |- p -> r   

availables: 

   1.  p -> q |- p -> q                                        Assumption 

   2.  p -> (q -> r) |- p -> (q -> r)                     Assumption 

   3.  p |- p                                                  Assumption 

   4.  p, p -> q |- q                                                      Modus Ponens, 1, 3 

   5.  p, p -> (q -> r) |- q -> r                      Modus Ponens, 2, 3 

   6.  p, p -> q, p -> (q -> r) |- r                  Modus Ponens, 5, 4 

proof: 

   2.  p, p -> q, p -> (q -> r) |- r                                   ? 

   1.  p -> q, p -> (q -> r) |- p -> r                               Deduction, 2 
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Goal is reached 



Example (completion) 

=> impl-intro 

goals: 

availables: 

   1.  p -> q |- p -> q                       Assumption 

   2.  p -> (q -> r) |- p -> (q -> r)     Assumption 

   3.  p |- p                                      Assumption 

   4.  p, p -> q |- q                           Modus Ponens, 1, 3 

   5.  p, p -> (q -> r) |- q -> r            Modus Ponens, 2, 3 

   6.  p, p -> q, p -> (q -> r) |- r        Modus Ponens, 5, 4 

   7.  p -> q, p -> (q -> r) |- p -> r      Deduction, 6 
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proof: 

   3.  p -> q |- p -> q                          Assumption 

   4.  p -> (q -> r) |- p -> (q -> r)        Assumption 

   5.  p |- p                                         Assumption 

   6.  p, p -> q |- q                              Modus Ponens, 3, 5 

   7.  p, p -> (q -> r) |- q -> r               Modus Ponens, 4, 5 

   2.  p, p -> q, p -> (q -> r) |- r           Modus Ponens, 7, 6 

   1.  p -> q, p -> (q -> r) |- p -> r        Deduction, 2 

 



Add heuristics 

Now we can produce proofs, but these proofs use the axioms only in subproofs 
concerning negations or contradicions. An e-learning tool should also help 
students to recognize applicable axioms. 

Therefore we introduce heuristics: 

In the step; 

 Close A under modus ponens and double negation 

add: 

 applicable/useful  versions of axiom A, axiom B and axiom C 

 
Example: if goal  = Σ  ϕ → ψ and Σ  ¬ϕ  in availables,  

add instances to the availables:: 
 ¬ϕ → (¬ψ →  ¬ϕ )  (axiom A) 

 (¬ψ → ¬ϕ ) → (ϕ → ψ)   (axiom C) 
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Example 

availables: 

   1.  p -> q |- p -> q                                        Assumption 

   2.  p -> (q -> r) |- p -> (q -> r)                          Assumption 

   3.   |- (p -> (q -> r)) -> ((p -> q) -> (p -> r))            Axiom b 

   4.  p -> (q -> r) |- (p -> q) -> (p -> r)           Modus Ponens, 3, 2 

   5.  p -> q, p -> (q -> r) |- p -> r                 Modus Ponens, 4, 1 

proof: 

   2.  p -> q |- p -> q                                        Assumption 

   3.  p -> (q -> r) |- p -> (q -> r)                          Assumption 

   4.   |- (p -> (q -> r)) -> ((p -> q) -> (p -> r))             Axiom b 

   5.  p -> (q -> r) |- (p -> q) -> (p -> r)           Modus Ponens, 4, 3 

   1.  p -> q, p -> (q -> r) |- p -> r                 Modus Ponens, 5, 2 
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How good is the strategy (1)? 

• Comparison with metamath proof list: 
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Proofs without deduction theorem 

• Use the proof of the deduction theorem to rewrite proofs with deduction  in 
proofs without this rule. 

• Apply this rewriting only in necessary cases 

• Clean up rewritten proofs. 

 

• Simple rewriting the first example proof (with deduction) produces a 20 
line proof, ‘smart’ rewriting produces our second 5-line proof. 
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Comparison metamath-org 

thm #metamath #deduction #smartnodeduction 

mp2b 5 5 5 

ali 3 2 3 

mpli 5 4 5 

a2i 3 3 3 

imim2i 5 7 5 

mpd 5 7 5 

syl 7 6 7 

mpi 7 6 7 

id1 5 2 5 

a1d 7 5 7 

a2d 7 6 7 

sylcom 9 10 9 

syl5com 15 9 15 

com12 9 8 9 

syl5 23 9 19 

syl6 11 9 11 

pm2.27 13 5 13 

mpdd 11 9 11 

mpid 17 11 17 

pm2.43i 9 5 9 

pm2.43a 11 9 11 

pm2.43 15 6 11 

imim2d 13 10 13 

imim2 7 8 7 

results until now: 
• 24 proofs compared 
• 22 proofs up to order equal to our 

proofs 
• 2 shorter proofs 



How good is the strategy (2) 

• Compare the generated proof with student solutions 

 

• Can we use this strategy to provide hints/next steps 
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Linear proofs vs proof DAGs 

• We can use this strategy to generate complete proofs, and we could also 
use it to give hints and next steps, also if a student constructs a different 
solution, by adding the steps of the student to the availables 

• We cannot use it within the IDEAS frame work to monitor the steps of the 
student. 

• Our solution:  

– the availables form a proof-DAG from which we can extract linear 
proofs 

– we expand the availables 

– from this extended proof-DAG we construct a  non-deterministic 
strategy which produces different solutions 

– we can use this strategy to recognize the steps of the student 
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Example DAG 
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Example of strategygeneration 

Derivation #7 
 
   => as 
 1.  "Q"                                                            As 
   => ded 
 1.  "Q"                                                            As 
 2.  "P->Q"                                                     Ded, 1 
   => ded 
 1.  "Q"                                                            As 
 2.  "P->Q"                                                     Ded, 1 
 4.  "R->P->Q"                                                Ded, 2 
 
 
 
 
 

Derivation #8 
 
   => as 
 3.  "P->Q"                                                     As 
 
   => ded 
 3.  "P->Q"                                                     As 
 4.  "R->P->Q"                                              Ded, 3 



LogAx 
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Hints, next steps and feedback in LogAx 

• Use the strategy to provide different level hints: 

– goal 

– rule 

– next step 

 

• Use the collection of common mistakes to provide feedback 

 

• Evaluation: 

– do students learn from using LogAx? 

– do students make less mistakes in choosing applicable rules? 

– do students make more mistakes in correctly applying rules? 
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Dank voor jullie aandacht! 
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