Interative Hybrid Probabilistic Model Counting

Steffen Michels, Arjen Hommersom, and Peter Lucas In proceedings of IJCAI 2016

Relational Probabilistic Problems

- Many probabilistic problems
 - require hybrid reasoning
 - have logical structure
 - deal with rare observed events, e.g. diagnostic problems
- Representation of such problems: probabilistic logics
 - capture and allow exploiting structure
 - no direct support for hybrid reasoning
 - can be extended with continuous distributions

Probabilistic Logic Programming

- Knowledge base: Probabilistic Facts & Deterministic Rules (Sato's Distribution Semantics) [Sato, 1995]
 - Probabilistic Facts

■ Deterministic Rules (Closed-World Assumptions, à la *Prolog*)

$$buy(Fruit) \leftarrow low_price(Fruit)$$

means

- $P(buy(apple)) = P(low_price(Fruit)) = 0.2$
- Expressive enough for *Bayesian Networks*
- Exact inference feasible for many real worlds problems by transforming the problem into a weighted model counting (WMC) problem

WMC: based on a DPLL-like procedure

WMC on this tree

$$P(\varphi_1) = 0.1$$
 $P(\varphi_2) = 0.2$ $P(\varphi_3) = 0.3$

$$P(\varphi_2)=0.2$$

$$P(\varphi_3)=0.3$$

$$0.1 \cdot 1.0 + 0.9 \cdot 0.06 = 0.154$$

1.0 - 0.1 = 0.9

1.0

$$0.2 \cdot 0.3 + 0.8 \cdot 0.0 = 0.06$$

1.0 - 0.2 = 0.8

 $0.3 \cdot 1.0 + 0.7 \cdot 0.0 = 0.3$

0.0

Hybrid Probabilistic Reasoning

Hybrid probabilistic logic programs

```
\begin{split} &\mathit{fails}(\mathit{Comp}) \leftarrow \mathbf{FailCause}(\mathit{Comp}, \mathit{Cause}) = \mathit{true} \\ &\mathit{fails}(\mathit{Comp}) \leftarrow \mathbf{Temp} > \mathbf{Limit}(\mathit{Comp}) \\ &\mathit{fails}(\mathit{Comp}) \leftarrow \mathit{subcomp}(\mathit{Subcomp}, \mathit{Comp}), \, \mathit{fails}(\mathit{Subcomp}) \\ &\mathbf{FailCause}(\mathit{engine}, \mathit{noFuel}) \sim \{0.0002 \colon \mathit{true}, 0.9998 \colon \mathit{false}\} \\ &\mathbf{Temp} \sim \Gamma(20.0, 5.0) \\ &\mathbf{Limit}(\mathit{engine}) \sim \mathcal{N}(65.0, 5.0) \\ &\mathit{subcomp}(\mathit{fuelPump}, \mathit{engine}) \\ &\mathbf{Limit}(\mathit{fuelPump}) \sim \mathcal{N}(80.0, 5.0) \\ &\cdots \end{split}
```

Probability of query event q, given evidence e: $P(q \mid e)$ $P(fails(fuelPump) \mid fails(engine))$

How to do inference?

Inference Methods

Method	Exact	Rejection / Importance Sampling	MCMC	ІНРМС
Works for	finite prob- lems only	(virtually) all problems	(virtually) all problems	large class of hybrid problems
Quality guaran- tee	no error	probabilistic	none	bounded er- ror
Structure- sensitive	yes	no	hand- tailored solution of- ten required	yes
Sensitive to rare evidence	no	yes	no	no

IHPMC Basic Idea

$$\widetilde{P}(q) = \frac{\# \bullet}{\# \bullet + \# \bullet}$$

$$\underline{P}(q) = P(\blacksquare)$$

$$\overline{P}(q) = P(\blacksquare) + P(\blacksquare)$$

$$\widetilde{P}(q) = P(\blacksquare) + P(\blacksquare)/2 \pm P(\blacksquare)/2$$

Exploiting Structure

Hybrid Probability Tree (HPT)

$$\begin{array}{l} P(\mathbf{A} = \textit{true} \lor \mathbf{X} > \mathbf{Y}) \in [0.1, 1.0] \\ \widetilde{P}(\mathbf{A} = \textit{true} \lor \mathbf{X} > \mathbf{Y}) = 0.55 \pm 0.45 \end{array}$$

- Similar to binary WMC
- Exploits logical structure
- Search towards hyperrectangles with high probability

Exploiting Structure

Hybrid Probability Tree (HPT)

- Similar to binary WMC
- Exploits logical structure
- Search towards hyperrectangles with high probability

Arjen Hommersom MultiLogic

Exploiting Structure

Hybrid Probability Tree (HPT)

- Similar to binary WMC
- Exploits logical structure
- Search towards hyperrectangles with high probability

Arjen Hommersom MultiLogic

Theoretical property

Approximations with arbitrary precision can be computed

For all events q and e and every maximal error ϵ , IPHMC can in finite time find an approximation such that:

$$P(q \mid e) - \underline{P}(q \mid e) \le \epsilon$$
 and $\overline{P}(q \mid e) - P(q \mid e) \le \epsilon$

No Evidence

$$P(fails(9)), \ p = 0.01, \ \mu = 60.0$$

Rare Observed Event

$$P(fails(9) \mid fails(0)), p = 0.0001, \mu = 60.0$$

Conclusions

- IHPMC provides alternative to sampling
 - insensitive to rare observed events
 - no hand-tailoring
 - bounded error
 - may fail, but lets the user know!
- Try it: http://www.steffen-michels.de/ihpmc