
Branching Bisimulation Games

Jeroen Keiren
Open University of the Netherlands & Radboud Universiteit Nijmegen

Joint work with Tim Willemse (TU/e) and David de Frutos Escrig (UCM Madrid)
25 October 2016

1 / 23



Context

Specification Implementation

0

1

2

3

eat pizza

eat pizza

ha
ck

hack

hack

ha
ck

ea
t p

izz
a

L = 〈S, Act,→〉 Labelled Transition System

2 / 23



Context

Specification Implementation

0

1

2

3

eat pizza

eat pizza

ha
ck

hack

hack
ha

ck

ea
t p

izz
a

L = 〈S, Act,→〉 Labelled Transition System

2 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a

a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation
A strong bisimulation is a relation R ⊆ S × S on the states of an LTS 〈S, Act,→〉
such that when s R t:

s

s′

t

t ′

a a

R

R

s

s′

t

t ′

a a

R

R

States s, t are bisimilar (s - t) iff s R t for some bisimulation R

3 / 23



Strong Bisimulation Games

Stirling’s bisimulation game

É Ehrenfeucht-Fraïssé game
É player Spoiler (S) tries to disprove bisimilarity of s and t
É player Duplicator (D) tries to prove bisimilarity of s and t
É S wins all plays in which D ‘gets stuck’
É D wins all other plays, i.e. both infinite plays and all plays in which S ‘gets

stuck’
É game is played in rounds (ad infinitum if possible)

4 / 23



Strong Bisimulation Games

Round starting in [(s, t)]:
1. S moves from configuration [(s, t)] by:

É selecting s
a
−→ s′ and moving to 〈(s, t), (a, s′)〉, or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′)〉

2. D responds from configuration 〈(u, v), (a, u′)〉 by:
É moving v

a
−→ v′ and continue in configuration [(u′, v′)].

s - t iff Duplicator has a strategy to win all plays starting in (s, t)

5 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R

+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R

+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation

A branching bisimulation is a relation R ⊆ S × S so that when s R t:

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R

+ symmetric cases

s, t are branching bisimilar (s -b t) iff s R t for some bb. R

6 / 23



Branching Bisimulation Example

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

7 / 23



Branching Bisimulation Example

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

7 / 23



Branching Bisimulation Games
An attempt by Bulychev et al.

É S moves from configuration [(s, t)] by:
É selecting s

a
−→ s′ and moving to 〈(s, t), (a, s′)〉, or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′)〉

É D responds from a configuration 〈(u, v), (a, u′)〉 by:

É not moving if a = τ and propose configuration [(u′, v)], or

É moving v
a
−→ v′ if available and continue in [(u′, v′)], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′)]

S wins all plays in which D gets stuck, D wins all other plays

8 / 23



Branching Bisimulation Games
An attempt by Bulychev et al.

É S moves from configuration [(s, t)] by:
É selecting s

a
−→ s′ and moving to 〈(s, t), (a, s′)〉, or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′)〉

É D responds from a configuration 〈(u, v), (a, u′)〉 by:
É not moving if a = τ and propose configuration [(u′, v)], or
É moving v

a
−→ v′ if available and continue in [(u′, v′)], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′)]

S wins all plays in which D gets stuck, D wins all other plays

8 / 23



Branching Bisimulation Games
An attempt by Bulychev et al.

É S moves from configuration [(s, t)] by:
É selecting s

a
−→ s′ and moving to 〈(s, t), (a, s′)〉, or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′)〉

É D responds from a configuration 〈(u, v), (a, u′)〉 by:
É not moving if a = τ and propose configuration [(u′, v)], or
É moving v

a
−→ v′ if available and continue in [(u′, v′)], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′)]

S wins all plays in which D gets stuck, D wins all other plays

8 / 23



Branching Bisimulation Games
Problem with Bulychev’s Definition

s t u

τ

a

u
?
-b s

É [(u, s)]
É → 〈(u, s), (a, t)〉 → [(u, s)]→ ·· ·
É → 〈(s, u), (τ, s)〉 → [(s, u)]→ ·· ·

D wins, even though u 6-b s!

Definition only works for LTS without divergence

9 / 23



Branching Bisimulation Games
Problem with Bulychev’s Definition

s t u

τ

a

u
?
-b s

É [(u, s)]
É → 〈(u, s), (a, t)〉 → [(u, s)]→ ·· ·
É → 〈(s, u), (τ, s)〉 → [(s, u)]→ ·· ·

D wins, even though u 6-b s!

Definition only works for LTS without divergence

9 / 23



Branching Bisimulation Games
Problem with Bulychev’s Definition

s t u

τ

a

u
?
-b s

É [(u, s)]
É → 〈(u, s), (a, t)〉 → [(u, s)]→ ·· ·
É → 〈(s, u), (τ, s)〉 → [(s, u)]→ ·· ·

D wins, even though u 6-b s!

Definition only works for LTS without divergence

9 / 23



Branching Bisimulation Games
Problem with Bulychev’s Definition

s t u

τ

a

u
?
-b s

É [(u, s)]
É → 〈(u, s), (a, t)〉 → [(u, s)]→ ·· ·
É → 〈(s, u), (τ, s)〉 → [(s, u)]→ ·· ·

D wins, even though u 6-b s!

Definition only works for LTS without divergence

9 / 23



Branching Bisimulation Games
Problem with Bulychev’s Definition

s t u

τ

a

u
?
-b s

É [(u, s)]
É → 〈(u, s), (a, t)〉 → [(u, s)]→ ·· ·
É → 〈(s, u), (τ, s)〉 → [(s, u)]→ ·· ·

D wins, even though u 6-b s!

Definition only works for LTS without divergence

9 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking

É intuition: Duplicator wishes to show she can meet every challenge
É idea: keep track of challenge that still needs to be fulfilled
É reward Duplicator when she meets challenge, and
É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking
É intuition: Duplicator wishes to show she can meet every challenge

É idea: keep track of challenge that still needs to be fulfilled
É reward Duplicator when she meets challenge, and
É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking
É intuition: Duplicator wishes to show she can meet every challenge
É idea: keep track of challenge that still needs to be fulfilled

É reward Duplicator when she meets challenge, and
É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking
É intuition: Duplicator wishes to show she can meet every challenge
É idea: keep track of challenge that still needs to be fulfilled
É reward Duplicator when she meets challenge, and

É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking
É intuition: Duplicator wishes to show she can meet every challenge
É idea: keep track of challenge that still needs to be fulfilled
É reward Duplicator when she meets challenge, and
É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching Bisimulation Games
É observation: after one τ-step by Duplicator, we forget what Duplicator was

mimicking
É intuition: Duplicator wishes to show she can meet every challenge
É idea: keep track of challenge that still needs to be fulfilled
É reward Duplicator when she meets challenge, and
É punish Spoiler when he changes challenge, by rewarding Duplicator

We play on configurations with
É challenges c ∈ (A× S)∪ {†}
É rewards r ∈ {∗,Ø}

10 / 23



Branching bisimulation games
É S moves from configuration [(s, t)

, c, r

] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′)

,∗

〉

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′)

,∗

〉
É D responds from a configuration 〈(u, v), (a, u′)

, r

〉 by:
É not moving if a = τ and propose configuration [(u′, v)

, †,Ø

], or
É moving v

a
−→ v′ if available and continue in [(u′, v′)

, †,Ø

], or
É moving v

τ
−→ v′ if possible and continue in [(u, v′)

, (a, u′),∗

]

D wins a play if S gets stuck, and all infinite plays

11 / 23



Branching bisimulation games
É S moves from configuration [(s, t), c, r] by:

É selecting s
a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),∗〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

11 / 23



Branching Bisimulation Games
Rewards for Duplicator

s t u

τ

a

u
?
-b s

É [(u, s), †,∗]→ 〈(u, s), (a, t),∗〉 → [(u, s), (a, t),∗]→ ·· ·

12 / 23



Branching Bisimulation Games
Rewards for Duplicator

s t u

τ

a

u
?
-b s

É [(u, s), †,∗]→ 〈(u, s), (a, t),∗〉 → [(u, s), (a, t),∗]→ ·· ·

12 / 23



Branching Bisimulation Games
Not quite there yet...

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Consider [(s0, t1), †,∗], and assume S alternates challenge between eat pizza and
hack:
[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),∗〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

13 / 23



Branching Bisimulation Games
Not quite there yet...

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Consider [(s0, t1), †,∗], and assume S alternates challenge between eat pizza and
hack:
[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),∗〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

13 / 23



Branching Bisimulation Games
Not quite there yet...

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Consider [(s0, t1), †,∗], and assume S alternates challenge between eat pizza and
hack:

[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),∗〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

13 / 23



Branching Bisimulation Games
Not quite there yet...

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Consider [(s0, t1), †,∗], and assume S alternates challenge between eat pizza and
hack:
[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),∗〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

13 / 23



Branching bisimulation games
Punishing Spoiler

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉

if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),∗〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

14 / 23



Branching bisimulation games
Punishing Spoiler

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉

if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),∗〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

14 / 23



Branching bisimulation games
Punishing Spoiler

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉 if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),Ø〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

14 / 23



Branching Bisimulation Games
Example

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Reconsider the case where S alternates challenge between eat pizza and hack:

[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),Ø〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

15 / 23



Branching Bisimulation Games
Example

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

Reconsider the case where S alternates challenge between eat pizza and hack:

[(s0, t1), †,∗]→ 〈(s0, t1), (hack, c1),∗〉 → [(s0, t0), (hack, c1),∗]→
〈(s0, t0), (eat pizza, c1),Ø〉 → [(s0, t1), (eat pizza, c1),∗]→ ·· ·

15 / 23



Branching Bisimulation Games
Example

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Spoiler (computer) plays against Duplicator (you) showing 0 6-b A:

Spoiler challenges 0
a
−→ 1

Your response: A
τ
−→ B; you continue playing from ((0, B), (a, 1))

Spoiler drops challenge (a, 1) and challenges 0
b
−→ 4. You earn Ø

You cannot respond. You lose.

16 / 23



Branching Bisimulation Games
Example

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Spoiler (computer) plays against Duplicator (you) showing 0 6-b A:

Spoiler challenges 0
a
−→ 1

Your response: A
τ
−→ B; you continue playing from ((0, B), (a, 1))

Spoiler drops challenge (a, 1) and challenges 0
b
−→ 4. You earn Ø

You cannot respond. You lose.

16 / 23



Branching Bisimulation Games
Example

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Spoiler (computer) plays against Duplicator (you) showing 0 6-b A:

Spoiler challenges 0
a
−→ 1

Your response: A
τ
−→ B; you continue playing from ((0, B), (a, 1))

Spoiler drops challenge (a, 1) and challenges 0
b
−→ 4. You earn Ø

You cannot respond. You lose.

16 / 23



Branching Bisimulation Games
Example

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Spoiler (computer) plays against Duplicator (you) showing 0 6-b A:

Spoiler challenges 0
a
−→ 1

Your response: A
τ
−→ B; you continue playing from ((0, B), (a, 1))

Spoiler drops challenge (a, 1) and challenges 0
b
−→ 4. You earn Ø

You cannot respond. You lose.

16 / 23



Branching Bisimulation Games
Example

01

2 3

4
a b

τ
a

AB

C

D
τ

a

b

Spoiler (computer) plays against Duplicator (you) showing 0 6-b A:

Spoiler challenges 0
a
−→ 1

Your response: A
τ
−→ B; you continue playing from ((0, B), (a, 1))

Spoiler drops challenge (a, 1) and challenges 0
b
−→ 4. You earn Ø

You cannot respond. You lose.

16 / 23



Extensions
Branching Bisimulation with Explicit Divergence

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

17 / 23



Extensions
Branching Bisimulation with Explicit Divergence

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

17 / 23



Extensions
Branching Bisimulation with Explicit Divergence

s0 c1c2

t0t1

hackeat pizza

τ

hack
τ

eat pizza

17 / 23



Extensions
Branching Bisimulation with Explicit Divergence

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉 if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),Ø〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

18 / 23



Extensions
Branching Bisimulation with Explicit Divergence

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉 if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),Ø〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,∗], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

18 / 23



Extensions
Branching Simulation

É S moves from configuration [(s, t), c, r] by:
É selecting s

a
−→ s′ and moving to

É 〈(s, t), (a, s′),∗〉 if c = (a, s′) or c = †, and to
É 〈(s, t), (a, s′),Ø〉, otherwise; or

É selecting t
a
−→ t ′ and moving to 〈(t, s), (a, t ′),Ø〉

É D responds from a configuration 〈(u, v), (a, u′), r〉 by:
É not moving if a = τ and propose configuration [(u′, v), †,Ø], or
É moving v

a
−→ v′ if available and continue in [(u′, v′), †,Ø], or

É moving v
τ
−→ v′ if possible and continue in [(u, v′), (a, u′),∗]

D wins a play if S gets stuck, or she gets
infinitely many Ø rewards

19 / 23



Extensions
Other weak behavioural equivalences

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

R

delay bisimulation η-bisimulation weak bisimulation

20 / 23



Extensions
Other weak behavioural equivalences

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

delay bisimulation

η-bisimulation weak bisimulation

20 / 23



Extensions
Other weak behavioural equivalences

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

R

delay bisimulation η-bisimulation

weak bisimulation

20 / 23



Extensions
Other weak behavioural equivalences

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

delay bisimulation η-bisimulation weak bisimulation

20 / 23



Extensions
Other weak behavioural equivalences

s

s′

t

τ

R

R

s

s′

t

t ′′

t ′

t ′′′

a

a

R

R

delay bisimulation η-bisimulation weak bisimulation

20 / 23



Summary
É Presented games for:

É Branching bisimulation
É Divergence preserving branching bisimulation
É Branching simulation

É Require no preprocessing of input LTS
É Spoiler’s winning strategy explains why games are not (bi)similar; this

enables debugger-like applications

21 / 23



Future work
É Interactive implementation of our games (proof-of-concept available)

É Applications in education?

22 / 23



Future work
É Interactive implementation of our games (proof-of-concept available)
É Applications in education?

22 / 23



Thank you

23 / 23


