IRMA, as simple as ABC OUrsi

Fabian van den Broek

fabian.vandenbroek@ou.nl

Open University of the Netherlands & Radboud Universiteit Nijmegen

7 February 2017

IRMA, as simple as ABC

I Reveal My Attributes, as simple as ABC

I Reveal My Attributes
=
ABC

I Reveal My Attributes =
Attribute Based Credentials

Some attributes of the speaker

Some attributes of the speaker

- Studied Computer science
- PhD-thesis on Mobile communication security
- Post docs on smart grid security and attribute based credentials
- ► From 1 Jan. researcher at OU
- research subjects:
 - security of mobile telephony
 - security of smart grids
 - ► attribute based credentials

Some attributes of the speaker

- ► Studied Computer science
- PhD-thesis on Mobile communication security
- Post docs on smart grid security and attribute based credentials
- ► From 1 Jan. researcher at OU
- research subjects:
 - security of mobile telephony
 - security of smart grids
 - attribute based credentials
- male,
- married, with children,
- over 18 years old,
- under 65 years old,
- bloodtype: [redacted],
- living in Nijmegen,
- etc.

[FIDIS] project

- ► Identity management revolves around identities
 - Often uniquely identifying numbers, such as social security number, or passport number
 - high-value targets for profiling & identity fraud (this also holds for pseudonyms)

- Identity management revolves around identities
 - Often uniquely identifying numbers, such as social security number, or passport number
 - high-value targets for profiling & identity fraud (this also holds for pseudonyms)
- A more flexible identity ecosystem uses attributes
 - 'over 18', 'over 21', 'over 65', 'under 15', 'female', 'male'
 - 'student', 'doctor', 'lawyer', 'top secret clearance'
 - 'NL-citizen', 'resident of Nijmegen'
 - 'home address', 'owner of bankaccount nr. ...'

- Identity management revolves around identities
 - Often uniquely identifying numbers, such as social security number, or passport number
 - high-value targets for profiling & identity fraud (this also holds for pseudonyms)
- A more flexible identity ecosystem uses attributes
 - 'over 18', 'over 21', 'over 65', 'under 15', 'female', 'male'
 - 'student', 'doctor', 'lawyer', 'top secret clearance'
 - 'NL-citizen', 'resident of Nijmegen'
 - 'home address', 'owner of bankaccount nr. ...'
- Attributes may be identifying (like social security number, bank account, phone number) or non-identifying

- Identity management revolves around identities
 - Often uniquely identifying numbers, such as social security number, or passport number
 - high-value targets for profiling & identity fraud (this also holds for pseudonyms)
- A more flexible identity ecosystem uses attributes
 - 'over 18', 'over 21', 'over 65', 'under 15', 'female', 'male'
 - 'student', 'doctor', 'lawyer', 'top secret clearance'
 - 'NL-citizen', 'resident of Nijmegen'
 - 'home address', 'owner of bankaccount nr. ...'
- Attributes may be identifying (like social security number, bank account, phone number) or non-identifying

Your identity is the collection of attributes that hold for you

Goal of ABCs

Goal of ABCs

IRMA overview

Standard centralized solution

IRMA is a decentral solution

- ► An IRMA user can selectively disclose different attributes about him/her self, depending on the situation
 - privacy-by-design, via data minimalisation and user-control

- ► An IRMA user can selectively disclose different attributes about him/her self, depending on the situation
 - privacy-by-design, via data minimalisation and user-control
- Attributes are issued by (different, relevant) authorities, and are verified by service providers

- ► An IRMA user can selectively disclose different attributes about him/her self, depending on the situation
 - privacy-by-design, via data minimalisation and user-control
- Attributes are issued by (different, relevant) authorities, and are verified by service providers
- Attributes are reliable via a digital signature of the issuer
 - they also carry a validity date

- ► An IRMA user can selectively disclose different attributes about him/her self, depending on the situation
 - privacy-by-design, via data minimalisation and user-control
- Attributes are issued by (different, relevant) authorities, and are verified by service providers
- Attributes are reliable via a digital signature of the issuer
 - they also carry a validity date
- Attributes are stored locally, under direct control of the user
 - storage on mobile phone is most convenient
 - attributes are cryptographically bound to the user, and are non-transferrable

- Authentic: the attributes I show where given to me by a specific issuer and are unchanged
 - realised via signatures

- Authentic: the attributes I show where given to me by a specific issuer and are unchanged
 - realised via signatures
- ► Non-transferability: my little nephew should not be able to get my "over 18" attribute (and go to XXX sites)
 - realised via binding to my private key

- Authentic: the attributes I show where given to me by a specific issuer and are unchanged
 - realised via signatures
- ► Non-transferability: my little nephew should not be able to get my "over 18" attribute (and go to XXX sites)
 - realised via binding to my private key
- Issuer-unlinkability: the issuers should not be able to track where I use which attribute
 - typically realised via blind(able) signature

- Authentic: the attributes I show where given to me by a specific issuer and are unchanged
 - realised via signatures
- ► Non-transferability: my little nephew should not be able to get my "over 18" attribute (and go to XXX sites)
 - realised via binding to my private key
- Issuer-unlinkability: the issuers should not be able to track where I use which attribute
 - typically realised via blind(able) signature
- Multi-show unlinkability: service providers should not be able to connect usage (at different providers)
 - realised via zero-knowledge proofs, or via "self-blinding"

- Authentic: the attributes I show where given to me by a specific issuer and are unchanged
 - realised via signatures
- ► Non-transferability: my little nephew should not be able to get my "over 18" attribute (and go to XXX sites)
 - realised via binding to my private key
- Issuer-unlinkability: the issuers should not be able to track where I use which attribute
 - typically realised via blind(able) signature
- Multi-show unlinkability: service providers should not be able to connect usage (at different providers)
 - realised via zero-knowledge proofs, or via "self-blinding"
- ► Revocation: rogue attributes (via stolen/lost cards) should be blockable.
 - partly in conflict with previous requirements

When I got involved with IRMA

and we moved to:

Demo time

IRMA carrier comparison

A smartcard offers:

- Secure key storage
- Strong(er) offline user binding
- ► A horrible user experience
- Poor computational power
- No Internet connectivity

A smartphone offers:

- Weak key storage
- Weak offline user binding
- Nicer user experience
- Stronger keys, faster performance, unlimited attributes, etc.
- Online issuance & verification, updatability, etc.

Securing the private key

Securing the private key

has tremendous benefits:

Securing the key?

- Securing the key
- Strong revocation

- Securing the key
- Strong revocation
- Limited logging

- Securing the key
- Strong revocation
- Limited logging
- Limited monitoring

- Securing the key
- Strong revocation
- Limited logging
- Limited monitoring

has tremendous benefits:

- Securing the key
- Strong revocation
- Limited logging
- Limited monitoring

but also has some downsides:

Introducing a central server

has tremendous benefits:

- Securing the key
- Strong revocation
- Limited logging
- Limited monitoring

but also has some downsides:

- Introducing a central server
- What does the KSS learn?

Improvements

The move to a phone allows for several other improvements:

- Extended enrolment scenario's
- Attribute based signatures
- ► Online credential store

Enrolment

New enrolment options:

1. Self-enrolment

Enrolment

New enrolment options:

- 1. Self-enrolment
 - 1.1 Passport + SIM
 - 1.2 iDIN
 - 1.3 Combining

Enrolment

New enrolment options:

- 1. Self-enrolment
 - 1.1 Passport + SIM
 - 1.2 iDIN
 - 1.3 Combining
- 2. Desk-enrolment

The challenge could also be a document hash!

The challenge could also be a document hash!

Standard digital signatures show access to private key

The challenge could also be a document hash!

Standard digital signatures show access to private key The certificate binds the signature to a person

The challenge could also be a document hash!

Standard digital signatures show access to private key The certificate binds the signature to a person

Attribute-based signatures can show much more information!

The challenge could also be a document hash!

Standard digital signatures show access to private key The certificate binds the signature to a person

Attribute-based signatures can show much more information! e.g. signed by a docter with speciality \dots , >18, a sergeant, etc.

► The meta-information of credentials was hard-coded on the smartcard.

- ► The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.

- ► The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:

- ► The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer

- ► The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer
 - Issuer Public Key

- The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer
 - Issuer Public Key
 - Public Key validity date

- The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer
 - Issuer Public Key
 - Public Key validity date
 - Old Public Keys

- ► The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer
 - Issuer Public Key
 - Public Key validity date
 - Old Public Keys
 - ► Labels for attributes

- The meta-information of credentials was hard-coded on the smartcard.
- ▶ On the phone we can get up-to-date information from a server.
- ► This meta-information includes:
 - Issuer
 - Issuer Public Key
 - Public Key validity date
 - Old Public Keys
 - ► Labels for attributes
 - **.**..

Future work

Upcoming pilots:

- ► Tippiq
- ► GP
- Schiphol
- ► Radboud
- ▶ ..

Future work

Upcoming pilots:

- ► Tippiq
- ► GP
- Schiphol
- Radboud

Engineering:

- Attribute-based signatures
- Convenience tooling
- Attribute typing
- Local verification

Future work

Upcoming pilots:

- ► Tippiq
- ► GP
- Schiphol
- Radboud

Engineering:

- Attribute-based signatures
- Convenience tooling
- Attribute typing
- Local verification

Research:

- ABCs for mobile networks
- ▶ ..

Thank you

