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The privacy problem: a brief introduction
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This talk is about privacy

Socialization and privacy seems to be in conflict

.
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This talk is about privacy

Socialization and privacy seems to be in conflict
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Which privacy zone Google belongs to?

» Personalize services, ergo saving time

» Define what is important for you and others like you, ergo fast
learning from similar peers

But
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Which privacy zone Google belongs to?

» Personalize services, ergo saving time
» Define what is important for you and others like you, ergo fast
learning from similar peers
But
» How is data being disseminated? Do we have any control over
our data? based on the analysis of private information?

» The American Target chain case. How much is too much?
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Privacy-friendly dissemination of personal data
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Anonymity: relational database in canonical form

| Birth | Postcode | llIness |
1975 4350 fever
1955 4350 HIV
1955 5432 flu
1955 5432 HIV
1975 4350 flu
1975 4350 fever

In 2002 Sweeney estimated that 87% of the population in United
States can be uniquely identified by combining seemingly innocuous
attributes such as gender, date of birth and zip code.

=5



Anonymity: microdata

| Birth | Postcode | lllness |
1975 4350 fever

1955 5432 flu
1955 5432 HIV
1975 4350 flu
1975 4350 fever
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Anonymity: microdata

] Birth \ Postcode \ lliness ‘
* 4350 fever
* 4350 HIV
1955 5432 flu
1955 5432 HIV
1975 4350 flu
1975 4350 fever
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Anonymity: relational database

Table: Left: Patient data. Right: Potential route of transmission.

[ Id | Birth [ Postcode | lliness |
1 | 1975 4350 fever
2 | 1955 4350 HIV
3 | 1955 5432 flu
4 | 1955 5432 HIV
5 1975 4350 flu
6 | 1975 4350 fever

[ Patient 1 [ Patient 2

1
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Anonymity: relational database

Table: Left: Patient data. Right: Potential route of transmission.

Id ‘ Birth ‘ Postcode ‘ lliness ‘

1 * 4350 fever
2 * 4350 HIV
3 | 1955 5432 flu
4 | 1955 5432 HIV
5 | 1975 4350 flu
6 | 1975 4350 fever

‘ Patient 1 ‘ Patient 2

1

2

BlW W=

oW

Different types of data require different anonymization techniques.
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Publication of social graphs
Passive attacks
Active attacks
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Where do social graphs come from?
Many datasets can be represented as graphs:

Friendship in online social network

Financial transactions

Email communication

vV v vy

Romantic relationships

Social Network Users (Billions)

2012 2013 2014 2015 2016 2017
Year
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http://www.emarketer.com/Article/India-Leads-Worldwide-Social-Networking-Growth/1010396

What can we infer purely from link structure?

» Popularity

> Centrality

> Introvert vs. Extrovert
» Leadership potential

» Communities

And more, we can also use knowledge from other sources of
information.
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Can we anonymize graphs?
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A social graph.
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Can we anonymize graphs?
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The graph is anonymized and published.
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Can we anonymize graphs?

O

Knowing the number of links of the target node (5) the adversary
can re-identify H.
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Can we anonymize graphs?

A graph satisfying 4-degree anonymity.
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Adversary knowledge and privacy notions

] Adversary knowledge \ Anonymity concept ‘
Vertex degree k-degree anonymity (2008)
Vertex's neighbourhood | k-neighbourhood anonymity (2008)
Full graph k-automorphism (2009)
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Adversary knowledge and privacy notions

] Adversary knowledge \

Anonymity concept

Vertex degree

k-degree anonymity (2008)

Vertex's neighbourhood | k-neighbourhood anonymity (2008)

Full graph

k-automorphism (2009)

How hard is to keep a secret.

https://www.youtube.com/watch?v=d6gMrLb51jU
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Active attacks (Backstrom et al. 2009)
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A social graph.
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Active attacks (Backstrom et al. 2009)
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An adversary adds 5 nodes with random connections.
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Active attacks (Backstrom et al. 2009)
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Links with the target nodes are established.
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Active attacks (Backstrom et al. 2009)

- ]

Y

N

The graph is anonymized and published.
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Active attacks (Backstrom et al. 2009)
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The adversary’s subgraph is found.
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Active attacks (Backstrom et al. 2009)
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Link between H and G is confirmed.



Active attacks (Backstrom et al. 2009)
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Link between H and G is confirmed.

(Wei et al. 2014) extended this attack to reach arbitrary nodes )




Active attacks (Backstrom et al. 2009)
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Link between H and G is confirmed.

(Wei et al. 2014) extended this attack to reach arbitrary nodes )

How can we quantify privacy against active attacks? Jumi.ly
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(k, £)-anonymity: a privacy measure
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Can k-anonymity be used to prevent active attacks?

A couple of concepts from graph theory.

Resolving set: ordered subset S of vertices such that all
vertices have distinct vectors of distances to the vertices in

S.
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Can k-anonymity be used to prevent active attacks?

A couple of concepts from graph theory.

Resolving set: ordered subset S of vertices such that all
vertices have distinct vectors of distances to the vertices in

S.
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Can k-anonymity be used to prevent active attacks?

A couple of concepts from graph theory.

vertices have distinct vectors of distances to the vertices in

Resolving set: ordered subset S of vertices such that all
S.

(3,3)

(2,3) (3,2)

(1,2) (2,1)

(0,3) (3,0)
25



Can k-anonymity be used to prevent active attacks?

» Resolving sets have been used as a model in several
applications: navigation of robots in networks, representation
of chemical compounds, pattern recognition, mastermind
games, amongst others.
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Can k-anonymity be used to prevent active attacks?

» Resolving sets have been used as a model in several
applications: navigation of robots in networks, representation
of chemical compounds, pattern recognition, mastermind
games, amongst others.

» Metric dimension: minimum cardinality of a resolving set.
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Can k-anonymity be used to prevent active attacks?

» Resolving sets have been used as a model in several
applications: navigation of robots in networks, representation
of chemical compounds, pattern recognition, mastermind
games, amongst others.

» Metric dimension: minimum cardinality of a resolving set.

» A resolving set has the ability to uniquely identify every vertex
in a graph, as an adversary expects to do
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Can k-anonymity be used to prevent active attacks?

» Resolving sets have been used as a model in several
applications: navigation of robots in networks, representation
of chemical compounds, pattern recognition, mastermind
games, amongst others.

» Metric dimension: minimum cardinality of a resolving set.

» A resolving set has the ability to uniquely identify every vertex
in a graph, as an adversary expects to do

(3,3)

(0,3) (3,0) i



k-antiresolving sets (k > 1)
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k-antiresolving sets (k > 1)

k-antiresolving set: Let G = (V, E) be a simple connected
graph and let S = {u1, -, u:} be a subset of vertices of G.
The set S is called a k-antiresolving set if k is the greatest
positive integer such that for every vertex v € V — S there
exist at least k — 1 different vertices vy, - ,vy_1 €V —S

with r(v|S) = r(v1|S) = - - = r(w_1]S).
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k-antiresolving sets (k > 1)

k-antiresolving set: Let G = (V, E) be a simple connected
graph and let S = {u1, -, u:} be a subset of vertices of G.
The set S is called a k-antiresolving set if k is the greatest
positive integer such that for every vertex v € V — S there

exist at least k — 1 different vertices vy, - ,vy_1 €V —S
with r(v|S) = r(v1|S) = - - = r(w_1]S).
(1,2) (1,2)
A 2-antiresolving set
(2,1) (2,1)
(3,2) (3,2)
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Relating k-antiresolving sets to active attacks

s2=5 i

= £ DA



Relating k-antiresolving sets to active attacks

» The attacker controls a set of nodes S in the graph
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Relating k-antiresolving sets to active attacks

» The attacker controls a set of nodes S in the graph

» The attacker is assumed to know the metric
representation (distances) of the target vertices to S
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Relating k-antiresolving sets to active attacks

» The attacker controls a set of nodes S in the graph

» The attacker is assumed to know the metric
representation (distances) of the target vertices to S
» So, if S is a k-antiresolving set the adversary cannot

uniquely re-identify any node in the network with
probability higher than 1/k
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Relating k-antiresolving sets to active attacks

The challenge is that potentially any subset can be regarded as the
set of attacker nodes. Moreover,
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Relating k-antiresolving sets to active attacks

The challenge is that potentially any subset can be regarded as the
set of attacker nodes. Moreover,

Proposition (Trujillo-Rasua and Yero, 2015)

Given subset of vertices X, we denote ~x to the relation satisfying
that u ~x v if and only if u and v have the same metric
representation w.r.t. X. Let S be a subset of vertices and S’ C S,
then for every pair of vertices u and v it holds that

ur~gVv =— U~gr V.

s2=5 o



Relating k-antiresolving sets to active attacks

The challenge is that potentially any subset can be regarded as the
set of attacker nodes. Moreover,

Proposition (Trujillo-Rasua and Yero, 2015)

Given subset of vertices X, we denote ~x to the relation satisfying
that u ~x v if and only if u and v have the same metric
representation w.r.t. X. Let S be a subset of vertices and S’ C S,
then for every pair of vertices u and v it holds that

ur~gVv =— U~gr V.

Definition ((k, £)-anonymity)

G meets (k, ¢)-anonymity with respect to active attacks, if k is the
smallest positive integer such that the k-metric antidimension of G
is lower than or equal to £, where the k-metric antidimension is the
minimum cardinality of a k-antiresolving set.
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A simple-yet-unrealistic example

Complete graph Kio. Consider three attacker nodes (¢ = 3) at
most.
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A simple-yet-unrealistic example

Complete graph Kio. Consider three attacker nodes (¢ = 3) at
most.
Problem: Find smallest k, such that adim,(Kiz) <3
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A simple-yet-unrealistic example
Complete graph Kio. Consider three attacker nodes (¢ = 3) at

most.
Problem: Find smallest k, such that adim,(Kiz) <3
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A simple-yet-unrealistic example

Complete graph Kio. Consider three attacker nodes (¢ = 3) at

most.

Problem: Find smallest k, such that adim,(Kiz) <3
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A simple-yet-unrealistic example

Complete graph Kio. Consider three attacker nodes (¢ = 3) at
most.
Problem: Find smallest k, such that adim,(Kiz) <3

g

Bnsas
i

Any subset of vertices of cardinality 3 is a 9-antiresolving set. In
general, every subset of vertices of cardinality £ is an

(n — £)-antiresolving set in a complete graph. So, the complete
graph K, meets (n — ¢, ¢)-anonymity, in particular, adimg(Ki2) =3
and Ki» satisfies (9, 3)-anonymity.
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Computing (k, £)-anonymity

Ideally, we would like to compute adim;(G) for every
ie€{l,...,N} where N =|V(G)| until we find i such that
adim;(G) < £. However,
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Computing (k, £)-anonymity

Ideally, we would like to compute adim;(G) for every
ie€{l,...,N} where N =|V(G)| until we find i such that
adim;(G) < £. However, (DasGupta et al. 2016) have proven that
the k-metric antidimension problem is NP-hard.

So, transforming a graph into a (k, ¢)-anonymous graph seems
challenging. J
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Outline

Transforming (1, 1)-anonymous graphs: a privacy goal
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Counteracting active attacks: a transformation approach

Observation
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Counteracting active attacks: a transformation approach

Observation

» In terms of offered privacy, (k,{)-anonymity forms a lattice
where (1, 1)-anonymity is the minimum

(4,1)
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Counteracting active attacks: a transformation approach

Observation
» And, real lite social graphs are typically (1,1)-anonymous
» This leads to the question whether it is possible to define
privacy-preserving transformation techniques to transform a
graph G into another graph G’ such that G’ is not
(1,1)-anonymous.
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Counteracting active attacks: a transformation approach

Proposition (Mauw et al. 2016)

If G contains a 1-antiresolving set, say {v}, then there exists a
vertex u such that d(v, u) # d(v,w) for every w € V — {v, u}.
We call such a vertex u a 1-resolvable vertex, in particular, we say
that u is 1-resolvable by {v}. It follows that G contains a
1-resolvable vertex if and only if G is (1,1)-anonymous.
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Counteracting active attacks: a transformation approach

How to find them?
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Counteracting active attacks: a transformation approach

How to find them?
Lemma (Mauw et al. 2016)

Let {v} be a l-antiresolving set in G, and let vy - - vy, be an
eccentricity path of v, i.e., vi = v. For every vertex u that is
1-resolvable by {v} there exists i € {1,..., m} such that u = v;.
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Counteracting active attacks: a transformation approach

How to get rid off 1-resolvable vertices?
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Counteracting active attacks: a transformation approach

How to get rid off 1-resolvable vertices?

Proposition (Mauw et al. 2016)

A cycle graph C,, of odd order doesn't contain 1-resolvable vertices.
Indeed, it satisfies (2,1)-anonymity.
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Counteracting active attacks: a transformation approach

Theorem (Mauw et al. 2016)

Let G = (V, E) be a simple connected graph, {v} a l-antiresolving
set, and G’ the graph resulting from a v-transformation in G. Let
S be the set of vertices in G contained in an eccentricity path of v
in G. Every w € S is not 1-resolvable by {v} in G'.

Go
. G1 .
/ P \
/ Phe ~ < \
Case 1 Case 2 Case 3
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Counteracting active attacks: a transformation approach

Remark: a v-transformation may create new 1-resolvable vertices. ]

OO=0 O—o0—0—¥)
N4 <O
O

Nevertheless: successive application of v-transformations converge. J

It can be found a tight upper bound on the number of
v-transformations required to anonymize a (1, 1)-anonymous social
graph.
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Counteracting active attacks: a transformation approach
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Counteracting active attacks: a transformation approach
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Counteracting active attacks: a transformation approach
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Counteracting active attacks: a transformation approach
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Future work
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Can we do better?

» Indeed, at very little cost.

Y2 2. v
1 X2
n X2
w X1
w X1
O O @ @ @
v u 4 22 v u Z1 2z v
(a) (b)
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Can we do better?

» Indeed, at very little cost.

y2 y2 V/
1 X2
yi X2

» What about link prediction
» Isn't (k,¢)-anonymity too strong?
» Can an adversary know beyond the presence or not of a link?

» Do we really need to protect against all possible
1-antiresolvings?

» Can we revert anonymization? ==5 iln
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Conclusions
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Conclusions

» Social graph anonymization is part of a major issue in modern
society, that is, how to protect user’s privacy in online social
networks

» While most anonymization approaches address passive attacks
only, we propose the first privacy-preserving transformation
method against active attacks

» |t remains an open question the relation between
(k, £)-anonymity and other privacy notions, such as
k-neighbourhood anonymity

» Further empirical evaluation ought to be performed
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The end

Thanks.

s2=5 o



	The privacy problem: a brief introduction
	Privacy-friendly dissemination of personal data
	Publication of social graphs
	Passive attacks
	Active attacks

	(k, )-anonymity: a privacy measure
	Transforming (1, 1)-anonymous graphs: a privacy goal
	Future work
	Conclusions

