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Social zones
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Which privacy zone Google belongs to?

I Personalize services, ergo saving time
I Define what is important for you and others like you, ergo fast

learning from similar peers

But

I How is data being disseminated? Do we have any control over
our data? based on the analysis of private information?

I The American Target chain case. How much is too much?



Which privacy zone Google belongs to?

I Personalize services, ergo saving time
I Define what is important for you and others like you, ergo fast

learning from similar peers

But

I How is data being disseminated? Do we have any control over
our data? based on the analysis of private information?

I The American Target chain case. How much is too much?



Personal data



Outline

The privacy problem: a brief introduction

Privacy-friendly dissemination of personal data

Publication of social graphs
Passive attacks
Active attacks

(k , `)-anonymity: a privacy measure

Transforming (1, 1)-anonymous graphs: a privacy goal

Future work

Conclusions



Anonymity: relational database in canonical form

Birth Postcode Illness
1975 4350 fever
1955 4350 HIV
1955 5432 flu
1955 5432 HIV
1975 4350 flu
1975 4350 fever

In 2002 Sweeney estimated that 87% of the population in United
States can be uniquely identified by combining seemingly innocuous
attributes such as gender, date of birth and zip code.



Anonymity: microdata

Birth Postcode Illness
1975 4350 fever
1955 4350 HIV
1955 5432 flu
1955 5432 HIV
1975 4350 flu
1975 4350 fever
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Anonymity: relational database

Table: Left: Patient data. Right: Potential route of transmission.

Id Birth Postcode Illness
1 1975 4350 fever
2 1955 4350 HIV
3 1955 5432 flu
4 1955 5432 HIV
5 1975 4350 flu
6 1975 4350 fever

Patient 1 Patient 2
1 2
1 3
1 5
3 4
3 5
4 6



Anonymity: relational database

Table: Left: Patient data. Right: Potential route of transmission.

Id Birth Postcode Illness
1 * 4350 fever
2 * 4350 HIV
3 1955 5432 flu
4 1955 5432 HIV
5 1975 4350 flu
6 1975 4350 fever

Patient 1 Patient 2
1 2
1 3
1 5
3 4
3 5
4 6

Different types of data require different anonymization techniques.
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Where do social graphs come from?
Many datasets can be represented as graphs:

I Friendship in online social network
I Financial transactions
I Email communication
I Romantic relationships

http://www.emarketer.com/Article/India-Leads-Worldwide-Social-Networking-Growth/1010396

http://www.emarketer.com/Article/India-Leads-Worldwide-Social-Networking-Growth/1010396


What can we infer purely from link structure?

I Popularity
I Centrality
I Introvert vs. Extrovert
I Leadership potential
I Communities

And more, we can also use knowledge from other sources of
information.



Can we anonymize graphs?
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Can we anonymize graphs?

The graph is anonymized and published.



Can we anonymize graphs?

H

Knowing the number of links of the target node (5) the adversary
can re-identify H.



Can we anonymize graphs?

A graph satisfying 4-degree anonymity.



Adversary knowledge and privacy notions

Adversary knowledge Anonymity concept
Vertex degree k-degree anonymity (2008)

Vertex’s neighbourhood k-neighbourhood anonymity (2008)
Full graph k-automorphism (2009)

How hard is to keep a secret.
https://www.youtube.com/watch?v=d6gMrLb5ljU
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Active attacks (Backstrom et al. 2009)
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Active attacks (Backstrom et al. 2009)
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An adversary adds 5 nodes with random connections.



Active attacks (Backstrom et al. 2009)
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Links with the target nodes are established.



Active attacks (Backstrom et al. 2009)

The graph is anonymized and published.



Active attacks (Backstrom et al. 2009)
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Active attacks (Backstrom et al. 2009)
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Link between H and G is confirmed.

(Wei et al. 2014) extended this attack to reach arbitrary nodes

How can we quantify privacy against active attacks?



Active attacks (Backstrom et al. 2009)

G

H

3

2

4

1

5

Link between H and G is confirmed.

(Wei et al. 2014) extended this attack to reach arbitrary nodes

How can we quantify privacy against active attacks?



Active attacks (Backstrom et al. 2009)

G

H

3

2

4

1

5

Link between H and G is confirmed.

(Wei et al. 2014) extended this attack to reach arbitrary nodes

How can we quantify privacy against active attacks?



Outline

The privacy problem: a brief introduction

Privacy-friendly dissemination of personal data

Publication of social graphs
Passive attacks
Active attacks

(k , `)-anonymity: a privacy measure

Transforming (1, 1)-anonymous graphs: a privacy goal

Future work

Conclusions



Can k-anonymity be used to prevent active attacks?

A couple of concepts from graph theory.

Resolving set: ordered subset S of vertices such that all
vertices have distinct vectors of distances to the vertices in
S .

(0, 3) (3, 0)

(1, 2) (2, 1)

(2, 3) (3, 2)

(3, 3)
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Can k-anonymity be used to prevent active attacks?
I Resolving sets have been used as a model in several

applications: navigation of robots in networks, representation
of chemical compounds, pattern recognition, mastermind
games, amongst others.

I Metric dimension: minimum cardinality of a resolving set.
I A resolving set has the ability to uniquely identify every vertex

in a graph, as an adversary expects to do
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k-antiresolving sets (k ≥ 1)

k-antiresolving set: Let G = (V ,E ) be a simple connected
graph and let S = {u1, · · · , ut} be a subset of vertices of G .
The set S is called a k-antiresolving set if k is the greatest
positive integer such that for every vertex v ∈ V − S there
exist at least k − 1 different vertices v1, · · · , vk−1 ∈ V − S
with r(v |S) = r(v1|S) = · · · = r(vk−1|S).

A 2-antiresolving set

(3, 2) (3, 2)

(2, 1) (2, 1)

(1, 2) (1, 2)
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Relating k-antiresolving sets to active attacks

I The attacker controls a set of nodes S in the graph

I The attacker is assumed to know the metric
representation (distances) of the target vertices to S

I So, if S is a k-antiresolving set the adversary cannot
uniquely re-identify any node in the network with
probability higher than 1/k
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Relating k-antiresolving sets to active attacks

The challenge is that potentially any subset can be regarded as the
set of attacker nodes. Moreover,

Proposition (Trujillo-Rasua and Yero, 2015)
Given subset of vertices X, we denote ∼X to the relation satisfying
that u ∼X v if and only if u and v have the same metric
representation w.r.t. X . Let S be a subset of vertices and S ′ ⊂ S ,
then for every pair of vertices u and v it holds that
u ∼S v =⇒ u ∼S ′ v .

Definition ((k , `)-anonymity)
G meets (k, `)-anonymity with respect to active attacks, if k is the
smallest positive integer such that the k-metric antidimension of G
is lower than or equal to `, where the k-metric antidimension is the
minimum cardinality of a k-antiresolving set.
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A simple-yet-unrealistic example

Complete graph K12. Consider three attacker nodes (` = 3) at
most.
Problem: Find smallest k, such that adimk(K12) ≤ 3

Any subset of vertices of cardinality 3 is a 9-antiresolving set. In
general, every subset of vertices of cardinality ` is an
(n − `)-antiresolving set in a complete graph. So, the complete
graph Kn meets (n − `, `)-anonymity, in particular, adim9(K12) = 3
and K12 satisfies (9, 3)-anonymity.
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Computing (k , `)-anonymity

Ideally, we would like to compute adimi (G ) for every
i ∈ {1, . . . ,N} where N = |V (G )| until we find i such that
adimi (G ) ≤ `. However, (DasGupta et al. 2016) have proven that
the k-metric antidimension problem is NP-hard.

So, transforming a graph into a (k , `)-anonymous graph seems
challenging.
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Counteracting active attacks: a transformation approach

Observation
I In terms of offered privacy, (k , `)-anonymity forms a lattice

where (1, 1)-anonymity is the minimum

(1, 1)

(2, 1) (1, 2)

(3, 1) (2, 2) (1, 3)

(4, 1) (3, 2) (2, 3) (1, 4)
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Counteracting active attacks: a transformation approach

Observation
I And, real life social graphs are typically (1, 1)-anonymous
I This leads to the question whether it is possible to define

privacy-preserving transformation techniques to transform a
graph G into another graph G ′ such that G ′ is not
(1, 1)-anonymous.



Counteracting active attacks: a transformation approach
Proposition (Mauw et al. 2016)
If G contains a 1-antiresolving set, say {v}, then there exists a
vertex u such that d(v , u) 6= d(v ,w) for every w ∈ V − {v , u}.
We call such a vertex u a 1-resolvable vertex, in particular, we say
that u is 1-resolvable by {v}. It follows that G contains a
1-resolvable vertex if and only if G is (1, 1)-anonymous.

How to find them?

Lemma (Mauw et al. 2016)
Let {v} be a 1-antiresolving set in G , and let v1 · · · vm be an
eccentricity path of v , i.e., v1 = v . For every vertex u that is
1-resolvable by {v} there exists i ∈ {1, . . . ,m} such that u = vi .

v1

vi

vm

u
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Counteracting active attacks: a transformation approach

How to get rid off 1-resolvable vertices?

Proposition (Mauw et al. 2016)
A cycle graph Cn of odd order doesn’t contain 1-resolvable vertices.
Indeed, it satisfies (2, 1)-anonymity.
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Indeed, it satisfies (2, 1)-anonymity.



Counteracting active attacks: a transformation approach

Theorem (Mauw et al. 2016)
Let G = (V ,E ) be a simple connected graph, {v} a 1-antiresolving
set, and G ′ the graph resulting from a v -transformation in G . Let
S be the set of vertices in G contained in an eccentricity path of v
in G . Every w ∈ S is not 1-resolvable by {v} in G ′.

v1 vi−2 vi−1 vi vj vm

G2

G1

Case 1 Case 2 Case 3



Counteracting active attacks: a transformation approach

Remark: a v -transformation may create new 1-resolvable vertices.

v1 vi−1 vi vj

Nevertheless: successive application of v -transformations converge.

It can be found a tight upper bound on the number of
v -transformations required to anonymize a (1, 1)-anonymous social
graph.
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Can we do better?
I Indeed, at very little cost.

y1
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v u

x1

x2

y2

z1 z2

(a)

v ′y2

y1
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v u

x1

x2

z1 z2 v ′′

(b)

I What about link prediction
I Isn’t (k , `)-anonymity too strong?

I Can an adversary know beyond the presence or not of a link?
I Do we really need to protect against all possible

1-antiresolvings?

I Can we revert anonymization?
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Conclusions

I Social graph anonymization is part of a major issue in modern
society, that is, how to protect user’s privacy in online social
networks

I While most anonymization approaches address passive attacks
only, we propose the first privacy-preserving transformation
method against active attacks

I It remains an open question the relation between
(k , `)-anonymity and other privacy notions, such as
k-neighbourhood anonymity

I Further empirical evaluation ought to be performed



The end

Thanks.
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