The Alphabet of ABCs Oursi

Greg Alpár

greg.alpar@ou.nl

Open Universiteit & Radboud University

April 4, 2017

Outline

Motivation: Identity in the digital world

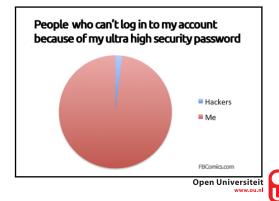
Attribute-based credentials and tricks

Ongoing and future work

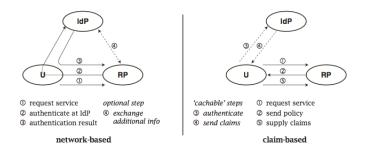
Attribute-based identity management

CONTEXTUAL IDENTITY

To respect privacy, promote the development and context-tailored use of attribute-based digital identity management.



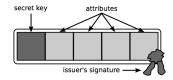
Motivation: Identity in the digital world



Users: security, privacy, usability

- ► Password is often not secure
- Authentication: always identifying
- Many types of authentication
- Mobile devices

Network-based and claim-based identity management

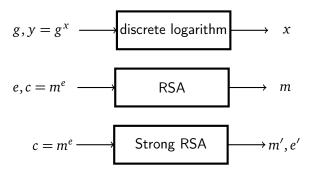

IRMA Demo (demo.irmacard.org):

- ▶ IRMATube
- **▶** ≥ 18
- name

Goals

- ► Independence between issuing and showing: time and protocol
- Privacy
- Credential: security for the system
 - Authenticity
 - Integrity
 - Non-transferability
- Credential: privacy for the user
 - Issuer unlinkability (blind signature, randomisation)
 - Multi-show unlinkability (randomisation, zero-knowledge proofs)
- Attribute-based credentials

Attribute-based credentials and tricks


Recap: public-key cryptography

- Pair: public key, secret key
- Applications:
 - Encryption: message encryption to the recipient
 - e.g. RSA enc: $c = m^e \mod n$, where $n = p \cdot q$
 - Signature: signature verification
 - e.g. RSA sig: $s = m^{1/e} \mod n$
 - Authentication: proof of secret key
- Certificate on the public key (by CA/Issuer)
- Public-key infrastructure (PKI)
- Note: public key is an identifier
- ► Attribute certificate: $C_{\geq 18} = \text{Sign}(sk_{Auth}, \text{``Over 18''})$
- ► BUT, general privacy problems:
 - Issuer (authority) linkability
 - Multiple showing linkability

Hard problems, i.e. Assumptions

Typically, computational problems are defined in a large *finite* mathematical structure. (We omit the underlying structures here.)

Discrete logarithm - a toy example

$$g, y = g^x \longrightarrow \text{discrete logarithm} \longrightarrow x$$

The exponents of 23 modulo 29 (the order is q = 7):

23,25
$$\longrightarrow$$
 discrete logarithm \longrightarrow 5

$$Dlog_{23} 25 = 5$$

A "too simple" proof of knowledge

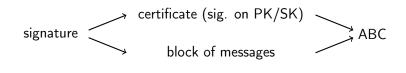
How can public-key cryptography be used for authentication?

Discrete logarithm: "I know the discrete logarithm x = Dlog_g h."

Prover	$(\mathbb{G},q),g,h=g^x$	Verifier
Secret: x		
	\xrightarrow{x}	
	•	. ?
		$h \stackrel{!}{=} g^x$

▶ "Now you also know the discrete logarithm Dlog_g h." ②

A zero-knowledge proof [Schnorr 91]


- ▶ Discrete logarithm: "I know the discrete logarithm $x = D\log_g h$."
- ▶ $PK\{x|h=g^x\}$ —Proof of Knowledge
- ► Interactive

	Prover	$g, h = g^x$	Verifier
	Secret: x		
(1)	random w		
	$a := g^w$	\xrightarrow{a}	
(2)		<u>←</u>	random c
(3)	$r := c \cdot x + w$	→	$a \stackrel{?}{=} g^r \cdot h^{-c}$

- (1) Commitment
- (2) Challenge
- (3) Response

Attribute-based credential (ABC)

$$m^{1/e} \xrightarrow{h(\mathsf{PK})^{1/e}} \xrightarrow{h(\mathsf{PK} \| m_1 \| \dots \| m_\ell)^{1/e}} h(\mathsf{PK} \| m_1 \| \dots \| m_\ell)^{1/e}$$

Problem: *e.g.* all message components have to be known to check the signature!

Attribute-based credential (ABC) – Attempt 2

$$m^{1/e}$$

$$h(\mathsf{PK})^{1/e}$$

$$h(\mathsf{PK}||m_1||...||m_\ell)^{1/e}$$

$$h(\mathsf{PK}||m_1||...||m_\ell)^{1/e}$$

Camenisch-Lysyanskaya signature: (A, e, v) on $m: A = \left(\frac{Z}{S^v R^m}\right)^{1/e}$ Assumptions: **Strong RSA**, **Representation**

$$\left(\frac{Z}{S^{\nu}R^{m}}\right)^{1/e} \longrightarrow \left(\frac{Z}{S^{\nu}R^{sk}}\right)^{1/e} \longrightarrow \left(\frac{Z}{S^{\nu}R^{sk}R_{1}^{m_{1}}...R_{\ell}^{m_{\ell}}}\right)^{1/e}$$

$$\left(\frac{Z}{S^{\nu}R^{m_{1}}...R_{\ell}^{m_{\ell}}}\right)^{1/e}$$

$$\odot$$

CL Signature Randomisation

Signature (the public key is Z,S; "msg" is $R' = R^{sk}R_1^{m_1} \dots R_\ell^{m_\ell}$):

$$(A, e, v)$$
 where $A = \left(\frac{Z}{S^v \cdot R'}\right)^{1/e}$

Verification: $Z \stackrel{?}{=} A^e \cdot S^{\nu} \cdot R'$

Randomisation:

- ► Select random r
- $\overline{A} := A \cdot S^{-r}$, $\overline{v} := v + er \Longrightarrow (\overline{A}, e, \overline{v})$ is a randomised signature.
- ► Indeed:

$$\overline{A}^e S^{\overline{\nu}} R' = A^e S^{-er} S^{\nu} S^{er} R' = A^e S^{\nu} R' = Z.$$

Can we achieve untraceability with randomisation?

What about e?

How to hide e? – *i.e.* Multi-show Unlinkability

► Randomised signature: $(\overline{A}, e, \overline{v})$

$$\overline{A}^{e}S^{\overline{\nu}}R^{sk}R_1^{m_1}\dots R_{\ell}^{m_{\ell}}=Z.$$

Representation problem is hard:

$$Z; (\overline{A}, S, R, R_1, \dots, R_\ell) \xrightarrow{?} "(e, \overline{\nu}, sk, m_1, \dots, m_\ell)"$$

- So, to prove that she has a signature:
 - ▶ U gives \overline{A} (i.e. a part of the randomised signature) and
 - ► U proves that she knows the exponents (i.e. a representation)

$$PK\{(e,\overline{\nu},sk,m_1,\ldots,m_\ell): Z=\overline{A}^eS^{\overline{\nu}}R^{sk}R_1^{m_1}\ldots R_\ell^{m_\ell}\}.$$

But then selective disclosure is easy!

Selective disclosure

► Zero-knowledge proof about all exponents:

$$PK\{(e, \overline{v}, sk, m_1, m_2, m_3, \dots, m_{\ell}) : Z = \overline{A}^e S^{\overline{v}} R^{sk} R_1^{m_1} R_2^{m_2} R_3^{m_3} \dots R_{\ell}^{m_{\ell}} \}.$$

▶ Disclose some and prove the rest; e.g.:

 $U \longrightarrow V$ disclose m_1, m_2 and prove:

Having m_1, m_2 , V can compute $ZR_1^{-m_1}R_2^{-m_2}$. U proves:

$$PK\{(e, \overline{v}, sk, m_1, \dots, m_{\ell}) : ZR_1^{-m_1}R_2^{-m_2} = \overline{A}^e S^{\overline{v}} R^{sk} R_3^{m_3} \dots R_{\ell}^{m_{\ell}}\}.$$

Ongoing and future work

Recent research

- 1. Revocation: "How to revoke anonymous credentials?"
 - ► Epoch-based revocation (Lueks et al. Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers, 2016): U's unique r value, $g_{ev} = \mathcal{H}(epoch||verifier)$
 - $g_0, h_0, xxxPK\{r, \dots | h_0 = g_0^r \land ABC \dots \}$
- 2. Phone vs smart card: "a phone is convenient but not secure"
 - Secret sharing of the secret key between cloud and phone
 - Computation of proofs without recovering secret key
 - ► Implemented; however, yet to be written
- 3. RSA is old and big: "use elliptic-curve crypto (ECC)"
 - ► New scheme: Ringers et al. An efficient self-blindable attribute-based credential scheme, 2017
 - Implementation is on the way

Applications

- Attribute-based signature (ABS): "An ABC proof as a signature" (Hampiholi et al. Towards practical Attribute-Based Signatures, 2015)
- 2. Airbnb: "A house also has an identity"
- Internet of Things: "Control and minimise data collection wherever possible" (Alpár et al. New Directions in IoT Privacy Using Attribute-Based Authentication, 2016)
- 4. Webshop: "Why not minimise data at every transactions?"

Attribute-based identity management

--- Attribute-based transactions

Thank you

