
Code Quality Issues in
Student Programs

Hieke Keuning

OUrsi 9 May 2017

Open University of the Netherlands
Windesheim University of Applied Sciences

About me

04 – now Lecturer Software Engineering

07 – 14 Student Master Computer Science

15 – now

PhD candidate (NWO Doctoral
grant for teachers) supervised by
prof. dr. Johan Jeuring and dr.
Bastiaan Heeren

Master thesis [Keuning14]

Designing a programming tutor giving stepwise
feedback using the IDEAS framework

PhD

◉ Review of programming feedback

◉ Code quality in student programs

◉ Feedback for improving student code

Code Quality Issues in
Student Programs
[Keuning17], to be presented @ITiCSE 2017: ACM Conference on Innovation and
Technology in Computer Science Education

Problems with low code quality

◉ Affect software quality

◉ Students are unaware

◉ Not much attention in courses (more focus on
correctness)

[www.codehunt.com]

Issues in low quality code

◉ Duplicates

◉ Too complex

◉ Too long (classes, methods)

◉ Unsuitable types

◉ …

 if(! (a && !b) == true)
{
 System.out.print("Something else");
 System.out.print("the same");
} else {
 System.out.print("the same");
}

Studies on student code

◉ Characteristics and code smells in kids’ Scratch
programs [Aivaloglou16]

◉ Some high-level metrics in student programs
[Pettit15]

◉ Differences in quality between 1st and 2nd year
students [Breuker11]

Research questions

1. Which code quality issues occur?

2. How often are code quality issues fixed?

3. What are the differences in the occurrence of
code quality issues between students who use
code analysis extensions compared to students
who do not?

Method

◉ Blackbox data set: 4 weeks of 2014-2015 from BlueJ

◉ Automated analysis with PMD

Blackbox data set

Total: 2,661,528 snapshots of 453,526 unique source files

Source file #1

Source file #2

Snapshots

Event:     

PMD [pmd.github.io]

◉ Static analysis tool

◉ Detects bad coding practices

◉ Sample output:

C:\Sample.java:1: Possible God class (WMC=1231, ATFD=8, TCC=0.0)
C:\Sample.java:51: A high ratio of statements to labels in a switch statement.
Consider refactoring.
C:\Sample.java:511: A switch statement does not contain a break
C:\Sample.java:846: The default label should be the last label in a switch statement
C:\Sample.java:1034: Position literals first in String comparisons for
EqualsIgnoreCase
C:\Sample.java:2267: Avoid unnecessary comparisons in boolean expressions
C:\Sample.java:6617: Switch statements should have a default label

Categories

◉ Flow

◉ Idiom

◉ Expressions

◉ Decomposition

◉ Modularization

◉ Names

◉ Headers

◉ Comments

◉ Layout

◉ Formatting

[Stegeman16]

First issue selection

From 26 sets (>280 issues)  12 sets (170 issues), ran
on data set of 439.066 code snapshots

Top 10 issues

Final set of 24 issues

Category Some examples

Flow CyclomaticComplexity
PrematureDeclaration

Idiom SwitchStmtsShouldHaveDefault
AvoidInstantiatingObjectsInLoops

Expressions ConfusingTernary
SimplifyBooleanExpressions

Decomposition NCSSMethodCount
CodeDuplication

Modularization TooManyMethods
GodClass

RQ1 Issue occurrence

I Per issue, the % of
unique files in
which the issue
occurs,

II the avg number of
occurrences per
KLOC

Issue occurrence over time

RQ2 Fixing

1 3 0 2 4 2

2 4 2

1 3 2

1

1

+ +

+ + + = 7
 fixes

= 8
 appear-
 ances

Nr. of
occur-
rences:

RQ2 Fixing

RQ3 Extensions

Conclusion

◉ Novice programmers develop programs with a
substantial amount of code quality issues

◉ Do not seem to fix them, especially when related
to modularization

◉ The use of tools has little effect

Recommendations and future work

◉ Spending more time on quality in courses

◉ Better understanding problems students &
educators

◉ Improving suitability of quality tools for novices

ITiCSE Working group:
Perceptions of Code Quality

Intended contributions:
• Operational definitions of quality aspects that are

considered important
• Examples of code that are considered ‘good’ or

‘bad’ with respect to some of the quality aspects

Method: Structured interviews with students,
educators and professionals

Review of
programming
feedback
[Keuning16]

Feedback in programming tutors

[Singh13]

[Gerdes12]

[Moghadam15]

Research questions

1. What is the nature of the feedback that is
generated?

2. Which techniques are used to generate the
feedback?

3. How can the tool be adapted by teachers?

4. What is known about the quality and
effectiveness of the feedback or tool?

Systematic Literature Review

Find relevant tools:

◉ 17 review papers

◉ Database search

◉ ‘Snowballing’

◉ Selections & discussion mostly by 2 authors

◉ Strict criteria

Coding labels RQ1

Coding labels RQ2-4

First results: 102 papers on 69 tools [Keuning16]

Results

Review conclusions, for now

◉ Very few tools give feedback with ‘knowledge on
how to proceed'

◉ Feedback is not that diverse, mainly focused on
mistakes

◉ Teachers cannot easily adapt tools

◉ Overall, quality of tool evaluation is poor

Conclusions & my future work

◉ Use results from review & data analysis for further
research of automated feedback

◉ Develop a tool that helps students improving code

◉ Experiment with students using the tool

◉ hw.keuning@windesheim.nl

References
◉ [Aivaloglou16] Efthimia Aivaloglou and Felienne Hermans. 2016. How Kids Code and How We

Know: An Exploratory Study on the Scratch Repository. In Proc. of ICER.

◉ [Breuker11] Dennis Breuker, Jan Derriks, and Jacob Brunekreef. 2011. Measuring Static Quality of
Student Code. In Proc. of ITiCSE.

◉ [Gerdes12] Alex Gerdes. 2012. Ask-Elle: a Haskell Tutor, PhD thesis.

◉ [Keuning14] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2014. Strategy-based feedback
in a programming tutor. In Proc. of CSERC.

◉ [Keuning16] Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2016. Towards a systematic
review of automated feedback generation for programming exercises. Proc. of ITiCSE.

◉ [Keuning17] Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. 2017. Code Quality Issues in
Student Programs. To appear in Proc. of ITiCSE. online

◉ [Moghadam15] Joseph Moghadam, Rohan Roy Choudhury, HeZheng Yin, and Armando Fox.
2015. AutoStyle: Toward Coding Style Feedback At Scale. In Proc. of Learning @ Scale.

◉ [Pettit15] Raymond Pettit, John Homer, Roger Gee, Susan Mengel, and Adam Starbuck. 2015.
An Empirical Study of Iterative Improvement in Programming Assignments. In Proc. of SIGCSE.

◉ [Singh13] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. 2013. Automated
feedback generation for introductory programming assignments. ACM SIGPLAN Not. 48(6).

◉ [Stegeman16] Martijn Stegeman, Erik Barendsen, and Sjaak Smetsers. 2016. Designing a Rubric
for Feedback on Code Quality in Programming Courses. In Proc. of Koli Calling.

http://www.cs.uu.nl/research/techreps/repo/CS-2017/2017-006.pdf

