
Analysis of a Receipt-Free Auction Protocol

in the Applied Pi Calculus

Naipeng Dong⋆, Hugo Jonker, and Jun Pang

Faculty of Sciences, Technology and Communication,
University of Luxembourg, Luxembourg

Abstract. We formally study two privacy-type properties for online
auction protocols: bidding-price-secrecy and receipt-freeness. These prop-
erties are formalised as observational equivalences in the applied π cal-
culus. We analyse the receipt-free auction protocol by Abe and Suzuki.
Bidding-price-secrecy of the protocol is verified using ProVerif, whereas
receipt-freeness of the protocol is proved manually.

1 Introduction

Auctions are ways to negotiate the exchange of goods and commodities. In an
auction, a seller offers an item for sale, buyers submit bids, and the seller sells
the item to the buyer with the highest bid. Nowadays, with the widespread use
of the Internet, online auctions are more and more used as a convenient way
to trade. Not only is there a number of websites offering auction services (e.g.
eBay, eBid, Yahoo!auctions and so on), but online auction protocols are also the
subject of an active field of research [1–6].

Privacy is a fundamental property in online auction systems. For example,
personal information of a bidder should not be revealed to others. In order to
protect the privacy of bidders, the following basic privacy-type properties are
required.

Bidding-price-secrecy: A protocol preserves bidding-price-secrecy if an ad-
versary cannot determine the bidding price of any bidder.

Receipt-freeness: A protocol satisfies receipt-freeness if a bidder cannot prove
how he bids to an adversary.

We study the protocol AS02 proposed by Abe and Suzuki [4]. Abe and Suzuki
claim that their protocol satisfies the above two requirements for non-winning
bidders and provide an informal analysis. However, security protocols are no-
toriously difficult to design and analyse, and proofs of security protocols are
known to be error-prone, thus we do not want to rely on an informal analy-
sis. In several cases, formal verification found security flaws in protocols which
were thought to be secure [7, 8]. Formal verification has shown its strength in
finding attacks and proving correctness of security protocols. In this paper, we

⋆ Supported by a grant from the Fonds National de la Recherche (Luxembourg).

formally verify whether bidding-price-secrecy and receipt-freeness hold in their
protocol. We model the AS02 protocol using the applied π calculus [9]. The
applied π calculus provides an intuitive way to model concurrent systems, es-
pecially security protocols. Moreover, it is supported by ProVerif [10], a veri-
fication tool which can be used to verify a number of security properties au-
tomatically. As suggested in [11], we use observational equivalence to express
bidding-price-secrecy and receipt-freeness in the applied π calculus. Previously,
formalisation of privacy-type properties has already been successfully executed
in the domain of voting [12, 11] (similar ideas were developed in a different formal
framework [13]). Bidding-price-secrecy for the AS02 protocol is verified automat-
ically using ProVerif, whereas receipt-freeness is proven manually. We show that
both of the two properties hold for non-winning bidders.

2 The applied π calculus

To better understand the rest of the paper, we briefly introduce the applied π
calculus. This includes its syntax, its semantics and the definition of observa-
tional equivalence (for more details, see [9]). The applied π calculus is a language
for modelling concurrent systems, in particular security protocols. We use the
applied π calculus for its two main advantages: it provides an intuitive way to
describe a protocol and cryptographic primitives can be defined by users.

Syntax. The calculus assumes an infinite set of names (which are used to repre-
sent communication channels or other atomic data), an infinite set of variables
and a signature Σ consisting of a finite set of function symbols, which are used
to model cryptographic primitives. Terms are defined as names, variables, and
function symbols applied to terms. An equational theory E is defined as a set
of equations on terms. The equivalence relation induced by E is denoted as =E .
Systems are described as processes: plain processes and extended processes. Plain
processes are defined as:

P,Q,R ::= plain processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M =E N then P else Q conditional
in(u, x).P message input
out(u,M).P message output.

Null process 0 does nothing. Parallel composition P | Q represents process P
running in parallel with process Q. Replication !P behaves as an infinite number
of process P running in parallel. The process νn.P binds name n in process P ,
which means name n is secret to adversaries. Term M =E N represents equality
of M and N according to the equational theory rather than strict syntactic
identity. The process in(u, x).P (input) reads a message from channel u, and

binds the message to variable x in process P . Process out(u,M).P (output) sends
messageM on channel u, and then runs process P . We can also write “let x = M
in P” to represent P{M/x} (syntactic substitution). Extended processes add
variable restrictions and active substitutions. By restricting names and variables,
we can bind a name or a variable to certain processes. An active substitution
{M/x} means a variable x can be replaced by term M in every process it comes
into contact with. We say an extended process is closed if all its variables are
either bounded or defined by an active substitution. The process νx.({M/x} | P)
corresponds exactly to “let x = M in P”. Active substitutions allow us to map
an extended process A to its frame ϕ(A) by replacing every plain process in A
with the null process 0, which does nothing. A frame is defined as an extended
process built up from 0 and active substitutions by parallel composition and
restrictions. The frame ϕ(A) can be considered as an approximation of A that
accounts for the static knowledge A exposes to its context, but not A’s dynamic
behaviour. The domain of a frame ϕ, denoted as dom(ϕ), is the set of variables
for which the frame ϕ defines a substitution. A context C[] is defined as an
extended process with a hole. An evaluation context is a context whose hole is
not in the scope of a replication, a condition, an input, or an output. A context
C[] closes A when C[A] is closed.

Semantics. Two operational semantics are used in this paper: internal reduc-
tions, denoted as →, and labelled reductions, denoted as

α
−→. Internal reductions

allow a process to execute without contacting its context, for example, internal
sub-processes communicate with each other, or the process evaluates and exe-
cutes conditional operations (if-then-else). Labelled reductions are used to reason

about processes that interact with their contexts. The transition A
α
−→ B means

process A performs α action and continues as process B. Action α is either read-
ing a term M from the process’s context, or sending a name or a variable of base
type to the context. Specifically, when the output is a term M , out(u,M).P is
rewritten into νx.({M/x} | P).

Adversary model. To model security protocols, adversaries need to be taken into
consideration. Following the Dolev-Yao model [14], an adversary has full control
of the network. An adversary can eavesdrop, replay, block and inject messages.
The adversary can be modelled as an arbitrary process running in parallel with
the protocol, which can interact with the protocol in order to gain information.

Observational equivalence. Observational equivalence of two processes is satis-
fied when an adversary cannot distinguish the two processes. Intuitively, two
processes are equivalent if they output on the same channels, irrespective of the
context they are placed in.

Definition 1 (Observational equivalence [9]). Observational equivalence is
the largest symmetric relation R between closed extended processes with the same
domain such that A R B implies:

1. if A can send a message on channel c, then B can also send a message on
channel c;

2. if A →∗ A′ then, for some B′, there exists B →∗ B′, and A′ R B′;
3. C[A] R C[B] for all closing evaluation contexts C.

In practice, observational equivalence is hard to use, because of the quantification
over contexts. Therefore, labelled bisimilarity is introduced. Labelled bisimilarity
is easier to reason with manually and automatically. Two notations are used in
labelled bisimilarity: static equivalence (≈s) and labelled bisimilarity (≈ℓ). Static
equivalence compares the static states of processes (represented by their frames),
while labelled bisimilarity examines their dynamic behaviour.

Definition 2 (Labelled bisimilarity [9]). Labelled bisimilarity (≈ℓ) is de-
fined as the largest symmetric relation R on closed extended processes, such that
process A R B implies:

1. A ≈s B;
2. if A → A′ then B →∗ B′ and A′ R B′ for some B′;
3. if A

α
−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅; then B →∗ α

−→→∗ B′

and A′ R B′ for some B′.

Note that labelled bisimilarity and observational equivalence coincide [9].

3 AS02 sealed-bid online auction protocol

Sealed-bid auctions are a type of auction in which bidders submit their bids
without knowing what other bidders bid. The bidder with the highest bid wins
the auction and pays the price he submitted.

Abe and Suzuki propose a sealed-bid auction protocol [4]. This protocol in-
volves n bidders b1, . . . , bn and k auctioneers a1, . . . , ak. A price list is published
before the protocol. During the protocol, each bidder sends one commit for every
price in the price list: a ‘yes’-commit if he wants to bid that price, a ‘no’-commit
otherwise. Auctioneers work together to open the commitments of all bidders
from the highest price down until the winning bid(s) is/are found.1

In order to ensure privacy of bidders, the protocol has two physical assump-
tions: a bidding booth for the bidders, and one-way untappable channels from
every bidder to every auctioneer. The bidding booth enables a bidder to privately
submit a bid free from control or observation of an adversary. The untappable
channels ensure no adversary can see messages sent.

Before starting the protocol, one auctioneer publishes an increasing price list
p1, . . . , pm, a message Myes for “I bid”, a message Mno for “I do not bid”, a
generator g of subgroup of Z∗

p with order q, where q, p are large primes with
p = 2q + 1. The protocol consists of two phases: bidding and opening.

1 The protocol does not specify how to resolve the case where there are less items than
winners.

Bidding phase. A bidder in the bidding booth chooses a secret key x, and pub-
lishes his public key h = gx with a predetermined signature. Then the bid-
der chooses a series of random numbers r1, . . . , rm as secret seeds, one random
number for each price, and decides a price p to bid. Next, he generates a bit-
commitment for each price pℓ (1 ≤ ℓ ≤ m) as follows:

Commit ℓ =

{

gMyeshrℓ if pℓ = p (a bid for price p)
gMnohrℓ if pℓ 6= p (not a bid for price pℓ)

Next, the bidder publishes the sequence of the bit-commitments with his signa-
ture. Then he proves to each auctioneer that he knows the secret key logg h = x
and the discrete logs (logg Commit1, . . . , logg Commitm) using interactive zero-

knowledge proofs. Finally, he computes t-out-of-k secret shares2 riℓ for each secret
seed rℓ and each auctioneer ai, and then sends the signed secret share riℓ over
the one-way untappable channel to the auctioneer ai.

Opening phase. Auctioneers together iterate the following steps for each price
pℓ = pm, pm−1, . . . , p1 until the winning bid is determined.

Each auctioneer ai publishes the secret share riℓ (the ℓth secret share of a
bidder sent to auctioneer ai) of each bidder. Then, the auctioneers work together
to reconstruct for each bidder the bidder’s secret seed rℓ, and check whether

Commit ℓ
?
= gMyeshrℓ .

If the above equation is not satisfied for any bidder, the auctioneers continue
checking the next lower price pℓ−1. Conversely, if there exists at least one bidder
for whom the equation is satisfied, price pℓ is the winning bid and every bidder
for whom this holds, is a winning bidder.

Informal reasoning of receipt-freeness. UsingM to represent eitherMyes orMno ,
the formula for computing Commit ℓ is as follows:

Commit ℓ = gM · hrℓ = gM · (gx)rℓ = gM+xrℓ ,

since h = gx. Thus, logCommit ℓ = M+xrℓ. By using interactive zero-knowledge
proofs, a bidder proves he knows his secret key x and discrete logs of Commit ℓ.
An interesting property of chameleon bit commitments is that if the bidder bids
price pℓ,

logCommit ℓ = Myes + xrℓ

he can calculate a fake r′ℓ such that:

logCommit ℓ = Mno + xr′ℓ and r′ℓ = (Myes + xrℓ −Mno)/x.

Using the fake r′ℓ, the bidder can show that bit-commitment Commit ℓ is opened
as message Mno , which means the bidder did not bid price ℓ. Using the same
method, a bidder can open a ‘no’ bit-commitment as a ‘yes’ bit-commitment.
Thus, the commit leaks no information concerning the bid, thus the bidder can-
not prove how he bid, and therefore receipt-freeness is satisfied.

2 Threshold secret sharing: t < k auctioneers suffice to reconstruct the secret.

4 Modelling

We model3 the AS02 protocol in the applied π calculus, with the following two
simplifications. In the protocol, auctioneers cooperate to determine the winning
bid. It takes at least t auctioneers to decide the winner, thus guaranteeing t-out-
of-k secrecy. As we focus on bidder privacy, we need to consider only one honest
auctioneer. Thus, we simplified the model to have only one auctioneer, who is
honest. The AS02 protocol uses interactive zero knowledge proofs to guarantee
that each bidder knows his secret key and the discrete logs of bit-commitments.
However, the details of these proofs are left unspecified, and thus we did not
include them in the model. We simply assume that each bidder knows his secret
key and discrete logs of bit-commitments.

Signature and equational theory. We fix a list of bidders (b1, . . . , bn) and an
ordered list of prices (p1, . . . , pm), which are modelled as functions with arity
0. We define function nextbidder to find the next bidder in the bidder list, and
function nextprice to find the next lower price in the price list. Function checksign
is used to check whether a message is correctly signed, and function getmsg
returns the original message from a signed message. Particularly, chameleon
bit commitments are modeled as a function commit with arity 3: a random
number, the public key of the bidder and a message M . The relevant properties
of chameleon bit commitments are captured in the following equational theory.

commit(r, pk(sk b),Myes) = commit(f(r), pk(sk b),Mno)
commit(r, pk(sk b),Mno) = commit(f(r), pk(sk b),Myes)

open(commit(r, pk,m), r, pk) = m

Constants Mno and Myes represent messages “I do not bid” and “I bid”, respec-
tively. The parameter pk(sk b) is the public key of bidder b, and r is the secret
seed the bidder chooses. Function f(r) returns the fake secret seed of a secret
seed r. We can model the function f by just giving one parameter - the real secret
seed. Because we assume that each bidder knows his secret key and discrete logs
of bit-commitments, he can compute the fake secret seed for each real secret
seed, as explained in the previous section. The first equivalence means that if a
bidder chooses a secret seed r, bids a price, and calculates the bit commitment
commit(r, pk(sk b),Myes), he can compute a fake secret seed f(r), and by using
this fake secret seed, the bit-commitment can be opened as message Mno , which
means “I do not bid”. The second equivalence shows that the converse situation
also holds, which enables a bidder to open a ‘no’-commitment as if he did bid
that price.

Main process. The main process is represented in Fig. 1. This process first gener-
ates private channels: privchbj

for each bidder bj to receive secret keys, untapchbj

shared between each bidder bj and the auctioneer, synch used by the auctioneer

3 The complete model in ProVerif is available from
http://satoss.uni.lu/members/naipeng/publications.php.

P , ν privchb1 · ν privchb2 · . . . · ν privchbn ·
ν untapchb1 · ν untapchb2 · . . . · ν untapchbn ·
ν synch·
(PK | (let pb = pb1 in let untapch = untapchb1 in

let privch = privchb1 in let ch = ch1 in PB) |
. . . | (let pb = pbn in let untapch = untapchbn in

let privch = privchbn in let ch = chn in PB) | PA)

Fig. 1. The main process.

PK , ν ssk b1 · ν ssk b2 · . . . · ν ssk bn ·
let spkb1 = pk(ssk b1) in

. . .

let spkbn = pk(ssk bn) in

(out(privchb1 , ssk b1) | . . . | out(privchbn , ssk bn) |
out(ch, spkb1) | . . . | out(ch, spkbn))

Fig. 2. The key distribution process.

PB , in(privch, ssk b)·
ν sk b · out(ch, sign(pk(skb), ssk b))·
ν r1 · . . . · ν rm·
if p1 = pb
then let cmtp1 = commit(r1, pk(sk b),Myes) in

else let cmtp1 = commit(r1, pk(sk b),Mno) in

. . .

if pm = pb
then let cmtpm = commit(rm, pk(sk b),Myes) in

else let cmtpm = commit(rm, pk(sk b),Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), ssk b))·
out(untapch, (r1, . . . , rm))

Fig. 3. The bidder process.

PA , let b = b1 in readinfo | . . . | let b = bn in readinfo |
in(synch, vb1) · . . . · in(synch, vbn)
︸ ︷︷ ︸

n

·

if cmt
pm
b1

= commit(sspmb1 , pkb1 ,Myes)

then out(winnerch, (pm, b1))·
if nextbidder(b1) = ⊥
then stop

else let b = nextbidder(b1) in let p = pm in checknextb

else if nextbidder(b1) = ⊥
then if nextprice(pm) = ⊤

then stop

else let b = b1 in let p = nextprice(pm) in checknextbnp

else let b = nextbidder(b1) in let p = pm in checknextbnp

Fig. 4. The auctioneer process.

to collect all necessary information before moving to the opening phase. Note
that ch is a public channel, and pb1 , . . . , pbn are price-parameters, to be instan-
tiated with a constant from the published price list p1, . . . , pm. Then the main
process launches the key distribution sub-process, n (number of bidders) copies
of bidder sub-processes and one auctioneer sub-process.

Key distribution process. The key distribution process PK , presented in Fig. 2,
generates a signature key sskbj for each bidder bj, sends it to that bidder over
the private channel privchbj , and publishes the corresponding public signature
key. Therefore, each secret key is only known to its owner (the bidder), and
everyone including the adversary knows each bidder’s public signature key.

Bidder process. First, a bidder receives his secret signature key from his private
channel. Next, the bidder generates his secret key sk b, and chooses a series of
random numbers r1 . . . rm as secret seeds. The bidder then computes each bit-
commitment cmtpℓ as described in Sect. 3. Finally, the bidder signs and publishes
his bit-commitments cmtp1 , . . . , cmtpm , and sends r1 . . . rm to the auctioneer over
his untappable channel. As we assume there is only one honest auctioneer in the
model, we do not need to model secret shares. The applied π calculus process
for a bidder PB is shown in Fig. 3.

Auctioneer process. During the bidding phase, the auctioneer launches n copies
of sub-process readinfo to gather information from each bidder bj. This informa-
tion consists of public signature key spkbj , signed public key sign(pk(sk bj), ssk bj),
bit-commitments cmtp1bj , . . . , cmtpmbj , and secret seeds ssp1bj , . . . , ss

pm
bj

. Then the
auctioneer synchronises with all bidders, to ensure all bids have been received.
During the opening phase, the auctioneer evaluates, for each bidder, whether

cmtpmbj
?
= commit(sspmbj , pkbj ,Myes). If this is so, then bidder bj has bid price pm.

Otherwise, bidder bj did not bid that price. If there is at least one bid for this
price, the auctioneer determines the set of winning bids, and stops after publish-
ing the set of winning bidders together with the winning price over the public
channel winnerch. If there is no bid for this price, the auctioneer repeats the
evaluation steps for each bidder at the next lower price. In a similar way, the
sub-process checknextb is used to evaluate the bid of a bidder b at price p, if
there are already some winners. Similarly, the sub-process checknextbnp is used
to check the next bidder at price p, if there is no winner before that bidder. We
use ⊥ and ⊤ to represent the end of the bidder list and price list, respectively.

5 Analysis

After modelling the protocol in the previous section, we formalise and analyse
the two privacy-type properties: bidding-price-secrecy and receipt-freeness.

5.1 ProVerif

ProVerif is a tool for verifying security properties in cryptographic protocols.
Given a security property as a query, ProVerif can take a protocol modelled as
a process in the applied π calculus as input, and returns whether the protocol
satisfies the security property.

In ProVerif, standard secrecy of a term M is defined as “an adversary cannot
derive M”. To check standard secrecy, we use the query “not attacker : M”.
A positive result means that no matter how an adversary interacts with the
protocol,M will never be part of the adversary’s knowledge. Otherwise, ProVerif
gives a counterexample to show how an adversary derives the term M .

In ProVerif, strong secrecy is defined as: for all closed substitutions σ and σ′

of free variables in a process P , the process satisfies Pσ ≈ Pσ′ (where ≈ denotes
observational equivalence). To check strong secrecy of a variable x, we can use
the query “noninterf x”. Intuitively, by instantiating x with different values, we
obtain different versions of the given process. A protocol satisfies strong secrecy
iff these different versions of the given process are observationally equivalent. The
fundamental idea of observational equivalence checking in ProVerif is to focus
on pairs of processes sharing the same structure and differing only in terms or
destructors. ProVerif’s reasoning about strong secrecy is sound but incomplete.
If ProVerif reports that a process does not satisfy strong secrecy, there are two
possibilities: either the process indeed does not satisfy strong secrecy, or the
process satisfies strong secrecy, but ProVerif cannot prove it.

5.2 Bidding-price-secrecy

Bidding-price-secrecy guarantees the anonymity of the link between a bidder
and the price he bids. In the AS02 protocol, the winning bid is published, and
thus bidding-price-secrecy for the winning bidder is not satisfied. In particular,
if all bidders bid the same price, then all bidders are winners, and bidding-
price-secrecy is not satisfied for any bidder in this case. From here on, when we
refer to bidding-price-secrecy, we mean only w.r.t. non-winning bids. There are
two notions of secrecy: standard bidding-price-secrecy and strong bidding-price-
secrecy.

Standard bidding-price-secrecy. Standard bidding-price-secrecy is defined as no
matter how an adversary interacts with the protocol, he cannot determine which
price in the price list a non-winning bidder has bid.

In order to show that an adversary cannot determine the bidding price of
a non-winning bidder, we can use the standard secrecy query in ProVerif. We
model one winning bidder process in which a bidder submits the highest bid,
and several other bidder processes. Each of these processes has a variable pb
representing the price the bidder bids. The variable pb can be instantiated by any
price in the price list, except the highest price. By inquiring “not attacker : pb”,
we check whether an adversary can derive the bidding price of a non-winning
bidder. ProVerif replies positively, which means that our model of the protocol
satisfies the property of standard bidding-price-secrecy.

Strong bidding-price-secrecy. Strong bidding-price-secrecy means an adversary
cannot distinguish between the case where a bidder bids price a and the case
where he bids price c. We use observational equivalence in the applied π calculus
to formalise strong bidding-price-secrecy.

Similar formalisations have been put forth in the domain of voting. In [11],
a property called vote-privacy is formalised as a process in which VA votes for
a and VB votes for c is observationally equivalent to a process where VA votes
for c and VB votes for a. The idea is that even if all other voters reveal how
they voted, an adversary cannot deduce how VA and VB voted, given that their
votes counterbalance each other. Auction protocols differ from voting protocols
in that in voting protocols, the result is published, whereas normally in auction
protocols, a non-winning bidder’s bidding price is not published. Therefore, we do
not need a counterbalancing process to achieve privacy for non-winning bidders.
Instead, we need a higher-bidding process, which will ensure the auctioneer stops
opening (and thus revealing) lower bids. With that in mind, strong bid-price-
secrecy is formalised as follows:

Definition 3 (Strong bidding-price-secrecy). An auction protocol P , with
a bidder sub-process represented as PB , is strong bidding-price-secret if for all
possible bidders b1 and b2 we have:

S[P 1
B{a/pb} | P 2

B{d/pb}] ≈ℓ S[P
1
B{c/pb} | P 2

B{d/pb}]

with a < d and c < d.

The context S is used to capture the assumption made on the checked protocol,
usually it includes the other honest participants in the protocol. The process P 1

B

is a non-winning bidder process executed by bidder b1. The process P 2
B is a

bidder process in which the bidder b2 bids price d. The intuition is that an
adversary cannot determine whether a non-winning bidder bids price a or c,
provided there exists another bidder who bids a higher price.

We define the context S as νr̃ · (PK | PBσ1 | . . . | PBσn−2 | PA |) for the
AS02 protocol, where r̃ are channel names, PK is the key distribution process,
PBσi are the other honest bidder processes (1 ≤ i ≤ n− 2), and PA is the auc-
tioneer process. The context is as the auction process with a hole instead of two
bidder processes. We assume all the participants in the context are honest. In
order to make it possible to check strong bidding-price-secrecy in ProVerif, we
need to modify the presented auctioneer process. Note that ProVerif is sensitive
to evaluations of if-then-else constructs, reporting false attacks when using these
constructions [15]. We simplify the process by halting it after checking price
d, i.e. if-then-else constructs beyond the checking of price d are cut off. Since
we assume there is a process bidding a high price d in the equivalence in the
definition of strong bidding-price-secrecy, the auctioneer process will stop after
checking price d (or even sooner), and the remaining part of the process will
not be executed. Therefore, we may cut the remaining part of the auctioneer
process without affecting the verification result. To be able to check noninterf

in ProVerif, we modify the bidder process by replacing if-then-else construc-
tions with choice[] constructions (see [15] for more explanation). By querying
“noninterf pb among p1, . . . , pd−1”, the variable pb is replaced with p1 up to pd−1,
resulting into d− 1 different versions of the process. ProVerif gives a positive re-
sult, which means that these process versions are all observationally equivalent.
In this way, we prove that the protocol satisfies strong bidding-price-secrecy.

5.3 Receipt-freeness

Receipt-freeness means a bidder cannot prove to an adversary that he has bid
in a certain way. It is useful to protect bidders from being coerced to show how
they bid. Intuitively, bidding-price-secrecy protects a bidder’s privacy when the
bidder does not want to reveal his private information, while receipt-freeness
protects a bidder’s privacy when the bidder is willing (or coerced) to reveal this.

In voting, receipt-freeness can be formalised as an observational equiva-
lence [11]. A voting protocol satisfies receipt-freeness if the adversary cannot
distinguish (observational equivalence) whether a voter genuinely did his bid-
ding or that voter claimed to do so, but voted for another candidate. In order to
model observational equivalence, the situation that a voter provides his secret
information to the adversary is modelled first:

Definition 4 (Process P ch [11]). Let P be a plain process and ch a channel
name. P ch, the process that shares all of P ’s secrets, is defined as:

– 0ch=̂0,
– (P |Q)ch=̂P ch|Qch,
– (νn.P)ch=̂νn.out(ch, n).P ch when n is a name of base type,
– (νn.P)ch=̂νn.P ch otherwise,
– (in(u, x).P)ch=̂in(u, x).out(ch, x).P ch when x is a variable of base type,
– (in(u, x).P)ch=̂in(u, x).P ch otherwise,
– (out(u,M).P)ch=̂out(u,M).P ch,
– (!P)ch=̂!P ch,
– (if M =E N then P else Q)ch=̂if M =E N then P ch else Qch.

Delaune et al. also define process transformation A\out(ch,·), which can be con-
sidered as a version of process A that hides all outputs on public channel ch.

Definition 5 (Process A\out(ch,·) [11]). Let A be an extended process. We
define the process A\out(ch,·) as νch.(A|!in(ch, x)).

When modelling online auction protocols, we also need to model the situa-
tion in which a bidder shares his secret information with the adversary. We use
the above definition directly in our model. Intuitively, a bidder who shares infor-
mation with the adversary sends all input of base type and all freshly generated
names of base type to the adversary over a public channel chc. It is assumed
that public channels are under the adversary’s control.

Now we define receipt-freeness for online auction protocols. Again, we need a
bidder process P 2

B in which bidder b2 bids a higher price d, so that non-winning

bids are not revealed. Intuitively, if a non-winning bid has a strategy to cheat
the adversary, and the adversary cannot tell whether the bidder cheats or not,
then the protocol is receipt-free.

Definition 6 (Receipt-freeness). An auction protocol P , with a bidder sub-
process PB , is receipt-free if there exists a closed plain process PB

′ such that:

1. PB
′\out(chc,·) ≈ℓ P

1
B{c/pb},

2. S[P 1
B{a/pb}chc | P 2

B{d/pb}] ≈ℓ S[PB
′ | P 2

B{d/pb}]

with a < d and c < d.

Process PB
′ is a bidder process in which bidder b1 bids price c but communicates

with the adversary to claim he bids price a. Process P 1
B{c/pb} is a bidder process

in which bidder b1 bids price c. Process P 1
B{a/pb}chc is a bidder process in which

bidder b1 bids price a and shares his secret with the adversary. Process P 2
B is

a bidder process in which bidder b2 bids a higher price d. The first equivalence
says that ignoring the outputs bidder b1 makes on the adversary channel chc,
PB

′ looks like a normal process in which b1 bids price c. The second equivalence
says that the adversary cannot tell the difference between the situation in which
b1 obeys the adversary’s commands and bids price a, and the situation in which
b1 pretends to cooperate but actually bids price c, provided there is a bidding
process P 2

B that bids higher, ensuring that bidding processes P 1
B and PB

′ are
not winners. Receipt-freeness is a stronger property than bidding-price-secrecy,
as shown in [11].

PB
′ , in(privch, ssk b) · out(chc, ssk b)·

ν skb · out(chc, sk b)·
out(ch, sign(pk(skb), ssk b))·
ν r1 · . . . · ν ra · . . . · ν rc · . . . · ν rm·
out(chc, (r1, . . . , f(ra), . . . , f(rc), . . . , rm))·
let cmtp1 = commit(r1, pk(sk b),Mno) in

. . .

let cmtpa = commit(ra, pk(skb),Mno) in

. . .

let cmtpc = commit(rc, pk(skb),Myes) in

. . .

let cmtpm = commit(rm, pk(sk b),Mno) in

out(ch, sign((cmtp1 , . . . , cmtpm), ssk b))·

out(untapch, (r1, . . . , ra, . . . , rc, . . . , rm))

Fig. 5. The process PB
′.

For the AS02 protocol, the context S is defined the same as in the analysis of
the bidding-price-secrecy property. To prove receipt-freeness, we need to find a
process PB

′ which satisfies both equivalences in the definition of receipt-freeness.

According to the properties of chameleon bit commitment, the bidder can send a
sequence of fake secret seeds to the adversary, and sends the series of real secret
seeds to the auctioneer over an untappable channel. The adversary opens the bit-
commitments as the bidder bids price a, using the fake secret seeds he received,
while the auctioneer opens the same bit-commitments as the bidder bids price c,
using the secret seeds the auctioneer received over an untappable channel. The
process PB

′ is shown in Fig. 5. The bidder in this process communicates with
the adversary over channel chc, sending the adversary his secret signature key
ssk b and his secret key sk b. Later the bidder sends the auctioneer r1, . . . , rm over
an untappable channel, and sends the adversary the same list except changing
ra and rc to f(ra) and f(rc), respectively. The untappable channel ensures the
adversary cannot learn anything about the differences.

To prove the first equivalence, we can simply consider PB
′\out(chc,·) as process

PB
′ without communication on the channel chc. Since the process PB

′\out(chc,·)

is exactly the same as the process P 1
B{c/pb}, the first equivalence of Def. 6 is

satisfied. To show the second equivalence of Def. 6, we need to consider all the
executions of each side. On both sides, the process PK only distributes keys,
and all the bidder processes in the context follow the same process. For the
sake of simplicity, we ignore the outputs of the process PK and those bidder
processes. During the bidding phase the auctioneer process only reads infor-
mation and synchronises on the private channel synch. There is no output on
public channels in the auctioneer process. We denote the sequence of names
sk b, r1, . . . , rm, bsk b, br1, . . . , brm by ñ. After the key distribution, we want to see
whether the behaviour of the process P 1

B{a/pb}chc | P 2
B{d/pb} is observationally

equivalent to PB
′ | P 2

B{d/pb}. For this purpose, we need to consider all possible
executions of these two processes. Here, we consider a particular execution and
only show the interesting part of the two frames after each step of execution by
the two processes. Let P = P 1

B{a/pb}chc | P 2
B{d/pb} and Q = PB

′ | P 2
B{d/pb}.

P
in(privch,sskb)
−−−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−−−→

ν x1· out(chc,x1)
−−−−−−−−−−−→ P1 | {sskb/x1}

ν x2· out(chc,x2)
−−−−−−−−−−−→ νñ · (P2 | {sskb/x1} | {skb/x2})
ν x3· out(ch,x3)
−−−−−−−−−−→
ν x4· out(chc,x4)
−−−−−−−−−−−→ νñ · (P3 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4})
ν x5· out(chc,x5)
−−−−−−−−−−−→ νñ · (P4 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4} | {r1,...,rm/x5})
ν x6· out(ch,x6)
−−−−−−−−−−→
ν x7· out(chc,x7)
−−−−−−−−−−−→ νñ · (P5 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4}
| {r1,...,rm/x5} | {sign((cmtp1 ,...,cmtpm),sskb)/x6}
| {sign((bcmtp1 ,...,bcmtpm),bsskb)/x7})

Q
in(privch,sskb)
−−−−−−−−−−→

in(privchb,bsskb)
−−−−−−−−−−−→

ν x1· out(chc,x1)
−−−−−−−−−−−→ Q1 | {sskb/x1}

ν x2· out(chc,x2)
−−−−−−−−−−−→ νñ · (Q2 | {sskb/x1} | {skb/x2})
ν x3· out(ch,x3)
−−−−−−−−−−→
ν x4· out(ch,x4)
−−−−−−−−−−→ νñ · (Q3 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4})
ν x5· out(chc,x5)
−−−−−−−−−−−→ νñ · (Q4 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4}
| {r1,...,f(ra),...,f(rc),...,rm/x5})

ν x6· out(ch,x6)
−−−−−−−−−−→
ν x7· out(ch,x7)
−−−−−−−−−−→ νñ · (Q5 | {sskb/x1} | {skb/x2} | {sign(pk(skb),sskb)/x3}

| {sign(pk(bskb),bsskb)/x4}
| {r1,...,f(ra),...,f(rc),...,rm/x5}
| {sign((cmtp1 ,...,cmtpm),sskb)/x6}
| {sign((bcmtp1 ,...,bcmtpm),bsskb)/x7})

The frames we obtained at the end of P and Q are statically equivalent. In partic-
ular, as the adversary knows the bit-commitments the bidder submits, the public
key of the bidder, and the secret seeds, the adversary can open all the commit-
ments. The only functions an adversary can use are getmsg and open. By applying
these two functions, the adversary can get other terms, the public key of the bid-
der represented as xmsg = getmsg(x3, x1) and a series of opened messages. Since
x3 and x1 are the same for both P and Q, xmsg is the same for both processes as
well. Particularly, P 1

B{a/pb} bids price a. The adversary opens the commitments
cmtpa = commit(ra, pk(sk b),Myes) and cmtpc = commit(rc, pk(sk b),Mno):

open(cmtpa , ra, pk(sk b)) = Myes open(cmtpc , rc, pk(sk b)) = Mno

For the process Q, the process PB
′ bids price c. The adversary has a sequence

of secret seeds, in which two of them are fake: f(ra) and f(rc). According to
the equational theory of chameleon bit-commitments (see Sect. 4), the adver-
sary opens cmtpa = commit(ra, pk(sk b),Mno) = commit(f(ra), pk(sk b),Myes)
and cmtpc = commit(rc, pk(sk b),Myes) = commit(f(rc), pk(sk b),Mno) as follows:

open(cmtpa , f(ra), pk(sk b)) = Myes open(cmtpc , f(rc), pk(sk b)) = Mno

All other secret seeds and bit-commitments are the same in both P and Q, hence
the adversary gets the same series of opened messages for both P and Q as well.

Next, we consider the opening phase, in which the auctioneer process is the
only active process. According to the protocol, the auctioneer stops after finding
the winning bid. Therefore, non-winning bids are not revealed. Since we have
assumed the auctioneer is honest, the information the auctioneer process reveals
is the opened bit-commitments of all bidders at prices higher than the winning
price, and the winning bid. Only the winning bid is opened as Myes , others are

opened as Mno . Due to the existence of a higher bid (d in the process P 2
B{d/pb})

on both sides of the equivalence, the bid made by the bidder b1 will never be
published, hence the information the auctioneer process reveals is the same.
Thus, we conclude that the protocol satisfies receipt-freeness.

6 Conclusion

The main contribution of this paper is that we propose a formalisation of two
privacy-type properties in auction protocols: bidding-price-secrecy and receipt-
freeness, following definitions of vote privacy and receipt-freeness in voting [11].
There are two notions of bidding-price-secrecy: standard bidding-price-secrecy
and strong bidding-price-secrecy. Standard bidding-price-secrecy is defined as
that an adversary does not know a non-winning bidder’s bidding price. Strong
bidding-price-secrecy and receipt-freeness are modelled using observational equiv-
alence. We have modelled the AS02 protocol in the applied π calculus, verified
bidding-price-secrecy of the protocol automatically using ProVerif and receipt-
freeness of the protocol manually.

Coercion-resistance in voting is a stronger privacy property than receipt-
freeness [11], saying that a voter cannot cooperate with a coercer to prove to
him that he voted in a certain way. It is modelled by giving the coercer the
ability to communicate with the coercee and the ability to prepare information
for the coercee to use [11]. In more details, coercion-resistance is formalised in
the applied π calculus by requiring the existence of a process in which a voter
can do as he wants, despite the presence of the coercer, and the coercer cannot
tell whether the voter is cheating. According to this definition, it seems to us
that the AS02 protocol is also coercion-resistant. The information a coercer
can generate in the bidder process is: the bidder’s secret key sk b, the random
number r1, . . . , ra, . . . , rc, . . . rm, the bit-commitments cmtp1 , . . . , cmtpm . Since
the zero-knowledge proof ensures the bidder knows his own secret key, as well
as the discrete logs of bit-commitments, a bidder can figure out which price
the coercer wants him to bid, and then calculate the fake secret seeds f(ra)
and f(rc) to change the price the coercer calculated, and sends secret seeds
r1, . . . , ra−1, f(ra), ra+1, . . . , rc−1, f(rc), rc+1, . . . , rm to the auctioneer.

Coercion-resistance is a complicated property to formalise. Several different
formalisations have been given [16–18], in addition to Delaune, Kremer and
Ryan’s work. In the future, we intend to study coercion-resistance in online
auction protocols.

The AS02 protocol reveals the winning bid. Bidding-price-secrecy and receipt-
freeness only hold for non-winners. In [6], Chen et al. propose another auction
protocol which can ensure the winner’s privacy as well. We are also interested
in formally verifying this protocol.

Acknowledgements. We thank Zhengqin Luo and Ben Smyth for helpful discus-
sions and the anonymous referees for their valuable comments on a preliminary
version of the paper.

References

1. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In:
Proc. 3rd USENIX Workshop on Electronic Commerce. (1998) 61–74.

2. Cachin, C.: Efficient private bidding and auctions with an oblivious third party.
In: Proc. CCS’99, ACM Press (1999) 120–127.

3. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design. In: Proc. ACM-EC’99, ACM Press (1999) 129–139.

4. Abe, M., Suzuki, K.: Receipt-free sealed-bid auction. In: Proc. ICISC’02. LNCS
2433, Springer (2002) 191–199.

5. Lipmaa, H., Asokan, N., Niemi, V.: Secure vickrey auctions without threshold
trust. In: Proc. FC’03. LNCS 2357, Springer (2003) 87–101.

6. Chen, X., Lee, B., Kim, K.: Receipt-free electronic auction schemes using homo-
morphic encryption. In: Proc. ICISC’03. LNCS 2971, Springer (2003) 259–273.

7. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using
FDR. In: Proc. TACAS’96. LNCS 1055, Springer (1996) 147–166.

8. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract
signing. In: Proc. CSFW’04, IEEE CS (2004) 266–279.

9. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. POPL’01, ACM (2001) 104–115.

10. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proc. CSFW’01, IEEE CS (2001) 82–96.

11. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Computer Security 17(4) (2009) 435–487.

12. Kremer, S., Ryan, M.D.: Analysis of an electronic voting protocol in the applied
pi calculus. In: Proc. ESOP’05. LNCS 3444, Springer (2005) 186–200.

13. Jonker, H.L., Mauw, S., Pang, J.: A formal framework for quantifying voter-
controlled privacy. J. Algorithms 64(2-3) (2009) 89–105.

14. Dolev, D., Yao, A.C.C.: On the security of public key protocols. IEEE Trans.
Information Theory 29(2) (1983) 198–207.

15. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. J. Log. Algebr. Program. 75(1) (2008) 3–51.

16. Backes, M., Hriţcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Proc. CSF’08, IEEE CS (2008)
195–209.

17. Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for elec-
tronic voting protocols. In: Proc. S&P’09, IEEE CS (2009) 251–266.

18. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: Proc. CSF’10. IEEE CS (2010) 122-136.

