
Versatile Prêt à Voter:
Handling multiple election methods with a

unified interface

Zhe Xia1, Chris Culnane1, James Heather1, Hugo Jonker2, Peter Y. A. Ryan2,
Steve Schneider1, and Sriramkrishnan Srinivasan1

1 Department of Computing, University of Surrey, Guildford GU2 7XH, U.K.
{z.xia,c.culnane,j.heather,s.schneider,s.srinivasan}@surrey.ac.uk

2 Faculté des Sciences, de la Technologie et de la Communication,
University of Luxembourg, L-1359 Luxembourg

{hugo.jonker,peter.ryan}@uni.lu

Abstract. A number of end-to-end verifiable voting schemes have been
introduced recently. These schemes aim to allow voters to verify that
their votes have contributed in the way they intended to the tally and
in addition allow anyone to verify that the tally has been generated
correctly. These goals must be achieved while maintaining voter privacy
and providing receipt-freeness. However, most of these end-to-end voting
schemes are only designed to handle a single election method and the
voter interface varies greatly between different schemes. In this paper, we
introduce a scheme which handles many of the popular election methods
that are currently used around the world. Our scheme not only ensures
privacy, receipt-freeness and end-to-end verifiability, but also keeps the
voter interface simple and consistent between various election methods.

Keywords: Prêt à Voter, voting scheme, end-to-end verifiability, receipt-
freeness, simple and consistent voter interface

1 Introduction

In a traditional secret ballot election, voters mark their choice on a piece of
paper and drop it into a box. The ballots are mixed together to break the link
between the voter and her choice. Then these ballots are tallied under scrutiny.
While the secret ballot meets its desired goals of ensuring voter privacy, lack of
transparency and verifiability is considered a problem. There is no way for the
voter to verify that her vote has contributed correctly to the tally and significant
trust must be placed in the election officials to have carried out the election
procedures and tally correctly.

End-to-end verifiable voting schemes aim to address these issues. These
schemes allow voters to verify that their votes have contributed in the way they
intended to the tally (individual verifiability) and in addition allow anyone to
verify that the tally has been generated correctly (universal verifiability). These
goals must be achieved while maintaining voter privacy. In addition, the voter



2 Z. Xia et. al.

should not be able to prove to others how she voted as adversaries can then
coerce or bribe the voter to vote in a certain way (receipt-freeness).

1.1 Motivation

The most common election method is the First-Past-The-Post (FPTP) method,
where a voter simply puts a mark next to the candidate of her choice. The
majority of the existing end-to-end voting schemes are designed to handle FPTP
elections. Some examples are Prêt à Voter (PaV) [9], [27], Scratch & Vote [2],
Punchscan [24], Scantegrity [8], [7], Bingo Voting [6] and MarkPledge [18], [1].

However, many other election methods exist and are used widely. Typically,
these allow the voter to indicate multiple preferences or allot a full or partial
ranking of the candidates. A plethora of tallying methods also exist and are
used around the world. In the Appendix, we provide a summary of the election
methods we will discuss in this paper.

It is argued in the decision theory community that these ranked elections
are superior as less votes are wasted and that they offer resistance to strategic
voting. However, they introduce potential coercion problems. For example, if the
election consists of a large number of candidates, a very large number of possible
candidate rankings exist. Adversaries can force voters to cast their votes using
specific orderings, and check whether ballots with these unique orderings appear
among the cast ballots. This has been referred to as the Italian attack in the
media and literature. We discuss Italian attacks further in Section 5.

Ranked election methods are typically less discussed in the end-to-end voting
literature. There are a few notable exceptions. Several schemes [15], [31], [21] have
been designed for Instant Runoff Voting (IRV) elections. Shuffle-Sum [5] handles
both IRV and the Single Transferable Vote (STV), but it does not directly handle
partial rankings. Condorcet elections can be handled in the scheme introduced
in [10]. However, in order to foil the Italian attack, its user interface is quite
different: instead of ranking the candidates, every voter is required to cast a
number of ballots, where each ballot is a pairwise comparison of two candidates.

No generic end-to-end verifiable voting scheme exists that can handle a wide
variety of election methods. This is an important consideration as several differ-
ent elections, employing different election methods are often held at the same
time. For example, on election day, a voter in the polling station may need to cast
several ballots, each for a separate election using a different election method. The
average voter is unable to understand complicated instructions and procedures
to cast their vote. Therefore, the voting interface needs to be kept simple and
consistent to avoid confusion. Two attempts, one with cryptography and one
without cryptography, in this direction have been made in [32] and [25], where a
generic solution to handle various election methods is introduced. Unfortunately,
neither of them is receipt-free in ranked elections.



Versatile Prêt à Voter 3

1.2 Our contribution

In this paper, we gather together many diverse concepts and building blocks in
the literature, unifying them into one generic scheme which handles a number
of popular election methods. In addition to achieving the goals of voter pri-
vacy, receipt-freeness and end-to-end verifiability, our scheme has a simple and
consistent voter interface across various election methods. In order to enable
our scheme to be used in high-profile political elections, we also aim to achieve
robustness so that the election can be run even in the presence of a minority
of dishonest election officials and is able to recover from cheating when it is
detected. We summarize our contributions in more specific detail in Section 6.

1.3 Structure of the paper

In Section 2 we summarize the various cryptographic building blocks we will
employ in our scheme. This is followed by an overview of the proposed scheme
in Section 3. As discussed, the user interface is kept consistent for different elec-
tion methods. The exact details of how the votes are processed for the different
election methods is abstracted from the voter and we describe these details in
Section 4. We then provide an informal analysis of the security properties of the
scheme in Section 5 before concluding in Section 6.

2 Building Blocks

2.1 Paillier cipher

The Paillier cipher [20] is an efficient, semantically secure public key cryptosys-
tem which provides the additive homomorphic property. It is a fundamental
building block of our scheme and works as follows: let n be an RSA modulus
n = pq, where p and q are large primes. Let g be an integer of order a multiple
of n modulo n2, e.g. g = n + 1. The public key is (g, n), and the secret key
is λ = lcm((p − 1), (q − 1)). To encrypt m ∈ Zn, we randomly choose r ∈ Z∗n
and compute the ciphertext c = Epk(m, r) = gmrn (mod n2). To decrypt c, we
compute m = L(cλ mod n2)/L(gλ mod n2) mod n, where the L-function takes
input values from the set Sn = {u < n2|u = 1 mod n} and L(u) = (u− 1)/n.

– Homomorphic property: For two ciphertexts under the same public key c1 =
Epk(m1, r1) and c2 = Epk(m2, r2), we have Epk(m1, r1) · Epk(m2, r2) =
Epk(m1 + m2, r1 · r2). Moreover, for a value k ∈ Zn, we have Epk(m, r)k =
Epk(k·m, rk). This property is fundamental to the construction of our scheme
and will be used extensively along with the Baudron homomorphic counter
[3] detailed in the following section.

– Paillier re-encryption: Given a Paillier ciphertext c = gmrn (mod n2), a
re-encryption of this ciphertext can be generated without knowledge of the
secret key λ. A value t ∈ Z∗n is randomly selected and the re-encryption c′

of c is calculated as c′ = c · tn = gm(t · r)n (mod n2).



4 Z. Xia et. al.

– Threshold Paillier: The key pair for the Paillier cipher can be jointly gener-
ated by threshold parties, so that each party has a share of the secret key, but
no single party knows the entire secret key. This technique can be found in
[14], [12]. Moreover, ciphertexts can be decrypted by these threshold parties
in a verifiable manner [13].

– Verifiable shuffle for Paillier: In a verifiable shuffle, a mix server receives
a batch of ciphertexts, re-encrypts each ciphertext and then outputs the
results in a random order. It also publishes a proof so that the correctness
of the shuffle can be publicly verified, but the proof should not reveal the
relationship between the inputs and the outputs. Verifiable shuffle for Paillier
can be designed using existing techniques from [16], [4], [19], [22].

2.2 Baudron’s homomorphic counter

Suppose there are k + 1 candidates and the total number of eligible voters is
M , where M < 2L. We can define a set of counters {20, 2L, 22L, . . . , 2kL} as the
election parameters, one for each candidate. Encryptions corresponding to each
counter represent votes for the candidate who has been assigned the counter.
Multiplying these encrypted votes together results in an encrypted counter where
the received votes for each candidate is kept in a separate area of the counter
without overflow between adjacent areas of the counter. For more technical de-
tails, please see [3].

2.3 Plaintext Equivalence Test (PET)

Suppose (g, n) is the Paillier public key and the secret key λ is shared among
threshold parties. For two ciphertexts c1 = Epk(m1, r1) = gm1r1

n (mod n2)
and c2 = Epk(m2, r2) = gm2r2

n (mod n2), the Plaintext Equivalent Test
(PET) [30] can be used to check whether these two ciphertexts contain the same
plaintext, without revealing either plaintext. Denote c = c1/c2 = gm1−m2(r1/r2)n

(mod n2). If m1 = m2, for some random value r ∈ Zn, both c and cr will contain
the 0 plaintext. But if m1 6= m2, cr will contain a random plaintext. Therefore, if
cr is threshold decrypted, the result can tell whether the two ciphertexts contain
the same plaintext without revealing either plaintext.

2.4 Binary Conversion and Plaintext Inequivalence Test (PIT)

For a Paillier ciphertext c = Epk(m, r), where the binary representation of its L-
bit long plaintext is m = m1m2 · · ·mL, the Binary Conversion technique [28] can
be used to convert the ciphertext c into separate encryptions of every individual
bit of the plaintext m. This process can be illustrated as

Epk(m1m2 · · ·mL, r) → Epk(m1, r1), Epk(m2, r2), . . . , Epk(mL, rL)



Versatile Prêt à Voter 5

Binary Conversion needs to be carried out by the threshold parties, and it is
publicly verifiable. The above process can be reversed by anyone as:

Epk(m, r′) =
L∏

i=1

Epk(mL+1−i, rL+1−i)2
i−1

Moreover, for any two Paillier ciphertexts which have been converted into
the encryption of individual bits of the plaintext, the threshold parties can ap-
ply techniques in [11] to check whether these two ciphertexts contain the same
plaintext, or which ciphertext contains larger plaintext. This phase is also pub-
licly verifiable, and does not reveal either plaintext.

3 System overview

We first describe the ballot generation phase in our proposed scheme. We then
describe the vote capture phase, which is where the individual voter interacts
with the system. This is the phase that is consistent from the voter’s point
of view, no matter what election method is being employed. The techniques
employed in the vote processing phase are different depending on which election
method is being used and the details are abstracted from the voter. We will
describe the various vote processing techniques in Section 4.

– Ballot generation: All ballot forms are generated by a trusted party before
the election. We trust this party for privacy, but the integrity of the election
result does not rely on this party. Suppose there are 5 candidates in a sample
election: Alice, Bravo, Charlie, Delta and Echo. They are assigned counters
20, 2L, 22L, 23L and 24L respectively, where 2L is larger than the total
number of eligible voters in the election. These are published prior to the
election as system parameters. A ballot, as shown in Figure 1, consists of two
columns with a vertical perforation down the middle. The left hand column
lists the candidate names in a random order. The barcode in the right hand
column contains an encrypted value for each candidate and a proof. The
encrypted values are called “onions” for historical reasons, and their ordering
should match the candidate list. The proof proves that each onion encrypts
a unique counter. To generate the proof, the party first generates a list of
pseudo ciphertexts:

{Epk(20, 1), Epk(2L, 1), Epk(22L, 1), Epk(23L, 1), Epk(24L, 1)}

Anyone can check that this list is well-formed because all the randomisations
are 1. For each ballot, the party generates a proof that the onion list is a
shuffle of the pseudo ciphertexts.

– Vote capture: To prevent the local officials from learning the candidate
ordering, the ballots are delivered to the polling stations in sealed envelopes
and these sealed ballots are handed to the voters during the voting phase.
The voter opens the envelope to obtain the ballot and can then randomly



6 Z. Xia et. al.

Fig. 1. A ballot form example

decide whether to audit the ballot or use it to cast a vote. If the voter chooses
to audit her ballot, she submits it to the local officials without marking her
choice. After the onions have been threshold decrypted, anyone can check
whether the candidate list can be reconstructed from the onions. Once a
ballot is audited, it cannot be used to cast a vote, and the voter will be
provided with another ballot. The voter can audit several ballots until she
is satisfied. Then, the voter marks the ballot as instructed: selecting a single
candidate, multiple candidates, or by providing a ranking of candidates. This
is pictured in Figure 2.

Fig. 2. Completing the ballot form. (a) Single cross. (b) Preference list

As follows, the voter separates the ballot along the perforation and shreds
the left hand column. It is important to ensure via some process that the
left hand column is destroyed before the voter is allowed to submit the vote.
Otherwise, the voter can prove to an adversary how she voted. The remaining
right hand column, as shown in Figure 3, contains the vote to be cast. The
voter now brings it to the election officials and it is scanned into the election
system and digitally signed. The voter retains the signed right hand side
as her receipt. All the received votes are published on the bulletin board



Versatile Prêt à Voter 7

and the voter can check whether her vote has been recorded correctly by the
election system. If not, the signed receipt can be used to initiate a complaint.
The use of the Prêt à Voter style ballot form provides two advantages. Firstly,
it is simple and very similar to the current paper based ballots that voters are
already familiar with. Secondly, if the voter mistakenly casts an invalid vote,
e.g. over-vote or under-vote, it can be discovered by the local officials before
the vote is scanned and the voter can be assisted in casting a valid vote by
being instructed appropriately and being provided with new ballots. Note
that the election official cannot violate the vote secrecy by simply looking
at the filled in right hand side, as the corresponding left hand side has been
destroyed.

Fig. 3. The vote. (a) Single cross. (b) Preference list

4 Vote Processing

As discussed earlier, the vote processing phase is transparent to voters. At a
high level, this phase can be regarded as an oracle. If it was provided with the
received votes and was told which election method is used, it will generate the
election result based on that election method. Moreover, the oracle will output
some data onto the bulletin board. The data is enough to publicly verify the
tally, but it provides no information that can be used by an adversary to coerce
voters.

4.1 Vote processing for FPTP

The vote processing for FPTP elections is the same as in the Scratch & Vote
scheme [2]. When the votes, as shown in Figure 3(a) are received, the proofs for
each vote are checked and votes with invalid proofs are discarded. The proof is
important to prevent malicious parties from casting invalid vote, e.g. negative
vote(s) or multiple votes. For the remaining votes, the onion corresponding to the
selected candidate is aggregated into a counter as described previously. Finally,



8 Z. Xia et. al.

this counter is threshold decrypted and the election result is announced along
with the tally for each candidate.

In [31], a strategy is introduced to announce only the election winner without
revealing any other information. Firstly, onions are aggregated into the counter.
However, instead of decrypting the counter, the threshold parties can apply the
Binary Conversion technique to convert it into separate encryptions of each bit
of the plaintext. For our sample election, the plaintext is 5L bits long, and every
L-bit block represents the received vote for a different candidate. The candidate
with the most votes can be identified using the plaintext inequivalence test (PIT)
and this can be publicly verified. The exact number of votes received by each
candidate is kept secret in this method.

4.2 Vote processing for Approval Voting

In Approval Voting, a voter can mark one or several crosses, and all the crosses
are equally weighted. The vote processing for Approval Voting is similar to
FPTP. First, all proofs are checked and votes with invalid proof are removed. All
onions corresponding to selected candidates in a ballot are then aggregated into
a single ciphertext. From this point on the techniques and options are similar to
those described above.

4.3 Vote processing for Supplementary Vote

In Supplementary Vote elections, the votes, as shown in Figure 4, contain either
one or two preferences. To tally the received votes, the proof of every vote is
checked and all votes with invalid proofs are removed. The onions corresponding
to the valid ballots are ordered according to the indicated preference. For exam-
ple, the votes in Figure 4 will be ordered as {θD} and {θB , θA} respectively (note
that these θ values are ciphertexts and the subscripts are used for notational con-
venience). Now, the first onion in every vote is selected and aggregated into a
counter. The threshold parties then apply the Binary Conversion technique to
convert this ciphertext into a number of ciphertexts, where each encrypts the
received votes for a particular candidate. After generating a pseudo ciphertext3

Epk(Q, 1), where Q is the winning quota, the threshold parties apply the PIT to
check whether some candidate has received more votes than the quota. If yes, the
election ends and this candidate wins. Otherwise, the threshold parties identify
the two candidates with the most votes using the PIT, and all other candidates
are eliminated.

Suppose Bravo and Delta are the two remaining candidates. We first generate
two pseudo ciphertexts θ̄B = Epk(2L, 1) and θ̄D = Epk(23L, 1) for them respec-
tively. Then we shuffle all the votes using the verifiable shuffle. In the next step,
for every vote in the outputs, the threshold parties apply the PET to compare
3 Note that in the rest of this paper, if we mention pseudo ciphertext, we mean that

the ciphertext is generated using the randomisation value 1. Therefore, anyone can
verify that the pseudo ciphertext is well-formed.



Versatile Prêt à Voter 9

Fig. 4. Supplementary Vote. (a) One preference. (b) Two preferences

its first onion with θ̄B and θ̄D. If it matches with one of the pseudo ciphertexts,
this vote will be sorted into the pile for that candidate. For these votes, the
second preference will never be used. So if any vote has a second onion, it will
be removed from the vote, e.g. θA will be removed from the vote {θB , θA}. For
the other votes where the first onion does not match with any of the pseudo ci-
phertexts, we check whether it contains a second preference. If no, the vote will
be removed from the tally. Otherwise, its first onion will be removed, leaving
only the second onion, and we leave these votes in an unsorted pile. We now
check the two piles of votes for the remaining candidates, if their difference is
larger than the number of votes in the unsorted pile, the election ends and the
remaining candidate with more votes wins. But if their difference is smaller than
the number of votes in the unsorted pile, we aggregate all votes in the three piles
into one ciphertext4. Then this ciphertext is threshold decrypted and one of the
two remaining candidates with the most votes wins.

4.4 Vote processing for Instance Runoff Voting (IRV)

To tally the received votes in IRV elections, proofs are checked and any vote with
an invalid proof is discarded. Once again, the onions corresponding to the valid
ballots are ordered according to the indicated preference e.g. the vote in Figure
3(b) will be re-written as {θE , θA, θB , θC , θD}. The first onion of every vote is
selected and aggregated into a counter. The threshold parties then apply the
Binary Conversion technique to transfer this encrypted counter into a number
of ciphertexts, where each encrypts the received votes for a candidate. After
generating a pseudo ciphertext of the quota as Epk(Q, 1), the threshold parties
can use the PIT to check whether some candidate has received more votes than
the quota. If yes, the election ends, and this candidate wins. Otherwise, the
threshold parties use the PIT to identify the candidate with the least votes and
this candidate is eliminated. Suppose Alice is eliminated in the first round, a
pseudo ciphertext for Alice is generated as θ̄A = Epk(20, 1). Then all votes are
inserted into the verifiable shuffle. In the outputs, the threshold parties apply

4 Note that at this moment, all votes in the three piles contain only one onion.



10 Z. Xia et. al.

the PET to locate the onion θA in every vote, and this value will be removed
from the vote. Again, the first onion of every vote is selected and aggregated
into a counter and then the threshold parties apply the Binary Conversion and
PIT to check whether some candidate has received more votes than the quota.
The above process is repeated until some candidate receives more votes than
the quota or only one candidate remains. For a vote with partial rankings, if all
preferences are removed, it is removed from the tally.

4.5 Vote processing for Single Transferable Vote (STV)

In STV elections with fraction transfer, if some candidate receives more votes
than the quota but not all seats are filled, the votes that exceed the quota need
to be transferred. However, the transfer value is not an integer but a fraction.
For example, if the quota is q and if a candidate receives m votes, where m > q,
the transfer value will be (m − q)/q. Although this value can be treated as an
integer if we multiply all the vote values by q, the Baudron counter can no more
be used because there might be overflow between adjacent locations within the
counter.

Here, the Shuffle-Sum techniques [5] to tally STV elections can be employed,
but with modifications to allow partial ranking. Before the election, two pseudo
ciphertexts θ̄0 = Epk(0, 1) and θ̄1 = Epk(1, 1) are generated. These two values
are used to record which are the voter’s genuine choices and which are appended
choices. Every received vote will first be transferred into the so called Preference-
order table, e.g. the vote in Figure 4(b) will be transferred as:

Candidate θB θA θE θD θC

Preference 1 2 3 4 5
True/Fake θ̄1 θ̄1 θ̄0 θ̄0 θ̄0

Weight Epk(wv)

In the above table, the order of the voter’s genuine preferences need to match
with the vote, but the appended preferences can be in any order. Anyone can
verify that the above table is correctly generated. The following procedures are
similar to the Shuffle-Sum protocol: the above table can be transferred between
the First-preference table and the Candidate-elimination table to elect some
candidate or to eliminate some candidate from the vote. Note that in any case
if all the genuine choices are eliminated, the vote will be discarded. This can be
checked that in the third row of the Preference-order table, the encrypted value
under the first preference encodes plaintext 0.

We will not go into the details of the Shuffle-Sum protocol. For more infor-
mation, please see [5]. But superior than the Shuffle-Sum protocol, our scheme
always enable us to check whether all seats are filled in the first round using the
homomorphic tallying. The process is the same as in Supplementary Vote and
IRV elections. Therefore, we only need to apply the mixnets tallying if all seats
are not filled in the first round.



Versatile Prêt à Voter 11

4.6 Vote processing for Condorcet Voting

In Condorcet Voting, the Binary Conversion technique or PET/PIT are not used,
and the proof in the vote does not need to be checked. Instead, each received
vote is interpreted as follows: e.g. the ciphertexts in the vote in Figure 3(b) will
be arranged as per the preferences as {θE , θA, θB , θC , θD}. A group of ciphertext
triples are then generated.

{θE , θA, θ̄1} {θE , θB , θ̄1} {θE , θC , θ̄1} {θE , θD, θ̄1} {θA, θB , θ̄1}
{θA, θC , θ̄1} {θA, θD, θ̄1} {θB , θC , θ̄1} {θB , θD, θ̄1} {θC , θD, θ̄1}
In the above group, for each ciphertext triple, the first two ciphertexts are

taken from the vote with the same order, and the third one is a pseudo encryption
of plaintext 1, θ̄1 = Epk(1, 1) = g1 · 1n (mod n2).

Similarly, another group of ciphertext triples are generated, in which the first
two ciphertexts are taken from the vote in the reverse order, and the third value5

is a pseudo encryption of −1, θ̄−1 = Epk(−1, 1) = g−1 · 1n (mod n2).

{θD, θC , θ̄−1} {θD, θB , θ̄−1} {θD, θA, θ̄−1} {θD, θE , θ̄−1} {θC , θB , θ̄−1}
{θC , θA, θ̄−1} {θC , θE , θ̄−1} {θB , θA, θ̄−1} {θB , θE , θ̄−1} {θA, θE , θ̄−1}
Now, we treat all the ciphertext triples in the above two groups as inputs and

insert them into the verifiable shuffle. Note that in the outputs, the last value of
the ciphertext triple is no longer a pseudo ciphertext i.e. its randomisation is no
longer 1. Then, for each of the output ciphertext triples, the threshold parties
decrypt the first two values. Now, in exactly half of the result triples, the two
candidates are in the alphabetic order, and in the other half, they are in the
reverse alphabetic order. All triples where the two candidates are in the reversed
alphabetic order are now removed. The remaining triples are as follows:

{Alice, Bravo, θ1} {Alice, Charlie, θ1} {Alice, Delta, θ1}
{Alice, Echo, θ−1} {Bravo, Charlie, θ1} {Bravo,Delta, θ1}
{Bravo, Echo, θ−1} {Charlie, Delta, θ1} {Charlie, Echo, θ−1}
{Delta, Echo, θ−1}

After all the received votes are interpreted in the above format, a pairwise
comparison of every two candidates is done to check which candidate is more
preferred by the voters. For example, to compare Alice and Bravo, the triple in
every vote which contains these two candidates is selected. The third values of
these triples is aggregated into one ciphertext using the additive homomorphic
property. If this ciphertext is decrypted, a positive plaintext indicates that Alice
is more preferred than Bravo, and a negative plaintext indicates the opposite. If
there exists a candidate who wins every pairwise comparison, that candidate is
elected. In case the tally does not result a winner, some other additional methods
must be used to determine the winner.

5 Note that in Paillier cipher, the plaintext space is Zn so we cannot directly encrypt
the plaintext −1, but we can encrypt n− 1 instead.



12 Z. Xia et. al.

5 System Analysis

In this section, we present an informal analysis of our proposed scheme.

– Privacy and receipt-freeness: The random candidate ordering provides voter
privacy. If the left hand column as depicted in Figure 2 is detached and
destroyed, the right hand column does not reveal how the voter voted. In
addition, to see if our scheme provides receipt-freeness we must consider the
Italian attack. As discussed earlier, if a ranked election contains a large num-
ber of candidates, adversaries can coerce the voter to cast the vote with a
unique ordering of candidates, and then they can check whether this pattern
has appeared in the list of cast ballots. Our scheme never reveals the entire
plaintext vote and is therefore robust against this attack. A variant of the
Italian attack can be found in [29]. For example, the adversary can coerce
the voter to put a very unpopular candidate as the first preference and a very
popular candidate as the second preference. In any round, if the unpopular
candidate is eliminated but there is no transfer from this eliminated candi-
date to that popular candidate, the adversaries will know that the voter did
not follow the instructions. In our scheme, the transfer history is kept secret
during the vote processing phase and therefore, our scheme is robust against
this variant of the Italian attack as well.

– End-to-end verifiability: In our scheme, voters can use the “cut-and-choose”
method to check whether the ballots are correctly generated. This ensures
that the voter’s intention will be correctly encoded. Each voter is also pro-
vided with a receipt, and the voter can check that the vote has been recorded
by the system. These two actions provide individual verifiability. As the en-
tire vote processing phase can be publicly verified, our scheme also achieves
universal verifiability.

– Robustness: We have ensured that the various steps in the vote processing
phase can either be done by any party without requiring the knowledge of
the secret key or by a threshold set of parties. Therefore, so long as there
exists a quorum of honest threshold parties, the correct election result will
always be generated.

– Complexity: Our scheme has been designed so that it handles both homo-
morphic tallying and mixnet based tallying. Hence we can tailor the design
of the vote processing phase based on different election methods, so that
the election result can always be output in the most efficient manner. In
FPTP and Approval Voting elections, all received votes are tallied using the
homomorphic property. Hence the election result can be generated very ef-
ficiently. In Supplementary Vote, IRV and STV elections, the received votes
also can be tallied using the homomorphic property if the election winner(s)
can be identified in the first round. Otherwise, we need to use mixnets in
the vote processing phase, and this phase may contain several rounds. In
Condorcet voting, we interpret each of the received vote into a number of
data triples, where each data triple pairwise compares two candidates. This
process is done by mixnets and its complexity is quadratic in the number of
candidates.



Versatile Prêt à Voter 13

– Usability: Voters only need to be involved in the vote capture phase, and
their experience is simple and consistent for various election methods. Also,
the ballot form in our proposed scheme is very similar to those used in
current paper based elections around the world.

5.1 Open Problems

A number of avenues to improve our scheme exist and we list a few. Note that
some of the identified problems are common to existing voting schemes.

– Authority knowledge attack: All ballots are generated by a single party. Hence
we need to trust this party for privacy and receipt-freeness. Generating the
ballots in a distributed fashion is desirable, because it ensures no one but
the voter ever learns the candidate ordering. However, achieving distributed
ballot generation is not easy in our scheme. There are three major obstacles:
Firstly, how to prove the ballot is well-formed in the distributed fashion. Sec-
ondly, how to print the ballot without the printer(s) learning the candidate
ordering. And thirdly, how to ensure robustness so that the scheme can be
run even in the presence of some dishonest election officials. Solving one or
two of the above obstacles might be possible, but it is still an open problem
whether all these three obstacles can be solved at the same time.

– Chain voting attack: If adversaries can successfully smuggle a blank ballot
form out of the polling station, they can use this ballot to coerce voters.
They mark an initial ballot with the candidate of their choice and give it to
a voter entering the polling station. If the voter emerges with another blank
ballot, she is rewarded. The adversaries can repeat this attack with the next
voter using the new ballot. Ryan and Peacock have discussed this attack in
[26], and some of their countermeasures also work for our scheme.

– Randomisation attack: Adversaries can coerce voters to bring out their re-
ceipts with some unique pattern, e.g. the cross always at the top or the
ranking is in the ascend order. Although they do not know how these vot-
ers have cast their votes, they effectively force the voter to vote randomly.
In FPTP elections, there exists a countermeasure to foil the randomisation
attack. If the voter was coerced to bring out her receipt with the cross at
the top, she can keep auditing ballots until she receives one with her favorite
candidate at the top. But in ranked elections, such a countermeasure is not
so effective and the voters may still be coerced to cast their votes randomly.

– Usability: Voters with certain specific disabilities may not be able to tear
the paper ballot apart along the perforation. In future works we hope to
investigate how to improve the accessibility of our schemes for these voters.

– Scalability: Our scheme is not suitable for elections with a large number of
candidates. Since the candidate list is in random order, voters may have
difficulty to find candidates in a long candidate list, especially in ranked
elections. Moreover, the size of the homomorphic counter will become very
large if there are many candidates, and some of the building blocks will
become inefficient.



14 Z. Xia et. al.

6 Conclusion

We have introduced a generic end-to-end verifiable voting scheme that handles
many of the currently used election methods. We believe our work is an impor-
tant step forward from the voter’s point of view, keeping the voting experience
simple and consistent no matter what election method is employed. Our work is
based on the success of many existing concepts and building blocks, and we also
contribute several improvements to these previous works:

– Lundin [17] and Popoveniuc et. al. [23] have earlier discussed how end-to-end
verifiable voting schemes can be designed using the modular approach. For
example, they discuss how the front-end and back-end of Prêt à Voter [9], [27]
and Punchscan [24] can be designed in a mix-and-match fashion. However,
they only focus on a single election method. In this paper, we extend the
concept to multiple election methods and illustrate that multiple back-ends,
each for a different election method, can be designed in the modular fashion,
with a unified front-end.

– We introduce a very simple and straightforward solution to the Shuffle-Sum
protocol [5] to handle partial ranking, and we also show that the Shuffle-Sum
protocol can be designed much more efficiently if the election result can be
tallied in the first round.

– We introduce a novel tallying method for Condorcet elections. Compared to
the scheme in [10], we have simplified the voter interface without introducing
extra complexity in the tallying phase.

In the future, we hope to introduce further enhancements to mitigate the
open problems.

7 Acknowledgement

This work was supported by the UK Engineering and Physical Sciences Research
Council (EPSRC) under grant EP/G025797 and the FNR (National Research
Fund) Luxembourg under project SeRVTS–C09/IS/06. We would also like to
thank the anonymous reviewers for their comments on the paper.

References

1. Ben Adida and Andrew Neff. Efficient receipt-free ballot casting resistant to covert
channel. In EVT’09, 2009.

2. Ben Adida and Ronald L. Rivest. Scratch & Vote: self-contained paper-based
cryptographic voting. In WPES’06, pages 29–40, 2006.

3. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guil-
laume Poupard. Practical multi-candidate election system. In PODC’01, pages
274–283, 2001.

4. Josh Benaloh. Towards simple verifiable elections. In WOTE’06, pages 61–68,
2006.



Versatile Prêt à Voter 15

5. Josh Benaloh, Tal Moran, Kim Ramchen, Lee Naish, and Vanessa Teague. Shuffle-
Sum: coercion resistant verifiable tallying for STV voting. IEEE Transactions on
Information Forensics and Security, December, 2009.

6. Jens-Matthias Bohli, Jörn Müller-Quade, and Stefan Röhrich. Bingo Voting: secure
and coercion-free voting using a trusted random number generator. In VOTE-ID
2007, pages 111–124, 2007. LNCS 4896.

7. David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popove-
niuc, Ronald L. Rivest, Peter Y. A. Ryan, Emily Shen, and Alan T. Sherman.
Scantegrity II: end-to-end verifiable for optical scan election systems using invisi-
ble ink confirmation codes. In EVT’08, 2008.

8. David Chaum, Aleks Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc,
Alan T. Sherman, and Poorvi Vora. Scantegrity: end-to-end voter verifiable optical-
scan voting. Journal of IEEE Security & Privacy, 6:3:40–46, 2008.

9. David Chaum, Peter Y. A. Ryan, and Steve Schneider. A practical voter-verifiable
election scheme. In ESORICS’05, pages 118–139, 2005. LNCS 3679.

10. Michael Clarkson and Andrew Myers. Coercion-resistant remote voting using de-
cryption mixes. In FEE 2005, 2005.

11. Ivan Damg̊ard, Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft.
Unconditional secure constant-rounds multi-party computation for equality, com-
parison, bits and exponentiation. In TCC’06, pages 285–304, 2006. LNCS 3876.

12. Ivan Damg̊ard and Maciej Koprowski. Practical threshold RSA signatures without
a trusted dealer. In EUROCRYPT’01, pages 152–165, 2001. LNCS 2045.

13. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption
in the context of voting or lotteries. In FC’00, 2000. LNCS 1962.

14. Pierre-Alain Fouque and Jacques Stern. Fully distributed threshold RSA under
standard assumptions. In ASIACRYPT’2001, 2001. LNCS 2248.

15. James Heather. Implementing STV securely in Prêt à Voter. In CSF’07, pages
157–169, 2007.

16. Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust for
electronic voting by randomized partial checking. In USENIX Security Symposium,
pages 339–353, 2002.

17. David Lundin. Component based electronic voting systems. Proceedings of IAVoSS
Workshop on Trustworthy Elections (WOTE 2007), pages 11–16, 2007. Ottawa,
Canada.

18. Andrew Neff. Practical high certainly intent verification for encrypted votes. Vote-
Here document, 2004.

19. Lan Nguyen, Rei Safavi-Naini, and Kaoru Kurosawa. Verifiable shuffles: a for-
mal model and a Paillier-based efficient construction with provable security. In
ACNS’04, pages 61–75, 2004. LNCS 3089.

20. Pascal Paillier. Public-key cryptosystems based on discrete logarithms residues.
In EUROCRYPT’99, pages 223–238, 1999. LNCS 1592.

21. Kun Peng and Feng Bao. A design of secure preferential e-voting. In VOTE-ID
2009, pages 141–156, 2009. LNCS 5767.

22. Kun Peng, Colin Boyd, and Ed Dawson. Simple and efficient shuffling with provable
correctness and ZK privacy. In CRYPTO’05, pages 188–204, 2005. LNCS 3621.

23. Stefan Popoveniuc and Poorvi Vora. A framework for secure electronic voting.
Proceedings of IAVoSS Workshop On Trustworthy Elections (WOTE’08), 2008.
Leuven, Belgium.

24. Punchscan. http://www.punchscan.org.



16 Z. Xia et. al.

25. Ronald L. Rivest and Warren D. Smith. Three voting protocols: ThreeBallot,
VAV, and Twin. Proceedings of the 2nd USENIX/ACCURATE Electronic Voting
Technology Workshop (EVT’07), 2007. Boston, MA.

26. Peter Y. A. Ryan and Thea Peacock. Threat analysis of cryptographic election
schemes. Technical Report of University of Newcastle, CS-TR:971, 2006.

27. Peter Y. A. Ryan and Steve Schneider. Prêt à Voter with re-encryption mixes. In
ESORICS’06, pages 313–326, 2006. LNCS 4189.

28. Berry Schoenmakers and Pim Tuyls. Efficient binary conversion for paillier en-
crypted values. In EUROCRYPT’06, pages 522–537, 2006. LNCS 4004.

29. Vanessa Teague, Kim Ramchen, and Lee Naish. Coercion-resistant tallying for
STV voting. In EVT’08, 2008.

30. Pei-Yih Ting and Xiao-Wei Huang. Distributed paillier plaintext equivalence test.
International Journal of Network Security, 6(3):258–264, 2008.

31. Roland Wen and Richard Buckland. Minimum disclosure counting for the alter-
native vote. In VOTE-ID 2009, pages 122–140, 2009. LNCS 5767.

32. Zhe Xia, Steve Schneider, James Heather, Peter Y. A. Ryan, David Lundin, Roger
Peel, and Philip Howard. Prêt à Voter: All-In-One. In WOTE 2007, pages 47–56,
2007.

Appendix

We briefly summarise the vote casting procedure and tallying details of the various
election methods considered in this paper for reference.

– First-Past-The-Post (FPTP): In FPTP elections, the voter simply puts a mark
next to her preferred candidate and the candidate with the most votes wins. FPTP
is used in various elections in Canada, India, the UK and some elections in the US.

– Approval Voting: In Approval Voting, the voter can indicate multiple preferences
up to a set maximum. All votes carry the same weight and the candidates with the
most votes wins. Approval Voting is currently used in some local council elections
in the UK.

– Supplementary Vote: In Supplementary Vote elections, the voter marks her
ballot as follows: she first marks 1 next to her most favourite candidate. If she also
has a second preference, she marks 2 next to this candidate. Tallying takes place
in at most two rounds. In the first round, only the first preference on every ballot
is taken into account. If some candidate receives more than half of the votes, the
election ends and this candidate wins. If no candidate wins in the first round, all
candidates apart from those in the first two places are eliminated. Now, ballots
with the first preference for one of the eliminated candidates are checked for their
second preferences. If a ballot does not have a second preference or its second
preference is also for one of the eliminated candidates, it is discarded. Otherwise,
its second preference is treated as its first preference. Now, one of the two non
eliminated candidate with the most votes wins. Supplementary Voting is used to
elect mayors in the UK (e.g. the London Mayor Elections) and a variant is used in
the Sri Lankan presidential elections.

– Instance Runoff Voting (IRV): IRV is also sometimes called alternative vote
or preferential voting. In IRV elections, voters rank candidates based on their
preference and depending on the election, ranking all candidates may be mandatory
or optional. The winner is determined by a quota, which is normally half of the



Versatile Prêt à Voter 17

received votes. In the first round of tallying, only the first preference of every ballot
is taken into account. If some candidate receives more votes than the quota, the
candidate wins and the election ends. Otherwise, the candidate with the least votes
will be eliminated and all ballots with the highest preference for this voter will be
redistributed among the remaining candidates, based on the next preference. In
case the next preference is empty or all the remaining preferences are for eliminated
candidates, the ballot is discarded. The process is repeated until a winner is found.
Currently, IRV is used in some local government elections in the US, New Zealand
and Malta. Moreover, there are proposals to replace the FPTP system used for
parliamentary elections in the UK with the IRV.

– Single Transferable Vote (STV): Unlike the other methods described so far,
in STV, more than one candidate is elected. To cast a vote, the voter ranks as few
or as many candidates as she likes. To be elected, a candidate must receive more
votes than a set quota. In the first phase of tallying, only the first preference on
every ballot is taken into account. If no one receives more votes than the quota, the
candidate with the least votes will be eliminated, and all ballots for this candidate
will be redistributed among the remaining candidates, based on the next preference.
However, if some candidates receive more votes than the quota, they will be elected
and it will be checked if all seats are filled. If yes, the election ends. Otherwise,
the tally continues so as to fill the remaining seats. Elected candidates do not
need votes they receive over the quota and the surplus votes are transferred to the
remaining candidates based on the next preference6. The above process is repeated
until all seats are filled. STV is a popular election method and is currently used
to elect the lower house of parliament in some territories in Australia, in local
government elections in Scotland as well as some elections in Northern Ireland.

– Condorcet voting: In Condorcet elections, the voter provides a full ranking of the
candidates. This allows every candidate to be compared to every other candidate.
For each pairwise combination, it is checked which candidate is more preferred
by the voters and the election winner is the candidate who wins every pairwise
combination. Note that this process does not always result in a winner and special
methods are required to determine the winner, but these techniques are out of the
scope of this paper. The Condorcet method is not used in political elections, but
it can be found in popular media, e.g. elections organised by MTV.

6 Note that there are several different methods to transfer the surplus votes. For
example, fraction transfer is used in Australia and Scotland, and random transfer is
used in Northern Ireland.


