
A Formal Framework for Quantifying Voter-controlled

Privacy✩,✩✩

Hugo Jonkera,∗, Sjouke Mauwa, Jun Panga

aUniversity of Luxembourg, Faculty of Sciences, Technology and Communication

6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg

Abstract

Privacy is a necessary requirement for voting. Without privacy, voters
can be forced to vote in specific ways, and the forcing party can check their
compliance. But offering privacy does not suffice: if a voter can reduce her
privacy, an attacker can force her to do so. In this paper, we distinguish
various ways that a voter can communicate with the intruder to reduce her
privacy and classify them according to their ability to reduce the privacy of
a voter. We develop a framework combining knowledge reasoning and trace
equivalences to formally model voting protocols and define voter-controlled
privacy. Our framework is quantitative, in the sense that it defines a measure
for the privacy of a voter. Therefore, the framework can precisely measure
the level of privacy for a voter for each of the identified privacy-reduction
classes. The quantification allows our framework to capture receipts that
reduce, but not nullify, the privacy of the voter.

Key words: Formal methods, privacy and security, voting protocols

1. Introduction

With the growth and commercialisation of the Internet, people become
more and more concerned about their privacy in the digital world. Privacy

✩This work was partially supported by a grant of the National Research Fund of Lux-
embourg.

✩✩A preliminary version of this work has appeared in the ARES’09 IEEE proceedings.
∗Corresponding author
Email addresses: hugo.jonker@uni.lu (Hugo Jonker), sjouke.mauw@uni.lu

(Sjouke Mauw), jun.pang@uni.lu (Jun Pang)

Preprint submitted to Algorithms in Cognition, Informatics and Logic February 24, 2009

has been a fundamental property for systems which provide users e-services,
ranging from electronic voting to on-line auctions to health-care.

In voting, vote privacy is the property that an outside observer cannot de-
termine how a voter voted. Although this seems sufficient to ensure privacy,
Benaloh and Tuinstra [1] introduce receipt-freeness, which expresses that a
voter cannot gain any information to prove to an intruder (someone trying
to force the voter to cast a specific vote) that she voted in a certain way.
Receipt-freeness aims to prevent vote buying, even when a voter chooses
to renounce her privacy. Another stronger notion of privacy is coercion-
resistance [2], stating that a voter cannot cooperate with the intruder to
prove how she voted. Coercion-resistance also has received considerable at-
tention. These strong notions of privacy actually capture the essential idea
that privacy must be enforced by a voting system upon its users, instead
offering it.

In the literature, many research efforts have been devoted to ensure
privacy properties for (electronic) voting. Several schemes claiming to be
receipt-free (e.g. [1, 3, 4]) have been proposed and were later shown to have
receipts [5, 6, 7]. Resolving this kind of situation underlines the need for for-
mal methods, which are mathematically based techniques to specify and ver-
ify systems. Several formalisations of privacy properties in voting have been
proposed. Delaune, Kremer and Ryan [8, 9] develop their formalisation based
on observational equivalences of processes in the applied pi calculus, whereas
we believe privacy requirements should explicitly model the intruder’s knowl-
edge. Based on his knowledge, the intruder can distinguish different traces.
Moreover, the privacy of a voter in a voting system also depends on how much
knowledge (and when) the voter shares with the intruder. In [10], the tool
ProVerif is extended to check some (not all) equivalences of [8, 9]. Recently,
automatic verification techniques within the applied pi calculus framework
have been proposed by Backes, Hriţcu and Maffei [11]. Their approach has its
focus on remote electronic voting protocols, and mainly deals with coercion-
resistance. The constructive approach of Jonker and De Vink [12] is a logical
characterisation of receipt-freeness, but this work is in a less mature state
and thus currently only leads itself to high-level analysis. Baskar, Ramanu-
jam and Suresh [13] define a language to specify voting protocols and use
an epistemic logic to reason about receipt-freeness. Although it is relatively
easy to express privacy properties based on logic of knowledge, it is rather
difficult to develop verification techniques within such a logical framework.
All the aforementioned approaches only offer qualitative methods to analyse

2

whether a voting protocol satisfies some privacy property, instead of offering
methods to quantify privacy. However, a qualitative approach leaves several
possibilities for an intruder to reduce voter privacy. Examples include forc-
ing a voter not to vote for a certain candidate, or determining at which end
of the political spectrum was voted. We believe that computing the exact
possible choices of a voter is the only way to detect such attacks. In our
view, any privacy reductor is a receipt, not just those that nullify privacy.

In this paper we consider the possibilities for a voter to reduce her pri-
vacy, which we call voter-controlled privacy. The voter can subjectively pro-
vide the intruder information, to prove that she has voted in a certain way
in order to sell her vote. The intruder tries to find out whether the voter did
vote as she said, based on his knowledge gained by observing the election
and/or communicating with the voter. The privacy of any voting system
largely depends on the possibilities afforded to the intruder to communicate
with a voter. Voting literature [14, 15, 5, 4, 16] uses the following types
of information-hiding techniques to ensure privacy: mixnets [16], blind sig-
natures [14], homomorphic encryption [5]. Furthermore, private untappable
one-way channels (voter to authority or authority to voter) or two-way chan-
nels are often assumed [15, 5, 4]. The ability to break privacy relies on the
information acquired by the intruder. Such channels provide a means to keep
information from the intruder and thus help privacy. However, information
can be forwarded to the intruder by the voter. And vice versa, a voter could
use information supplied by the intruder (which then serves as a witness).
These observations lead us to distinguish various independent ways that a
voter can communicate with the intruder to rescind her privacy and classify
them according to their ability to reduce the privacy of a voter. These classes
are ordered according to privacy-reducing ability. The goal of this paper is
to provide a method for quantifying privacy of voters within this ordering.

As made clear by Benaloh and Tuinstra [1], voter privacy depends on
which knowledge the voter shares with the intruder, and at what time dur-
ing the protocol this knowledge is shared. (This is captured by the ordering
of the conspiracy classes in our paper.) Therefore, we develop a framework
combining knowledge reasoning along the lines of [12, 13] and trace equiv-
alences of [8, 9] to formally model voting protocols and define vote privacy
for the voters. This enables us to describe the knowledge of the intruder, as
well as of other entities in a voting protocol, at any point during execution
of the system. To distinguish execution traces with respect to the current
knowledge of the intruder, we adapt the reinterpretation function proposed

3

by Garcia et al. [17]. The framework is quantitative, in the sense that it
precisely measures privacy for any voter conspiring like one of the conspir-
acy classes. This is achieved by establishing per-voter choice groups, which
take different communication mechanisms between voters and the intruder
into account, along the lines of anonymity groups as introduced by Mauw,
Verschuren and De Vink [18] and Chothia et al. [19]. Thus, the framework
captures attacks which reduce, but not nullify, privacy. Such attacks have
not been identified and dealt with in other formal approaches.

Contribution. Our contribution in this paper is twofold. First, we introduce
a new formal framework combining knowledge reasoning and trace equiva-
lences to model and reason about voting protocols. Second, we provide a
quantitative definition of voter-controlled privacy. It allows for detection of
subtle privacy attacks on voters. The different cooperation modes of a voter
and the intruder are captured by conspiracy ordering.

Outline. The rest of this paper is organised as follows. In Section 2, we
define the setting of our framework. In Section 3, a formal framework to
model voting systems and its operational semantics is presented, which is
followed by a quantitative definition of privacy in voting in Section 4, based
on knowledge reasoning and trace equivalences. In Section 5, we classify
how a voter can cooperate with the intruder and in Section 6, we formally
define how to measure privacy for these classes of conspiring behaviour. We
illustrate our framework by two examples in Section 7 and discuss the power
of our framework by identifying some new attacks which can only be detected
by a quantitative approach in Section 8. Finally, Section 9 concludes the
paper and lists some future works.

2. Setting

This paper restricts itself to studying privacy of a voting system at the
protocol level. The setting for our approach is as follows.

2.1. Election type

We call the type of elections studied in this paper 1v1v (short for “one
voter, one vote”). 1v1v elections have the following properties:

• There is a set of voters V, a set of candidates C, and a set of voting
authorities Aut . We denote the set of all agents as Agents = V ∪ Aut .

4

• Each voter v ∈ V is entitled to cast one vote for one candidate c ∈ C.

• A public-key infrastructure for the public key pk(a) and private keys
sk(a) of agent a ∈ Agents .

• All votes have equal weight.

• The set of received ballots precisely determines the election result, and
is published after the elections.

• The candidate preferred by a voter is independent of the voting system,
which implies that the voter’s choice can be given a priori.

Voting systems often distinguish between various phases, such as a regis-
tration phase, a voting phase and a counting phase. The below framework
expresses phases as a synchronisation of parties.

2.2. Primitives

The following cryptographic and communication primitives are used in
the framework.

• Nonces are freshly generated random values.

• Encryption of a plain text ϕ with key k is denoted as {ϕ}k. The re-
sulting cipher text can be decrypted using the inverse key k−1. We
distinguish symmetric encryption, where k−1 = k and asymmetric en-
cryption such as public key encryption, where k = pk(a) (or sk(a)) and
k−1 = sk(a) (or pk(a)), for some agent a.

• Public channels are communication channels that reveal everything
about communication: sender, intended receiver and message.

• Anonymous channels are communication channels that hide the sender
of a message. Other than that, anonymous channels reveal intended
receiver and message.

• Untappable channels are communication channels that are completely
private. Only the sender and receiver learn the communicated mes-
sage, and only they are aware that a communication occurred at all.
Untappable channels can be either directed (i.e. a one-way communica-
tion channel) or bi-directional (i.e. a two-way communication channel).
Section 5 discusses the consequences of untappable channels further.

5

2.3. The intruder model

We consider a standard Dolev-Yao intruder [20] throughout the paper.
This intruder model can be characterised as follows:

• perfect cryptography assumption: no encrypted message can be opened
without the decryption key;

• network control:

– all messages sent on public and on anonymous channels are re-
ceived by the intruder;

– agents can only receive messages from the intruder.

Thus, the intruder can block or modify any message communicated over
a public or anonymous channel as he sees fit. Note that untappable
channels are not under intruder control.

3. A framework for modelling voting systems

In this section, we develop a formal syntax and provide semantics for
expressing the communication behaviour of voting systems in terms of agents.
We first specify syntax and derivation of terms. This is followed by the syntax
of communication events, and the syntax of processes (which specify the order
in which an agent executes events). Together, this enables us to syntactically
express voting systems. Next, semantics is given at two levels: the level of
individual agents, and the level of the voting system as a whole.

As a consequence of the assumption that the way voters vote is indepen-
dent of the election process, the relation between voters and their chosen
candidates can be given a priori. This is captured by the relation γ : V → C,
which specifies for each voter v ∈ V which candidate γ(v) ∈ C she votes for.
To deconstruct tuples, we use projection functions πi, i > 0 which return the
ith component of a tuple.

3.1. Syntax of the framework

We first define the syntax of terms, which is followed by the syntax of
agents. Next, the syntactical representation of a voting system is defined as
a function associating a state with each agent.

6

3.1.1. Terms

The terms communicated in a voting system are built up from variables
from the set Vars, candidates from the set C, random numbers from the
set Nonces, and cryptographic keys from the set Keys . The set of keys of
a particular agent a is given by Keysa. These basic terms can be composed
through pairing ((ϕ1, ϕ2)) and encryption ({ϕ}k).

Definition 1 (terms). Let Vars be a set of variables, containing at least the
variable vc, let Agents be a set of agents, let C be a set of candidates, let
Nonces be a set of nonces, and let Keys be a set of keys, ranged over by
var, a, c, n and k, respectively. The class Terms of terms, ranged over by ϕ,
is given by the BNF

ϕ ::= var | a | c | n | k | (ϕ1, ϕ2) | {ϕ}k.

Syntactical equivalence of terms ϕ1, ϕ2 is denoted as ϕ1 = ϕ2. A term is
called open if it contains variables and closed if it contains no variables.
The set of variables of an open term ϕ is given by fv(ϕ).

Terms encrypted with k can be decrypted using the inverse key k−1. For
symmetric encryption, k−1 = k, whereas in asymmetric encryption, pk(a)
denotes the public key and sk(a) the corresponding secret key of agent a.
Signing is denoted as encryption with the secret key.

Example (terms). The encryption of a nonce n with the public key of agent
a is denoted as {n}pk(a). A pair of this encrypted nonce with itself, un-
encrypted, results in the term ({n}pk(a), n). Note that (({n}pk(a), n), n) 6=
({n}pk(a), (n, n)), as the terms are syntactically different.

Variables represent unspecified terms, such as a voter’s choice. The
voter’s choice is represented by the variable vc until instantiated.

Definition 2 (term substitution). We introduce a variable mapping relation
7→, of type Vars → Terms. The substitution of a single variable var by term ϕ

is denoted as var 7→ ϕ. Application of substitution σ to term ϕ is denoted as
σ(ϕ). The domain of substitution σ, notation dom(σ), is the set of variables
for which σ specifies a substitution. The range of a substitution σ, notation
rng(σ), is defined as {σ(var) | var ∈ dom(σ)}. The composition of two
substitutions σ′ after σ is denoted by σ′◦σ. The empty substitution is denoted
as ∅.

7

Agents communicating terms can expect to receive a term with a cer-
tain structure, for example, a term encrypted with the agent’s public key
({ϕ}pk(a)). This is expressed by specifying an open term for the receiving
agent (such as {var}pk(a)), that serves as a template for the expected term.

Definition 3 (term matching). A closed term ϕ1 matches a term ϕ2, if there
is a substitution σ, such that dom(σ) = fv(ϕ2) and σ(ϕ2) = ϕ1. We denote
this as

match(ϕ1, ϕ2, σ) ≡ σ(ϕ2) = ϕ1 ∧ dom(σ) = fv(ϕ2).

Lemma 1. (unique substitution). Given a closed term ϕ1 and a term ϕ2,
there is at most one substitution σ such that match(ϕ1, ϕ2, σ).

Proof. (Proof by contradiction) Suppose that for two terms ϕ1, ϕ2 there exist
σ1, σ2 such that:

• match(ϕ1, ϕ2, σ1) and match(ϕ1, ϕ2, σ2) both hold, while

• σ1 6= σ2, σ1(ϕ2) = σ2(ϕ2) = ϕ1, and dom(σ1) = dom(σ2) = fv(ϕ2).

As dom(σ1) = dom(σ2) and σ1 6= σ2, we have rng(σ1) 6= rng(σ2). Thus,
there must be at least one variable var ∈ dom(σ1) such that σ1(var) 6= σ2(var).
But since dom(σ1) = fv(ϕ2), var ∈ fv(ϕ2). Thus σ1(ϕ2) 6= σ2(ϕ2), which is a
contradiction.

Example (variable matching and substitution). Consider the term of the pre-
vious example, {n}pk(a). In Table 1, we compare this term to several other
terms to see if they match under the stated substitution. In Table 1, we
assume that n 6= n′ and pk(a) 6= k.

ϕ σ match({n}pk(a), ϕ, σ)
var var 7→ {n}pk(a) true

{var}pk(a) var 7→ n true
{n}pk(a) ∅ true
{n′}pk(a) any false
{n}k any false

Table 1: Example: matching and substitution of terms

8

A term ϕ may be derived from a set of terms K (notation K ⊢ ϕ) if
it is an element of K or if it can be derived by repeated application of the
following rules:

(pairing) K ⊢ ϕ1, K ⊢ ϕ2 =⇒ K ⊢ (ϕ1, ϕ2)
(left) K ⊢ (ϕ1, ϕ2) =⇒ K ⊢ ϕ1

(right) K ⊢ (ϕ1, ϕ2) =⇒ K ⊢ ϕ2

(encryption) K ⊢ ϕ, K ⊢ k =⇒ K ⊢ {ϕ}k

(decryption) K ⊢ {ϕ}k, K ⊢ k−1 =⇒ K ⊢ ϕ

For instance, the decryption rule enables an agent a to decrypt {n}pk(a), as
he posses the key sk(a). An agent’s knowledge is a set of terms closed under
derivability. Closure of a set K under derivability is defined as K = {ϕ |
K ⊢ ϕ}.

Example (derivability and knowledge). From a knowledge set K containing
term n, we can derive the following terms: n, (n, n), ((n, n), n), (n, (n, n)),
and so on. If K also contains a key k, we can additionally derive terms such
as {n}k, (n, {n}k), (n, k), (k, n),

3.1.2. Agents

Terms are communicated between agents. Communication of a term is an
event. We distinguish public, anonymous, and untappable communication
channels. Hence, there are distinct events for each type of channel. Fur-
thermore, we note that any election process inherently has multiple phases.
As such, synchronisation between the election officials must be inherent in
voting systems. For the framework to support this, we introduce a phase
synchronisation event.

Definition 4 (events). The class Ev of communication events, ranged over
by ev, is given by:

Ev = {s(a, a′, ϕ), r(a, a′, ϕ), as(a, a′, ϕ), ar(a′, ϕ), us(a, a′, ϕ), ur(a, a′, ϕ),
ph(i) | a, a′ ∈ Agents , ϕ ∈ Terms, i ∈ N },

where s, r, as, ar , us , ur denote sending and receiving over public, anonymous
and untappable channels, respectively. Finally, ph(i) is the event denoting
that an agent is ready to execute phase transition i.

The subclass of send events is denoted as:

Ev snd = {s(a, a′, ϕ), as(, a′, ϕ), us(a, a′, ϕ) | a, a′ ∈ Agents , ϕ ∈ Terms}.

9

Similarly, the subclass of receive events is denoted as:

Ev rcv = {r(a, a′, ϕ), ar(a′, ϕ), ur(a, a′, ϕ) | a, a′ ∈ Agents , ϕ ∈ Terms}.

The subclass of phase events is denoted as Ev ph = {ph(i) | i ∈ N}.

Variable substitution is extended straightforwardly to events, by replacing
all substituted variables in the term of one event. This is denoted as σ(ev)
for an event ev and a substitution σ. The function fv is similarly extended,
by application to the term of an event. The set of free variables of an event
ev is thus given by fv(ev).

The behaviour of an agent is determined by the order in which events
occur. This order is defined by the agent’s process, as follows.

Definition 5 (processes). The class Processes of processes, ranged over by
P , is defined as follows.

P ::= δ | ev .P | P1 + P2 | P1 � ϕ1 = ϕ2 � P2 | ev .X(ϕ1, . . . , ϕn).

Here, δ denotes a deadlock. A process can be preceded by an event (ev .P).
Furthermore, a process can be a choice between two alternative processes,
either a non-deterministic choice (P1 + P2) or a conditional choice (P1 �

ϕ1 = ϕ2 � P2). If ϕ1 is syntactically equal to ϕ2, the process behaves as P1;
otherwise, the process behaves as P2. Finally, we have guarded recursion of
processes. We assume a class of process variables, which is ranged over by
X. For every process variable X, with arity n, there is a defining equation of
the form X(var1, . . . , varn) = P , with the syntactic requirement that the free
variables of P (as defined below) are precisely var1, . . . , varn.

Example (processes). The following are examples of processes.

δ

ph(1).δ
ph(2).δ � {ϕ}k = {ϕ′}k � ph(1).δ
ph(1).X(ϕ1, {ϕ2}k, n)

Without loss of generality, we assume a naming convention such that
all free variables in the defining equation of a process variable have glob-
ally unique names. This limits the scope of such variables to that defining
equation.

10

Substitutions are extended to processes. The substitution σ applied to
process P is denoted as σ(P) and is defined as follows.

σ(P) =































δ if P = δ

σ(ev).σ(P ′) if P = ev .P ′

σ(P1) + σ(P2) if P = P1 + P2

σ(P1) � σ(ϕ1) = σ(ϕ2) � σ(P2) if P = P1 � ϕ1 = ϕ2 � P2

σ(ev).Y (σ(ϕ2), . . . , σ(ϕn)) for fresh Y (var1, . . . , varn) = σ(P ′)
if P = ev .X(ϕ1, . . . , ϕn) ∧ X(var1, . . . , varn) = P ′

Note that for guarded recursion (i.e. ev .X(ϕ1, . . . , ϕn)), the substitution σ is
applied to the invoked process too (i.e. to P , if X(var1, . . . , varn) = P). This
is done by introducing a new defining equation for a fresh process variable
Y . The defining equation is of the form Y (var1, . . . , varn) = P ′, where P ′ is
the substitution σ applied to process P , so Y (var1, . . . , varn) = σ(P).

The function fv is also extended to processes. Note that receiving a term
binds the received variables, hence receive actions reduce the number of free
variables. Furthermore, remark that in guarded recursion all free variables
of the defined process are bound by the invocation (due to the syntactic
requirement). Thus, the only free variables of an invocation are the free
variables of the argument list.

fv(P) =















































































∅ if P = δ

fv(P ′) if P = ev .P ′ ∧ ev ∈ Evph

fv(P ′) ∪ fv(ev) if P = ev .P ′ ∧ ev ∈ Ev snd

fv(P ′) \ fv(ev) if P = ev .P ′ ∧ ev ∈ Ev rcv

fv(P1) ∪ fv(P2) if P = P1 + P2

fv(P1) ∪ fv(ϕ1) ∪ fv(ϕ2) ∪ fv(P2) if P = P1 � ϕ1 = ϕ2 � P2

fv(ϕ1) ∪ · · · ∪ fv(ϕn) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Ev ph

fv(ϕ1) ∪ · · · ∪ fv(ϕn) ∪ fv(ev) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Ev snd

fv(ϕ1) ∪ · · · ∪ fv(ϕn) \ fv(ev) if P = ev .X(ϕ1, . . . , ϕn)
∧ ev ∈ Ev rcv

Variables used in a defining equation which do not appear in the argument
list of the equation must be bound by their occurrence. This means that such
variables may only occur in events which bind variables, i.e. events ∈ Ev rcv .

11

An agent’s state is a combination of behaviour, i.e. the order in which
events are executed (as determined by a process), and knowledge (a set of
terms) as follows.

Definition 6 (agent state). The state of an agent a is given by the agent’s
knowledge knwa and its process Pa. Thus, agent state st ∈ Agstate is a tuple
of knowledge and a process:

Agstate = P(Terms) × Processes.

A voting system specifies, for each agent, its state. Hence, a voting system
is a mapping from agent to states.

Definition 7 (voting system). A voting system is a system that specifies a
state for each agent a. The class of voting systems, VotSys, is defined as
VotSys = Agents → Agstate. We denote the state assigned by voting system
VS ∈ VotSys to agent a as VS(a) = (knwa, Pa). knwa is the knowledge of
agent a, and Pa describes its behaviour.

A voting system VS ∈ VotSys may be instantiated with voter choices, as
given by choice function γ : V → C. This instantiation is denoted as VSγ,
which, for each voter, substitutes the voter choice variable vc by the choice
specified by γ in her process, as follows.

VSγ(a) =

{

VS(a) if a 6∈ V
(

π1(VS(a)), π2(σ(VS(a)))
)

if a ∈ V ∧ σ = vc 7→ γ(a)

Recall that πi denotes an extraction function that extracts the ith component
from a tuple.

Example (voting system). In Table 2 we specify a voting system VS0 with
two voters v1 , v2 and one authority T . In VS0, voter v1 sends her signed
vote, encrypted with T ’s public key, to counter T . Voter v2 does the same
for her vote. Note that these votes are specified as vc, until instantiated by a
choice function. The counter receives these votes in variables var1 and var2,
respectively. The initial knowledge of a voter consists of her private key and
the public key of T . As there are no voter-to-voter interactions, we omit the
public keys of other voters in the initial knowledge of a voter in this example.
In addition to VS0, we also show VSγ1

o , where γ1(v1) = c1 and γ1(v2) = c2.

12

VS0(v1) = ({pk(T), sk(v1)}, s(v1 , T, {{vc}sk(v1)}pk(T)) . δ)
VS0(v2) = ({pk(T), sk(v2)}, s(v2 , T, {{vc}sk(v2)}pk(T)) . δ)
VS0(T) = ({pk(v1), pk(v2), sk(T)},

r(v1 , T, {{var1}sk(v1)}pk(T)) . r(v2 , T, {{var2}sk(v2)}pk(T)) . δ)

VSγ1

0 (v1) = ({pk(T), sk(v1)}, s(v1 , T, {{c1}sk(v1)}pk(T)) . δ)
VSγ1

0 (v2) = ({pk(T), sk(v2)}, s(v2 , T, {{c2}sk(v2)}pk(T)) . δ)
VSγ1

0 (T) = VS0(T)

Table 2: Example of voting system VS0 and VSγ1

0
(where γ1(v1) = c1 and γ1(v2) = c2)

3.2. Semantics of the framework

The operational semantics of a voting system is defined by a number of
derivation rules of the form

p1 . . . pn

S
e
−→ S ′

.

This expresses that if the system is in state S and if the premises p1 to pn

are satisfied, the system may perform event e and continue in state S ′ [21].
The operational semantics is defined in two layers. First, the semantics of
individual agents is defined. Next we define the semantics of a voting system
based on the semantics of individual agents. The operational semantics of a
voting system can be seen as the parallel composition of all agents.

3.2.1. Agent semantics

The semantics of agents describes the effect of the events on the agent
state. Recall that agent state is defined as a tuple containing a knowledge
set and a process: Agstate = P(Terms) × Processes.

In our assumed intruder model, each tappable communication by an agent
is a communication with the intruder. Hence, the semantic rules below take
the intruder’s knowledge into account. The states considered below thus
consist of a tuple of intruder knowledge KI and agent state. In the rules
below, events may involve a, x ∈ Agents , which we omit from the premise of
the rules.

There are some restrictions on the terms that may occur in an event. A
term ϕ occurring in a send event must be closed (fv(ϕ) = ∅) at the moment
of sending. A term occurring in a receive event can specify the structure

13

of the term to be received. There is a limitation: a receiving agent a can
only specify the structure up to the extent of his knowledge knwa. This is
captured by the readable predicate Rd: P(Terms)×Terms (inspired by [22]).

Rd(knwa, ϕ) ≡






























true if ϕ ∈ Vars

knwa ⊢ ϕ if ϕ ∈ C ∪ Nonces
∪ Keys ∪ Agents

knwa ⊢ ϕ ∨ (knwa ⊢ k−1 ∧ Rd(knwa, ϕ1)) if ϕ = {ϕ1}k

(Rd(knwa, ϕ2) ∧ Rd(knwa ∪ {ϕ2}, ϕ1)) if ϕ = (ϕ1, ϕ2)
∨ (Rd(knwa, ϕ1) ∧ Rd(knwa ∪ {ϕ1}, ϕ2))

An agent a may use term ϕ as a template for a receive event, when ϕ

is either a variable or a constant term derivable from knwa. When ϕ is an
encryption, it may be used as a template if the agent knows the inverse key, or
if the agent knows the key and can read the encrypted message. For pairing,
we take into account that either side of the pair may contain information
(e.g. a key) that is necessary to read the other side.

Example (readability of terms). Below, we illustrate the readability function
for several terms and knowledge sets (assuming symmetric encryption).

ϕ knw Rd(knw , ϕ) ϕ knw Rd(knw , ϕ)
var ∅ true

(n, k) ∅ false (n, k) {n, k} true
{var}k ∅ false {var}k {k} true
{n}k {n} false {n}k {n, k} true

(k, {var}k) ∅ false (k, {var}k) {k} true
(var1, {var2}var1

) ∅ true

public send. An agent may send a closed term ϕ if and only if the agent
knows the term (note that variables do not capture knowledge).

knwa ⊢ ϕ fv(ϕ) = ∅

(KI , knwa, s(a, x, ϕ).P)
s(a,x,ϕ)
−−−−→ (KI ∪ {ϕ}, knwa, P)

14

public receive. A receive event specifies an open, readable term ϕ. By
receiving a matching term ϕ′, the unassigned variables in ϕ are assigned a
value by the unique substitution σ such that match(ϕ′, ϕ, σ).

KI ⊢ ϕ′ fv(ϕ′) = ∅ match(ϕ′, ϕ, σ) Rd(knwa, ϕ)

(KI , knwa, r(x, a, ϕ).P)
r(x,a,ϕ′)
−−−−−→ (KI , knwa ∪ {ϕ′}, σ(P))

anonymous send. The anonymous send semantics follows directly from the
above public send semantics by replacing the send event s(x, y, ϕ) with event
as(x, y, ϕ).

knwa ⊢ ϕ fv(ϕ) = ∅

(KI , knwa, as(, x, ϕ).P)
as(,x,ϕ)
−−−−→ (KI ∪ {ϕ}, knwa, P)

anonymous receive. An anonymous receive is largely equal to the public
receive, except that the event omits information about the sender.

KI ⊢ ϕ′ fv(ϕ′) = ∅ match(ϕ′, ϕ, σ) Rd(knwa, ϕ)

(KI , knwa, r(a, ϕ).P)
ar(a,ϕ′)
−−−−→ (KI , knwa ∪ {ϕ′}, σ(P))

untappable send. An untappable send is a send event which happens out-
side intruder control or even intruder awareness. It thus limits the power of
the intruder. Note that the intruder does not learn the communicated term
for an untappable send event.

knwa ⊢ ϕ fv(ϕ) = ∅

(KI , knwa, us(a, x, ϕ).P)
us(a,x,ϕ)
−−−−−→ (KI , knwa, P)

untappable receive. An untappable receive is the receiving dual of the
untappable send. Thus, it occurs outside intruder control or awareness, and
represents a limit on the power of the intruder. Note that, at this level of the
semantics, the origin of the term ϕ′ is not specified. The origin of this term is
specified at the system level, where untappable receive is synchronised with
untappable send.

fv(ϕ′) = ∅ match(ϕ′, ϕ, σ) Rd(knwa, ϕ)

(KI , knwa, ur(x, a, ϕ).P)
ur(x,a,ϕ′)
−−−−−→ (KI , knwa ∪ {ϕ′}, σ(P))

15

phase synchronisation. The events of the set Evph are intended to syn-
chronise agents in the system. At the agent level, these events have little
impact, as evidenced by the following operational semantic rule.

ev ∈ Evph

(KI , knwa, ev .P)
ev
−→ (KI , knwa, P)

non-deterministic choice. An agent that can execute a non-deterministic
choice may choose any of the alternatives, as follows.

(KI , knwa, P1)
ev
−→ (K ′

I , knw ′

a, P
′
1)

(KI , knwa, P1 + P2)
ev
−→ (K ′

I , knw ′

a, P
′
1)

(KI , knwa, P2)
ev
−→ (K ′

I , knw ′

a, P
′
2)

(KI , knwa, P1 + P2)
ev
−→ (K ′

I , knw ′

a, P
′
2)

conditional choice. A conditional choice is a choice between two processes,
based upon syntactical comparison of two terms. While these two terms may
be open terms in the agent’s specification, upon execution, we require that
these terms are closed.

(KI , knwa, P1)
ev
−→ (K ′

I , knw ′

a, P
′
1) fv(ϕ1) = ∅

(KI , knwa, P1 � ϕ1 = ϕ1 � P2)
ev
−→ (K ′

I , knw ′

a, P
′
1)

(KI , knwa, P2)
ev
−→ (K ′

I , knw ′

a, P
′
2) ϕ1 6= ϕ2 fv(ϕ1) = fv(ϕ2) = ∅

(KI , knwa, P1 � ϕ1 = ϕ2 � P2)
ev
−→ (K ′

I , knw ′

a, P
′
2)

guarded recursion. An invocation of process variable X with argument
list ϕ1, . . . , ϕn can be executed by agent a if the corresponding process in the
defining equation can execute, under the specified arguments.

(KI , knwa, σ(P))
ev
−→ (K ′

I , knw ′

a, P
′)

X(var1, . . . , varn) = P σ = var1 7→ ϕ1 ◦ · · · ◦ varn 7→ ϕn

(KI , knwa, X(ϕ1, . . . , ϕn))
ev
−→ (K ′

I , knw ′

a, P
′)

3.2.2. System semantics

The operational semantics of voting systems describe how the state of a
voting system changes due to the interactions of its agents. The state of a
voting system is given by the intruder knowledge and the state of each agent.

16

Definition 8 (state of a voting system). The state of a voting system is a
tuple of intruder knowledge and a mapping of agents to agent states (recall
that VotSys = Agents → Agstate), as follows.

State = P(Terms) × VotSys .

The knowledge and current process for each agent are given by VotSys. We
denote the attribution of state (knwa, Pa) to agent a as a @ (knwa, Pa). The
current state of agent a in system state (KI , S) is denoted as a @ (knwa, Pa) ∈
S. The initial state of voting system VS with respect to choice function γ is
(K0

I ,VS
γ), for initial intruder knowledge K0

I .

Typically, the initial intruder knowledge contains public keys of all agents,
compromised keys etc.

The operational semantics of voting systems in the context of a Dolev-
Yao intruder (limited to public and anonymous channels) is given below.
The semantic rules give rise to a labelled transition system, with labels de-
noting the events. Untappable communication is modelled as synchronous
communication, hence the us and ur events are replaced by uc events (denot-
ing untappable communication) in the set of labels Labels of the transition
system:

Labels = {uc(a, a′, ϕ) | a, a′ ∈ Agents ∧ ϕ ∈ Terms} ∪ Ev \
{ur(a, a′, ϕ), ur(a, a′, ϕ) | a, a′ ∈ Agents ∧ ϕ ∈ Terms}.

Both untappable communications and phase synchronisation are synchronous
events by more than one agent. The other events are executed without
synchronising with other agents. We distinguish the non-synchronous events
as Evnosync , which is defined as follows.

Evnosync = {s(a, a′, ϕ), r(a, a′, ϕ), as(, a′, ϕ), ar(a′, ϕ)
| a, a′ ∈ Agents , ϕ ∈ Terms}.

The below system semantics uses the above agent semantics to define the
dynamic behaviour of the system. The rules below may involve agents
a, b ∈ Agents , which we omit from the premises of the rules. Note that
the premise of the rules involves agent state transitions (a three-tuple of
intruder knowledge, agent knowledge and agent process), and may specify
restrictions on the system state (a mapping of agents to agent states).

17

non-synchronous events. The operational semantics for public and for
anonymous send as well as read events is given by the following rule.

(KI , knwa, P)
ev
−→ (K ′

I , knw ′

a, P
′) ev ∈ Evnosync a @ (knwa, P) ∈ S

(KI , S)
ev
−→ (K ′

I , {a @ (knw ′

a, P
′)} ∪ S \ {a @ (knwa, P)})

untappable communications. As no agent, nor the intruder, except for
the sending agent and the receiving agent, are aware of untappable com-
munications, we model them as synchronous communication. This captures
both untappable send and receive in one transition. Hence, a new label for
this transition is needed. We use uc(a, b, ϕ), which must match both the
send us(a, b, ϕ) and the receive ur(a, b, ϕ) events. Note that the intruder’s
knowledge does not change due to untappable communications, nor does the
sending agent’s knowledge.

(KI , knwa, Pa)
us(a,b,ϕ)
−−−−−→ (KI , knwa, P

′
a)

(KI , knw b, Pb)
ur(a,b,ϕ)
−−−−−→ (KI , knw ′

b, P
′
b)

s0 = {a @ (knwa, Pa), b @ (knw b, Pb)} s0 ⊆ S

(KI , S)
uc(a,b,ϕ)
−−−−−→ (KI , {a @ (knwa, P ′

a), b @ (knw ′

b, P
′
b)} ∪ S \ s0)

phase synchronisation. Phase events denote synchronisation points. A
ph(i) event may only occur if all authorities have agreed that the election
will evolve into a new phase. As a consequence, all agents who are ready and
willing to do so will move to the new phase as well.1

In the semantics rule below, the agents that are ready and willing to
execute the phase transition are captured (together with their states) in the
set Phase. Note that Phase is a subset of all agents ready to execute a phase
transition, as readiness does not imply willingness. The set Phase ′ reflects
the new states for these agents. Finally, we explicitly require each authority

1We conjecture that our semantics of phase synchronisation is similar to the strong
phase semantics as proposed in [10].

18

a ∈ Aut to be ready and willing to execute the phase transition.

i ∈ N

Phase ⊆ {a @ (knwa, Pa) ∈ S | ∃P ′
a : (KI , knwa, Pa)

ph(i)
−−−→ (KI , knwa, P

′
a)}

Aut ⊆ {a ∈ Agents | ∃knw a, Pa : a @ (knwa, Pa) ∈ Phase}
Phase ′ = {a @ (knwa, P

′
a) | ∃Pa : a @ (knwa, Pa) ∈ Phase ∧

(KI , knwa, Pa)
ph(i)
−−−→ (KI , knwa, P

′
a)}

(KI , S)
ph(i)
−−−→ (KI ,Phase ′ ∪ S \ Phase)

The above semantics rules give rise to labelled transition systems. Each
possible execution of the system is represented by a path in this labelled
transition system. A path is represented by a list of the path’s labels and is
called a trace. The set of traces of a given voting system is defined as follows.

Definition 9 (traces). The class of traces Traces consists of finite lists of
labels. The traces of a voting system VSγ (voting system VS instantiated with
choice function γ) are given by

Tr(VSγ) = {α ∈ Labels⋆ | α = α0 . . . αn−1 ∧

∃s0, . . . , sn ∈ State : s0 = (K0
I ,VS

γ) ∧

∀0 ≤ i < n : si
αi−→ si+1}

The set of traces of a voting system VS is now given by

Tr(VS) =
⋃

γ∈V→C

Tr(VSγ).

We denote the intruder knowledge in the last state of a trace t as Kt
I. The

empty trace is denoted by ǫ.

Example (traces). Consider the voting system VS0 from Table 2, and a choice
function γ1 such that γ1(v1) = γ1(v2) = c. Then we have the following.

ǫ ∈ Tr(VSγ1

0)
s(v1 , T, {{c}sk(v1)}pk(T)) ∈ Tr(VSγ1

0)
s(v1 , T, {{c}sk(v1)}pk(T)) s(v2 , T, {{c}sk(v2)}pk(T)) ∈ Tr(VSγ1

0)
s(v1 , T, {{c}sk(v1)}pk(T)) r(v1 , T, {{c}sk(v1)}pk(T)) ∈ Tr(VSγ1

0)
. . .

19

s1 s2

r1 s2
s1

s2
r1

r2

Figure 1: A labelled transition system

If we denote the send event of voter v1 as s1 , the send event of voter v2
as s2 and the corresponding read events of the tallyer as r1 , r2 , respectively,
the labelled transition system for this voting system is as in Figure 1. Its full
set of traces is succinctly described as

Tr(VSγ1

0) = {ǫ, s1 , s2 , s1 s2 , s2 s1 , s1 r1 , s1 s2 r1 , s2 s1 r1 , s1 r1 s2 ,

s1 s2 r1 r2 , s1 r1 s2 r2 , s2 s1 r1 r2}.

Traces model the dynamic behaviour of the system. The next section
determines the privacy of a given voter in a given trace. This is then extended
to establish the privacy of a voter in a voting system.

4. Privacy in voting systems

The framework developed in the previous section enables us to express
if an intruder can distinguish two executions of the system, as previously
expressed by Mauw, Verschuren and De Vink [18] and later by Garcia et
al. [17] for passive intruders. Traces t, t′ are to be considered equivalent
if the intruder cannot distinguish them. To formalise this equivalence, the
distinguishing ability of the intruder is formalised as the intruder’s ability
to distinguish two messages. We introduce the notion of reinterpretation to
capture this.

Definition 10 (reinterpretation [17]). Let ρ be a permutation on the set
of terms Terms and let KI be a knowledge set. The map ρ is a semi-

20

reinterpretation under KI if it satisfies the following.

ρ(ϕ) = ϕ for ϕ ∈ C ∪ {a, sk(a), pk(a) | a ∈ Agents}
ρ((ϕ1, ϕ2)) = (ρ(ϕ1), ρ(ϕ2))

ρ({ϕ}k) = {ρ(ϕ)}ρ(k) if KI ⊢ ϕ, k ∨ KI ⊢ {ϕ}k, k
−1

Map ρ is a reinterpretation under KI iff it is a semi-reinterpretation and its
inverse ρ−1 is a semi-reinterpretation under ρ(KI). The notion of reinter-
pretation is extended straightforwardly to events and to traces by applying ρ

to the message fields of events (in traces).

The notion of reinterpretation models the intruder’s ability to distinguish
terms. The intruder can distinguish any candidate and agent name from
any other term. As public keys and private keys identify the agent, these
too can be distinguished from any other term. As the intruder does not
know which nonces or (non-public / private) keys belong to which agents,
he cannot distinguish these from other terms. Furthermore, the intruder
can distinguish the structure of paired terms. Encrypted terms can only be
distinguished if the intruder can decrypt the term or if he can construct the
term himself. Note that as the intruder cannot distinguish one key from
another, ρ must be applied to the encryption key of any encrypted message
that he can distinguish.

Example (reinterpretation). In Table 3, we provide two permutations on
terms ρ and ρ′ that are reinterpretations for k, k′, n, n′, n′′ ∈ KI .

ϕ ρ(ϕ) ρ′(ϕ)
n n′ n′′

k k′ k

c c c

{(c, n)}k {(c, n′)}k′ {c, n′′}k

sk(a) sk(a) sk(a)

Table 3: Example: reinterpretation of terms

Some events in a trace are hidden from the intruder, hence the intruder
has a restricted view of a trace. In particular, the intruder cannot see any
uc transitions (communications over untappable channels), nor the sender of

21

anonymous communications. The visible part of a trace is captured by the
function obstr : Traces → Traces as follows:

obstr(ǫ) = ǫ

obstr(ℓ · t) =







obstr(t) if ℓ = uc(a, a′, ϕ)
as(x, ϕ) · obstr(t) if ℓ = as(, x, ϕ)
ℓ · obstr(t) otherwise

Definition 11 (trace indistinguishability). Traces t, t′ are indistinguishable
for the intruder, notation t ∼ t′ iff there exists a reinterpretation ρ such that
the visible part of t is the visible part of ρ(t′) and the final intruder knowledge
in t and t′ is equal modulo ρ. Formally put:

t ∼ t′ ≡ ∃ρ : obstr(t′) = ρ(obstr(t)) ∧ Kt
I = ρ(Kt′

I).

The above definition of the intruder’s ability to distinguish traces extends
to his ability to distinguish sets of traces as follows.

Definition 12 (choice indistinguishability). Given voting system VS, choice
functions γ1, γ2 are indistinguishable to the intruder, notation γ1 ≃VS γ2 iff

∀t ∈ Tr(VSγ1) : ∃t′ ∈ Tr(VSγ2) : t ∼ t′ ∧
∀t ∈ Tr(VSγ2) : ∃t′ ∈ Tr(VSγ1) : t ∼ t′

The set of choice functions indistinguishable for the intruder in a given
system is now succinctly defined as follows.

Definition 13 (choice group). The choice group for a voting system VS and
a choice function γ is given by

cg(VS, γ) = {γ′ | γ ≃VS γ′}.

The choice group for a particular voter v, i.e. the set of candidates indistin-
guishable from v’s chosen candidate, is given by

cgv(VS, γ) = {γ′(v) | γ′ ∈ cg(VS, γ) }.

In the last definition, the privacy of a voting system is defined with re-
spect to an intruder who can control all communication channels except the
untappable channels. The next chapter poses the question of how much of
this remaining privacy is controlled by the voter.

22

5. Conspiring voters

The above framework captures the behaviour of a passive voter, who does
not actively cooperate with the intruder to prove how she has voted. How-
ever, as remarked in the introduction, we focus on voters trying to renounce
their vote-privacy. A conspiring voter can try to share her knowledge with
the intruder. The classic receipt-freeness case assumes the voter shares her
final knowledge. As noted in [12], the timing of knowledge sharing is impor-
tant. In order to prove that she really has the receipt, the voter needs to
share her private knowledge before it becomes public in the course of the ex-
ecution of the voting system. Furthermore, during the course of an election,
a voter may learn or commit to knowledge that the intruder is unaware of, by
communicating over untappable channels. A voter may seek to circumvent
the privacy provisions of these channels by sharing knowledge received over
such a channel with the intruder, and by using intruder-supplied information
to send over such a channel. The timing of sharing information between the
conspiring voter and the intruder hence is important.

We distinguish the cases where the voter shares her full knowledge (post-
election or pre-election) from the cases where the voter conspires due to
untappable channels (sharing information, using intruder-supplied informa-
tion, or both). In absence of untappable channels, all communications are
visible to the intruder. In this case, the sooner a voter shares her knowledge
with the intruder, the more traces the intruder can distinguish. Classical
receipt-freeness, classic-rf, tries to break vote-privacy by sharing knowledge
after elections. However, sharing knowledge beforehand, start-rf, gives the
intruder more knowledge during the elections. This situation is depicted
below in Figure 2(i).

In presence of untappable channels, the intruder is not aware of every
increase of the voter’s knowledge. The voter can mitigate this by conspir-
ing mid-election. Her willingness to do so is captured in Figure 2(ii). The
conspiring voter may choose to share information the intruder would not
learn otherwise (rf-share) or use intruder-supplied terms in communications
hidden from the intruder (rf-witness) to later prove how she voted. The
combination of these two notions is at the top of the ordering (rf-relay).

A voter may use privacy-reducing techniques from both hierarchies to
reduce her privacy. We denote this, e.g., as a type 1a voter, or a type 2c
voter. In the next section, we present precise definitions of these notions.

23

Figure 2: Knowledge sharing, (i) pre- and post-election and (ii) mid-election

6. Modelling conspiratory behaviour

A conspiring voter behaves differently from a regular voter, as she will
communicate with the intruder in certain circumstances. We incorporate the
different conspiracy classes into the framework as follows. We start by se-
lecting a regular voter and the conspiracy class that we assume her to satisfy.
Then the regular specification of this voter is transformed into a conspiring
specification by following the transformation rules of this conspiracy class as
defined below. For instance, the transformation for class 1 (classic-rf) con-
sists of adding an extra event at the end of the voter’s specification which
represents the sharing of her knowledge with the intruder.

In order to formalise this approach, we extend the set of events Ev with
events: {is(ϕ), ir(ϕ)}, where is(ϕ) denotes the agent sending term ϕ to the
intruder, and ir(ϕ) denotes receiving term ϕ from the intruder. The agent
level semantics of these events is given below:

send to intruder:
knwv ⊢ ϕ fv(ϕ) = ∅

(KI , knwv, is(ϕ).P)
is(ϕ)
−−−→ (KI ∪ {ϕ}, knwv, P)

receive from intruder:

KI ⊢ ϕ′ fv(ϕ′) = ∅
match(ϕ′, ϕ, σ) Rd(knwv, ϕ)

(KI , knwv, ir(ϕ).P)
ir(ϕ′)
−−−→ (KI , knwv ∪ {ϕ′}, σ(P))

The specific conspiracy classes are captured by a syntactical transforma-
tion of the process of the conspiring voter v as follows:

• 1. classic-rf: at the end of her process, v sends her knowledge set to
the intruder (knwv is represented as a pairing of each element of knwv).

24

• 2. start-rf: as the first event executed by v, she sends her knowledge
set to the intruder.

• a. rf-share: each ur(a, v, ϕ) is followed by an is(ϕ).

• b. rf-witness: The intruder supplies the voter-controllable parts of
the term used in each us(v, a, ϕ). To do so, the intruder must know
what terms are voter-controllable. To this end, we introduce two func-
tions:

– a function vars(v, ϕ) that returns the variables of ϕ that agent v

can control, and

– a function freshvars(v, ϕ), that replaces every voter-controllable
variable in ϕ by a fresh variable.

The voter sends vars(v, ϕ) to the intruder, who replies with a similar
term, changing the values to his liking. The voter then uses the newly
supplied values in the untappable send event.

• c. rf-full: this combines rf-share and rf-witness.

Note that where classic-rf and start-rf transform the ending and beginning,
respectively, of voter v’s process, the other three conspiracy classes transform
events inside the voter process. To model conspiracy, we first introduce an
event transformation function θi, which relies on auxiliary functions vars
and freshvars. Then, the event transformation function is then extended to
processes and to voting systems.

The function vars : V × Terms → Terms captures those variables of a
term ϕ that are under a voter v’s control. This function is defined as follows.

vars(v, ϕ) =















{ϕ} if ϕ ∈ Vars

vars(v, ϕ′) if ϕ = {ϕ′}k, for k ∈ Keysv

vars(v, ϕ1) ∪ vars(v, ϕ2) if ϕ = (ϕ1, ϕ2)
∅ otherwise

The function freshvars : V×Terms → Terms replaces every voter-controllable
variable in ϕ by a fresh variable. To this end, we assume the existence of
a substitution σfresh , where dom(σfresh) = vars(v, ϕ), that substitutes fresh
variables for every voter-controlled variable. Note that some, but not all
occurrences of a variable may be voter-controllable (e.g. var in the term

25

(var, {var}sk(Reg))). Hence, σfresh may only freshen those those uses of vari-
ables that are under voter control, as follows.

freshvars(v, ϕ) =














σfresh(var) if ϕ ∈ Vars

{freshvars(v, ϕ′)}k if ϕ = {ϕ′}k, for k ∈ Keysv

(freshvars(v, ϕ1), freshvars(v, ϕ2)) if ϕ = (ϕ1, ϕ2)
ϕ otherwise

Definition 14 (event transformation). The event transformation functions
θi : V × Ev → Processes, for i a conspiracy class ∈ {a, b, c}, are defined as
follows.

− θa(v, ev) =

{

ur(ag, v, ϕ) . is(ϕ) if ev = ur (ag, v, ϕ)
ev otherwise

− θb(v, ev) =







is(vars(v, ϕ)) . ir(vars(v, ϕ′)) . us(v, ag, ϕ′)
if ev = us(v, ag, ϕ), for ϕ′ = freshvars(v, ϕ)

ev otherwise

− θc(v, ev) = θb(v, θa(v, ev)).

We model sending of a set (for example, is(vars(v, ϕ))) as sending a pairing
of all elements of the set (in this example, vars(v, ϕ)).

The event transformation θa ensures that every untappable receive event
is followed by an intruder send event. The event transformation θb ensures
that the intruder supplies all voter-controllable input for every untappable
send event. The event transformation θc combines θa and θb.

Example (event transformation). In Table 4, we show some examples of event
rewrites. We leave out θc, as it is the composition of θa and θb.

We model a conspiring voter, according to the conspiracy classification
above, by means of a process transformation function. This function trans-
forms the process by introducing conspiring behaviour.

Definition 15 (process transformation). The process transformation func-
tion Θi : V×Processes → Processes transforms a process for a specific voter v

26

ev θa(ev) θb(ev)
ph(1) ph(1) ph(1)

ur(a, b, var) ur (a, b, var) . is(var) ur(a, b, var)
us(a, b, (vc, {vc}sk(Reg))) us(a, b, (vc, {vc}sk(Reg))) is(vc) . ir(irvar) .

us(a, b, (irvar, {vc}sk(Reg)))

Table 4: Example: event transformation

into a conspiring process of the class i ∈ {1, 2, a, b, c}. For i = 2, conspiracy
is a matter of sharing initial knowledge, which is modelled as

Θ2(v, P) = is(knwv).P

In the other cases, conspiracy has an effect on the events of the processes. For
readability, we do not distinguish cases for i = 1, but simply state θ1(v, ev) =
ev. For i ∈ {1, a, b, c}, process transformation is defined as follows.

Θi(v, P) =














































δ if i 6= 1 ∧ P = δ

is(knwv).δ if i = 1 ∧ P = δ

θi(v, ev).Θi(v, P) if P = ev .P

Θi(v, P1) + Θi(v, P2) if P = P1 + P2

Θi(v, P1) � ϕ1 = ϕ2 � Θi(v, P2) if P = P1 � ϕ1 = ϕ2 � P2,

for ϕ1, ϕ2 ∈ Terms
θi(v, ev).Y (ϕ1, . . . , ϕn), for fresh Y (var1, . . . , varn) = Θi(v, P ′)

if P = X(ϕ1, . . . , ϕn) ∧ X(var1, . . . , varn) = P ′

Example (process transformation). In the example process transformations
below, s1 is the send action of voting system VS0, in Table 2. The first two
entries transform voter process 1 from VS0. The final example illustrates how
a more complex process is transformed.

P i Θi(v, P)
s1 .δ 1 s1 .is((pk(T), sk(v1))).δ
s1 .δ 2 is((pk(T), sk(v1))).s1 .δ

s1 .δ + s2 .δ ∈ {a, b, c} θi(v1 , s1).δ + θi(v1 , s2).δ

27

Process transformation is extended to voting systems as follows.

Θi(v,VS)(a) =

{

VS(a) if a 6= v

(π1(VS(v)), Θi(v, π2(VS(v)))) if a = v

The above transformations are extended to i ∈ {1a, 2a, 1b, 2b, 1c, 2c} for
combinations of conspiring behaviour, e.g. Θ1a(v,VS) = Θ1(v, Θa(v,VS)).
Using the above system transformation, we can define the choice group for
conspiring voters in a voting system within our framework (see Section 4).

Definition 16 (conspiracy induced choice group). The choice group of con-
spiring voter v in voting system VS given choice function γ, with respect to
different conspiracy classes i ∈ {1, 2, a, b, c, 1a, 2a, 1b, 2b, 1c, 2c}, is given by

cg i
v(VS, γ) = cgv(Θi(v,VS), γ).

Given this definition of privacy, conspiracy-resistance is a measure of the
voter’s choice groups as follows.

Definition 17 (conspiracy-resistance). We call voting system VS conspiracy-
resistant for conspiring behaviour i ∈ {1, 2, a, b, c} iff

∀v ∈ V, γ ∈ V → C : cg i
v(VS, γ) = cgv(VS, γ).

Remark that for when |V| = 1 or |C| = 1, we have ∀γ : cg(VS, γ) = {γ},
which implies that ∀v ∈ V : cgv(VS, γ) = cg i

v(VS, γ) = {γ(v)}. Thus, in
such settings, there is not vote-privacy to lose, and conspiracy-resistance is
satisfied trivially.

The notion of receipt-freeness as introduced by Benaloh and Tuinstra [1]
coincides with ∀v, γ : |cg1

v(VS, γ)| > 1. The approach of Delaune, Kremer
and Ryan [8, 9] coincides with choice groups of size greater than one. Our
framework captures any modifier of privacy, including modifiers that are
not privacy-nullifying. The amount of conspiracy-resistance of a system is
measured as the difference in privacy between a regular voter and a conspiring
voter. The above privacy definitions capture this by determining the exact
choice group and thus the exact voter privacy for any level of conspiracy.

7. Examples

The above presented framework is designed to provide a formal and quan-
titative analysis. However, a full analysis of an existing voting system goes
beyond the scope of this paper. Therefore, this section only illustrates ap-
plication of the framework at a high level. For this purpose, models of the
FOO [14] system and the ThreeBallot system (3BS, [23]) are examined.

28

ballot 1a ballot 1b ballot 1c
can 1 � can 1 � can 1 �

...
...

...
...

...
...

can N � can N � can N �

identifier 1a identifier 1b identifier 1c

Figure 3: A Threeballot in 3BS.

7.1. FOO

The FOO protocol has been studied in literature and is known to have
receipts [12, 13]. FOO does not use untappable channels, thus there are no
conspiring voters of type a, b, c. The only possibility for a voter to conspire is
by sharing knowledge as in Figure 2(i). A conspiring voter of type 1 already
nullifies her privacy – ∀v, γ : |cg1

v(FOO , γ)| = 1. This is because the keys
used to encrypt her preferred candidate are shared with the intruder. Thus,
the intruder can open these encryptions and can see how the voter voted.
As such, any reinterpretation of the voter’s message carrying her vote is
impossible.

7.2. ThreeBallot

In 3BS, a vote is split over three single ballots (see Figure 3), which
together form one Threeballot. Each ballot carries a unique identifier. Upon
voting, the three ballots are cast and the voter takes home a receipt (certified
copy) of one ballot. The copy allows the voter to verify that her Threeballot
is actually cast. To vote for a candidate, a voter ticks two boxes in the row of
that candidate; every other candidate-row only receives one tick mark. The
voter is free to place the ticks in any column, as long as there is one row with
two ticked boxes (her choice) and all other rows have one ticked box. Given
the specific way of voting in 3BS, only a limited subset of the cast ballots
can form a valid Threeballot with a given receipt (to be more precise, only
those ballots combined with the receipt such that there is only one row with
two tick marks). For example, consider a receipt with a tick mark for every
candidate. This can only be matched with one entirely blank ballot, and one
ballot containing precisely one tick mark.

An obvious attack (already pointed out by the designer in [24]) is to agree
a priori with the intruder on how to fill in the ballots (captured by class b
conspiracy). The intruder can then easily verify if all three ballots are cast.

29

This reduces privacy more strongly than a voter merely showing her receipt
after the elections (class 1 conspiracy). This, in turn, gives less privacy than
not showing the receipt: cgb

v(3BS , γ) ⊆ cg1
v(3BS , γ) ⊆ cgv(3BS , γ).

As pointed out in [23], 3BS can also be used in elections where voters
are allowed to vote for multiple candidates. In this case, a Threeballot may
contain multiple rows with two tick marks. This means that the number
of ballots forming a valid Threeballot with a given receipt is increased. As
the number of valid combinations directly affects privacy, voter privacy is
improved. In the framework, this improvement is precisely captured by the
size of choice groups.

8. Discussion

In the previous section, we have shown that our framework is able to
quantify privacy loss in 3BS, where the receipt of a voter reduces the size of
her choice group, but not necessarily to one. This kind of attack cannot be
analysed by other formal approaches as discussed in Section 1. Moreover, our
framework can capture previously established privacy nullification attacks as
well as a new class of privacy reduction attacks.

An example of such new attacks is the not-voted-for attack, where the
intruder does not want the voter to vote for a specific candidate, say c1.
In this case, the voter’s privacy need not be nullified. This is conspiracy-
dependent if the intruder can rule out the possibility of the voter having voted
c1 only because of voter conspiracy. In terms of the framework, the intruder
gains sufficient information to coerce voter v if ∀γ : c1 6∈ cgv(Θ2c(v,VS), γ).
Furthermore, the attack relies on voter v’s cooperation if (the intruder gains
enough information and) ∀γ : c1 ∈ cgv(VS, γ).

A similar new type of attack manifests itself in Dutch national elections.
In these elections, the candidates provided by the system are individuals,
and every candidate is affiliated with precisely one party. Although voters
cannot vote for parties directly, the common view of the election is that of
voters voting for parties. In this setting, privacy of a voter should not merely
encompass the chosen candidate, but also the affiliated party. Thus, even if
∀γ : |cgv(Θ2c(v,VS), γ)| > 1 for a specific voter v, the intruder may still be
able to determine for which party v voted, and thus coerce the voter.

Another example is related to coalitions between the intruder and several
successfully conspiring voters. Based on the final result of the election and
the known votes of these voters, the intruder can further reduce the privacy of

30

honest voters. A simple example of such a scenario is when a conspiring voter
cast the only vote for a particular candidate, then the intruder additionally
learns that no other voter voted for that candidate.

Finally, the result of an election provides a bias for a voter’s choice –
the probability of a voter having voted for the winner is higher than the
probability of a voter having voted for a losing candidate. Our framework
makes it possible to account for such information bias.

The rest of this section discusses how the privacy definitions of the frame-
work relate to the notions of receipt-freeness and coercion-resistance.

8.1. Receipt-freeness

Receipt-freeness, as introduced by Benaloh and Tuinstra [1], captures
ways for a voter to reduce the privacy of how she voted. The framework cap-
tures receipt-freeness by specifying the desired class of conspiring behaviour.
From the hierarchy in Figure 2, we conclude that conspiring behaviour of
type 2c models the most conspiring behaviour in the system. Any knowl-
edge possessed by the voter is shared as soon as possible with the intruder.
Nevertheless, this does not preclude 2c-conspiracy-resistant voting systems.
For example, designated verifier proofs still force privacy on the voter, as the
intruder has no way to determine if a designated verifier proof forwarded by
the voter is fake or not.

8.2. Coercion-resistance

Coercion-resistance, as introduced by Juels, Catalano and Jakobsson [2],
captures ways for a voter to reduce the privacy of how she interacts with the
voting system. There is confusion in literature about the difference between
the notions of coercion-resistance and receipt-freeness, and with good cause:
if the voter can prove how she voted, the coercer can force her to produce
this proof. Conversely, if there is no such proof, the coercer cannot force this
proof. Thus, the susceptibility of a voter to be forced to vote in a specific
way is equivalent to her ability to prove that she voted in that specific way.
Succinctly put:

Proving ability = coercion susceptibility.

The notion of coercion-resistance as introduced by Juels et al. extends
beyond reducing privacy of the vote. In their view, coercion-resistance en-
compasses the following:

31

• receipt-freeness: the voter proves how she voted to the intruder.

• forced abstention: the intruder prevents the voter from voting.

• simulation attacks: the voter gives her private keys to the intruder,
who votes in her stead.

• forced random voting: the intruder forces the voter to vote for a
random entry in a list of encrypted candidates. Note that the intruder
does not need to know which candidate is chosen, as long as it is a
random choice. This attack (if applied to many voters) forces a more
uniform distribution of votes instead of the actual distribution of votes.
Such a strategy benefits candidates with less than average votes at the
cost of harming candidates with more than average votes.

Receipt-freeness is captured by the framework, as explained above. To cap-
ture forced abstention, we extend the range of γ with an “abstention” candi-
date ⊥. This candidate embodies all votes, that do not affect the result (we
do not distinguish between abstention and malformed voting). The extended
set is referred to as C⊥. Using these extensions, the intruder can force voter
v with conspiring behaviour i to abstain, iff

cg i
v(VS, γ) = {⊥}.

In a simulation attack, the intruder casts a vote himself. Simulation
attacks are resisted if the intruder cannot tell if the vote he cast affects the
result or not. While the type of voter behaviour necessary for a simulation
attack is modelled by the framework (type 2 behaviour), intruder voting is
not. However, if we extend the domain of γ to include the intruder int . The
extended set is referred to as Vint . The choice group of the intruder then
captures the intruder’s unsureness about his own vote. Hence, a system is
simulation-resistant if the intruder cannot tell whether his vote is counted or
not, i.e.

{⊥, γ(int)} ⊆ cg int(VS, γ).

In forced random voting attacks, the intruder forces the voter to vote
randomly. This means that whenever the voter can make a choice, either
conditionally or non-deterministically, the intruder forces his choice on the
voter. This can be expressed in terms of the framework by rewriting ev-
ery process P that denotes a choice. Let ∆rnd be a process transformation

32

function for forcing choices. Then we have, for any process P such that
P = P1 + P2 and for any process P such that P = P1 � ϕ1 = ϕ2 � P2,

∆rnd (P) = ir(var).∆rnd(P1) � var = true � ∆rnd(P2),

where var is a fresh variable and true is a constant term ∈ Terms.
Thus, coercion attacks can be captured in the framework as well. How-

ever, we keep these latter attacks separate, as these attacks are fundamentally
different from the privacy-reducing conspiratory model.

9. Conclusions

We have developed a framework to precisely measure voter-controlled pri-
vacy, with respect to different ways how one voter can share her knowledge
with the intruder. This quantitative framework is based on knowledge rea-
soning and trace equivalences. It allows us to capture the exact meaning
of receipt-freeness in the context of vote buying, and to detect attacks that
have escaped the focus of published methods in the literature as well.

We intend to apply the framework in full detail to several voting systems.
Our quantitative approach to privacy in voting will, we believe, uncover pre-
viously unidentified attacks. We are also interested in modelling authorities
conspiring with the intruder (an extension from conspiring voters), and in
investigating the potential effects of various counting methods on privacy
loss.

References

[1] J. Benaloh, D. Tuinstra, Receipt-free secret ballot elections (extended
abstract), in: Proc. 26th ACM Symposium on the Theory of Computing,
ACM, 1994, pp. 544–553.

[2] A. Juels, D. Catalano, M. Jakobsson, Coercion-resistant electronic elec-
tions, in: Proc. 4th ACM Workshop on Privacy in the Electronic Society,
ACM, 2005, pp. 61–70.

[3] T. Okamoto, An electronic voting scheme, in: Proc. 14th IFIP World
Computer Congress, Conference on IT Tools, 1996, pp. 21–30.

[4] B. Lee, K. Kim, Receipt-free electronic voting through collaboration of
voter and honest verifier, in: Proc. Japan-Korea Joint Workshop on
Information Security and Cryptology, 2000, pp. 101–108.

33

[5] M. Hirt, K. Sako, Efficient receipt-free voting based on homomorphic
encryption, in: Proc. 19th Conference on the Theory and Application
of Cryptographic Techniques, Vol. 1807 of LNCS, Springer, 2000, pp.
539–556.

[6] M. Hirt, Multi-party computation: Efficient protocols, general adver-
saries, and voting, Ph.D. thesis, ETH Zurich (2001).

[7] B. Lee, K. Kim, Receipt-free electronic voting with a tamper-resistant
randomizer, in: Proc. 4th Conference on Information and Communica-
tions Security, Vol. 2513 of LNCS, Springer, 2002, pp. 389–406.

[8] S. Delaune, S. Kremer, M. Ryan, Coercion-resistance and receipt-
freeness in electronic voting, in: Proc. 19th IEEE Computer Security
Foundations Workshop, IEEE Computer Society, 2006, pp. 28–42.

[9] S. Delaune, S. Kremer, M. Ryan, Verifying privacy-type properties of
electronic voting protocols, Journal of Computer Security. To appear.

[10] S. Delaune, M. Ryan, B. Smyth, Automatic verification of privacy prop-
erties in the applied pi-calculus, in: Proc. 2nd Joint iTrust and PST
Conferences on Privacy, Trust Management and Security, Vol. 263 of
IFIP Conference Proceedings, Springer, 2008, pp. 263–278.

[11] M. Backes, C. Hriţcu, M. Maffei, Automated verification of remote elec-
tronic voting protocols in the applied pi-calculus, in: Proc. 21st IEEE
Computer Security Foundations Symposium, IEEE Computer Society,
2008, pp. 195–209.

[12] H. Jonker, E. de Vink, Formalising receipt-freeness, in: Proc. 9th Con-
ference on Information Security, Vol. 3444 of LNCS, Springer, 2006, pp.
476–488.

[13] A. Baskar, R. Ramanujam, S. Suresh, Knowledge-based modelling of
voting protocols, in: Proc. 11th Conference on Theoretical Aspects of
Rationality and Knowledge, ACM, 2007, pp. 62–71.

[14] A. Fujioka, T. Okamoto, K. Ohta, A practical secret voting scheme
for large scale elections, in: Proc. 3rd Workshop on the Theory and
Application of Cryptographic Techniques, Vol. 718 of LNCS, Springer,
1992, pp. 244–251.

34

[15] T. Okamoto, Receipt-free electronic voting schemes for large scale elec-
tions, in: Proc. 5th Workshop on Security Protocols, Vol. 1361 of LNCS,
Springer, 1997, pp. 25–35.

[16] R. Aditya, B. Lee, C. Boyd, E. Dawson, An efficient mixnet-based voting
scheme providing receipt-freeness, in: Proc. 1st Conference on Trust and
Privacy in Digital Business, Vol. 3184 of LNCS, Springer, 2004, pp. 152–
161.

[17] F. Garcia, I. Hasuo, W. Pieters, P. van Rossum, Provable anonymity, in:
Proc. 3rd ACM Workshop on Formal Methods in Security Engineering,
ACM, 2005, pp. 63–72.

[18] S. Mauw, J. Verschuren, E. de Vink, A formalization of anonymity and
onion routing, in: Proc. 9th European Symposium on Research Com-
puter Security, Vol. 3193 of LNCS, Springer, 2004, pp. 109–124.

[19] T. Chothia, S. Orzan, J. Pang, M. Torabi Dashti, A framework for au-
tomatically checking anonymity with µCRL, in: Proc. 2nd Symposium
on Trustworthy Global Computing, Vol. 4661 of LNCS, Springer, 2007,
pp. 301–318.

[20] D. Dolev, A. Yao, On the security of public key protocols, IEEE Trans-
actions on Information Theory 29 (12) (1983) 198–208.

[21] L. Aceto, W. Fokkink, C. Verhoef, Structural operational semantics, in:
Handbook of Process Algebra, Elsevier, 2001, pp. 197–292.

[22] C. Cremers, Scyther - semantics and verification of security protocols,
Ph.D. thesis, Eindhoven University of Technology (2006).

[23] R. Rivest, W. Smith., Three voting protocols: Threeballot, VAV, and
Twin, in: Proc. 2007 USENIX/ACCURATE Electronic Voting Technol-
ogy Workshop, USENIX, 2007.

[24] R. Rivest, The threeballot voting system, unpublished manuscript
(2006).

35

