
Reconstructing Timelines:
From NTFS Timestamps to File Histories
Jelle Bouma

Open University of the Netherlands
Heerlen, The Netherlands

Hugo Jonker
hugo.jonker@ou.nl

Open University of the Netherlands
Heerlen, The Netherlands

Vincent van der Meer
vincent.vandermeer@zuyd.nl

Zuyd University of Applied Sciences
Heerlen, The Netherlands

Eddy van den Aker
eddy.vandenaker@zuyd.nl

Zuyd University of Applied Sciences
Heerlen, The Netherlands

ABSTRACT
File history facilitates the creation of a timeline of attributed events,
which is crucial in digital forensics. Timestamps play an important
role for determining what happened to a file. Previous studies
into leveraging timestamps to determine file history focused on
identification of the last operation applied to a file. In contrast, in
this paper, we determine all possible file histories given a file’s
current NTFS timestamps. That is, we infer all possible sequences
of file system operations which culminate in the file’s current NTFS
timestamps. This results in a tree of timelines, with root node
the current file state. Our method accounts for various forms of
timestamp forgery. We provide an implementation of this method
that depicts possible histories graphically.

CCS CONCEPTS
•Applied computing→ Evidence collection, storage and anal-
ysis; Investigation techniques.

KEYWORDS
Digital forensics, Timestamps, File history, Timelines

ACM Reference Format:
Jelle Bouma, Hugo Jonker, Vincent van der Meer, and Eddy van den Aker.
2023. Reconstructing Timelines: From NTFS Timestamps to File Histories.
In The 18th International Conference on Availability, Reliability and Security
(ARES 2023), August 29–1 September, 2023, Vienna, Austria. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A major goal of digital forensics is to construct a timeline of events.
Specifically, placing digital evidence (incriminating as well as excul-
patory) correctly on possible timelines is a key goal of digital foren-
sics. For example, suppose a hacked computer is seeding a torrent
file of illegally downloaded content. It is rather relevant whether the
seeding started before or after the computer was hacked. In some
cases, this can be determined via the timestamps of relevant files.
File timestamps log, amongst others, the effect of file operations:
when a file last was written to, was last read, or was last accessed.

ARES 2023, August 29–September 1, 2023, Benevento, Italy
2023. ACM ISBN 978-1-4503-9051-4/21/08. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Operations on a file have a deterministic effect upon the file’s
timestamps. That is: executing an operation on a file will cause
the file’s timestamps to be updated in a specific, predetermined
way, based on the time the operation was executed and the initial
timestamps of the file. Moreover, different operations can affect
timestamps differently. Therefore, assuming (see Sec. 8) no tamper-
ing and a monotonically increasing clock, a given set of timestamps
can only result from a limited set of file operations. In addition,
each of these possible operations imposes certain requirements on
the values of the timestamps prior to its execution. As such, it is
possible to determine the set of possible operations that were last
applied to a file, i.e., the operations that could have led to that set
of timestamps. By applying this recursively, we can reconstruct all
histories of a file possible for a given set of operations. Moreover,
some timestamp forgery approaches have detectable, distinctive
effects and can, thus, be included in this history. We consider our
method sufficiently mature to be used by practitioners.

Contributions. Themain contribution of this research is amethod
to determine all possible histories of a file, given a set of operations.
This method is based on (1) determining, for each operation, its
effect on timestamps, (2) inverting these effects and determining
under which constraints this inverse may be applied, and (3) rea-
soning back from the file’s current timestamps by matching these
inverse effects. Secondly, we develop a proof-of-concept toolchain
implementing this method for the NTFS file system. This allows us
to visualise the histories (sequences of operations) possible given
the file’s current timestamps.

Availability. We provide two proof-of-concept tools that together
implement the presented method. The tool TimestampAnalyzer im-
plements the history-inference method; the tool TimestampVisual-
izer parses TimestampAnalyzer’s output and presents it graphically.
Both tools are publicly available on GitHub.1 Our toolchain, which
includes timestamp effects of an initial list of file operations, can
support practitioners in executing the proposed method.

2 BACKGROUND
New Technology File System (NTFS). The NTFS file system has

been the default onWindows systems sinceWindows 2000. It stores

1https://github.com/JelleBouma/TimestampAnalyser and
https://github.com/eddyvdaker/NTFS-Timestamp-Visualizer.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/JelleBouma/TimestampAnalyser
https://github.com/eddyvdaker/NTFS-Timestamp-Visualizer

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jelle Bouma, Hugo Jonker, Vincent van der Meer, and Eddy van den Aker

information about files in a Master File Table (MFT). An MFT-
entry contains metadata as well as disk allocation data for that file.
Entries have multiple attributes for storing metadata; timestamps
are stored as part of an entry’s $STANDARD_INFORMATION (SI)
and $FILE_NAME attributes (FN).

Timestamps in NTFS. A timestamp denotes when a certain event
has taken place. The NTFS file system stores eight timestamps per
file in the file’s entry in the MFT. Operations on files cause changes
to anywhere between zero and eight timestamps. We therefore treat
these eight timestamps as separate data points. Four timestamps are
stored in a file’s SI attribute, and another four are stored in the file’s
FN attribute. Timestamps are stored in units of 100 nanoseconds
(10−7 seconds) since 1601-01-01 00:00:00 UTC. As such, timestamp
values are not affected by local time zone or daylight saving time.

3 RELATEDWORK
The importance of timestamps in digital forensics has long been
established in literature. For example, Buchholoz and Spafford [3]
address importance of file system metadata (including timestamps),
and discuss considerations and limitations that arise when trying
to answer when and where a file came from, and who did that.

Effect of file operations on timestamps. Timestamps change when
file operations are executed. This can be leveraged for forensic
purposes. In 2007, Chow et al. [7] were one of the first studies to
describe the effects of file operations on timestamps. They did this
for both files and folders, using 3 SI timestamps from NTFS. The
authors introduce timestamp rules to describe the effect of a file
operation, warning to not apply these rules without considering
timestamp-forgery. In their 2009 study, Bang et al. [1] expanded
upon this work by adding the FN timestamps for NTFS and the
FAT filesystem, and their expected values for a set of file opera-
tions and FAT timestamps. With these timestamp rules, the authors
demonstrate how to identify manipulation of timestamps. In 2011,
Bang et al. [2] expanded upon their previous study by analyzing
file operations and their effects on timestamps for Windows from
2000 up to Windows 7. In addition, the authors observe different
timestamp effects when modifying a file via Notepad vs. via MS
Word. This suggests application-specific timestamp behaviour.

Timestamp manipulation detection. Timestamps can be manipu-
lated. Various works have investigated detection of manipulated
timestamps. Ding and Zou [8] proposed a cross-reference time-
based approach to detect timestamp-manipulation. With the Win-
dows Registry as their cross-reference source for a given set time-
stamps and derived timestamp rules, they demonstrate how certain
timestamp manipulations can be detected. Cho [4] showed in 2013
how $LogFile can be used as a source for timestamp validation.
Based upon the timestamp effects for seven file operations, he de-
rives new rules that the timestamps must adhere to. When the
timestamp rules are violated, the $LogFile can give conclusive evi-
dence when the forgery occurred. In a subsequent study, Cho [5]
described timestamp changing patterns based on file operations. He
presented ten distinguishable patterns which can be conclusively
attributed to specific file operations. To the best of our knowledge,
this is the first work that aims to identify the last operation that
was performed on a file. Jang et al. [10] presented a methodology

to identify timestamp manipulation. Much like earlier work, they
derive effects of operations on timestamps and build upon this.
This resulted in equations of relations between $MFT and $LogFile,
violation of which indicates timestamp manipulation. Palmbach
and Breitinger [12] consider alternative sources of information for
detecting timestamp manipulation. These include prefetch files,
$USN journal (an NTFS log file), link files, and Windows event logs.
None of the tested artifacts individually constitutes a reliable source
of information, as each of them can be manipulated. However, the
more sources of information included in a forensic analysis, the
harder it is to manipulate all artifacts consistently.

Other impacts on timestamps. Other studies have considered
timestamp effect beyond those of regular operations and timestamp
manipulations. Schatz et al. [13] report on system clock behaviour,
one of the factors that influence timestamp reliability. They charac-
terize the behaviour of drifting clocks and describe ways to corre-
late timestamps to events by using other, more reliable source(s).
Willassen [14] expanded upon their work, presenting a methodol-
ogy for determining whether or not the system clock was altered
using causality of timestamps. Galhuber and Luh [9] showed that,
in addition to regular file operation and their effects on timestamp,
many applications have specific timestamp effects not matching
regular file operations. This gives rise to a potentially enormous
set of operations with unique timestamp effects. While it may seem
impossible to detect timestamp forgery in the face of this multitude
of options, it turns out that most timestamp tools have telltale limi-
tations (e.g., setting timestamps to full seconds), which allows their
effects on timestamps to be distinguished from other operations.
Lastly, Nordvid and Axelsson [11] examined whether different op-
erating systems treated file systems equally. For the exFAT file
system, they experimented with Windows, MacOS and Linux, and
conclude that not all file system drivers implement the specification
equivalently. Small differences exists in how each operating system
stores exFAT timestamps.

4 METHODOLOGY: REASONING BACKWARDS
As previously stated, the goal is to arrive at the set of possible
histories of a file. More specifically, each element in this set is an
ordered list of operations that may have been applied to the file,
with the last operation in the list culminating in the file’s current
state. Note that some sequences of operations are not possible.
For example, creation must be the first operation; it cannot be
preceded by other operations. To arrive at such a set of lists, we
first determine how to denote a file’s current state and make a
selection of file operations to consider.

Next, for each file operation under consideration, we determine
what effect it has on file state. Note that an operation can impose
very specific effects on file state. This implies that the state of a file
whose metadata lacks this telltale signature cannot be the direct
result of that specific operation. For example, suppose an operation
initialises all timestamps to the same value. A file whose timestamps
are all equal may then be the direct result of this operation; however,
a file whose timestamps vary, cannot.

Next, we determine for each operation its effect on file state.
Then, we determine what the previous state of a file was, if the
current state is the result of the operation under consideration. That

Reconstructing Timelines:
From NTFS Timestamps to File Histories ARES 2023, August 29–September 1, 2023, Benevento, Italy

is, we determine the effect’s inverse. Asmentioned, some operations
cannot possibly have resulted in a given state. Such operations must
thus be excluded for this transition in a file’s history.

Given the inverse state transition for each operation, and the
requirements that state transition imposes on the resulting time-
stamp, we can then reason backwards to reconstruct the set of all
possible lists of operations applied to the file, given a specific list
of file operations and a specific state of a file.

5 EFFECT OF OPERATIONS ON TIMESTAMPS
In this section, we discuss the effect of operations on NTFS time-
stamps. To that end, we first establish notation of file state and a list
of file operations to consider. File operations have different effects
depending on “modifiers” – system settings under which (some)
operations have a (slightly) different effect on timestamps. Last, we
measure the impact of these modifiers separately.

Selecting file operations. There is no consensus in literature on a
canonical list of file operations to include for timestamp research.
We align with previous studies by including the basic CRUD op-
erations (create, access, etc.), operations for altering file meta-data
(rename and attribute change), and basic file system operations af-
fecting two MFT entries (variants of move and copy). This leads to
the following list:

• Create: Create new MFT entry
• Access: Access file contents
• Update:Modify file contents
• Delete:Mark MFT entry for deletion
• Rename: Change file name in MFT
• Attribute change: Change attribute(s) in MFT
• Copy: Create new MFT entry from source MFT entry, copy
on-disk data

• Overwriting copy: Copy, destination is an existing MFT
entry

• Move within volume: Updates the file path within the MFT
entry

• Move from another volume: Create new MFT entry on
destination volume, marks MFT entry for deletion on source
volume

• Overwriting move from other volume: Destination is an
existing MFT entry

5.1 Modifiers on file operations
File operation modifiers describe (system) environment changes
that affect the workings of existing file operations. For example,
’last access updating’ is aWindows system setting that can be active
or not. Among others, the file operations ’copy’ and ’update’ are
slightly different depending on this setting. In this research, we
account for the following four file operation modifiers.

File tunneling. To prevent data loss during saving (e.g., in case
of write errors), OS designers invented ‘safe save’. ‘Safe save’ does
not save changes to the original file, but to a new file instead. Once
writing this file is finished successfully, the new file then replaces
the original file by removing the original and renaming the new
file. Normally, this file would appear to the user as a newly created
file. To prevent that, Windows introduced file tunneling. Due to

file tunneling, a create or rename operation is treated differently
if the OS determines that file tunneling applies. More specifically,
if a file is deleted or renamed, some of its metadata (incl. certain
timestamps, long file name) is cached for a short time (default:
15 sec). If within this time frame a new file is created with the
original name/path, or an existing file is renamed to the original
name/path, that other file acquires the cached metadata. Note that,
while file tunneling is intended to offer functionality for ‘safe save’,
its implementation does not check for intent. That is, file tunneling
occurs when its preconditions are met, irrespective of whether a
‘safe save’ operation was intended.

Last access updating. The last access timestamp value indicates
the most recent event when the file was accessed. This feature
is controlled by a registry setting, and was by default disabled
for Windows Vista, 7, 8 and early builds of Windows 10. Since
Windows 10 build 1607 (August 2016), last access updating is by
default enabled for volumes smaller than 128 GB. The actual update
of the last access timestamp itself is typically first cached inmemory,
not immediately written to disk. Writing the new timestamp to disk
can be postponed by up to an hour.2

Transfer from FAT/exFAT. Occasionally, files are copied from a
non-NTFS file system onto an NTFS file system. As the originating
file system may differ in which timestamps are tracked, and to what
resolution, the NTFS copy’s timestamps may bear recognizable
traces of the file’s origin. In this paper, we investigate the effects of
transferring files from FAT and exFAT file systems, two file systems
widely used for portable storage media (memory cards, USB keys,
portable hard disks).

The modified effects from file-operations originating from FAT
or exFAT primarily come from limitations that these file systems
have compared to NTFS.

FAT only tracks three timestamps per file (SI1, SI2 and SI4). The
SI1 timestamp is stored in 10 milliseconds (or 0.01 seconds), and the
SI2 timestamp is stored with a resolution of two seconds.2 The SI4
timestamp is different: it is stored with an accuracy of one day for
FAT. However, none of the operations under consideration transfer
the SI4 timestamp from FAT to NTFS systems. FAT also does not
store any timezone information, whereas NTFS stores timestamps
in UTC, making them ’resistant’ to time zone changes or daylight
savings time. exFAT (Extended File Allocation Table) solves some
of the limitations FAT has. From a timestamp perspective, the same
set of timestamps is available, i.e. SI1, SI2 and SI4. The accuracy of
both the SI1 and SI2 timestamps is now 10 milliseconds. SI4 has a
resolution of 2 seconds, but again, no operation under consideration
transfers it to NTFS.

Directories. We follow Bang et al.’s approach [1] to measure
timestamp effect of operations on directories separately from that
on regular files. This makes sense, as directories are MFT entries
like regular files, except that some operations (overwriting copy,
overwriting move from another volume) cannot be applied to them.

2https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times

https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jelle Bouma, Hugo Jonker, Vincent van der Meer, and Eddy van den Aker

5.2 Measuring the effect of operations
For each combination of the considered file operations and file
operation modifiers, we determine the effect on NTFS timestamps.
As mentioned previously, the official documentation and existing
literature is insufficient to determine these effects. Therefore, we
perform experiments to measure the impact of each operation on
timestamps. The process of performing the experiments consists of
four steps:

(1) Set up the environment with the volumes and files to be
tested.

(2) Read all the timestamps of the testfiles.
(3) Perform the file operation on all the testfiles.
(4) Read all the timestamps again and determine all the differ-

ences.

We perform tests for all Windows versions from Windows XP to
Windows 11, for the following setup:

• Windows settings with last access updating enabled or dis-
abled

• Files with filesizes ranging from 1 kb to 10 GB.
• Files with different extensions (i.e. .jpg, .exe, .txt)

Experimental setup. Since NTFS file timestamps are stored in the
Master File Table, the effects of a file-operation can be observed
in the MFT. We used RawCopy3 to make an image of the test-
volume before and after the file operations are performed, and used
Mft2Csv4 to extract the timestamps in a human-readable form from
the MFT.

Table 1: Timestamp effect of file operations (no modifiers)

Operation SI ′, FN ′

Create (opstart , opstart , opstart , opstart)
(opstart , opstart , opstart , opstart)

Access (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, opend , opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Delete (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Rename (SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Attribute change (SI 1, SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Copy (opstart , src.SI 2, opend , opstart)
(opstart , opstart , opstart , opstart)

Overwriting copy (SI 1, src.SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move within volume (SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Mv. fr. other vol. (src.SI 1, src.SI 2, opend , opstart)
(opstart , opstart , opstart , opstart)

Overwr. mv. fr. other vol. (src.SI 1, src.SI 2, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

3https://github.com/jschicht/RawCopy
4https://github.com/jschicht/Mft2Csv

5.3 Experiment results
Notation. In this work, we consider file state as determined by

the timestamps of an NTFS file. We denote the timestamps as
SI = (SI1, SI2, SI3, SI4) for the SI timestamps and the FN timestamps
as FN = (FN 1, FN 2, FN 3, FN 4). When considering the state tran-
sition resulting from a specific file operation, timestamps before
the operation are denoted as SI and FN ; timestamps post-operation
are denoted as SI ′ and FN ′. Finally, we denote the time when an
operation starts as opstart and the time when it ends as opend . Treat-
ing timestamps symbolically abstracts away from irrelevant details
such as the speed of the storage device being used, and instead high-
lights the effect of the specific operation under investigation. We
denote the effects of file operations under a modifier by showing the
same table (with measurements for the non-modifier case) in gray,
with any changes in regular black. Operations whose behaviour
remains unchanged under a modifier are omitted from the table.

Table 1 shows the effects of the file operations on timestamps. These
values were established without any modifiers enabled.

For example, for copy we see that the target file’s timestamps
are affected: all FN values are set to the starttime of the operation
(opstart), the SI2 timestamp is set to the source file’s SI2 timestamp
(src.SI2), SI1 and SI4 are set to operation starttime (opstart) and fi-
nally SI3 is set to operation endtime (opend). We found no difference
in the effect of file-operations for the different versions of Windows,
file size or file extension.

File Tunneling. Table 2 lists the operations whose behaviour is
affected by file tunneling, and their behaviour under this operation.
In short, in some cases, SI1 and FN 1 take their value from the
original (now removed) file’s SI1 and FN 1 timestamps, respectively.

Table 2: Modifiers: File Tunneling (“safe save”).

Operation SI ′, FN ′

Create (del.SI 1, opstart , opstart , opstart)
(del.FN 1, opstart , opstart , opstart)

Rename (del.SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

Copy (del.SI 1, opstart , opstart , opstart)
(del.FN 1, opstart , opstart , opstart)

Move within volume (del.SI 1, SI 2, opstart , SI 4)
(SI 1, SI 2, SI 3, SI 4)

del: the file with the same exact path and name as this file, that was deleted prior to
this operation (within the File Tunneling time window).

Last access updating. Effect on timestamps of file operations
when last access updating is active is presented in Table 3. If the
system crashes before last access updating is effectuated, the time-
stamps will not be updated beyond what was presented in Sec-
tion 5.3. From the table, it is clear that enabling last access updating
only affects timestamp SI4.

Transfer from FAT / exFAT. The results for file operations regard-
ing incoming files from FAT and exFAT are presented in Tables 4
and 5 respectively.

https://github.com/jschicht/RawCopy
https://github.com/jschicht/Mft2Csv

Reconstructing Timelines:
From NTFS Timestamps to File Histories ARES 2023, August 29–September 1, 2023, Benevento, Italy

Table 3: Modifiers: Last access updating.

Operation SI ′, FN ′

Access (SI 1, SI 2, SI 3, opstart)
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, opend , opstart , opend)
(FN 1, FN 2, FN 3, FN 4)

Copy (opstart , src.SI 2, opend , opend)
(opstart , opstart , opstart , opstart)

Overwriting copy (SI 1, src.SI 2, opstart , opstart)
(FN 1, FN 2, FN 3, FN 4)

Move from another volume (src.SI 1, src.SI 2, opend , opend)
(opstart , opstart , opstart , opstart)

Overwr. move from other volume (src.SI 1, src.SI 2, opstart , opstart)
(FN 1, FN 2, FN 3, FN 4)

Table 4: Modifiers: Transfer from FAT

Operation SI ′, FN ′

Copy (opstart , valB, opend , opstart)
(opstart , opstart , opstart , opstart)

Overwriting copy (SI 1, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move from FAT volume (valA, valB, opstart , opstart)
(opstart , opstart , opstart , opstart)

Overwr. mv. from FAT vol. (valA, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

valA: src.SI 1 rounded up to centiseconds (0.01 second) plus time zone difference
(tzd);

valB: src.SI 2 rounded up to even seconds plus tzd.

Table 5: Modifiers: Transfer from exFAT

Operation SI ′, FN ′

Copy (opstart , valB, opend , opstart)
(opstart , opstart , opstart , opstart)

Overwriting copy (SI 1, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

Move from exFAT volume (valA, valB, opend , opstart)
(opstart , opstart , opstart , opstart)

Overwriting mv. from exFAT vol. (valA, valB, opstart , SI 4)
(FN 1, FN 2, FN 3, FN 4)

valA: src.SI 1 rounded up to centiseconds (0.01 second);
valB: src.SI 2 rounded up to centiseconds

Directories. We measured the effect of the considered file opera-
tions upon directories. The results of this are presented in Table 6;
the only change from Table 1 is for the update operation, w.r.t. SI4.

Table 6: Directories

Operation SI ′, FN ′

Update (SI 1, opend , opstart , opend)
(FN 1, FN 2, FN 3, FN 4)

Overwriting copy operation not applicable to directories
Overwriting mv. from another vol. operation not applicable to directories

5.4 Effects of timestamp forgery
Lastly, we illustrate the potential of our file histories method to
detect timestamp forgery. To that end, we determine the effects of
three timestamp forgery approaches: two basic Windows system
calls and a popular timestamp forgery tool. The effects of each of
these are presented in Table 7.

Approach 1: SetFileTime. Timestamps can be altered by the Win-
dows system call SetFileTime. This system call allows to set the SI1,
SI2, and SI4 timestamps in whole seconds. Timestamp changing
tools using this call are thus limited to changing only these three
timestamps with conspicuous values. While in theory it is possible
for these three timestamps to all three be exact whole seconds for
most operations, in practice, this is a strong indication of tampering.

Approach 2: NtSetInformationFile. Another way of manipulat-
ing timestamps is through the undocumented NtSetInformationFile
Windows system call. This system call can set the SI1, SI2 and SI4
timestamps to any user specified values with full precision.

Approach 3: Timestomp. Lastly, we consider Timestomp, a time-
stamp manipulation tool. Timestomp uses the NtSetInformationFile
system call [6]. Nevertheless, like other timestamp manipulation
tools, it limits accuracy of altered timestamps to full seconds. These
stand out from NTFS’s default resolution of 100 nanoseconds. This
is a strong indication of tampering, though most operations could
theoretically result in such values.

Table 7: Effect of API / tool timestamp manipulation

Method SI ′, FN

SetFileTime() (valA, valB, opstart , valD)
(FN 1, FN 2, FN 3, FN 4)

NtSetInformationFile() (any1, any2, any3, any4)
(FN 1, FN 2, FN 3, FN 4)

Timestomp (valA, valB, valC, valD)
(FN 1, FN 2, FN 3, FN 4)

valA, valB, valC, valD: any value, rounded to whole seconds.
any𝑖 : any value, up to full precision.

6 DEDUCING POSSIBLE FILE HISTORIES
FROM NTFS TIMESTAMPS

With the effects of file operations on the 𝑆𝐼 and 𝐹𝑁 timestamps,
we have laid the groundwork for reconstructing possible timelines.
The concept will be introduced with a simplified running example.
First, we can describe the state of a file along with its eight time-
stamps. When a file undergoes multiple file operations, its state
and its timestamps change accordingly. For example, in Figure 1 a
file is first created, then updated, and, lastly, renamed. After each
state transition, its timestamps are updated (changes in bold red)
according the timestamp rules described in the previous section.

We see that the update operation changes SI2 and SI3, leaving
all other timestamps unchanged. Similarly, rename overwrites all
FN timestamps with copies of the original’s SI counterparts and
changes SI3, leaving the other three timestamps unchanged.

With the forwards evolution of timestamp established, we can
now apply this reasoning backwards to determine previous allowed

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jelle Bouma, Hugo Jonker, Vincent van der Meer, and Eddy van den Aker

Figure 1: Example: forwards evolution of timestamps under
file operations

states of the file. Assume that you find a file in a certain state with
SI(10, 12, 13, 10) and FN(10, 12, 11, 10). In Figure 1,
this state was the result of the rename operation. If we now apply
the inverse of the effect of the rename operation on the timestamp,
we arrive at a state where we do not know any value of the FN
timestamps, as they were overwritten. We do know what the SI
timestamp should be in that previous state – namely, precisely the
values of the FN timestamp of the current state. This is depicted
graphically in Figure 2.

Figure 2: Example: backwards reasoning and information
loss

The inverse effects of file operations on timestamps are described
in Table 8. Some timestamps are overwritten by the operation; for
these, no information of its previous state is available (denoted as
‘?’ in the table). This table allows us to consider not one, but all
operations at each turn. For each file state under consideration, we
can try to apply the inverse of each file operations. Not all inverses
will be possible, for example, for state 𝑆𝑡 in Figure 2, only rename
and copy (source) are possible. No other file operations could result
in that state’s timestamps. In general, most file operations can only
result in certain values for timestamps. For example, the timestamps
following a create operation are all equal. Therefore, any file state
whose timestamps are not all equal, cannot be the result of a create
operation. In other words, this imposes a constraint on (relations
between) values for timestamps which can follow from a create
operation.

Note that in Table 8, unlike in Table 1, we must distinguish
between source and target for overwriting copies/moves. This is
because for overwriting copy and overwriting move, two files must
have existed previously: source and target. For all other operations,
there is only one “ancestor” file.

For a state to result from a specific file operation, certain condi-
tions have to be met, depending on the operation. These conditions
are specified in Table 9. In addition to operation-specific constraints,
there are constraints related to operation start/end time. We refer
to these collectively as ‘OPTIMING’. The first type of OPTIMING
constraint is that operations cannot end before they start. Thus, all
timestamps set to opstart must have values smaller than or equal to
any timestamp set to opend . Second, under a monotonically increas-
ing system clock, operation start/end time must always be later
than timestamps copied from the previous state. The last OPTIM-
ING constraint is that if more than one timestamp is set to opstart ,
all such timestamps must be equal. This holds similarly for opend .

Table 8: Previous state for file operations for
SI𝑡 = (SI1, SI2, SI3, SI4), FN 𝑡 = (FN 1, FN 2, FN 3, FN 4)

Operation SI𝑡−1, FN 𝑡−1

Create N/A
N/A

Access (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Update (SI 1, ?, ?, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Delete (SI 1, SI 2, SI 3, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Rename (FN 1, FN 2, FN 3, FN 4)
(?, ?, ?, ?)

Attribute change (SI 1, SI 2, ?, SI 4)
(FN 1, FN 2, FN 3, FN 4)

Copy (source) (?, SI 2, ?, ?)
(?, ?, ?, ?)

Overwriting copy
– target (SI 1, ?, ?, SI 4)

(FN 1, FN 2, FN 3, FN 4)
– source (?, SI 2, ?, ?)

(?, ?, ?, ?)
Move within volume (FN 1, FN 2, FN 3, FN 4)

(?, ?, ?, ?)
Move from another volume (source) (SI 1, SI 2, ?, ?)

(?, ?, ?, ?)
Overwriting move from another NTFS volume
– target (?, ?, ?, SI 4)

(FN 1, FN 2, FN 3, FN 4)
– source (SI 1, SI 2, ?, ?)

(?, ?, ?, ?)

For brevity, we abstract away from stating all such constraints
explicitly and denote these as ‘OPTIMING’ in Table 9. The opstart
and opend columns indicate which timestamps are set to operation
starttime andwhich for operation endtime, respectively. Lastly, note
that, for both overwriting operations, the constraints apply equally
to both source and target, and there is no further information on
which to base any further constraints for either.

Table 9: Constraints operations impose on timestamps

Operation Constraint opstart opend
Create SI𝑖 = FN 𝑗 , for 𝑖, 𝑗 ∈ {1, . . . , 4}. SI1...4 , FN 1...4
Access True.
Update OPTIMING. SI3 SI2
Delete True.
Rename OPTIMING and FN𝑖 = SI𝑖 , 𝑖 ∈ {1, 2, 4}. SI3
Attribute change OPTIMING. SI3
Copy OPTIMING. SI1,4 , FN 1...4 SI3
Overwriting copy OPTIMING. SI3
Move within volume OPTIMING and FN𝑖 = SI𝑖 , 𝑖 ∈ {1, 2, 4}. SI3
Move from another volume OPTIMING SI4 , FN 1...4 SI3
Overwriting move from
other NTFS volume OPTIMING. SI3

Using these constraints, we can extend the example of Figure 2.
A more extended, but still not complete, example of backwards
reasoning is shown in Figure 3. We see branching, when a state
could have been the result from more than one operation. We
also see that information loss occurs, e.g., when timestamps are
overwritten as by the rename operation. Lastly, we see that applying

Reconstructing Timelines:
From NTFS Timestamps to File Histories ARES 2023, August 29–September 1, 2023, Benevento, Italy

the backwards reasoning process recursively, we can end up in a
state where no information on timestamp values is known anymore
(𝑆 ′
𝑡−2 in the figure). There might still be more file history preceding

this state, but nothing is known about this.

Figure 3: Example: backwards reasoning with branching and
different branch-lengths

7 PROOF OF CONCEPT IMPLEMENTATION
We implemented and realized the presented methodology of reason-
ing backwards in two proof-of-concept tools: a timestamp analyzer
and a visualisation tool.

7.1 Timestamp analyzer
This tool is configured with a list of file operations, where, for each
operation, its effect on timestamps must be specified. We supply the
list of operations and effects as discussed in the previous section.
Operations that do not affect any timestamp are removed from
consideration, as these can occur infinitely often at all points in
a timeline. For our previously established list, this concerns first,
the access operation when last-access-updating is not active, and
second, the delete operation. Below, we describe three aspects (one
concept and two algorithms) of the implementation.

Tracking information loss. To track loss of information in progres-
sive steps of reasoning backwards, we use the concept of markings.
A timestamp is marked when its value was changed due to the
preceding file operation. This implies a loss of information: the
value of a marked timestamp prior to the file operation that caused
its marking is unknown and may not be used.

File operations can also unmark a timestamp. Unmarking is the
reverse of marking: it denotes a gain of information, which occurs
when a timestamp’s new value originates from a known source.
For example: the rename operation sets SI ′3 to opstart (which is thus
marked), but also sets FN ′

1 to SI1, FN
′
2 to SI2, etc. Thus, we can still

derive each of SI1...4 from FN ′
1...4.

Match-operation algorithm. The matching algorithm is respon-
sible for identifying file operations compatible with the current
state. As input, it is given the timestamps, markings, and a candi-
date file operation. If no constraint is violated, then the given state
could have resulted from this operation and the algorithm returns
True. In addition to the criteria presented in Table 9, the algo-
rithm also takes constraints following from modifiers (Tables 3–6).

This includes time-resolution constraints following from modifiers
‘transfer from FAT/exFAT’ (Tables 4, 5).

Timelines construction algorithm. The Timelines construction
algorithm recursively builds all possible timelines of a given file
state. Each timeline consists of a sequence of one or more file
operationsmatching the state of the file at that point in the sequence
(timestamps, markings). A sequence terminates when it encounters
a create operation, or when no more operations can be matched
to the file state. The latter can occur either due to complete loss
of information, or when no file operation can match the available
information.

Detecting timestamp forgery. Our proof-of-concept implementa-
tion considers timestamp forgery for timestamps. Our tooling adds
a forgery branch only when (1) not all information has been lost
yet (2) no regular operation can have caused the timestamps un-
der consideration, and (3) the timestamps match the requirements
induced by Table 7.

Implementation limitations. The proof-of-concept has only been
tested on a limited number of MFTs and has not been optimised;
quality attributes such as scalability and performance were not part
of our testing process.

7.2 Visualisation tool implementation
This tool creates a visualisation of all possible timelines based on
the output of the analysis tool. To illustrate the use of this visualisa-
tion tool, we show in Figure 4 a visualisation of the analysis of a file
that underwent comparable file operations as our running exam-
ple. The only difference is that these are real timestamps, instead
of simple numbers. The visualisation is oriented like a timeline,
with time increasing to the right. States further left are older, with
the current (known) state depicted rightmost. The time at which
an operation has taken place is noted in the black titlebar. When
multiple operations lead to an identical state, they are grouped
together for readability purposes. A file state that does not contain
sufficient information to match any file operation is preceded by a
question mark instead of another file state. This denotes that there
is insufficient information to go back further in time.

8 DISCUSSION
System clock monotonicity. Our method relies on the key assump-

tion that the system clock is monotonically increasing. This cannot
be correct in all circumstances: switches from daylight savings time
to regular time set the clock back. Similar problems may occur
when system time is synchronised (e.g., via NTP) and the system
clock drifts too far ahead, requiring the system clock to be wound
back. Moreover, it is typically trivial to change the system clock.

Information loss. Our method for backwards reasoning inher-
ently suffers from information loss. Therefore, each reconstructed
timeline has a finite horizon of how far back our method can re-
construct possible file states. Possible file histories beyond a file’s
horizons cannot be reconstructed via this method.

Forensic limitations. Our approach supports reasoning about
any file operation. However, our proof-of-concept analysis tool is
only seeded with a list of basic file operations. Concretely, it lacks

ARES 2023, August 29–September 1, 2023, Benevento, Italy Jelle Bouma, Hugo Jonker, Vincent van der Meer, and Eddy van den Aker

Figure 4: Full backwards reasoning running example

application-specific file operations. We recommend practitioners
to follow our approach to determine the timestamp effects of file
operations for any applications that they wish to incorporate into
the reasoning framework. Expanding the list suffices to incorporate
new file operations into the tooling.

9 CONCLUSION AND FUTUREWORK
In this paperwe presented a novelmethod to reconstruct an overview
of allowed histories of a file based on its timestamps. We discussed
how to measure the timestamp effect of operations with and with-
out modifiers (file tunneling and last access updating), and apply
this to a set of basic file operations. The measurements reveal that
operations can result in a file state where there are specific relations
between some of the timestamps (Table 8). Our method leverages
this to derive previous states: a certain file state cannot be the result
of a given file operation, unless the state’s timestamps all satisfy
the relations required by the operation (Table 9). Thus, certain op-
erations can be excluded as having caused the current state. This
gives a set of possible previous file states. By recursively applying
this process, our method can construct all allowed histories of a file,
for the operations under consideration. This is fundamentally dif-
ferent from prior timestamp studies, which limit their approach to
identifying only the last possible operation. In contrast, our method
constructs a set of timelines of events. Lastly, we implemented our
method in a proof-of-concept and showed viability of this approach
to construct file histories.

The described method can be readily used by practitioners to re-
construct possible file histories. This will help them to substantiate
or refute timeline-related hypotheses.

Future work. First, to improve practical use, the list of file opera-
tions can be expanded with application-specific file modifiers.

Second, the presented method of reconstructing possible file
histories is based on the timestamp values stored in the MFT. Possi-
ble timeline reconstruction can be improved upon when sources
of previous timestamp information can be included, such as log
files, link files, or prefetch files [12]. With such additional points of
information, information loss would be reduced and therefore the
timeline horizon could be improved.

Last, the algorithms of the proof-of-concept tool are operation-
agnostic. That is, they will accept any list of operations. Moreover,
information loss ensures that our process for determining timelines
always terminates for the operations from Table 1. It is possible
that information loss of some other, not yet considered operations
is insufficient to guarantee termination. That is, some operations
could exist that jointly cause cyclical patterns in the reconstructed
timeline. How to detect this and how to handle such occurrences
are left for future work.

Acknowledgements. Van der Meer was supported by the Nether-
lands Organisation for Scientific Research (NWO) through Doctoral
Grant for Teachers number 023.012.047.

Reconstructing Timelines:
From NTFS Timestamps to File Histories ARES 2023, August 29–September 1, 2023, Benevento, Italy

REFERENCES
[1] Jewan Bang, Byeongyeong Yoo, Jongsung Kim, and Sangjin Lee. 2009. Analysis

of Time Information for Digital Investigation. In International Conference on
Networked Computing and Advanced Information Management (NCM’09), Fifth
International Joint Conference on INC, IMS and IDC: INC 2009: International Con-
ference on Networked Computing, IMS 2009: International Conference on Advanced
Information Management and Service, IDC 2009: International Conference on Dig-
ital Content, Multimedia Technology and its Applications, Seoul, Korea, August
25-27, 2009. IEEE Computer Society, 1858–1864.

[2] Jewan Bang, Byeongyeong Yoo, and Sangjin Lee. 2011. Analysis of changes in
file time attributes with file manipulation. Digital Investigation 7, 3-4 (2011),
135–144.

[3] Florian Buchholz and Eugene Spafford. 2004. On the role of file system metadata
in digital forensics. Digital Investigation 1, 4 (2004), 298–309.

[4] Gyu-Sang Cho. 2013. A computer forensic method for detecting timestamp
forgery in NTFS. Comput. Secur. 34 (2013), 36–46.

[5] Gyu-Sang Cho. 2014. An Intuitive Computer Forensic Method by Timestamp
Changing Patterns. In Eighth International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS’14). IEEE Computer Society, 542–
548.

[6] Gyu-Sang Cho. 2016. Data Hiding in NTFS Timestamps for Anti-Forensics.
International Journal of Internet, Broadcasting and Communication 8, 3 (2016),
31–40.

[7] Kam-Pui Chow, Michael Y. K. Kwan, Frank Y. W. Law, and Pierre K. Y. Lai. 2007.
The Rules of Time on NTFS File System. In Second International Workshop on

Systematic Approaches to Digital Forensic Engineering (SADFE’07). IEEE Computer
Society, 71–85.

[8] Xiaoqin Ding and Hengming Zou. 2011. Time based data forensic and cross-
reference analysis. In Proceedings of the 2011 ACM Symposium on Applied Com-
puting, Computer Forensics track (CF@SAC’11). ACM, 185–190.

[9] Michael Galhuber and Robert Luh. 2021. Time for Truth: Forensic Analysis of
NTFS Timestamps. In 16th International Conference on Availability, Reliability
and Security (ARES’21). ACM, 44:1–44:10.

[10] Dae-il Jang, Gail-Joon Ahn, Hyunuk Hwang, and Kibom Kim. 2016. Understand-
ing Anti-forensic Techniques with Timestamp Manipulation (Invited Paper). In
17th IEEE International Conference on Information Reuse and Integration (IRI’16).
IEEE Computer Society, 609–614.

[11] Rune Nordvik and Stefan Axelsson. 2022. It is about time–Do exFAT imple-
mentations handle timestamps correctly? Forensic Science International: Digital
Investigation 42 (2022), 301476.

[12] David Palmbach and Frank Breitinger. 2020. Artifacts for Detecting Timestamp
Manipulation in NTFS on Windows and Their Reliability. Forensic Science Inter-
national: Digital Investigation 32 (2020), 300920.

[13] Bradley L. Schatz, George M. Mohay, and Andrew J. Clark. 2006. A correlation
method for establishing provenance of timestamps in digital evidence. Digital
Investigations 3, Supplement (2006), 98–107.

[14] Svein Yngvar Willassen. 2008. Hypothesis-Based Investigation of Digital Time-
stamps. In 4th Annual IFIP WG 11.9 Conference on Digital Forensics (Digital Foren-
sics’08) (IFIP, Vol. 285). Springer, 75–86.

	Abstract
	1 Introduction
	2 Background
	3 Related Work
	4 Methodology: reasoning backwards
	5 Effect of operations on timestamps
	5.1 Modifiers on file operations
	5.2 Measuring the effect of operations
	5.3 Experiment results
	5.4 Effects of timestamp forgery

	6 Deducing Possible File Histories from NTFS Timestamps
	7 Proof of Concept implementation
	7.1 Timestamp analyzer
	7.2 Visualisation tool implementation

	8 Discussion
	9 Conclusion and future work
	References

