
Formal Modelling and Analysis of Receipt-Free Auction
Protocols in Applied Pi

Naipeng Donga,∗, Hugo Jonkerb, Jun Pangc

aSchool of Computing, National University of Singapore, 21 Lower Kent Ridge Rd, 119077, Singapore
bSchool of Computer Science, Open University of the Netherlands, Valkenburgerweg 177, 6419 AT Heerlen,

The Netherlands
cFaculty of Science, Technology and Communication & Interdisciplinary Centre for Security, Reliability

and Trust, University of Luxembourg, 6 rue Richard Coudenhove-Kalergi, L-1359, Luxembourg

Abstract

We formally study two privacy-type properties for e-auction protocols: bidding-price-

secrecy and receipt-freeness. These properties are formalised as observational equiv-

alences in the applied pi calculus. We analyse two receipt-free auction protocols: one

proposed by Abe and Suzuki in 2002 (AS02) and the other by Howlader et al. in 2014

(HRM14). Bidding-price-secrecy of the AS02 protocol is verified using the automatic

verifier ProVerif, whereas receipt-freeness of the two protocols, as well as bidding-

price-secrecy of the HRM14 protocol, are proved manually.

Keywords: e-auction, security protocol, formal verification, bidding-price-secrecy,

receipt-freeness

1. Introduction

Auctions are ways to negotiate exchange of goods and services. We use e-auctions

to refer to auctions over the Internet. A typical (e-)auction works as follows: a seller

offers items to bid, then bidders submit bids, finally auctioneers decide the winner. In

a traditional auction, bidders attend the auction in person. Compared to the traditional

auctions, e-auctions attract more participants, as users with the Internet can join an

auction. Real-life examples are well-known websites like eBay, eBid, Yahoo!auctions

∗Corresponding author
Email addresses: dcsdn@nus.edu.sg (Naipeng Dong), hugo.jonker@ou.nl (Hugo Jonker),

jun.pang@uni.lu (Jun Pang)

Preprint submitted to Elsevier December 16, 2016

and so on. E-auction protocols are also the subject of an active field of research [1, 2,

3, 4, 5, 6, 7, 8, 9, 10].

There are different types of (e-)auctions. For instance, depending on whether the

bids are public, there are sealed-bid auctions and open-bid auctions;

• Sealed-bid auctions: There are two phases in an auction: the bidding phase and

the opening phase. Bidders can only submit bids in the bidding phase. All bids

are sealed in the bidding phase and opened in the opening phase.

• Open-bid auctions: Bids are broadcast to all participants.

Other criteria to classify (e-)auctions exist as well. For example, depending on

the bidding price increases or decreases, there are English auctions (a bid needs to

be higher than the previous one; the winning bid is the final bid) and Dutch auctions

(the bidding price decreases until a bid is submitted); depending on the calculation of

payment, there are first-price auctions (the winner pays for the price he bid (highest

price)) and Vickrey auctions (the winner pays for the second highest price). Different

auctions are suitable for different types of negotiations, e.g., English auctions are often

used in real estate, Dutch auctions are often used in flower selling, and Vickrey auctions

are favoured by economists as they are better at encouraging bidders to express their

real estimation on the value of the items to bid on [11].

Many security issues have been identified in e-auctions, such as, a bidder may

falsely claim or forge bids, the auctioneer may corrupt with other bidders [12]. Beside

security issues, an important problem with existing e-auction systems is privacy. The

link between a bidder and his bids needs to be protected as such information can be

used to target a bidder with unsolicited junk mails or other malicious purposes, e.g.,

bid shielding.1 A major challenge of designing a protocol is to ensure the functionality

of the protocol. In addition to that, a challenge for designing a privacy preserving

e-auction protocol is that too much anonymity may allow bidders to repudiate bids,

whereas insufficient anonymity allows bidders to be profiled.

1A dishonest bidder submits a higher price to deter other bidders with lower valuations, when it ap-
proaches the close time of the auction, the dishonest bidder withdraws his bid in order to win with another
lower bid from him.

2

Depending on different types of auctions, privacy may have varying levels. For

instance, in sealed-bid auctions, all bids are sealed until the winner is determined.

Therefore, if auctioneers can decide the winners without knowing the non-winning

bidder’s bids, sealed-bid auctions can offer bidding-price secrecy for non-winning bid-

ders; while in open-bid auctions, all the bids are published. Some auctions require

that the auctioneer cannot link a bidder to his bids, whereas some others do not. The

arguments for this requirement are made according to the following lines. In Vickery

auctions, a bidder’s bid reflects the bidder’s valuation of the item bid on. Knowing a

bidder’s bid, an auctioneer knows the bidder’s valuation. Since the winning bidder pays

for the second highest price, the auctioneer could enter a bid just slightly lower than

the bidder’s valuation, to increase the auction’s revenue [11]. Contrarily in English

auctions, a bidder’s previous bids reveal less information of the bidder’s future bid,

thus, that the auctioneer knows the link between a bidder and his previous bids is less

harmful [11]. In general, sealed-bid e-auctions require that the non-winning bidders’

bidder-bid relation should be kept secret.

In addition to the above privacy notions, a stronger privacy notion – enforced pri-

vacy – has also been identified. In sealed-bid e-auctions, a bidder may be coerced

to bid a low price, so that the coercer can win an auction with an unreasonably low

price. The phenomenon that a coercer tries to control the winning price by coercion

is called bid-rigging. Note that the traditional auctions do not suffer from bid-rigging,

as the bidders do not have receipts on submitting a bid [13]. Inspired by the require-

ment of receipt-freeness in e-voting that a voter should not be able to prove his vote to

a voter-buyer, the requirement of receipt-freeness for fighting against bid-rigging has

been identified [14].

In general, the following two privacy notions are required in sealed-bid e-auctions:

Bidding-price-secrecy: A sealed-bid e-auction protocol preserves bidding-price-secrecy

for non-winning bidders if the adversary cannot determine the bidding price of

any non-winning bidder.

Receipt-freeness: A sealed-bid e-auction protocol is receipt-free for non-winning bid-

ders if a non-winning bidder cannot prove how he bids to the adversary.

3

In this paper, we first formalise these two privacy notions in the applied pi calculus

(Section 4). Without a precise definition, many protocols claimed to satisfy a property

were later found flawed (see examples in [15]). For example, the Okamoto e-voting

protocol [16] which claimed to satisfy receipt-freeness expressed in natural language,

was later shown flawed with respect to a rigorous definition [17]; and according to

the author, one important reason is the lack of formal definition of receipt-freeness in

e-voting. To validate our formalisation, we model and study privacy properties of the

AS02 protocol proposed by Abe and Suzuki [4] (Section 5) and the HRM14 proto-

col proposed by Howlader et al. [18] (Section 6). The authors of both papers claim

that their protocol satisfies the above two requirements for non-winning bidders and

provide an informal analysis. However, security protocols are notoriously difficult to

design and analyse, and proofs of security protocols are known to be error-prone, thus

we do not want to rely on an informal analysis. In several cases, formal verification

found security flaws in protocols which were thought to be secure [19, 20, 15, 21].

Formal verification has shown its strength in finding attacks and proving correctness

of security protocols. In this paper, we formally verify whether bidding-price-secrecy

and receipt-freeness hold in their protocols. We model both protocols using the ap-

plied pi calculus [22] (Section 2). The applied pi calculus provides an intuitive way

to model concurrent systems, especially security protocols. Moreover, it is supported

by ProVerif [23], a verification tool which can be used to verify a number of security

properties automatically (Section 3). As suggested in [15], we use observational equiv-

alence to express bidding-price-secrecy and receipt-freeness in the applied pi calculus.

Previously, formalisation of privacy-type properties has already been successfully ex-

ecuted in the domain of voting [24, 15] (similar ideas were developed in a different

formal framework [25]). Bidding-price-secrecy for the AS02 protocol is verified auto-

matically using ProVerif, whereas receipt-freeness, as well as bidding-price-secrecy for

the HRM14, are proven manually. Related work is discussed in Section 7 and Section 8

concludes the paper with a few future works.

Note that an extended abstract of our work has appeared in the proceedings of

7th International Workshop on Formal Aspects in Security and Trust [26], where we

have formally analysed the AS02 protocol. In the current paper, we have included the

4

full details of our analysis the AS02 protocol, and extended our method to analyse

the recently published HRM14 protocol. For the HRM14 protocol, we showed that it

may not satisfy receipt-freeness and proposed a fix, and then we proved that the fixed

protocol satisfies receipt-freeness.

2. The applied pi calculus

The applied pi calculus is a language for modelling and analysing concurrent sys-

tems, in particular cryptographic protocols. It assumes the Dolev-Yao model [27] for

adversaries which have full control of the network. Namely, an adversary can eaves-

drop, replay, block and inject messages. The adversary can be modelled as an arbitrary

process running in parallel with the protocol, which can interact with the protocol in

order to gain information.

The following briefly introduces its syntax, semantics and equivalence relations. It

is mainly based on [22, 28].

2.1. Syntax

The calculus assumes an infinite set of names (which are used to model commu-

nication channels or other atomic data), an infinite set of variables (which are used to

model received messages) and a signature Σ consisting of a finite set of function sym-

bols (which are used to model cryptographic primitives). Each function symbol has an

arity. A function symbol with arity zero is a constant.

Example 1. In cryptographic protocols, typical function symbols are enc with arity 2

for encryption and dec with arity 2 for decryption.

Terms (which are used to model messages) are defined as names, variables, or func-

tion symbols applied to terms (see Figure 1).

Figure 1: Terms in the applied pi calculus.

M, N, T ::= terms
a, b, m, n, . . . names
x, y, z variables
f(M1, . . . ,M`) function application

5

The applied pi calculus assumes a sort system for terms. Terms can be of a base

type (e.g., KEY or a universal base type DATA) or type Channel〈ω〉where ω is a type.

A variable and a name can have any type. A function symbol can only be applied to

and return, terms of base type. Terms are assumed to be well-sorted and substitutions

preserve types.

Terms are often equipped with an equational theory E – a set of equations on terms.

The equational theory is normally used to capture features of cryptographic primitives.

The equivalence relation induced by E is denoted as =E .

Example 2. The behaviour of symmetrical encryption and decryption can be captured

by the following equation: dec(enc(x,y),y) =E x, where x,y are variables.

Systems are described as processes: plain processes and extended processes (see

Figure 2). In Figure 2, M and N are terms, n is a name, x is a variable and u is a

Figure 2: Processes in the applied pi calculus.

P, Q, R ::= plain processes
0 null process
P | Q parallel composition
!P replication
ν n. P name restriction
if M =E N then P else Q conditional
in(u,x). P message input
out(u,M). P message output

A, B, C ::= extended processes
P plain process
A | B parallel composition
ν n. A name restriction
ν x. A variable restriction
{M/x} active substitution

metavariable, standing either for a name or a variable. The null process 0 does noth-

ing. The parallel composition P | Q represents the sub-process P and the sub-process

Q running in parallel. The replication !P represents an infinite number of process P

running in parallel. The name restriction ν n. P binds the name n in the process P,

which means the name n is secret to the adversary. The conditional evaluation M =E N

represents equality over the equational theory rather than strict syntactic identity. The

6

message input in(u,x). P reads a message from channel u, and bounds the message to

the variable x in the following process P. The message output out(u,M). P sends the

message M on the channel u, and then runs the process P. Extended processes add

variable restrictions and active substitutions. The variable restriction ν x. A bounds the

variable x in the process A. The active substitution {M/x} replaces variable x with

term M in any process that it contacts with. We also write “let x = m in P” to represent

P{M/x}.
Names and variables have scopes. A name is bound if it is under restriction. A

variable is bound by restrictions or inputs. Names and variables are free if they are not

delimited by restrictions or by inputs. The sets of free names, free variables, bound

names and bound variables of a process A are denoted as fn(A), fv(A), bn(A) and

bv(A), respectively. A term is ground when it does not contain variables. A process is

closed if it does not contain free variables. A frame is defined as an extended process

built up from 0 and active substitutions by parallel composition and restrictions. The

active substitutions in extended processes allow us to map an extended process A to its

frame frame(A) by replacing every plain process in A with 0. The domain of a frame B,

denoted as domain(B), is the set of variables for which the frame defines a substitution.

A context C [] is defined as a process with a hole, which may be filled with any process.

An evaluation context is a context whose hole is not under a replication, a condition,

an input or an output. Finally, we abbreviate the process ν n1. · · ·ν nn. P as ν ñ. P.

2.2. Operational semantics

The operational semantics of the applied pi calculus is defined by: 1) structural

equivalence (≡), 2) internal reduction (→), and 3) labelled reduction (α−→) of processes.

1) Informally, two processes are structurally equivalent if they model the same thing

but differ in structure. Formally, structural equivalence of processes is the smallest

equivalence relation on extended process that is closed by α-conversion on names and

variables, by application of evaluation contexts as shown in Figure 3.

2) Internal reduction is the smallest relation on extended processes closed under

structural equivalence, application of evaluation of contexts as shown in Figure 4.

3) The labelled reduction models the environment interacting with the processes. It

7

Figure 3: Structural equivalence in the applied pi calculus.

PAR−0 A | 0 ≡ A
PAR−A A | (B |C) ≡ (A | B) |C
PAR−C A | B ≡ B | A
REPL !P ≡ P |!P
SUBST {M/x} | A ≡ {M/x} | A{M/x}
NEW−0 ν u. 0 ≡ 0
NEW−C ν u. ν v. A ≡ ν v. ν u. A
NEW−PAR A | ν u. B ≡ ν u. (A | B) if u 6∈ fn(A)∪ fv(A)
ALIAS ν x. {M/x} ≡ 0
REWRITE {M/x} ≡ {N/x} if M =E N

Figure 4: Internal reduction in the applied pi calculus.

COMM out(c,x). P | in(c,x). Q → P | Q
THEN if N =E N then P else Q → P
ELSE if M =E N then P else Q → Q

for ground terms M, N where M 6=E N

defines a relation A α−→ A′ as in Figure 5. The label α is either reading a term from the

process’s environment, or sending a name or a variable of base type to the environment.

Figure 5: Labelled reduction in the applied pi calculus.

IN in(c,x). P
in(c,M)−−−−→ P{M/x}

OUT−ATOM out(c,u). P
out(c,u)−−−−→ P

OPEN−ATOM A
out(c,u)−−−−→ A′ u 6= c

ν u. A
ν u. out(c,u)−−−−−−−→ A′

SCOPE A α−→ A′ u does not occur in α

ν u. A α−→ ν u. A′

PAR
A α−→ A′ bv(α)∪ fv(B) = bn(α)∩ fn(B) = /0

A | B α−→ A′ | B

STRUCT A≡ B B α−→ B′ A′ ≡ B′

A α−→ A′

8

2.3. Equivalences

The applied pi calculus defines observational equivalence and labelled bisimilarity

to model the indistinguishability of two processes by the adversary. It is proved that the

two relations coincide when active substitutions are of base type [22, 29]. We mainly

use the labelled bisimilarity for the convenience of proofs. Labelled bisimilarity is

based on static equivalence: labelled bisimilarity compares the dynamic behaviour of

processes, while static equivalence compares their static states (as represented by their

frames).

Definition 1 (static equivalence). Two terms M and N are equal in the frame B, written

as (M =E N)B, iff there exists a set of restricted names ñ and a substitution σ such that

B≡ ν ñ. σ , Mσ =E Nσ and ñ∩ (fn(M)∪ fn(N)) = /0.

Closed frames B and B′ are statically equivalent, denoted as B≈s B′, if

(1) domain(B) = domain(B′);

(2) ∀ terms M,N: (M =E N)B iff (M =E N)B′.

Extended processes A, A′ are statically equivalent, denoted as A ≈s A′, if their

frames are statically equivalent: frame(A)≈s frame(A′).

Definition 2 (labelled bisimilarity). Labelled bisimilarity (≈`) is the largest symmetric

relation R on closed extended processes, such that AR B implies:

(1) A≈s B;

(2) if A→ A′ then B→∗ B′ and A′R B′ for some B′;

(3) if A α−→ A′ and fv(α)⊆ domain(A) and bn(α)∩ fn(B) = /0; then B→∗ α−→→∗ B′ and

A′R B′ for some B′, where * denotes zero or more.

3. ProVerif

The verification of protocols modelled in the applied pi calculus is supported by an

automatic verification tool ProVerif [23, 30, 31]. The tool has been used to verify many

security and privacy properties, e.g., see [32, 33, 34, 35, 36, 9, 37, 21].

ProVerif takes a protocol and a property modelled in the applied pi calculus as

input, returns a proof of correctness or flaws as output. A protocol modelled in the ap-

plied pi calculus is translated to Horn clauses [38]. The adversary ability is interpreted

9

as Horn clauses as well. Using these clauses, the verification of secrecy (e.g., secrecy

of M) is to determine whether a predicate (e.g., “attack : M” meaning that attack knows

M) can be deduced. However, not all properties can be expressed as such predicates.

Many of such properties can be expressed as equivalences of processes, for example,

strong secrecy which is defined as the adversary’s inability to distinguish when the

secret changes. Therefore, in addition, ProVerif provides automatic verification of la-

belled bisimilarity of two processes which differ only in the choice of some terms [39].

Strong secrecy of a variable x can be verified by querying “noninterf x”, meaning that

no matter how the variable x is instantiated, the adversary cannot detect any difference

between these instantiations. An operation “choice[a,b]” is also used to model the dif-

ferent choices of a term in the two processes. Using this operation, the two processes

can be written as one process – a bi-process. Using the first parameter of all “choice”

operations in a bi-process P, we obtain one side of the equivalence (denoted as fst(P));

using the second parameters, we obtain the other side (denoted as snd(P)). Given a

bi-process P, ProVerif determines whether fst(P) is labelled bisimilar to snd(P).

4. Formalisation of privacy notions in e-auctions

We formalise the two identified privacy notions, bidding-price-secrecy and receipt-

freeness, using the applied pi calculus in the context of sealed-bid e-auctions.

An auction protocol is essentially a specification of the behaviour of the roles par-

ticipating in the protocol. A protocol normally involves two roles: bidders and auc-

tioneers, e.g., the AS02 protocol. Some protocols may involve other roles, such as

role sealers in the HRM14 protocol. The behaviour of each role is a sequence of mes-

sage inputs, message outputs and conditional evaluations on messages. Recall that each

message is modelled as a term – names, variables, or function symbols applied on other

terms, in the applied pi calculus; and the message inputs, outputs and conditional eval-

uations are modelled as atomic events in the applied pi calculus. Thus, the behaviour of

each role specified in a protocol is formally defined as a process. Therefore, an auction

protocol with n roles (including the role bidder defined as process Pb and auctioneer

defined as process Pa) is formally defined as a tuple (Pb,Pa,Prole1 , . . . ,Prolen−2) where

10

Prolei defines the behaviour of role i. These processes are composed using parallel op-

erator with communication channels and auxiliary data. The composed process is then

the whole model of the entire protocol. For instance, an e-auction protocol with nb

bidders and na auctioneers can be modelled as:

Pbid := ν chandata. (PK | Pb1 | · · · | Pbnb
| Pa1 | · · · | Pana),

where Pbi is an instance of a bidder process, Pa j is an instance of an auctioneer pro-

cess, PK is the key distribution process, and chandata models private data and private

channels.

4.1. Bidding-price-secrecy

Bidding-price-secrecy for non-winning bidders can be formalised in two levels:

standard bidding-price-secrecy and strong bidding-price-secrecy. Standard bidding-

price-secrecy is formalised as the adversary cannot derive the bidding price of a non-

winning bidder. Strong bidding-price-secrecy is formalised as the adversary cannot

even distinguish between the case when a bidder bids for price a and the case when

the bidder bids for price c. In other words, the adversary cannot tell whether a bidder

changes his bidding price from a to c.

Formalisation similar to strong bidding-price-secrecy has been used, e.g., vote-

privacy [15]: a process in which voter vA votes for a (PvA{a/vote}) and voter vB votes

for c (PvB{c/vote}) is observationally equivalent to a process where vA votes for c

(PvA{c/vote}) and vB votes for a (PvB{a/vote}). The idea is that even if all other voters

reveal how they voted, the adversary cannot deduce the votes of voter vA and voter

vB, given voter vA and voter vB counterbalance each other. Different from privacy in

voting where the voting result is published, in sealed-bid e-auction protocols, normally

a non-winning bidder’s bidding price is not published. Therefore, we do not need a

counterbalancing process. Instead, we need a process in which a bidder bids for a

higher price so that non-winning bids are not revealed in the opening phase. Therefore,

strong bidding-price-secrecy is formalised as follows:

Definition 3 (strong bidding-price-secrecy for non-winning bidders). An auction pro-

11

tocol Pbid, with a bidder sub-process represented as Pb, satisfies strong bidding-price-

secrecy for non-winning bidders, if for all possible bidders bA and bB we have:

Cb[PbA{a/pb} | PbB{d/pb}]≈` Cb[PbA{c/pb} | PbB{d/pb}]

with a < d and c < d.

The context Cb[] is used to capture the assumption made on the checked pro-

tocol, usually it includes the other honest participants in the protocol, i.e., Cb[] :=

ν chandata. (PK | Pb1 | · · · | Pb(nb−2) | | Pa1 | · · · | Pana). The process PbA is a bidder

process executed by a non-winning bidder bA. The process PbB is a bidder process ex-

ecuted by another bidder bB who bids for a higher price. The variable pb indicates the

bidding price in a process. Hence, the processes PbA{a/pb}, PbA{c/pb}, and PbB{d/pb}
capture bidder bA bidding for price a, bidder bA bidding for price c, and bidder bB

bidding for price d, respectively. The intuition is that the adversary cannot determine

whether a non-winning bidder bids for price a or price c, provided there exists another

bidder who bids for a higher price d.

4.2. Receipt-freeness

Receipt-freeness means a bidder cannot prove to an adversary that he has bid in a

certain way. It is useful to protect bidders from being coerced to show how they bid.

Intuitively, bidding-price-secrecy protects a bidder’s privacy when the bidder does not

want to reveal his private information, while receipt-freeness protects a bidder’s privacy

when the bidder is willing (or coerced) to reveal this.

In voting, receipt-freeness can be formalised as an observational equivalence [15].

A voting protocol satisfies receipt-freeness if the adversary cannot distinguish (obser-

vational equivalence) whether a voter genuinely did his voting or that voter claimed to

do so, but voted for another candidate. In order to model observational equivalence,

the situation that a voter provides his secret information to the adversary is modelled

first:

Definition 4 (process Pchc [15]). Let P be a plain process and chc a channel name.

Pchc, the process that shares all of P’s secrets, is defined as:

12

• 0chc =̂ 0,

• (P | Q)chc =̂ Pchc | Qchc,

• (ν n. P)chc =̂ ν n. out(chc,n). Pchc when n is a name of base type,

• (ν n. P)chc =̂ ν n. Pchc otherwise,

• (in(u,x). P)chc =̂ in(u,x). out(chc,x). Pchc when x is a variable of base type,

• (in(u,x). P)chc =̂ in(u,x). Pchc otherwise,

• (out(u,M). P)chc =̂ out(u,M). Pchc,

• (!P)chc =̂ !Pchc,

• (if M =E N then P else Q)chc =̂ if M =E N then Pchc else Qchc.

Delaune et al. also define process transformation A\out(chc,·), which can be consid-

ered as a version of process A that hides all outputs on public channel chc.

Definition 5 (process A\out(chc,·) [15]). Let A be an extended process. The process

A\out(chc,·) is defined as ν chc. (A |!in(chc,x)).

When modelling online auction protocols, we also need to model the situation in

which a bidder shares his secret information with the adversary. We use the above

definition directly in our model. Intuitively, a bidder who shares information with the

adversary sends all input of base type and all freshly generated names of base type to

the adversary over a public channel chc. It is assumed that public channels are under

the adversary’s control.

Now, we can define receipt-freeness for sealed-bid e-auction protocols. Again, we

need a bidder process PbB in which bidder bB bids for a higher price d, so that non-

winning bids are not revealed. Intuitively, if a non-winning bidder has a strategy to

cheat the adversary, and the adversary cannot tell the difference between whether the

bidder cheats or not, then the protocol is receipt-free.

Definition 6 (receipt-freeness for non-winning bidders). An auction protocol Pbid, with

a bidder sub-process Pb, satisfies receipt-freeness for non-winning bidders, if there

exists a closed plain process Pf such that:

13

1. Pf
\out(chc,·) ≈` PbA{c/pb},

2. Cb[PbA{a/pb}chc | PbB{d/pb}]≈` Cb[Pf | PbB{d/pb}]

with a < d and c < d.

Process Pf is a bidder process in which bidder bA bids for price c but communicates

with the adversary and tells the adversary that he bids for price a. Process PbA{c/pb} is

a bidder process in which bidder bA bids for price c. Process PbA{a/pb}chc is a bidder

process in which bidder bA bids for price a and shares his secrets with the adversary.

Process PbB{d/pb} is a bidder process in which bidder bB bids for a higher price d.

The first equivalence says that ignoring the outputs bidder bA makes on the channel

chc to the adversary, Pf looks like a normal process in which bA bids for price c.

The second equivalence says that the adversary cannot tell the difference between the

situation in which bA obeys the adversary’s commands and bids for price a, and the

situation in which bA pretends to cooperate but actually bids for price c, provided there

is a bidding process PbB that bids higher, ensuring that bidding processes PbA and Pf

are not winners. Receipt-freeness is a stronger property than bidding-price-secrecy, for

the same reason as receipt-freeness in e-voting is stronger than vote-privacy (as shown

in [15]).

5. Case study: the AS02 protocol

After receipt-freeness has been identified in sealed-bid e-auctions. Abe and Suzuki

proposed the first protocol which aims to prevent bid-rigging – the AS02 protocol [4].

In this section, we analyse both bidding-price-secrecy and receipt-freeness for non-

winning bidders in the AS02 protocol. The main steps of the protocol are depicted in

Figure 6.

5.1. Introduction

This protocol is a sealed-bid e-auction protocol. The protocol involves n bidders

b1, . . . ,bn and k auctioneers a1, . . . ,ak. A price list is published before the protocol.

During the protocol, each bidder sends a commit for every price in the price list: ‘yes’

if he wants to bid that price, ‘no’ otherwise. Auctioneers work together to open the

14

commitments of all bidders from the highest price down until the winning bid(s) is/are

found.2

5.2. Physical assumptions

In order to ensure privacy of bidders, the protocol has two physical assumptions:

a1: a bidding booth for the bidders, and

a2: a one-way untappable channel from every bidder to every auctioneer.

The bidding booth enables a bidder to privately submit a bid free from control or obser-

vation of the adversary. The untappable channels ensure no adversary can see messages

sent.

5.3. Settings

Before starting the protocol, one auctioneer publishes an increasing price list p1, . . . ,pm,

a message Myes for “I bid”, a message Mno for “I do not bid”, a generator g of subgroup

of Z∗p with order q, where q, p are large primes with p = 2q+1.

5.4. Description of the protocol

The protocol consists of two phases: bidding and opening.

Bidding phase. A bidder in the bidding booth chooses a secret key x, publishes his

public key h = gx with a predetermined signature. Then the bidder chooses a series

of random numbers r1, . . . ,rm as secret seeds, one random number for each price, and

decides a price pb to bid for. Then he generates a bit-commitment for each price p` (1≤
`≤ m), using the following formula:

cmtp` =

 gMyeshr` if p` = pb (a bid for price p`)

gMnohr` if p` 6= pb (not a bid for price p`)

2The protocol does not specify how to resolve the case where there are fewer bidding items than winners.

15

Next, the bidder publishes the sequence of the bit-commitments with his signature.

Then he proves to each auctioneer that he knows the secret key logg h = x and the dis-

crete logs (logg cmtp1 , . . . , logg cmtpm) using interactive zero-knowledge proofs. Finally,

he computes t-out-of-k3 secret shares ri
` for each secret seed r` and each auctioneer ai,

and then sends the signed secret share ri
` over the one-way untappable channel to the

auctioneer ai.

Figure 6: The AS02 protocol.

Opening phase. Auctioneers together iterate the following steps for each price p` =

pm,pm−1, . . . ,p1 until the winning bid is determined.

3t is a threshold, k is the number of auctioneers, it means only more than t auctioneers together can
reconstruct the secret seeds.

16

Each auctioneer ai publishes secret shares ri
` (the `-th secret share of a bidder sent

to auctioneer ai) of all bidders. For each bidder, all auctioneers work together to recon-

struct the secret seed r`, and check for each bidder whether

cmtp` ?
= gMyeshr` .

If there exist some bidders for which the above equivalences are satisfied, the auction-

eers finish checking the current price and then stop. In this case, the price p` is the

winning price, those bidders are winning bidders. If there is no equivalence existing,

which means there is no bidder bidding for the price p`, the auctioneers repeat the

above process on the next lower price.

5.5. Claimed properties

The authors claim the following properties: bidding-price-secrecy and receipt-

freeness for non-winning bidders. Intuitively, the bidding price of each bidder is sealed

in the bidding phase, and only the winning bidder’s bidding price is revealed in the

opening phase, thus the adversary does not know the bidding price for non-winning bid-

ders, thus standard bidding-price-secrecy is satisfied. The strong bidding-price-secrecy

is satisfied mainly due to the random number used in calculating the bit-commitments.

Informal reasoning of receipt-freeness. We use M to represent either Myes or Mno,

the formula for computing cmtp` is of the following form:

cmtp` = gM ·hr` = gM · (gx)r` = gM+xr` ,

since h = gx. Thus, logg cmtp` = M+xr`. By using interactive zero-knowledge proofs,

a bidder is proved to know his secret key x and discrete logs logg cmtp` . An interesting

property of chameleon bit-commitments is that if the bidder bids for price p`,

logg cmtp` = Myes + xr`

17

he can calculate a fake r′` such that:

logg cmtp` = Mno + xr′` and r′` = (Myes + xr`−Mno)/x.

Using the fake r′`, the bidder can show that the bit-commitment cmtp` is opened as

message Mno, which means the bidder did not bid for price p`. Using the same method,

a bidder can open a ‘no’ bit-commitment as a ‘yes’ bit-commitment. Thus, the commit

leaks no information concerning the bid, thus the bidder cannot prove how he bid, i.e.,

receipt-freeness is satisfied.

5.6. Modelling

We model the AS02 protocol in applied pi, using two simplifications:

s1: one honest auctioneer; and

s2: perfect zero knowledge proofs.

In the protocol, auctioneers are cooperating to find the winning bid. It takes at least

t auctioneers to decide the winner, thus guaranteeing t-out-of-k secrecy. As we focus

on bidder privacy, we need to consider only one honest auctioneer. Thus, we simplify

the model to have only one honest auctioneer. The AS02 protocol uses interactive zero

knowledge proofs to guarantee that each bidder knows his secret key and the discrete

logs of bit-commitments. However, the details of these proofs are left unspecified, and

thus we did not include them in the model. We simply assume that the zero knowledge

proofs are perfect, that is, 1) we assume each bidder knows his secret key and discrete

logs of bit-commitments and 2) non-eligible bids are not allowed (modelled as the

adversary is not able to generate eligible bids), since the zero knowledge proofs are

used to prevent non-eligible bidders from submitting bids.

In addition, the AS02 does not specify how the auctioneers tell the signed pub-

lic key from the signed commitments generated by the same bidder. In order for the

auctioneer to distinguish the two messages, in our modelling,

s3: we use a symbol k in the signed public key messages.

18

Signature and equational theory. The signatures and the equational theory model

cryptographic primitives used in the protocol. We fix a list of bidders (b1, . . . ,bn) and

an ordered list of prices (p1, . . . ,pm), which are modelled as functions with arity 0.

We define function nextbidder to find the next bidder in the bidder list, and function

nextprice to find the next lower price in the price list.

nextbidder(b1) = b2 nextprice(pm) = pm−1

.

nextbidder(bn−1) = bn nextprice(p2) = p1

nextbidder(bn) = ⊥ nextprice(p1) = >

Function checksign is used to check whether the public signature key is the right one

for the signed message, and we use function getmsg to get the original message from

a signed message. Particularly, chameleon bit-commitments are modelled as a function

commit with arity 3 (a random number, public key of the bidder and message M either

Myes or Mno). The relevant properties of chameleon bit-commitments are captured in

the following equational theory.

commit(r,pk(skb),Myes) =E commit(f(r),pk(skb),Mno) et1

commit(r,pk(skb),Mno) =E commit(f(r),pk(skb),Myes) et2

open(commit(r,pk(skb),m),r,pk(skb)) =E m

Constants Mno and Myes represent “I do not bid” and “I bid”, respectively. The param-

eter pk(skb) is the public key of a bidder, and r is the secret seed the bidder chooses.

Function f(r) returns the fake secret seed of a secret seed r. We can model the function

f by just giving one parameter - the real secret seed. Because we assume that each bid-

der knows his secret key and discrete logs of bit-commitments, he can compute the fake

secret seed for each real secret seed, as explained in the previous section4. In fact, from

4The bidder proves that he knows his secret key and discrete logs of bit-commitments, using zero-
knowledge proofs. Due to the perfect zero-knowledge assumption, the bidder is assumed to have that knowl-
edge; and the adversary is assume not to have the knowledge and thus cannot apply f function. Hence, f is
defined as private in Figure 7, meaning that the adversary cannot apply it.

19

fun b1/0, . . . , fun bn/0, fun p1/0, . . . , fun pm/0, fun Myes/0, fun Mno/0,
fun true/0, fun pk/1, fun commit/3, fun sign/2, private fun f/1, fun k/0

Figure 7: Functions.

the formula in Section 5.5, f(r) returns the alternative secret seed of r, which leads to

the opposite opening result of a bit-commitment. Thus, given f(r), which opens a bit-

commitment as Myes(Mno), the bidder can also compute r which leads to Mno(Myes),

i.e., f(f(r)) =E r. The first equivalence (et1) means that if a bidder chooses a secret

seed r, bids for a price, and calculates the bit-commitment commit(r,pk(skb),Myes),

he can compute a fake secret seed f(r), and by using this fake secret seed, the bit-

commitment can be opened as message Mno, which means “I do not bid”. The second

equivalence (et2) shows that the opposite situation also holds. The third equivalence

models that a bidder can open a bit-commitment with the corresponding public key and

secret seed (potentially being fake). These three equivalences allow a bidder to open a

bit-commitment as if he bids for that price, when actually he does not; and vice versa.

All functions defined in this model are shown in Figure 7 and the equational theory

is shown in Figure 8. Note that the functions and equational theory are defined in the

ProVerif untyped style (for details, see [40]), which slightly differs from applied pi 5.

In particular, fun is used to denote function in ProVerif, the numerical number follow-

ing a function symbol is the arity of the function, and reduc and equation are used to

denote the equational theory in ProVerif (instead of using =E in applied pi) 6.

Main process. For each bidder b j, the main process (see Figure 9) generates two

private channels privchb j
(m1) and privchab j

(m2). These channels are used for

instantiating a bidder process. In particular, a bidder receives his secret signing key

from channel privchb j
; and the auctioneer receives the corresponding public key from

channel privchab j
. In addition, the main process generates an untappable channel

5In the untyped ProVerif style, function nextbidder and nextprice cannot be used as in Figure 12.
In the ProVerif code, we consider them as predefined. Additionally, the two equations et1 and et2 can
be unified into one, due to the equation f(f(r)) =E r, e.g., by replacing r with f(r) in et1, we obtain
commit(f(r),pk(skb),Myes) =E commit(f(f(r)),pk(skb),Mno). Since f(f(r)) =E r, the equation coincides
with et2.

6The ProVerif code is available at http://satoss.uni.lu/projects/epriv, under title ‘For-
mal analysis of a receipt-free auction protocol in the applied pi’.

20

http://satoss.uni.lu/projects/epriv

reduc checksign(sign(m,sk),pk(sk)) = true
reduc getmsg(sign(m,sk)) = m
equation commit(r,pk(skb),Mno) = commit(f(r),pk(skb),Myes)
equation f(f(r)) = r
reduc open(commit(r,pk(skb),m),r,pk(skb)) = m

Figure 8: Equational theory.

untapchb j
for bidders b j (m3). The untappable channel is shared between each bid-

der and the auctioneer. The private channels synchb1
, . . . ,synchbn

are generated for

modelling convenience (m4). These channels are used by the auctioneer to collect all

necessary information before moving to the opening phase. The main process launches

a key generating process PK (m5), n instantiations of the bidder process (m5-m8) and

an instance of the auctioneer process (m8). Four variables need to be instantiated in an

instance of bidder process: the bidding price pb, the untappable channel untapch, the

private channel privch and the public channel for that bidder ch. For the simplicity of

modelling, each bidder b j has a distinct public channel chb j . The correspondence be-

tween privchab j
, untapchb j

and chb j allows the auctioneer to distinguish messages

from the same bidder. In this way, we avoid modelling the auctioneer classifying mes-

sages by bidders (by checking signatures). Note that pb1 , . . . , pbn are parameters, each

of these parameters has to be instantiated with a constant in the published price list

p1, . . . ,pm.

PAS02 :=
m1. ν privchb1

. ν privchb2
. · · · . ν privchbn

.
m2. ν privchab1

. ν privchab2
. · · · . ν privchabn

.
m3. ν untapchb1

. ν untapchb2
. · · · . ν untapchbn

.
m4. ν synchb1

. ν synchb2
. · · · . ν synchbn

.
m5. (PK | (let pb = pb1 in let untapch = untapchb1

in
m6. let privch = privchb1

in let ch = chb1 in Pb) |
m7. · · · | (let pb = pbn in let untapch = untapchbn

in
m8. let privch = privchbn

in let ch = chbn in Pb) | Pa)

Figure 9: The main process.

Key distribution process. This process generates and distributes keying material mod-

elling a PKI – public key infrastructure (Figure 10). This process first generates n secret

21

keys (k1). Each bidder b j has one secret key sskb j for signing messages. Each secret

key corresponds to a public key (k2-k4). Each secret key is assigned to a bidder pro-

cess by being sent to the bidder over the private channel privchb j
corresponding to

that bidder (k5). The corresponding public key is sent to the auctioneer over the pri-

vate channel privchab j
(k6) and is published over the public channel chb j such that

the adversary knows the keys (k7). Therefore, only a bidder knows his own secret

key, and everyone, including the adversary, knows each bidder’s public key. Sending

each public key to the auctioneer over a private channel, models the following proto-

col setting: There are fix number of bidders in sealed-bid auctions, and the auctioneer

knows each bidder’s public signing key as predetermined knowledge. This setting also

disallows the adversary to generate an eligible bid (to capture perfect zero knowledge

proof), as the adversary does not know any secret key which is needed to sign a bid.

PK :=
k1. ν sskb1 . ν sskb2 . · · · . ν sskbn .
k2. let spkb1 = pk(sskb1) in
k3. · · ·
k4. let spkbn = pk(sskbn) in
k5. (out(privchb1

,sskb1) | · · · | out(privchbn
,sskbn) |

k6. out(privchab1
,spkb1) | · · · | out(privchabn

,spkbn) |
k7. out(chb1 ,spkb1) | · · · | out(chbn ,spkbn))

Figure 10: The key distribution process.

Bidder process. The applied pi calculus process for a bidder Pb is given in Figure 11.

First, a bidder receives his secret signature key from his private channel (b1). Next,

the bidder generates his secret key skb (i.e., the secret key x in Section 5.4), signs

the corresponding public key (i.e., h = gx in Section 5.4) and publishes the signed

message (b2). To indicate that this message contains a key, we add k into the message

(see s3). In addition, the bidder chooses a series of random numbers r1, . . . ,rm as

secret seeds (b3). The bidder then computes each bit-commitment cmtp` as described

in Section 5.4. For each price, the bidder computes a commitment: if the price is the

bidding price, then the bidder commits ‘yes’ with Myes, otherwise, the bidder commits

‘no’ with Mno (b4-b6 when he bids for p1). Finally, the bidder publishes the series of

22

bit-commitments cmtp1 , . . . ,cmtpm with his signature (b7), and sends the signed series

of secret seeds to the auctioneer through the untappable channel (b8). The process of

bidding for other prices is similar (b9-b13 when bidding for pm). As we assume there

is only one honest auctioneer in the model, we do not need to model secret shares.

Pb :=
b1. in(privch,sskb).
b2. ν skb. out(ch,sign((pk(skb),k),sskb)).
b3. ν r1. · · · . ν rm.
b4. if pb = p1 then
b5. (let cmtp1 = commit(r1,pk(skb),Myes) in

. . .
b6. let cmtp1 = commit(r1,pk(skb),Mno) in
b7. out(ch,sign((cmtp1 , · · · ,cmtpm),sskb)).
b8. out(untapch,sign((r1, · · · ,rm),sskb)))

. . .
b9. if pb = pm then
b10. (let cmtpm = commit(rm,pk(skb),Mno) in

. . .
b11. let cmtpm = commit(rm,pk(skb),Myes) in
b12. out(ch,sign((cmtp1 , · · · ,cmtpm),sskb)).
b13. out(untapch,sign((r1, · · · ,rm),sskb)))

Figure 11: The bidder process.

Auctioneer process. During the bidding phase, the auctioneer launches n copies of

sub-process readinfo to gather information from each bidder b j (a1).

In details, the auctioneer collects public signature key spk (r1) and the signed com-

mitting public key signedpk (supposed to be sign((pk(skb j),k),sskb j) for bidder b j)

(r2) of each bidder. The auctioneer verifies whether the committing public key is signed

with the right signature (r3) and obtains the committing public key pk from signedpk

(r4). Next, the auctioneer reads in the signed commitments signedcommit of the bidder

(r5) and verifies the signature (r6). If the commitments are correctly signed, the auc-

tioneer obtains the series of bit-commitments cmtp1 , . . . ,cmtpm (r7), then the auctioneer

reads in the secret seeds sr from the untappable channel of the bidder (r8). The auction-

eer verifies the signature (r9). If the secret seeds are correctly signed, the auctioneer

obtains the secret seeds ssp1 , . . . ,sspm (r10). Finally, the auctioneer sends the signal

23

Pa :=
a1. let ch = chb1 in let privcha = privchab1

in
let synch = synchb1

in let untapch = untapchb1
in readinfo |

· · · |
let ch = chbn in let privcha = privchabn

in
let synch = synchbn

in let untapch = untapchbn
in readinfo |

a2. in(synchb1
,(pkb1 ,cmtp1

b1
, . . . ,cmtpm

b1
,ssp1

b1
, . . . ,sspm

b1
)).

· · · .
in(synchbn

,(pkbn ,cmtp1
bn
, . . . ,cmtpm

bn
,ssp1

bn
, . . . ,sspm

bn
)).

a3. if cmtpm
b1

= commit(sspm
b1
, pkb1 ,Myes)

a4. then out(winnerch,(pm,b1)).
a5. if nextbidder(b1) =⊥
a6. then 0
a7. else checknextbpm

nextbidder(b1)

a8. else if nextbidder(b1) =⊥
a9. then if nextprice(pm) =>
a10. then 0
a11. else checknextbnpnextprice(pm)

b1
a12. else checknextbnppm

nextbidder(b1)

Figure 12: The auctioneer process.

that information collecting for the bidder has finished, over the channel synch (r9). In

addition, the collected information (the committing public key, the commitments, the

secret seeds) is sent to the sub-process in which the winning bidder is determined.

Next the auctioneer needs to synchronise with all bidders (a2). The auctioneer

process is not allowed to continue until all bidders reach the end of the bidding phase.

In the opening phase, the auctioneer evaluates whether the following holds cmtpm
b j

?
=

commit(sspm
b j
, pkb j ,Myes) for each bidder (a3, a7, a12). If the two values are equivalent

for the first bidder b1 (a3), bidder b1 has bid for that price, otherwise, bidder b1 has

not bid for that price. When bidder b1 has bid for that price, the auctioneer publishes

the bidder together with the price over the public channel winnerch (a4), then the

auctioneer checks the evaluation for the next bidder (if exists) (a7). Once the auctioneer

has evaluated for every bidder (a5 when b1 is the only bidder) and has determined the

set of winning bidders (a4), he stops the process (a6). When bidder b1 has not bid

for that price, the auctioneer checks the evaluation for the next bidder (if exists) (a12).

Once the auctioneer has evaluated for every bidder and no winner has been found (a8

24

readinfo :=
r1. in(privcha,spk).
r2. in(ch,signedpk).
r3. if checksign(signedpk,spk) = true
r4. then let (pk,= k) = getmsg(signedpk) in
r5. in(ch,signedcommit).
r6. if checksign(signedcommit,spk) = true
r7. then let (cmtp1 , . . . ,cmtpm) = getmsg(signedcommit) in
r8. in(untapch,sr).
r9. if checksign(sr,spk) = true
r10. then let (ssp1 , . . . ,sspm) = getmsg(sr) in
r11. out(synch,(pk,cmtp1 , . . . ,cmtpm ,ssp1 , . . . ,sspm))

Figure 13: The process readinfo.

when b1 is the only bidder), the auctioneer repeats the evaluation steps for each bidder

at the next lower price (a11). If the next lower price does not exist (a9 when pm is

the only price in the price list), the process stops (a10) and no bidder has bid for any

price. In a similar way, the sub-process checknextb
pj
bi

is used to evaluate the bid of a

bidder bi at price p j, if there are already some winners before bidder bi. And the sub-

process checknextbnp
pj
bi

is used to check the next bidder at price p j, if there is no winner

before that bidder. We use⊥ and> to represent the end of the bidder list and price list,

respectively.

In the sub-process checknextb
p j
bi

, the auctioneer checks whether the bidder bi has

bid for price p j (n1). If the bidder bi has bid for p j, bi is a winning bidder. The

auctioneer publishes the winning bidder bi and the winning price p j (n2). Note that

since there already exists one or more winning bidders, bi is not the first winner. The

auctioneer checks whether the bidder bi is the last bidder (n3). If bi is the last bidder,

the auctioneer has found all winning bidders, thus stops the opening process (n4);

otherwise, the auctioneer checks the evaluation for the next bidder at the same price

(i.e., whether the next bidder is also a winner) (n5).

In the sub-process checknextbnp
p j
bi

, the auctioneer first checks whether the bidder

bi has bid for price p j (p1). If the bidder bi has bid for p j, bi is a winner. The auctioneer

publishes the bidder bi and the winning price p j (p2). Since there is no winning bidder

found before, bi is the first winner. Then the auctioneer checks whether the bidder bi

25

checknextb
pj
bi

:=
n1. if cmt

p j
bi

= commit(ss
p j
bi
, pkbi ,Myes)

n2. then out(winnerch,(p j,bi)).
n3. if nextbidder(bi) =⊥
n4. then 0
n5. else checknextb

pj
nextbidder(bi)

Figure 14: The process checknextb
pj
bi

.

checknextbnp
pj
bi

:=
p1. if cmt

p j
bi

= commit(ss
p j
bi
, pkbi ,Myes)

p2. then out(winnerch,(p j,bi)).
p3. if nextbidder(bi) =⊥
p4. then 0
p5. else checknextb

pj
nextbidder(bi)

p6. else if nextbidder(bi) =⊥
p7. then if nextprice(p j) =>
p8. then 0

p9. else checknextbnp
nextprice(pj)
b1

p10. else checknextbnp
pj
nextbidder(bi)

Figure 15: The process checknextbnp
pj
bi

.

is the last bidder (p3). If bi is the last bidder, bidder bi is the only winner. Since the

auctioneer has found all winners, he stops the opening process (p4). Otherwise, the

auctioneer checks whether the next bidder is also a winner (p5). Note that since there

is already a winner bi, the auctioneer use the process checknextb
p j
nextbidder(bi)

. If the

bidder bi has not bid for p j, the auctioneer checks whether the bidder is the last bidder

(p6). If bi is the last bidder, since there is no bidder bid for price p j before bi and

bi has not bid for p j, there is no bidder bid for price p j. Thus, the auctioneer checks

the evaluations for every bidder at the next lower price p j−1. To do so, the auctioneer

first checks whether p j−1 is the bottom (whether p j is already the lowest price in the

price list) (p7). If p j−1 is the bottom, since the auctioneer has not found a winner,

there does not exist a winner. That is, the auctioneer has checked the evaluations for

all bidders at all prices, and no one has bid for any price. Thus, the opening process

stops (p8). If p j−1 is not the bottom, the auctioneer checks the evaluation for the first

26

bidder at the next lower price p j−1. Note that since b1 is the first bidder checked for

price p j−1, there is no winning bidder found before, the process for checking b1 is

checknextbnp
nextprice(p j)
b1

(p9). If bi has not bid for p j and bi is not the last bidder, the

auctioneer checks the evaluation for the next bidder at the same price (p10). Note that

since there is no winning bid found, the process is checknextbnp
p j
nextbidder(bi)

.

5.7. Analysis

After modelling the protocol in the previous section, we formally analyse bidding-

price-secrecy and receipt-freeness for bidders. In the AS02 protocol, the winning bid is

published, and thus bidding-price-secrecy and receipt-freeness for the winning bidders

are not satisfied. Particularly, if all bidders bid for the same price, then all bidders

are winners, i.e., no bidder is a non-winning bidder, thus bidding-price-secrecy is not

satisfied in this case. From here on, when we refer to bidding-price-secrecy and receipt-

freeness, we mean only with respect to non-winning bidders.

5.7.1. Bidding-price-secrecy

In general, bidding-price-secrecy can be formalised in two levels: standard bidding-

price-secrecy and strong bidding-price-secrecy. Standard bidding-price-secrecy is de-

fined as no matter how the adversary interacts with the protocol, he cannot derive a

non-winning bidder’s bidding price. Thus, it aims to keep the price secret. However,

since the AS02 protocol publishes the bidding price list, the adversary initially knows

all the prices. No matter which price a bidder bids for, the bidding price is not a secret

to the adversary. Therefore, a bidder’s bidding price is not a secret. In fact, what the

AS02 protocol aims to protect is the link between bidders and the price he bid, instead

of the price itself. Therefore, bidding-price-secrecy of the AS02 protocol is captured

by strong bidding-price-secrecy.

Strong bidding-price-secrecy ensures the anonymity of the link between a non-

winning bidder and the price he bids for. It is formalised as that the adversary cannot

distinguish between the case when a bidder bids for price a and the case when the

bidder bids for price c. This property is formally defined in Definition 3.

27

CAS02[] :=
c1. ν privchb1

. ν privchb2
. · · · . ν privchbn

.
c2. ν privchab1

. ν privchab2
. · · · . ν privchabn

.
c3. ν untapchb1

. ν untapchb2
. · · · . ν untapchbn

.
c4. ν synchb1

. ν synchb2
. · · · . ν synchbn

.
c5. (PK | (let pb = pb1 in let untapch = untapchb1

in
c6. let privch = privchb1

in let ch = chb1 in Pb) | · · ·
c7. | (let pb = pbn−2 in let untapch = untapchbn−2

in
c8. let privch = privchbn−2

in let ch = chbn−2 in Pb) |
c9. |
c10. Pa)

Figure 16: The context CAS02[].

In the verification, we assume all the participants in the context are honest. Thus,

the context CAS02[] (see Figure 16) is defined as the auction process PAS02 with a hole

(c9) instead of two bidder processes, PbA and PbB. Sub-process c5 to c8 models the

other n− 2 bidder processes. To verify strong bidding-price-secrecy is to verify the

following equivalence:

CAS02[(let pb = a in let untapch = untapchbA
in

let privch = privchbA
in let ch = chbA in Pb) |

(let pb = d in let untapch = untapchbB
in

let privch = privchbB
in let ch = chbB in Pb)]

≈` CAS02[(let pb = c in let untapch = untapchbA
in

let privch = privchbA
in let ch = chbA in Pb) |

(let pb = d in let untapch = untapchbB
in

let privch = privchbB
in let ch = chbB in Pb)]

where a,c,d are from the list p1, . . . ,pm with a < d and c < d.

Normally, strong secrecy properties can be verified, using ProVerif, by querying

noninterf . Note that ProVerif is sensitive to evaluations of statements in the if-then-

else constructs [41]. ProVerif reports false attacks when directly querying the fol-

lowing predicate: noninterf pb among p1, . . . ,pd−1. To be able to check the above

equivalence in ProVerif, we use the operation choice instead [40], and modify the bid-

28

der process by replacing if-then-else constructions with choices of a list of variables

vp1, . . . ,vpn−1 (see Figure 17). Each variable vpi corresponds to a price pi and can

Pb :=
b1. in(privch,sskb).
b2. ν skb. out(ch,sign((pk(skb),k),sskb)).
b3. ν r1. · · · . ν rm.
b4. let cmtp1 = commit(r1,pk(skb),vp1) in

. . .
b5. let cmtpm = commit(rm,pk(skb),vpm) in
b6. out(ch,sign((cmtp1 , · · · ,cmtpm),sskb)).
b7. out(untapch,sign((r1, · · · ,rm),sskb))

Figure 17: The revised bidder process.

be assigned to two possible values, either Myes or Mno. If the variable vpi is assigned

Myes, the bidder bids that price, otherwise, not. Hence, a bidder specifies his bidding

price by assigning Myes or Mno to each variable vp1, . . . ,vpm in his bidding process.

For example, in process (PbB) for bidder bB in the above equivalence, “let pb = d in”

shall be replaced by “let vp1 = Mno in . . . let vpd = Myes in . . . let vpm = Mno in”.

The bidding price in the process (PbA) for a non-winning bidder bA shall be speci-

fied as follows, “let vp1 = Mno in . . . let vpa = choice[Myes,Mno] in . . . let vpc =

choice[Mno,Myes] in . . . let vpm =Mno in”. The choice operations capture the differ-

ences between two processes: in the first process, the bidder bA bids for a (PbA{a/pb}),
and in the second process, the bidder bA bids for c (PbA{c/pb}). i.e., the non-winning

bidder process on the left hand side and the right hand side of the above equivalence, re-

spectively. To query strong bidding-price-secrecy, we specify the bidding price of each

bidder in the main process, including the above PbB and PbA (m6 and m7 in Figure 18),

which captures the above equivalence 7. This process in Figure 18 is a bi-process due to

the choice operations in the process (PbA) for bidder bA. Given the bi-process as input,

ProVerif reports a positive result, which means that the above equivalence is satisfied8.

In this way, we prove that the protocol satisfies strong bidding-price-secrecy.

7The ‘· · · ’ at the beginning of m6, m7, m8 represents other bidders.
8The revised ProVerif code is available at http://satoss.uni.lu/projects/epriv.

29

http://satoss.uni.lu/projects/epriv

PAS02 :=
m1. ν privchb1

. ν privchb2
. · · · . ν privchbn

.
m2. ν privchab1

. ν privchab2
. · · · . ν privchabn

.
m3. ν untapchb1

. ν untapchb2
. · · · . ν untapchbn

.
m4. ν synchb1

. ν synchb2
. · · · . ν synchbn

.
m5. (PK |
m6. · · · | (let vp1 =Mno in . . . let vpd =Myes in . . .

let vpm =Mno in let untapch = untapchbB
in

let privch = privchbB
in let ch = chbB in Pb) |

m7. · · · | (let vp1 =Mno in . . . let vpa = choice[Myes,Mno] in . . .
let vpc = choice[Mno,Myes] in . . . let vpm =Mno in
let untapch = untapchbA

in
let privch = privchbA

in let ch = chbA in Pb) |
m8. · · · | Pa)

Figure 18: The bi-process.

5.7.2. Receipt-freeness

Receipt-freeness is formally defined in Definition 6. To prove receipt-freeness, we

need to find a process Pf which satisfies both equivalences in the definition of receipt-

freeness:

eq1:
let untapch = untapchbA

in

let privch = privchbA
in let ch = chbA in Pf

\out(chc,·)

≈` let pb = c in let untapch = untapchbA
in

let privch = privchbA
in let ch = chbA in Pb,

eq2:
CAS02[(let pb = a in let untapch = untapchbA

in

let privch = privchbA
in let ch = chbA in Pb)

chc |
(let pb = d in let untapch = untapchbB

in

let privch = privchbB
in let ch = chbB in Pb)]

≈` CAS02[Pf | (let pb = d in let untapch = untapchbB
in

let privch = privchbB
in let ch = chbB in Pb)]

with a < d and c < d.

According to the properties of chameleon bit-commitments, the bidder can send

30

Pf :=
f1. in(privch,sskb). out(chc,sskb)).
f2. ν skb. out(chc,skb).
f3. out(ch,sign((pk(skb),k),sskb)).
f4. ν r1. · · · . ν ra. · · · . ν rc. · · · . ν rm.
f5. out(chc,(r1, . . . , f(ra), . . . , f(rc), . . . ,rm)).
f6. let cmtp1 = commit(r1,pk(skb),Mno) in
f7. . . .
f8. let cmtpa = commit(ra,pk(skb),Mno) in
f9. . . .
f10. let cmtpc = commit(rc,pk(skb),Myes) in
f11. . . .
f12. let cmtpm = commit(rm,pk(skb),Mno) in
f13. out(ch,sign((cmtp1 , . . . ,cmtpm),sskb)).
f14. out(untapch,sign((r1, . . . ,ra, . . . ,rc, . . . ,rm),sskb))

Figure 19: The process Pf .

a sequence of fake secret seeds to the adversary, and sends the series of real secret

seeds to the auctioneer through an untappable channel. The adversary opens the bit-

commitments as the bidder bids for price a, using the fake secret seeds he received,

while the auctioneer opens the same bit-commitments as the bidder bids for price c,

using the secret seeds the auctioneer received through an untappable channel. Thus, the

bidder could execute the process Pf as shown in Figure 19 to lie to the adversary. The

bidder in this process communicates with the adversary through channel chc, sending

the adversary his secret signature key sskb (f1) and his secret key skb (f2). Later the

bidder sends to the auctioneer r1, . . . ,rm through an untappable channel (f14), and

sends to the adversary the same list except changing ra and rc to f(ra) and f(rc),

respectively (f5). The untappable channel ensures the adversary cannot learn anything

about the differences.

To prove the first equivalence, we can simply consider Pf
\out(chc,·) as process Pf

without communication on the channel chc. Since the process Pf
\out(chc,·) works ex-

actly the same as the process Pb{c/pb}, the first equivalence (eq1) is satisfied. To

show the second equivalence (eq2), we need to consider all the transitions of each side

31

P
in(privchbA

,sskb)−−−−−−−−−−→
in(privchbB

,bsskb)−−−−−−−−−−−→ ν x1. out(chc,x1)−−−−−−−−−→ P1 | {sskb/x1}
ν x2. out(chc,x2)−−−−−−−−−→ ν ñ. (P2 | {sskb/x1} | {skb/x2})
ν x3. out(chbA

,x3)−−−−−−−−−−→
ν x4. out(chbB ,x4)−−−−−−−−−−→ ν ñ. (P3 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}

| {sign((pk(bskb),k),bsskb)/x4})
ν x5. out(chc,x5)−−−−−−−−−→ ν ñ. (P4 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}

| {sign((pk(bskb),k),bsskb)/x4} | {r1, . . . ,rm/x5}
ν x6. out(chbA

,x6)−−−−−−−−−−→
ν x7. out(chbB ,x7)−−−−−−−−−−→ ν ñ. (P5 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}

| {sign((pk(bskb),k),bsskb)/x4}
| {r1, . . . ,rm/x5} | {sign((cmtp1 , . . . ,cmtpm),sskb)/x6}
| {sign((bcmtp1 , . . . ,bcmtpm),bsskb)/x7})

Q
in(privchbA

,sskb)−−−−−−−−−−→
in(privchbB

,bsskb)−−−−−−−−−−−→ ν x1. out(chc,x1)−−−−−−−−−→ Q1 | {sskb/x1}
ν x2. out(chc,x2)−−−−−−−−−→ ν ñ. (Q2 | {sskb/x1} | {skb/x2})
ν x3. out(chbA

,x3)−−−−−−−−−−→
ν x4. out(chbB ,x4)−−−−−−−−−−→ ν ñ. (Q3 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}

| {sign((pk(bskb),k),bsskb)/x4})
ν x5. out(chc,x5)−−−−−−−−−→ ν ñ. (Q4 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}

| {sign((pk(bskb),k),bsskb)/x4}
| {r1, . . . , f(ra), . . . , f(rc), . . . ,rm/x5})

ν x6. out(chbA
,x6)−−−−−−−−−−→

ν x7. out(chbB ,x7)−−−−−−−−−−→ ν ñ. (Q5 | {sskb/x1} | {skb/x2} | {sign((pk(skb),k),sskb)/x3}
| {sign(((pk(bskb),k),bsskb)/x4}
| {r1, . . . , f(ra), . . . , f(rc), . . . ,rm/x5}
| {sign((cmtp1 , . . . ,cmtpm),sskb)/x6}
| {sign((bcmtp1 , . . . ,bcmtpm),bsskb)/x7})

Figure 20: A brief proof of receipt-freeness in AS02.

9. On both sides, the process PK only distributes keys, and all the bidder processes

in the context follow the same process. For the sake of simplicity, we ignore the out-

9The satisfaction of eq2 is supported by ProVerif as well. ProVerif code is available at
http://satoss.uni.lu/projects/epriv.

32

puts in the process PK and those bidder processes in the context. During the bidding

phase the auctioneer process only reads information and synchronises on the private

channels synchb1
, . . . ,synchbn

. There is no output on public channels in the auction-

eer process. We denote the sequence of names skb,r1, . . . ,rm,bskb,br1, . . . ,brm by

ñ, i.e., skb,r1, . . . ,rm are names in the non-winning bidder processes PbA and Pf , and

bskb,br1, . . . ,brm are names in the winning bidder process PbB. After the key distribu-

tion, we want to see whether the behaviour of the process PbA{a/pb}chc |PbB{d/pb} is

observationally equivalent to Pf | PbB{d/pb}
(
PbA{a/pb}chc := (let pb = a in

let untapch = untapchbA
in let privch = privchbA

in let ch = chbA in Pb)
chc, and

PbB{d/pb} := (let pb = d in let untapch = untapchbB
in let privch = privchbB

in

let ch = chbB in Pb)
)
. For this purpose, we need to consider all possible executions

of these two processes. Here, we consider a particular execution and only show the

interesting part of the two frames after each step of execution by the two processes.

Let P = PbA{a/pb}chc | PbB{d/pb} and Q = Pf | PbB{d/pb}, we have their labelled

transitions as shown in Figure 20.

The frames we obtained at the end of P and Q are statically equivalent. In particular,

as the adversary knows the bit-commitments the bidder submits, the public key of the

bidder, and the secret seeds, the adversary can open all the commitments of the bidder.

The only functions the adversary can use are getmsg and open. By applying these two

functions, the adversary can get extra terms, the public key of the bidder represented as

xmsg = getmsg(x3,x1) and a series of opened messages from bit-commitments. Since

x3 and x1 are the same for both P and Q, xmsg is the same for both processes as

well. Particularly, PbA{a/pb} bids for price a. The adversary opens the commitments

cmtpa = commit(ra,pk(skb),Myes) and cmtpc = commit(rc,pk(skb),Mno) as follows:

open(cmtpa ,ra,pk(skb)) = Myes open(cmtpc ,rc,pk(skb)) = Mno

For the process Q, the process Pf bids for price c. The adversary has a sequence of

secret seeds, in which two of them are fake: f(ra) and f(rc). According to the equa-

tional theory of chameleon bit-commitments (see Section 5.6), the adversary opens

cmtpa = commit(ra,pk(skb),Mno) = commit(f(ra),pk(skb),Myes) and opens cmtpc =

33

commit(rc,pk(skb),Myes) = commit(f(rc),pk(skb),Mno) as follows:

open(cmtpa , f(ra),pk(skb)) =Myes open(cmtpc , f(rc),pk(skb)) =Mno

All other secret seeds and bit-commitments are the same in both P and Q, hence the

adversary gets the same series of opened messages for both P and Q as well.

Next, we consider the opening phase, the auctioneer process is the only active pro-

cess. According to the protocol, the auctioneer process stops after finding the winning

bids. Therefore, non-winning bids are not revealed. Since we have assumed the auc-

tioneer is honest, the information that the auctioneer process reveals is the opened bit-

commitments of all bidders at prices no lower than the winning price, and the winning

bidders. Only the winning bid is opened as Myes, others are opened as Mno. Due to

the existence of a higher bid (d in the process PbB{d/pb}) on both sides of the equiv-

alence, the bid made by the bidder bA will never be published, hence the information

the auctioneer process reveals is the same on both sides. Now, we can conclude that

the protocol satisfies receipt-freeness.

6. Case study: the HRM14 protocol

HRM14 is a also seal-bid auction protocol designed with receipt-freeness in mind.

Similar to the AS02 protocol, the HRM14 protocol allows a bidder to lie to the adver-

sary by providing fake bids. Unlike the AS02 protocol, which depends on the use of

chameleon-bit-commitments and untappble channels, the HRM14 protocol uses Plan-

Ahead Deniable Encryption (PDE) to achieve the same goal.

6.1. Description of the protocol

The protocol involves m bidders, k sealers (authorities who share the same pub-

lic key and execute sealing operations together) and an auctioneer. It works as follows:

each bidder encrypts his bid (‘yes’ or ‘no’) on each price with the public key of the auc-

tioneer and the public key of the sealer. All bids of a bidder form a bidding vector. The

bidder encrypts his bidding vector using PDE with the public key of the Coercing Re-

sistant Mix (CRM) and sends the resulting ciphertext to the CRM. The CRM decrypts

34

the ciphertext and obtains the bidding vector. The CRM collects all bidders’ bidding

vectors, permutes them and finally sends them to a group of sealers (the size of the

group is more than a threshold t) via an anonymous channel. The sealers nullify their

public keys in each bid, and seal each bid with two nonces. One of the nonce is used to

blind the bid, and the other is used to ensure the sealed message is not guessable. The

sealed bids are published to the Bulletin Board (BB) and read by the auctioneer. The

auctioneer signs each bidder’s bids using a specific scheme and publishes the signature

to the Bulletin Board, so that the bidders can check whether his bids are counted. Fi-

nally, the sealers and the auctioneer together open the bid from the highest price to the

lowest price. If the winning bid is found, the opening procedure stops. The main steps

are shown in Figure 21.

Intuitively, due to the use of PDE, a coerced bidder can prepare fake bidding vectors

with a different bidding price, and the adversary cannot verify which bidding vectors

(real or fake) are used, while the CRM can always get the real ones.

6.2. Settings

Bidding price. The protocol predefines a price list, represented as d ordered vec-

tors, ve0, . . . ,ved−1 from low to high, where each vector vek consists of 10 numbers

from 0 to 9, denoted as pk0, . . . , pk9, i.e., the price list is p00, . . . , p09,. . . , p(d−1)0,. . . ,

p(d−1)9, representing the price from 0 to 10d−1. The bidder bids ‘yes’ or ‘no’ on each

p ji (0 ≤ i ≤ 9, 0 ≤ j ≤ d−1). On each vector only one number is marked with ‘yes’.

The bidding price b is calculated as follows: for each p ji in the list, if it is marked with

‘no’, bidding price remains unchanged (b= b), if it is marked with ‘yes’, b= b+ j∗10i.

‘yes’ and ‘no’ marks. Like the AS02 protocol, the ‘no’ mark is a constant in the

HRM14 protocol, in particular the ‘no’ mark is the number 1 in the HRM14 protocol.

Unlike the AS02 where the ‘yes’ is a constant, in the HRM14 protocol, the ‘yes’ mark

is calculated as r̂i,(k, j)G
ri,(k, j)
i where Gi = g

xBi
y . It is not clear what gy is in the paper.

Since the private key of bidder Bi is xBi and the corresponding public key is gxBi , we

assume gy is similar to g in the public key, because Gi = g
xBi
y share the same patter

as the public key gxBi . Thus, we consider Gi as a special public key of the bidder Bi.

Unlike the normal public key which is assumed to be publicly known and is used to

35

Figure 21: The HRM14 protocol.

36

identify a bidder, this special public key is not revealed, such that the adversary cannot

use it to identify the bidder. Otherwise privacy is trivially broken. However, given a

bidder’s secret key, the adversary can construct and thus verify the special public key of

the bidder. With the above assumptions, the ‘yes’ mark is modelled as a function with

two nonces and the special public key of the bidder as parameters, formally ‘fun B/3.’.

Note that unlike in the AS02 protocol, in this protocol, the ‘yes’ marks differ for each

bid.

6.3. Cryptographic primitives

6.3.1. PDE

The PDE enables a normal probabilistic encryption of a message m with a public

key pk (known by the adversary) using a random number r, denoted as denc(r, pk,m).

In the normal probabilistic encryption, the adversary can coerce for m and r, and thus

be able to verify the encrypted message m. However, in PDE, given a fake message

m f , it allows a user to generate a fake random number r f , such that denc(r, pk,m) =

denc(r f , pk,m f).

This can be modelled in a similar way as chameleon-bit-commitments. The dif-

ference is that the chameleon-bit-commitments are opened with the random number,

whereas the PDE is opened with the designated receiver’s secret key.

fun denc/3.

fun fake/4.

reduc ddec(denc(r,pk(k),m),k) = m.

equation denc(r,k,m) = denc(fake(r,k,m,m f),k,m f).

The function symbol denc models the PDE encryption which takes three parameters

(r, pk, m) as inputs and returns a deniable encryption as output. The function fake

produces the fake random, given the real random number r, the public key k, the real

message m and the fake message m f as parameters. The two equations ensure that that

the designated receiver of the deniable cipher always interprets the plaintext in only one

way – the real one. The adversary who does not have the secret key of the designated

receiver cannot get the real plaintext. Given the fake random, the adversary may get a

37

fake message m f . Due to the last equation, the adversary cannot distinguish whether

the coerced random number and the plaintext are genuine or not.

Remark on ambiguities of PDE. In the original paper [18], the PDE outputs two types

of encryptions: one type with three parameters, c=Enc−(mt , pk,rt), and the other with

four parameters, cd = Encm f (mt , pk,rt), where mt and rt are real message and real

random and m f is the fake message. Both of them is decrypted as mt . The fake random

r f is produced by a operation applied on cd , mt and m f , such that Enc−(mt , pk,rt) =

Enc−(m f , pk,r f). However, it is not clear whether c equals cd . Following the intuition

of PDE, we consider them as the same (or ‘look alike’ [18]). More importantly, if c is

not the same as cd , the adversary would be able to distinguish whether the encryption

used is a three parametrised version or four parametrised version, by coercing for mt

and rt . When noticing that the four parametrised version is used, the adversary knows

the user is trying to cheat. By additional coercing for m f and r f , the adversary can

verify which message, m f or mt , is the genuine one. Hence, c needs to be the same as

cd .

6.3.2. Bidding encryption

Each bid is encrypted with both the public key of the auctioneer pkA and the public

key of the sealers pkS (All sealers have the same public key). Only with the sum of both

the secret key of the auctioneer and the secret key of the sealers, the ciphertext can be

decrypted. Providing the secret key of the auctioneer or the secret key of the sealers, its

corresponding public key component in the encryption can be nullified. Symbolically,

it works the same as cascaded encryptions – first encrypting the bid with pkA and then

encrypting with pkS (or the other way), but using the same random number. Hence, it

is captured by the typical probabilistic encryption functions and equations.

fun penc/3.

reduc pdec(enc(a,pk(x),m),x) = m.

An encrypted bid is thus penc(a, pkS,penc(a, pkA,v)), where v is either ‘yes’ or ‘no’,

and a is a nonce.

38

6.3.3. Sealing operation

For each encrypted bid penc(a, pkS,penc(a, pkA,v)), after nullifying the sealers’

public key component (decrypting using skS which remains penc(a, pkA,v)), the sealers

seal it with two nonces r and rs. The result of the sealing operation is the same as

encrypting v ∗ rs with pkA using nonce a+ r, i.e, the message v is blinded. Thus the

sealing operation is captured by the following functions.

fun seal/4.

fun blind/2.

equation seal(penc(a,pk(skS),penc(a, pk,m)),r,rs,skS) =

penc(blind(a,r), pk,blind(rs,m)).

6.3.4. Bid verification

The bid verification is performed on each price vector, i.e., 10 bids. For each price

vector, the sealers publish the the response-vector – multiplication of the rs’s. This

is modelled as a hash function with t ∗ 10 arities – the 10 rs’s in the vector from all t

sealers. Assume that from the multiplication result, the adversary cannot deduce any

rs. That is, the sealers provide partial information on the blinding factor (rs’s). Then

the auctioneer provides partial information on his secret key and the blinded nonces

(blind(a,r)’s). The bidder knows the nonces (a’s) used in encrypting the bids. With

these partial information, the bidder can verify whether his bids in a vector is correctly

computed using an equation. For simplicity, we assume only one sealer. And this bid

verification can be formally captured as

fun hash/10.

fun sign/2.

fun combine/11.

equation sign((penc(blind(a0,r0), pk,blind(rs0,m0)), . . . ,

penc(blind(a9,r9), pk,blind(rs9,m9))),sk)

= combine(blind(a0,r0), . . . ,blind(a9,r9),sk). et3

39

reduc verify((penc(blind(a0,r0), pk,blind(rs0,m0)), . . . ,

penc(blind(a9,r9), pk,blind(rs9,m9))),

combine(blind(a0,r0), . . . ,blind(a9,r9),sk),

(a0, . . . ,a9),hash(rs0, . . . ,rs9)) = true. et4

Remark on formula of sealing and bid verification. In the original paper [18], by

applying Algorithm 2, a bid from bidder i at price represented by element (k, j) in the

price list is sealed as (XSt i,(k, j),YSt i,(k, j)), where S1, . . . ,St are the sealers. We observe

that the calculation of YSt i,(k, j) in the Algorithm 2 differs from the one in the appendix.

In Algorithm 2,

YSl i,(k, j) = r̂Sl i,(k, j) ·h
rSl i,(k, j)
A ·hrSl i,(k, j)

S/S1,...,Sl
· (XSl−1i,(k,d))

−xSl ·YSl−1i,(k,d)

whereas in the appendix of [18]

YSl i,(k, j) = r̂Sl i,(k, j) ·h
rSl i,(k, j)
A ·hrSl i,(k, j)

S/S1,...,Sl
· (XSl−1i,(k, j))

−xSl ·YSl−1i,(k, j) (1)

We suspect that there is a typo in Algorithm 2, and use the one in the appendix (formula

(1)), since the following equation (2) is proved using formula (1).

Later, the sealers publish a response-vector RSt i,k for each vector k, and the auction-

eer publishes Xi,k.

RSt i,k =
9

∏
j=0

t

∏
v=1

r̂Svi,(k, j) Xi,k = (
9

∏
j=0

XSt i,(k, j))
xA = h

9
∑

j=0
(ri,(k, j)+

t
∑

v=1
rsvi,(k, j))

A

The bidder verifies whether the following equation (2) holds:

9

∏
j=0

YSt i,(k, j) = RSt i,k ·Xi,k ·
9

∏
j=0

Gi,(k, j) (2)

where Gi,(k, j) is the ‘yes’ mark computed by using the public key of the bidder i and

the nonce used to generated the corresponding bid on element (k, j) in the price list.

The response-vector RSt i,k is modelled by function hash. The signature Xi,k is mod-

40

elled by function sign, combine and the equation et3, the equation (2) is formally cap-

tured by the reduction et4.

6.4. Modelling

As shown in Figure 22, the protocol has a private channel privch between the

CRM and the sealers. The auctioneer has a secret key skA and a corresponding public

key pkA and follows the behaviour of process PA (Figure 26). Since only more than a

threshold t sealers together can nullify the sealers’ public key and perform the sealing

operation, we assume the sealers’ operations are honest, and abstract the sealers as one

honest sealer. Hence, the sealer has a secret key skS and a corresponding public key

pkS, and follows the behaviour modelled in process PS (Figure 25). The CRM has a

secret key skCRM and a corresponding public key pkCRM; and its behaviour is modelled

in process PCRM (Figure 24). Each bidder bi has a bidding price, represented as a vector

pbi
0 , . . . , pbi

d−1, where each pbi
j is a number between 0 and 9. Lines m4-m6 model that

there are m bidders. The process out(ch, pkA) | out(ch, pkS) | out(ch, pkCRM) ensures

that the adversary knows the public keys.

PHRM14 :=
m1. ν privch. ν skA. ν skS. ν skCRM.let pkA = pk(skA) in
m2. let pkS = pk(skS) in let pkCRM = pk(skCRM) in
m3. (out(ch, pkA) | out(ch, pkS) | out(ch, pkCRM) |
m4. let pb

0 = pb1
0 in . . .let pb

d−1 = pb1
d−1 in PB |

m5. · · · |
m6. let pb

0 = pbm
0 in . . .let pb

d−1 = pbm
d−1 in PB |

m7. PCRM | PS | PA)

Figure 22: The HRM14 main process.

A bidder’s behaviour is shown in Figure 23. Each bidder has a private key skB and

a corresponding public key pkB (b1), which is used to calculate the ‘yes’ marks. The

bidder first generates a nonce ak j for each element in the price list, which is used for

encrypting his bids and a nonce r for generating the deniable encryption (b2). Then

according to the bidding price, the bidder chooses the branch to calculate his bids. For

instance, lines b3 -b14 model the bidder calculating the bidding vector and sending it

out, when the bidding price is 0. Line b15 models the bidder’s behaviour when the

41

PB :=
b1. ν skB. let pkB = pk(skB) in
b2. ν r. ν a00. · · · . ν a09. ν a10. · · · . ν a19. · · · . ν a(d−1)0. · · · . ν a(d−1)9.

b3. if pb
0 = p00∧ pb

1 = p10 ∧ . . .∧ pb
d−1 = p(d−1)0 then

b4.
(
νr0.

b5. let bp00 = penc(a00, pkS,penc(a00, pkA,B(r0, pkB,a00))) in
b6. let bp01 = penc(a01, pkS,penc(a01, pkA,Mno)) in

. . .
b7. let bp09 = penc(a09, pkS,penc(a09, pkA,Mno)) in
b8. let ve0 = (bp00 , . . . ,bp09) in

· · ·
b9. νrd−1.
b10. let bp(d−1)0 = penc(a(d−1)0, pkS,penc(a(d−1)0, pkA,

B(rd−1, pkB,a(d−1)0))) in
. . .

b11. let bp(d−1)9 = penc(a(d−1)9, pkS,penc(a(d−1)9, pkA,Mno)) in
b12. let ved−1 = (bp(d−1)0 , . . . ,bp(d−1)9) in
b13. let ve = (ve1, . . . ,ved−1) in
b14. out(ch,denc(r, pkCRM,ve))). Pcheck

)
b15. else if pb

0 = p01 ∧ pb
1 = p10 ∧ . . .∧ pb

d−1 = p(d−1)0 then
· · ·

b16. else if pb
0 = p02 ∧ pb

1 = p10 ∧ . . .∧ pb
d−1 = p(d−1)0 then

· · ·
b17. else if pb

0 = p09 ∧ pb
1 = p19 ∧ . . .∧ pb

d−1 = p(d−1)9 then
b18.

(
νr0.

b19. let bp00 = penc(a00, pkS,penc(a00, pkA,Mno)) in
b20. let bp01 = penc(a01, pkS,penc(a01, pkA,Mno)) in

. . .
b21. let bp09 = penc(a09, pkS,penc(a09, pkA,B(r0, pkB,a09))) in
b22. let ve0 = (bp00 , . . . ,bp09) in

· · ·
b23. νrd−1.
b24. let bp(d−1)0 = penc(a(d−1)0, pkS,penc(a(d−1)0, pkA,Mno)) in

. . .
b25. let bp(d−1)9 = penc(a(d−1)9, pkS,penc(a(d−1)9, pkA,

B(rd−1, pkB,a(d−1)9))) in
b26. let ved−1 = (bp(d−1)0 , . . . ,bp(d−1)9) in
b27. let ve = (ve0, . . . ,ved−1) in
b28. out(ch,denc(r, pkCRM,ve)). Pcheck

)
Figure 23: The HRM14 bidder process.

42

bidding price is 1 and line b16 models the bidder behaviour when the bidding price is

2, and finally, lines b17-b28 model the bidder’s behaviour when the bidding price is

the maximum price 9 . . .9 (=10k− 1). After sending out his bids, the bidder waits for

the bids to be sealed and signed, and then verifies whether his bids are correctly sealed

and signed. The verification behaviour is modelled in the subsequent process Pcheck

(Figure 27).

On receiving the bidding vectors from each bidder (c1), the CRM decrypts the de-

niable encryption and obtains the real bidding vectors (c2), and then sends the bidding

vectors to the sealer via private channel privch (c3), see Figure 24. The permuta-

tion is modelled as sending the bidding vectors in parallel, which captures all possible

permutations.

PCRM :=
c1. in(ch,xev1). in(ch,xev2). · · · . in(ch,xevm).
c2. let xv1 = pdec(xev1,skCRM) in · · ·

let xvm = pdec(xev1,skCRM) in
c3. (out(privch,xv1) | · · · | out(privch,xvm))

Figure 24: The CRM process.

When the sealer receives bidding vectors of all m bidders (s1), he first gets each bids

in the bidding vectors (s2-s3). For each bid of a bidder, the sealer generates two nonces,

and seals the bid with the nonces together with the sealer’s private key which is used to

nullify the sealer’s public key in the bid (Figure 25). For instance, line s4 generates the

nonces for bidder B1; lines s5-s11 seal all bids for bidder B1; then the sealed bidding

vectors for B1 is published (s12). Other bidder’s bidding vectors are treated in the

same way. Lines s13-s21 show the sealing of bids for bidder Bm. In addition, for each

bidding vector (containing 10 elements), the sealer publishes the response-vector. For

instance, for the first vector of bidder B1 (sv0
1), the sealer generates the hash of all rs’s

used in the vector as its response-vector (s22). Other B1’s bidding vectors’ response-

vectors are calculated in the same way (s23). Finally, B1’s bidding vectors and their

response-vectors are published to the Bulletin Board (s34). Other bidders’ bids are

sealed in the same way (s25-s27).

The auctioneer reads in each bidder’s bidding vectors together with their corre-

43

PS :=
s1. in(privch,xvs1). in(privch,xvs2). · · · . in(privch,xvsm).

s2. let ((xvsp00
1 , . . . ,xvsp09

1), . . . ,(xvs
p(d−1)0
1 , . . . ,xvs

p(d−1)9
1)) = xvs1 in

· · ·
s3. let ((xvsp00

m , . . . ,xvsp09
m), . . . ,(xvs

p(d−1)0
m , . . . ,xvs

p(d−1)9
m)) = xvsm in

s4. ν r
p00
1 . · · · . ν r

p(d−1)9
1 . · · ·ν rs

p00
1 . · · · . ν rs

p(d−1)9
1 .

s5. let svp00
1 = seal(xvsp00

1 ,r
p00
1 ,rs

p00
1 ,skS) in

· · ·
s6. let svp09

1 = seal(xvsp09
1 ,r

p09
1 ,rs

p09
1 ,skS) in

s7. let sv0
1 = (svp00

1 , · · · ,svp09
1) in

· · ·
s8. let sv

p(d−1)0
1 = seal(xvs

p(d−1)0
1 ,r

p(d−1)0
1 ,rs

p(d−1)0
1 ,skS) in

· · ·
s9. let sv

p(d−1)9
1 = seal(xvs

p(d−1)9
1 ,r

p(d−1)9
1 ,rs

p(d−1)9
1 ,skS) in

s10. let svd−1
1 = (sv

p(d−1)0
1 , · · · ,sv

p(d−1)9
1) in

s11. let sv1 = (sv1
1, · · · ,svd−1

1) in
s12. out(ch,sv1).

· · ·
s13. ν r

p00
m . · · · . ν r

p(d−1)9
m . · · ·ν rs

p00
m . · · · . ν rs

p(d−1)9
m .

s14. let svp00
m = seal(xvsp00

m ,r
p00
m ,rs

p00
m ,skS) in

· · ·
s15. let svp09

m = seal(xvsp09
m ,r

p09
m ,rs

p09
m ,skS) in

s16. let sv0
m = (svp00

m , · · · ,svp09
m) in

. . .

s17. let sv
p(d−1)0
m = seal(xvs

p(d−1)0
m ,r

p(d−1)0
m ,rs

p(d−1)0
m ,skS) in

. . .

s18. let sv
p(d−1)9
m = seal(xvs

p(d−1)9
m ,r

p(d−1)9
m ,rs

p(d−1)9
m ,skS) in

s19. let svd−1
m = (sv

p(d−1)0
m , · · · ,sv

p(d−1)9
m) in

s20. let svm = (sv0
m, · · · ,svd−1

m) in
s21. out(ch,svm).
s22. let response0

1 = (sv0
1,hash(r

p00
1 , . . . ,r

p09
1)) in

· · ·
s23. let responsed−1

1 = (svd−1
1 ,hash(r

p(d−1)0
1 , . . . ,r

p(d−1)9
1)) in

s24. out(ch,(response0
1, . . . ,responsed−1

1)).
· · ·

s25. let response0
m = (sv0

m,hash(r
p00
m , . . . ,r

p09
m)) in

· · ·
s26. let responsed−1

m = (svd−1
m ,hash(r

p(d−1)0
k0m

, . . . ,r
p(d−1)9
m)) in

s27. out(ch,(response0
m, . . . ,responsed−1

m))

Figure 25: The sealer process.

44

sponding response-vectors (a1-a2). The auctioneer signs each bidding vector of all

bidders (Figure 26). For instance, a3 models that the auctioneer signs the first vector of

bidder B1; a4 models that the auctioneer signs the last vector of B1. The signed vectors

are appended to their corresponding vectors (a5) and then are published to the Bulletin

Board (a6). Other bidders’ sealed vectors are signed in a similar way (a7-a10).

PA :=
a1. in(ch,((xva0

1,xra0
1), . . . ,(xvad−1

1 ,xrad−1
1))).

. . .
a2. in(ch,((xva0

m,xra0
m), . . . ,(xvad−1

m ,xrad−1
m))).

a3. let av0
1 = sign(xva0

1,skA) in
. . .

a4. let avd−1
1 = sign(xvad−1

1 ,skA) in
a5. let av1 = ((xva0

1,xra0
1,av0

1), . . . ,(xvad−1
1 ,xrad−1

1 ,avd−1
1)) in

a6. out(ch,av1).
. . .

a7. let av0
m = sign(xva0

m,skA) in
. . .

a8. let avd−1
m = sign(xvad−1

m ,skA) in
a9. let avm = ((xva0

m,xra0
m,av0

m), . . . ,(xvad−1
m ,xrad−1

m ,avd−1
m)) in

a10. out(ch,vam)

Figure 26: The auctioneer process.

Pcheck :=
k1. in(ch,((xkv0

1,xkr0
1,xks0

1), . . . ,(xkvd−1
1 ,xkrd−1

1 ,xksd−1
1))).

k2. if verify(xkv0
1,xkr0

1,xks0
1,(a00, . . . ,a09)) = true∧ . . .∧

k3. verify(xkvd−1
1 ,xkrd−1

1 ,xksd−1
1 ,(a(d−1)0, . . . ,a(d−1)9)) = true then 0

k4. else in(ch,((xkv0
2,xkr0

2,xks0
2), . . . ,(xkvd−1

2 ,xkrd−1
2 ,xksd−1

2))).
k5. if verify(xkv0

2,xkr0
2,xks0

2,(a00, . . . ,a09)) = true∧ . . .∧
k6. verify(xkvd−1

2 ,xkrd−1
2 ,xksd−1

2 ,(a(d−1)0, . . . ,a(d−1)9)) = true then 0
k7. else in(ch,((xkv0

3,xkr0
3,xks0

3), . . . ,(xkvd−1
3 ,xkrd−1

3 ,xksd−1
3))).

. . .
k8. else in(ch,((xkv0

m,xkr0
m,xks0

m), . . . ,(xkvd−1
m ,xkrd−1

m ,xksd−1
m))).

k9. if verify(xkv0
m,xkr0

m,xks0
m,(a00, . . . ,a09)) = true∧ . . .∧

k10. verify(xkvd−1
m ,xkrd−1

m ,xksd−1
m ,(a(d−1)0, . . . ,a(d−1)9)) = true then 0

k11. else out(ch,e)

Figure 27: The bidder verifying process.

Once the singed bids are published, the bidders can verify whether his bids are

45

counted correctly (Figure 27). Since the bidders’ bids are sealed and permuted, a bidder

does not know which signature corresponds to his bids. Hence, the bidder reads in

signatures of an arbitrary bidder, (k1), and verifies the signatures using function verify

(k2-k3). If for all d bidding vectors, the verification of their signatures are true, the

bidder knows that the sealed-bids corresponding to the read-in signatures are the correct

calculation of his bids. Otherwise, the bidder reads in another set of signatures and

performs the verification again (k4). The bidder keeps checking until find his bids

(k5-k10). If none of the sealed-bids are his bids, the bidder reports an error message

represented by a constant e (k11).

6.5. Analysis

Receipt-freeness. We found that the protocol may not satisfy receipt-freeness due

to that how the fake bidding vectors are generated is not clear. For instance, when

generating the fake bidding vectors, if a set of fresh nonces are used, there will be a

receipt for the adversary to verify the bidding price of a coerced bidder.

In details, if a bidder Bc claims that he bid w in vector v ((v,w) is marked as

‘yes’), the adversary can coerce for the bid of (v,w), i.e., the adversary asks for the

bid penc(avw, pkS,penc(avw, pkA,B(rv, pkBc ,avw))). In addition, the adversary can ask

for the bidder’s private key skBc , the gy to calculate the public key pkBc and the two

nonces that are used to form the ‘yes’ mark for the bid, i.e., rv and avw. Using these

information, the adversary can construct the ‘yes’ mark B(rv, pkBc ,avw), i.e., Gc,(v,w).

Then, for each bidder’s v-th signature, the adversary tests whether
9

∏
j=0

YSt i,(v,w) = RSt i,v ·

Xi,v ·
9

∏
j=0

Gc,(v,w) holds. If the bidder did not lie, there should exist exactly one sig-

nature satisfying the above equation. If the bidder lies to the adversary – the bid-

der bids for u, instead of w, in vector v, but claims that he bids for w. In order

to cheat, according to the protocol, the bidder first calculates his real bid for (v,u),

i.e., bpvu
c = penc(avu, pkS,penc(avu, pkA,B(rv, pkBc ,avu))), and his real bid for (v,w),

i.e., bpvw
c = penc(avw, pkS,penc(avw, pkA,Mno)). Then he calculates the fake bid for

(v,u), i.e., bpvu
f = penc(a′vu, pkS,penc(a

′
vu, pkA,Mno)), and the fake bid for (v,w), i.e.,

bpvw
f = penc(a′vw, pkS,penc(a

′
vw, pkA,B(rv, pkBc ,a

′
vw))). The bids are encrypted with

46

deniable encryption, so that the CRM reads the real bids (bpvu
c and bpvw

c), whereas the

adversary reads the fake bids (bpvu
f and bpvw

f). Since the adversary can ask for the nonces

of each bid and verify whether the nonces are those used in the bids, the bidder cannot

lie about the nonces, i.e., the bidder has to send a′vu, a′vw, rv to the adversary, from

which the adversary calculates the ‘yes’ mark as B(rv, pkBc ,a
′
vw). Then the adversary

uses this ‘yes’ mark to test whether the v-th signature of each bidder satisfies the equa-

tion
9

∏
j=0

YSt i,(v,w) = RSt i,v ·Xi,v ·
9

∏
j=0

G�, where G� = B(rv, pkBc ,a
′
vw). There is no vec-

tor satisfying the equation, because in Bc’s v-th vector, the G� equals B(rv, pkBc ,avu),

which satisfies the equation, instead of B(rv, pkBc ,a
′
vw). Hence, the adversary can tell

that the bidder lied.

Similarly, when generating the fake bids, if the nonce used in each fake bid is

exactly the same old nonce in the corresponding real bid, there exists a receipt as

well. In this case, we have bpvu
f = penc(avu, pkS,penc(avu, pkA,Mno)) and bpvw

f =

penc(avw, pkS,penc(avw, pkA,B(rv, pkBc ,avw))). The adversary coerces for avw, rv and

skBc . The bidder cannot lie about them because the adversary can use them to construct

bpvw
f and verify whether they are the real ones used in bpvw

f . Since the bidder claims that

he bids for (v,w), the adversary constructs the ‘yes’ mark as B(rv, pkBc ,avw), which

differs from the real ‘yes’ mark (B(rv, pkBc ,avu)) in the v-th vector. Thus, there is no v-

th signature satisfying
9

∏
j=0

YSt i,(v,w) = RSt i,v ·Xi,v ·
9

∏
j=0

G�, where G� = B(rv, pkBc ,avw).

Hence, the adversary knows that the bidder lied.

Therefore, only using deniable encryption is not a guarantee of receipt-freeness.

Our fix. To ensure receipt-freeness, we additionally require that when the bidder cal-

culates the fake bid, the bidder should use the real ‘yes’ bid’s nonces for the fake ‘yes’

bid. That is, the bidder uses avu to calculate the fake bid for price (v,w), i.e., the fake bid

for the price (v,w) shall be penc(avu, pkS,penc(avu, pkA,B(rv, pkBc ,avu))), as shown in

Figure 29.

Assuming the sealers and auctioneer are honest on the opening phase, we prove that

after fixing the flaw on how to calculating the fake bids, the protocol satisfies receipt-

freeness up to the bidding phase. We manually proved it because, the equations for

PDE cannot be handled by ProVerif – ProVerif would not terminate. Differing from

47

Pchc
B :=

c1. ν skB. out(chc,skB).let pkB = pk(skB) in
c2. ν r. out(chc,r).ν a00. out(chc,a00). · · · . ν a09. out(chc,a09). · · · .

ν av0. out(chc,av0). · · · . ν avw. out(chc,avw). · · · . ν avu. out(chc,avu).
· · · . ν av9. out(chc,av9). · · · . ν a(d−1)0. out(chc,a(d−1)0). · · · .
ν a(d−1)9. out(chc,a(d−1)9).

c3.
(
νr0. out(chc,r0).let bp00 = penc(a00, pkS,penc(a00, pkA,Mno)) in
. . .

c4. let bp0i = penc(a0i, pkS,penc(a0i, pkA,B(r0, pkB,a0i))) in
. . .

c5. let bp09 = penc(a09, pkS,penc(a09, pkA,Mno)) in
c6. let ve0 = (bp00 , . . . ,bp0i , . . . ,bp09) in

· · ·
c7. νrv. out(chc,rv).let bpv0 = penc(av0, pkS,penc(av0, pkA,Mno)) in

. . .
c8. let bpvw = penc(avw, pkS,penc(avw, pkA,B(rv, pkB,avw))) in

. . .
c9. let bpvu = penc(avu, pkS,penc(avu, pkA,Mno)) in

. . .
c10. let bpv9 = penc(av9, pkS,penc(av9, pkA,Mno)) in
c11. let vev = (bpv0 , . . . ,bpvw , . . . ,bpv9) in

. . .
c12. νrd−1. out(chc,rd−1).

let bp(d−1)0 = penc(a(d−1)0, pkS,penc(a(d−1)0, pkA,Mno)) in
. . .

c13. let bp(d−1) j = penc(a(d−1) j, pkS,penc(a(d−1) j, pkA,
B(rk, pkB,a(d−1) j))) in

. . .
c14. let bp(d−1)9 = penc(a(d−1)9, pkS,penc(a(d−1)9, pkA,Mno)) in
c15. let ved−1 = (bp(d−1)0 , . . . ,bp(d−1) j , . . . ,bp(d−1)9) in
c16. let ve = (ve1, . . . ,vev, . . . ,ved−1) in
c17. out(ch,denc(r, pkCRM,ve)). Pcheck

)
Figure 28: The Pchc

B process.

the chameleon-bit-commitments equations in the AS02 protocol, where the message is

either a constant Myes or a constant Mno, in the PDE equations, the message is not a

constant, when the message is a ‘yes’ mark. Thus, although the equations are similar,

the chameleon-bit-commitments equations can be handled, whereas the PDE equations

cannot be handled. The main proof steps are shown as follows: Let P = Pchc
B and let

Q = Pfake
B . First, Q\out(chc,·) is exactly the same as the process where the bidder bids

48

Pfake
B :=

c1. ν skB. let pkB = pk(skB) in
c2. ν r. ν a00. · · · . ν a09. · · · .

ν av0. · · · . ν avw. · · · . ν avu. · · · . ν

av9. · · · . ν a(d−1)0. · · · . ν a(d−1)9.
c3.

(
νr0. let bp00 = penc(a00, pkS,penc(a00, pkA,Mno)) in
. . .

c4. let bp0i = penc(a0i, pkS,penc(a0i, pkA,B(r0, pkB,a0i))) in
. . .

c5. let bp09 = penc(a09, pkS,penc(a09, pkA,Mno)) in
c6. let ve0 = (bp00 , . . . ,bp0i , . . . ,bp09) in

· · ·
c7. νrv. let bpv0 = penc(a10, pkS,penc(a10, pkA,Mno)) in

. . .
c8. let bpvw = penc(avw, pkS,penc(avw, pkA,Mno)) in
c8′. let bpvw

fake = penc(avu, pkS,penc(avu, pkA,B(rv, pkB,avu))) in

. . .
c9. let bpvu = penc(avu, pkS,penc(avu, pkA,B(rv, pkB,avu))) in
c9′. ν a′vu. let bpvu

fake = penc(a′vu, pkS,penc(a
′
vu, pkA,Mno)) in

. . .
c10. let bpv9 = penc(av9, pkS,penc(av9, pkA,Mno)) in
c11. let ve′v = (bpv0 , . . . ,bpvw , . . . ,bpv9) in
c11′. let vevfake = (bpv0 , . . . ,bpvw

fake, . . . ,b
pvu
fake, . . . ,b

pv9) in

. . .
c12. νrd−1.

let bp(d−1)0 = penc(a(d−1)0, pkS,penc(a(d−1)0, pkA,Mno)) in
. . .

c13. let bp(d−1) j = penc(a(d−1) j, pkS,penc(a(d−1) j, pkA,
B(rd−1, pkB,a(d−1) j))) in

. . .
c14. let bp(d−1)9 = penc(a(d−1)9, pkS,penc(a(d−1)9, pkA,Mno)) in
c15. let ved−1 = (bp(d−1)0 , . . . ,bp(d−1) j , . . . ,bp(d−1)9) in
c16. let ve = (ve1, . . . ,vev, . . . ,ved−1) in
c16′. let vefake = (ve1, . . . ,vevfake , . . . ,ved−1) in
chc1. out(chc,skB).out(chc, fake(r, pkCRM,ve,vefake)).out(chc,a00). · · · .

out(chc,a09). · · · .out(chc,av0). · · · .out(chc,a′vw). · · · .out(chc,avw).
· · · . out(chc,av9)). · · · .out(chc,a(d−1)0). · · · .out(chc,a(d−1)9).

chc2. out(chc,r1). · · · .out(chc,rv). · · · .out(chc,rd−1).
c17. out(ch,denc(r, pkCRM,ve)). Pcheck

)
Figure 29: The fake process.

for (v,u). Second, we show that the adversary cannot distinguish P from Q. In both

of the two processes P and Q, the bidder sends to the adversary his secret key and the

49

P
out(chc,skB)−−−−−−−→,

out(chc,r)−−−−−−→,
out(chc,a00)−−−−−−−→, · · · , out(chc,a09)−−−−−−−→, · · · ,
out(chc,av0)−−−−−−−→, · · · , out(chc,avw)−−−−−−−→, · · · , out(chc,avu)−−−−−−−→, · · · , out(chc,av9)−−−−−−−→, · · · ,
out(chc,a(d−1)0)−−−−−−−−−→, · · · ,

out(chc,a(d−1)9)−−−−−−−−−→
out(chc,r0)−−−−−−→, · · · , out(chc,rv)−−−−−−→, · · · , out(chc,rd−1)−−−−−−−−→
out(ch,denc(r,pkCRM ,ve))−−−−−−−−−−−−−−→
Pcheck | {skB/xsk} | {r/xr}

| {a00/x00} | · · · | {a09/x09} | · · ·
| {av0/xv0} | · · · | {avw/xvw} | · · · | {avu/xvu} | · · · | {av9/xv9} | · · ·
| {a(d−1)0/x(d−1)0} | · · · | {a(d−1)9/x(d−1)9}
| {r0/y0} | · · · | {rv/yv} | · · · | {rd−1/yd−1}
| {denc(r, pkCRM,ve)/y}

Q
out(chc,skB)−−−−−−−→,

out(chc,fake(r,pkCRMve,vefake))−−−−−−−−−−−−−−−−−−→,
out(chc,a00)−−−−−−−→, · · · , out(chc,a09)−−−−−−−→, · · · ,
out(chc,av0)−−−−−−−→, · · · , out(chc,a′vw)−−−−−−−→, · · · , out(chc,avw)−−−−−−−→, · · · , out(chc,av9)−−−−−−−→, · · · ,
out(chc,a(d−1)0)−−−−−−−−−→, · · · ,

out(chc,a(d−1)9)−−−−−−−−−→
out(chc,r0)−−−−−−→, · · · , out(chc,rv)−−−−−−→, · · · , out(chc,rd−1)−−−−−−−−→
out(ch,denc(r,pkCRM ,ve))−−−−−−−−−−−−−−→
Pcheck | {skB/xsk} | {fake(r, pkCRM,ve,vefake)/xr}

| {a00/x00} | · · · | {a09/x09} | · · ·
| {av0/xv0} | · · · | {a′vw/xvw} | · · · | {avw/xvu} | · · · | {av9/xv9} | · · ·
| {a(d−1)0/x(d−1)0} | · · · | {a(d−1)9/x(d−1)9} |
| {r0/y0} | · · · | {rv/yv} | · · · | {rd−1/yd−1}
| {denc(r, pkCRM,ve)/y}

Figure 30: A brief proof of receipt-freeness in fixed HRM14.

nonces used in calculating the bids and the deniable encryptions. The transition steps

are shown is Figure 30. If the bidder claims that he bids p1i, . . . ,pvw, . . . ,pk j in the price

list, with the coerced information, the adversary can calculate each bid and obtains the

vector ve, and then verifies the equation denc(xr, pkCRM,ve) =E y. This equation is ob-

viously satisfied in process P, since the bidder did not lie. In process Q, the adversary

calculates the vector vefake instead of ve. The fake vector vefake only differs from the

real one ve on bid (v,w) and bid (v,u), due to that nonces xvw and xvu differ in P and Q

50

but other nonces remain the same. Furthermore, in process Q, the adversary receives

a fake nonce for the deniable encryption {fake(r, pkCRM,ve,vefake)/xr}. The fake bid-

ding vector together with the fake nonce also satisfy denc(xr, pkCRM,vefake) =E y,

due to that denc(r,k,m) = denc(fake(r,k,m,m f),k,m f). Hence, the equations that

are satisfied in the frame {skB/xsk} | {r/xr}· · · | {avw/xvw} | · · · | {avu/xvu} | · · · |
{denc(r, pkCRM,ve)/y} (originated from process P) are also satisfied in the frame

{skB/xsk} | {fake(r, pkCRM,ve,vefake)/xr} | · · · | {a′vw/xvw} | · · · | {avw/xvu} | · · · |
{denc(r, pkCRM,ve)/y} (originated from process Q). Hence, the adversary cannot tell

whether the bidder lied.

In the subsequent steps, in both cases (P and Q), the CRM reads exactly the same

bidding vector ve. For each bid, the sealer blinds them with newly generated nonces and

publishes the blinded result. Hence, the adversary would not be able tell any difference.

In particular,

ν r′vw.ν rsvw.{penc(blind(rv,r
′
vw), pkA,blind(rsvw,B(rv, pkB,avw)))/z}

≈s ν r′vw.ν rsvw.{penc(blind(rv,r
′
vw), pkA,blind(rsvw,Mno))/z}

≈s ν r′vw.ν rsvw.{penc(blind(rv,r
′
vw), pkA,blind(rsvw,B(rv, pkB,a

′
vw)))/z}

ν r′vu.ν rsvu.{penc(blind(rv,r
′
vu), pkA,blind(rsvu,Mno))/z}

≈s ν r′vu.ν rsvu.{penc(blind(rv,r
′
vu), pkA,blind(rsvu,B(rv, pkB,avw))))/z}

≈s ν r′vu.ν rsvu.{penc(blind(rv,r
′
vu), pkA,blind(rsvu,Mno))/z}

where the first process in the equations is the case where the bidder did not lie and z is

the real sealed bid, the second process is the case where the bidder lied and z is the real

sealed bid, and the third process is the case where the bidder lied and z is the sealed bid

that the adversary thought would be.

In the subsequent bidding verification step, assuming the sealer and the auction-

eer are honest, the bidder can verify his bids in both cases and thus no error message

would be received. In addition, the published information by the sealer (response-

vectors) and the auctioneer (signatures) can only be used to verify the equation (2).

After fixed the flaw mentioned earlier, the adversary cannot tell the two processes, P

51

and Q, apart by applying function verify. In particular, in the v-th vector, the sealer pub-

lishes hash(r′v0, . . . ,r
′
vw, . . . ,r

′
vu, . . . ,r

′
v9), the auctioneer publishes sign(vev,skA) when

the bidder did not lie, and publishes sign(ve′v,skA) when the bidder lied. After obtain-

ing the published information, the only equations that can be additional applied by the

adversary is

sign((penc(blind(a0,r0), pk,blind(rs0,m0)), . . . ,

penc(blind(a9,r9), pk,blind(rs9,m9))),sk)

= combine(blind(a0,r0), . . . ,blind(a9,r9),sk).

verify((penc(blind(a0,r0), pk,blind(rs0,m0)), . . . ,

penc(blind(a9,r9), pk,blind(rs9,m9))),

combine(blind(a0,r0), . . . ,blind(a9,r9),sk),

(a0, . . . ,a9),hash(rs0, . . . ,rs9)) = true.

However, none of them can be used to distinguish whether the bidder lied. In particular,

ν rsv0. · · · .ν rsv9.{combine(blind(rsv0,Mno), . . . ,

blind(rsvw,B(rv, pkB,avw))), . . . ,blind(rsvu,Mno), . . . ,blind(rsv9,Mno),sk)/t}
≈s ν rsv0. · · · .ν rsv9.{combine(blind(rsv0,Mno), . . . ,blind(rsvw,Mno), . . . ,

blind(rsvu,B(rv, pkB,avw)), . . . ,blind(rsv9,Mno),sk)/t}

That is, the adversary cannot distinguish the two cases using the first equation. Since

applying the verify function on both frames lead to true, the adversary cannot dis-

tinguish the two cases using the second equation. Hence, the adversary cannot tell

whether the bidder lied. Similarly, the adversary cannot distinguish the cases when the

bidder lied in multiple vectors. Therefore, the protocol satisfies receipt-freeness in the

bidding phase. Similar to the AS02 protocol, the bids are opened from higher price

to lower price, and the opening stops when the highest bid is found. Assuming the

auctioneer and sealer are honest, the non-winning bids are not revealed in the opening

phase. Hence, the fixed protocol satisfies receipt-freeness for non-winning bidders.

Strong-bidding-price-secrecy. This protocol also satisfies the strong-bidding-price-

secrecy for non-winning bidders (Definition 3) (similar to the proof of the satisfaction

52

of receipt-freeness). The intuition is as follows: two bidding vectors cannot be distin-

guished from their deniable encryptions without knowing the corresponding secret key,

due to the use of fresh nonces. In particular,

νr.{denc(r,pk,ve)/t ′} ≈s νr.{denc(r,pk,ve′)/t ′}

In the subsequent steps, the adversary cannot distinguish two bidding vectors neither,

following similar reasoning in the previous proof. Furthermore, in the opening phase,

the non-winning bids are not revealed. Hence, the strong-bidding-price-secrecy is satis-

fied. More importantly, receipt-freeness is stronger than strong-bidding-price-secrecy,

i.e., a protocol satisfying receipt-freeness also satisfies strong-bidding-price-secrecy.

7. Related work

In this section, we summarise works in the literature on formalising privacy prop-

erties, including anonymity. In order to verify a claimed privacy property of a protocol,

precise definitions of the property are required. A privacy property can be defined in

different manners. For instance, we can distinguish binary privacy from quantitative

privacy.

• Binary privacy: A protocol either satisfies a privacy property or not.

• Quantitative privacy: It defines to which extent a protocol satisfies a claimed pri-

vacy property. For example, sender anonymity can be quantified by the number

of participants from which the adversary cannot identify the sender [42].

Quantitative enforced privacy properties have been defined for e-voting in a formal

framework proposed by Jonker, Pang and Mauw [25]. In this framework, the enforced

privacy property, coercion-resistance, is quantified using the size of possible candidates

such that no matter which candidate the coerced voter votes for, the adversary cannot

distinguish it from others. Many other ways [42, 43, 44] to quantify privacy can be

found in the literature as well.

Definitions of a privacy property also vary depending on the techniques used to

prove the satisfaction of the definition. We distinguish directly proving a privacy prop-

53

erty (e.g., using game-based provable security) by showing that the adversary cannot

solve the underlying hard problem (e.g., integer factoring, discrete logarithm, 3-SAT,

etc.) in order to break the property, from proving a privacy property in a symbolic

model.

• Game-based provable security: A privacy property is defined as a game of the

adversary and a hypothetical challenger. The privacy property is satisfied if

no polynomially bounded adversary has a non-negligible advantage against the

challenger in the game. Enforced privacy properties in e-voting have been de-

fined in this way: receipt-freeness for a specific voting protocol (Prêt à Voter) [45]

and a generic coercion-resistance for the e-voting domain [46].

• Symbolic model: Typically, the Dolev-Yao assumption is adopted: Cryptographic

primitives are assumed to be perfect, e.g., the adversary cannot undo an encryp-

tion; and messages are considered to be abstract, e.g., data are expressed as sym-

bols instead of bit-strings.

In the second category, formalisations of privacy properties vary depending on the

used formal models. For instance,

• using epistemic model [47, 48]: Protocols are modelled as knowledge of users

and the adversary. Epistemic logic is used to reason about knowledge. Privacy

properties are formalised as epistemic formulas. Enforced privacy properties in

e-voting have been formalised based on epistemic logic in a framework proposed

by Küsters and Truderung [49].

• using process algebra: The behaviour of a system can be intuitively modelled as

a process. Privacy properties are typically modelled as relations of processes.

Compared to epistemic logic, process algebra is better at modelling the behaviour of

protocols. In particular, process algebras are designed for concurrent systems, thus

are very suitable to model e-services in which users are often highly distributed. In

addition, process algebras are often equipped with proof techniques for process equiv-

alences and some of them are supported by automatic verification tools. Many process

54

algebras are used to model cryptographic protocols and formalise privacy properties,

for example, CSP (communicating sequential processes) [50, 51, 52], µCRL [53, 54],

spi calculus [55] and the applied pi calculus [22, 24, 15]. Enforced privacy proper-

ties were first formalised using the applied pi calculus for a specific e-voting proto-

col [24]. Later, a framework for e-voting was proposed using the applied pi calculus

– the DKR framework [15]. In addition, enforced privacy properties for weighted

voting were proposed using the applied pi calculus as well – the DLL framework

proposed by by Dreier, Lafourcade and Lakhnech [56]. The DKR framework has

been extended and applied in many formal definitions of enforced privacy proper-

ties [24, 57, 15, 56, 36, 58].

In this work, we adopt the Dolev-Yao assumption as in the symblolic model. Partic-

ularly, we model the AS02 protocol and the HRM14 protocol using a process algebra,

the applied pi calculus. The privacy properties are formalised in the binary manner,

instead of quantitive. We are the first to lift the formalisation of enforced privacy from

the voting domain to the e-auction domain, and are the first to propose formalisation of

bidding-price-secrecy and receipt-freeness in e-auctions. In the same category, Dreier

et al. have formalised other properties in e-auctions, such as fairness, verifiability, non-

repudiation and coercion-resistance [59, 60].

8. Conclusion

The main contribution of this paper is that we have proposed a formalisation of

two privacy-type properties in sealed-bid e-auctions: strong bidding-price-secrecy and

receipt-freeness for non-winning bidders, following definitions of vote privacy and

receipt-freeness in voting [15]. We have modelled the AS02 protocol and the HRM14

protocol in the applied pi calculus, verified strong bidding-price-secrecy of the proto-

cols automatically using ProVerif and receipt-freeness of the protocols manually. For

the HRM14 protocol, we have found a flaw with receipt-freeness and proposed a fix.

In [6], Chen et al. proposed another auction protocol which can ensure the winner’s

privacy. Micali and RabinIn [8] recently proposed a protocol for a different type of

auctions – Virckery auctions, which ensures both privacy and receipt-freeness for all

55

bidders. We are interested in formally verifying privacy properties of these protocols

in the future.

Acknowledgements. We thank Zhengqin Luo and Ben Smyth for helpful discussions

and the anonymous referees for their valuable comments on a preliminary version of

the paper. Naipeng Dong was financially supported by the National Research Fund

of Luxembourg (project PHD-09-027) when working in University of Luxembourg,

where the work was conducted.

References

[1] M. Harkavy, J. D. Tygar, H. Kikuchi, Electronic auctions with private bids, in:

Proc. 3rd USENIX Workshop on Electronic Commerce, 1998, pp. 61–74.

[2] C. Cachin, Efficient private bidding and auctions with an oblivious third party, in:

Proc. 6th ACM Conference on Computer and Communications Security, ACM

Press, 1999, pp. 120–127.

[3] M. Naor, B. Pinkas, R. Sumner, Privacy preserving auctions and mechanism de-

sign, in: Proc. 1st ACM Conference on Electronic Commerce, ACM Press, 1999,

pp. 129–139.

[4] M. Abe, K. Suzuki, Receipt-free sealed-bid auction, in: Proc. 5th Conference on

Information Security, Vol. 2433 of LNCS, Springer, 2002, pp. 191–199.

[5] H. Lipmaa, N. Asokan, V. Niemi, Secure vickrey auctions without threshold

trust, in: Proc. 6th Conference on Financial Cryptography, Vol. 2357 of LNCS,

Springer, 2003, pp. 87–101.

[6] X. Chen, B. Lee, K. Kim, Receipt-free electronic auction schemes using homo-

morphic encryption, in: Proc. 6th Conference on Information Security and Cryp-

tology, Vol. 2971 of LNCS, Springer, 2003, pp. 259–273.

[7] B. Ksiezopolski, Z. Kotulski, Cryptographic protocol for electronic auctions with

extended requirements, Annales UMCS, Informatica 2 (1) (2004) 391–400.

56

[8] S. Micali, M. O. Rabin, Cryptography miracles, secure auctions, matching prob-

lem verification, Communication ACM 57 (2) (2014) 85–93.

[9] J. Dreier, H. Jonker, P. Lafourcade, Secure auctions without cryptography, in:

Proc. 7th International Conference on Fun with Algorithms, Vol. 8496 of LNCS,

Springer, 2014, pp. 158–170.

[10] W. Abubaker, Z. Qin, H. Xiong, Z. Qin, , M. Ramadan, A taxonomy of secure

electronic English auction protocols, International Journal of Computers and Ap-

plications 37 (1) (2015) 28–36.

[11] J. Trevathan, Privacy and security in online auctions, Ph.D. dissertation, James

Cook University (2007).

[12] J. Trevathan, Security, anonymity and trust in electronic auctions, ACM Cross-

roads 11 (3) (2005) 2.

[13] J. Howlader, A. Ghosh, T. D. Pal, Secure receipt-free sealed-bid electronic auc-

tion, in: Proc. Contemporary Computing – IC3, Vol. 40 of Communications in

Computer and Information Science, Springer, 2009, pp. 228–239.

[14] K. Sakurai, S. Miyazaki, An anonymous electronic bidding protocol based on a

new convertible group signature scheme, in: Proc. 5th Australasian Conference

on Information Security and Privacy, Vol. 1841 of LNCS, Springer, 2000, pp.

385–399.

[15] S. Delaune, S. Kremer, M. D. Ryan, Verifying privacy-type properties of elec-

tronic voting protocols, Journal of Computer Security 17 (4) (2009) 435–487.

[16] T. Okamoto, An electronic voting scheme, in: Proc. IFIP World Conference on

IT Tools, 1996, pp. 21–30.

[17] T. Okamoto, Receipt-free electronic voting schemes for large scale elections, in:

Security Protocols Workshop, 1997, pp. 25–35.

57

[18] J. Howlader, S. K. Roy, A. K. Mal, Practical receipt-free sealed-bid auction in

the coercive environment, in: Proc. 17th Conference on Information Security and

Cryptology - ICISC, Vol. 8565 of LNCS, Springer, 2014, pp. 418–434.

[19] G. Lowe, Breaking and fixing the Needham-Schroeder public-key protocol using

FDR, in: Proc. 2nd Workshop on Tools and Algorithms for the Construction and

Analysis of Systems, Vol. 1055 of LNCS, Springer, 1996, pp. 147–166.

[20] R. Chadha, S. Kremer, A. Scedrov, Formal analysis of multi-party contract sign-

ing, in: Proc. 17th IEEE Computer Security Foundations Workshop, IEEE CS,

2004, pp. 266–279.

[21] J. Dreier, J. Dumas, P. Lafourcade, Brandt’s fully private auction protocol revis-

ited, Journal of Computer Security 23 (5) (2015) 587–610.

[22] M. Abadi, C. Fournet, Mobile values, new names, and secure communication, in:

Proc. 28th Symposium on Principles of Programming Languages, ACM Press,

2001, pp. 104–115.

[23] B. Blanchet, An efficient cryptographic protocol verifier based on prolog rules,

in: Proc. 14th IEEE Computer Security Foundations Workshop, IEEE CS, 2001,

pp. 82–96.

[24] S. Kremer, M. D. Ryan, Analysis of an electronic voting protocol in the applied

pi calculus, in: Proc. 14th European Symposium on Programming, Vol. 3444 of

LNCS, Springer, 2005, pp. 186–200.

[25] H. L. Jonker, J. Pang, S. Mauw, A formal framework for quantifying voter-

controlled privacy, Journal of Algorithms in Cognition, Informatics and Logic

64 (2-3) (2009) 89–105.

[26] N. Dong, H. L. Jonker, J. Pang, Analysis of a receipt-free auction protocol in the

applied pi calculus, in: Proc. 7th Workshop on Formal Aspects in Security and

Trust, Vol. 6561 of LNCS, Springer, 2011, pp. 223–238.

58

[27] D. Dolev, A. C.-C. Yao, On the security of public key protocols, IEEE Transac-

tions on Information Theory 29 (2) (1983) 198–207.

[28] M. D. Ryan, B. Smyth, Applied pi calculus, in: Formal Models and Techniques

for Analyzing Security Protocols, IOS Press, 2011.

[29] J. Liu, A proof of coincidence of labeled bisimilarity and observational equiva-

lence in applied pi calculus, available at http://lcs.ios.ac.cn/˜jliu/

papers/LiuJia0608.pdf (2011).

[30] B. Blanchet, From secrecy to authenticity in security protocols, in: Proc. 9th

International Symposium on Static Analysis, Vol. 2477 of LNCS, Springer, 2002,

pp. 342–359.

[31] B. Blanchet, Automatic proof of strong secrecy for security protocols, in: Proc.

25th IEEE Symposium on Security and Privacy, IEEE CS, 2004, pp. 86–100.

[32] M. Abadi, B. Blanchet, Computer-assisted verification of a protocol for certified

Email, Science of Computer Programming 58 (1-2) (2005) 3–27.

[33] M. Abadi, B. Blanchet, C. Fournet, Just fast keying in the pi calculus, ACM

Transactions on Information and System Security 10 (3) (2007) 1–59.

[34] B. Blanchet, A. Chaudhuri, Automated formal analysis of a protocol for secure

file sharing on untrusted storage, in: Proc. IEEE Symposium on Security and

Privacy, IEEE CS, 2008, pp. 417–431.

[35] L. Luo, X. Cai, J. Pang, Y. Deng, Analyzing an electronic cash protocol using

applied pi-calculus, in: Proc. 5th Conference on Applied Cryptography and Net-

work Security, Vol. 4521 of LNCS, Springer, 2007, pp. 87–103.

[36] N. Dong, H. L. Jonker, J. Pang, Formal analysis of privacy in an eHealth protocol,

in: Proc. 17th European Symposium on Research in Computer Security, Vol. 7459

of LNCS, Springer, 2012, pp. 325–342.

59

http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf
http://lcs.ios.ac.cn/~jliu/papers/LiuJia0608.pdf

[37] J. Dreier, R. Giustolisi, A. Kassem, P. Lafourcade, G. Lenzini, A framework for

analysing verifiability in traditional and electronic exams, in: Proc. 11th Infor-

mation Security Practice and Experience, Vol. 9065 of LNCS, springer, 2015, pp.

514–529.

[38] A. Horn, On sentences which are true of direct unions of algebras, Journal of

Symbolic Logic 16 (1) (1951) 14–21.

[39] B. Blanchet, M. Abadi, C. Fournet, Automated verification of selected equiva-

lences for security protocols, Journal of Logic and Algebraic Programming 75 (1)

(2008) 3–51.

[40] B. Blanchet, Proverif: automatic cryptographic protocol verifier user manual

for untyped inputs, http://prosecco.gforge.inria.fr/personal/

bblanche/proverif (October 2012).

[41] V. Cheval, B. Blanchet, Proving more observational equivalences with ProVerif,

in: Proc. 2nd Conference on Principles of Security and Trust, Vol. 7796 of LNCS,

Springer, 2013, pp. 226–246.

[42] D. Chaum, The dining cryptographers problem: Unconditional sender and recip-

ient untraceability, J. Cryptology 1 (1) (1988) 65–75.

[43] M. K. Reiter, A. D. Rubin, Crowds: anonymity for web transactions, ACM Trans-

actions on Information and System Security 1 (1) (1998) 66–92.

[44] O. Berthold, A. Pfitzmann, R. Standtke, The disadvantages of free mix routes and

how to overcome them, in: Proc. Workshop on Design Issues in Anonymity and

Unobservability, 2000, pp. 30–45.

[45] D. Khader, P. Y. A. Ryan, Receipt freeness of Prêt à voter provably secure, IACR

Cryptology ePrint Archive 2011 (2011) 594.

[46] R. Küsters, T. Truderung, A. Vogt, A game-based definition of coercion-

resistance and its applications, in: Proc. 23rd IEEE Computer Security Foun-

dations Symposium, IEEE CS, 2010, pp. 122–136.

60

http://prosecco.gforge.inria.fr/personal/bblanche/proverif
http://prosecco.gforge.inria.fr/personal/bblanche/proverif

[47] P. F. Syverson, S. G. Stubblebine, Group principals and the formalization of

anonymity, in: Proc. 5thWorld Congress on Formal Methods, Vol. 1708 of LNCS,

Springer, 1999, pp. 814–833.

[48] J. Y. Halpern, K. R. O’Neill, Anonymity and information hiding in multiagent

systems, Journal of Computer Security 13 (3) (2005) 483–512.

[49] R. Küsters, T. Truderung, An epistemic approach to coercion-resistance for elec-

tronic voting protocols, in: Proc. 30th IEEE Symposium on Security and Privacy,

IEEE CS, 2009, pp. 251–266.

[50] S. Schneider, Security properties and CSP, in: Proc. 17th IEEE Symposium on

Security and Privacy, IEEE CS, 1996, pp. 174–187.

[51] S. Schneider, A. Sidiropoulos, CSP and anonymity, in: Proc. 4th European Sym-

posium on Research in Computer Security, Vol. 1146 of LNCS, Springer, 1996,

pp. 198–218.

[52] S. Older, S. Chin, Formal methods for assuring security of protocols, Computer

Journal 45 (1) (2002) 46–54.

[53] J. Pang, Analysis of a security protocol in µCRL, in: Proc. 4th Conference on

Formal Engineering Methods, Vol. 2495 of LNCS, Springer, 2002, pp. 396–400.

[54] T. Chothia, S. Orzan, J. Pang, M. T. Dashti, A framework for automatically check-

ing anonymity with mucrl, in: Proc. 2nd Symposium on Trustworthy Global

Computing, – TGC’06, 2006, pp. 301–318.

[55] M. Abadi, A. D. Gordon, A calculus for cryptographic protocols: The spi calcu-

lus, in: Proc. 4th ACM Conference on Computer and Communications Security,

1997, pp. 36–47.

[56] J. Dreier, P. Lafourcade, Y. Lakhnech, Defining privacy for weighted votes, single

and multi-voter coercion, in: Proc. 17th European Symposium on Research in

Computer Security, Vol. 7459 of LNCS, Springer, 2012, pp. 451–468.

61

[57] M. Backes, C. Hriţcu, M. Maffei, Automated verification of remote electronic

voting protocols in the applied pi-calculus, in: Proc. 21st IEEE Computer Secu-

rity Foundations Symposium, IEEE CS, 2008, pp. 195–209.

[58] N. Dong, H. L. Jonker, J. Pang, Enforcing privacy in the presence of others: No-

tions, formalisations and relations, in: Proc. 18th European Symposium on Re-

search in Computer Security, Vol. 8134 of LNCS, Springer, 2013, pp. 499–516.

[59] J. Dreier, H. Jonker, P. Lafourcade, Defining verifiability in e-auction protocols,

in: Proc. 8th ACM Symposium on Information, Computer and Communications

Security, ACM, 2013, pp. 547–552.

[60] J. Dreier, P. Lafourcade, Y.Lakhnech, Formal verification of e-auction protocols,

in: Proc. 1st Conference on Principles of Security and Trust, Vol. 7796 of LNCS,

Springer, 2013, pp. 247–266.

62

Figure 6: The AS02 protocol.

63

sk j , pk j , pkS , pkA, pkCRM

bidder j

skCRM , pkCRM

CRM

skS , pkS

sealer BB

skA, pkA

auctioneer

choose price p
b j
0 , . . . , p

b j
d−1

generate a01, . . . ,a(d−1)9

generate r and r0, . . . ,rd−1

compute bidding vectors ve

compute deniable encryption
denc(r, pkCRM ,ve)

denc(r, pkCRM ,ve)

decrypt and get ve

collect ve’s and permute as
ve1, . . . ,vem

ve1, . . . ,vem

for each bid b
pki
j , gener-

ate r
pki
j , rs

pki
j , and compute

sv
pk j
j = seal(b

pki
j ,r

pki
j ,rs

pki
j ,skS)

form sealed vectors
sv1, . . . ,svm

sv1, . . . ,svm

sv1, . . . ,svmsv1, . . . ,svm

for each vector vek
j , compute

respk
j = (vek

j ,hash(r
pk0
j , . . . ,r

pk9
j))

form response-vectors
resp1, . . . ,respm

resp1, . . . ,respm

resp1, . . . ,respmresp1, . . . ,respm

for each vector svk
j , compute avk

j =

(respk
j ,sign(sve

pki
j ,skA))

form signed vectors av1, . . . ,avm

av1, . . . ,avm
av1, . . . ,avm

verify the bids are correctly sealed

msc [HRM14]

Figure 21: The HRM14 protocol.

64

	Introduction
	The applied pi calculus
	Syntax
	Operational semantics
	Equivalences

	ProVerif
	Formalisation of privacy notions in e-auctions
	Bidding-price-secrecy
	Receipt-freeness

	Case study: the AS02 protocol
	Introduction
	Physical assumptions
	Settings
	Description of the protocol
	Claimed properties
	Modelling
	Analysis
	Bidding-price-secrecy
	Receipt-freeness

	Case study: the HRM14 protocol
	Description of the protocol
	Settings
	Cryptographic primitives
	PDE
	Bidding encryption
	Sealing operation
	Bid verification

	Modelling
	Analysis

	Related work
	Conclusion

