
How gullible are web measurement tools?
A case study analysing and strengthening OpenWPM’s reliability

Benjamin Krumnow
TH Köln,

Open University Netherlands
Germany

Hugo Jonker
Open University Netherlands,

Radboud University
Netherlands

Stefan Karsch
TH Köln
Germany

ABSTRACT
Automated browsers are widely used to study the web at scale.
Their premise is that they measure what regular browsers would
encounter on the web. In practice, deviations due to detection of
automation have been found. To what extent automated browsers
can be improved to reduce such deviations has so far not been
investigated in detail. In this paper, we investigate this for a spe-
cific web automation framework: OpenWPM, a popular research
framework specifically designed to study web privacy. We analyse
(1) detectability of OpenWPM, (2) resilience of OpenWPM’s data
recording, and (3) prevalence of OpenWPM detection.

Our analysis (1) reveals OpenWPM is easily detectable. Our in-
vestigation of OpenWPM’s data recording integrity (2) identifies
novel evasion techniques and previously unknown attacks against
OpenWPM’s instrumentation. We investigate and develop mitiga-
tions to address the identified issues. Finally, in a scan of 100,000
sites (3), we observe that OpenWPM is commonly detected (∼14%
of front pages). Moreover, we discover integrated routines in scripts
specifically to detect OpenWPM clients. In conclusion, our case
study shows that even the most popular web measurement frame-
work, OpenWPM, is more gullible than expected, and this gullibility
is rarely accounted for in studies.

CCS CONCEPTS
• Security and privacy → Browser security; • Information
systems→WorldWideWeb; •General and reference→Mea-
surement.

KEYWORDS
Web bots, bot detection, web measurements, reliability, security,
privacy

ACM Reference Format:
Benjamin Krumnow, Hugo Jonker, and Stefan Karsch. 2022. How gullible
are web measurement tools? A case study analysing and strengthening
OpenWPM’s reliability. In The 18th International Conference on emerging
Networking EXperiments and Technologies (CoNEXT ’22), December 6–9, 2022,
Roma, Italy. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/
3555050.3569131

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9508-3/22/12. . . $15.00
https://doi.org/10.1145/3555050.3569131

1 INTRODUCTION
Web studies use web measurement tools (typically built on top of
browser automation frameworks) to accrue data over thousands of
sites. The goal of such studies is to analyse what regular visitors
would experience on the web. This relies on an (often unstated)
assumption that the data as collected is representative of what
a regular, human-controlled browser would encounter. Previous
works [45, 47, 101] have shown that this is not always the case:
websites have been found to omit content (advertisements, video,
JavaScript execution, login forms, etc.) or require completion of a
CAPTCHA for automated clients. This casts doubts on the validity
of such analyses, especially since this effect is often not accounted
for (Sec. 2). In some cases, studies implement their own automation
tooling [15, 50] to bypass detectors targeting such frameworks.
While such an approach can be technically sufficient, the additional
steps may also shift or even exacerbate the detection problem [37].
Another typical approach is to use third-party plugins that hide
differences of the fingerprint (e.g., [47]). Again, this could be a
reasonable approach, but 100% fidelity should not be assumed –
though in practice, it often is. This raises the question: how gullible
are frameworks as measurement tools? That is, to what extent can
web measurement tools be fooled by websites?

To analyse a website, a web measurement tool visits the site
and collects whatever data it needs for its analysis. In our view,
there are two key issues that affect whether websites can fool
the tool. First: detectability. Detectability enables a web site to
deliver innocuous contents to analysers instead of what regular
visitors would receive (a so-called cloaking attack, see e.g., [42]).
Second, resilience of data collection, that is: able to collect the
sought-after data even in adverse conditions. Websites may employ
obfuscation and other tricks to thwart analysis, e.g., sprinkling
random breakpoints throughout the code to hinder analysis [63]. A
malicious website would use tricks specifically targeting analysers
to hide its wrongdoings.

We investigate the extent to which these two issues affect relia-
bility of web measurement tools by means of a case study. Many
web measurement tools are one-off creations, used to perform
a specific analysis, but not designed for use cases beyond that
(e.g., [9, 38, 45, 52]). Amongst the few more general web measure-
ment frameworks, most have not gained traction in the community
and have been used little beyond their initial study so far (e.g., FPDe-
tective [3], Crawlium [60], VisibleV8 [46]). In contrast, OpenWPM,
a framework [29] for measuring web privacy, has been used over
70 peer-reviewed publications (Sec. 2). Studies based on OpenWPM
keep appearing frequently in top conferences (Tbl. 15). Its matu-
rity, as well as its popularity and impact in the web measurement
community, make it an ideal subject for our case study.

https://doi.org/10.1145/3555050.3569131
https://doi.org/10.1145/3555050.3569131
https://doi.org/10.1145/3555050.3569131

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

Figure 1: Components of the OpenWPM framework

OpenWPM offers increased stability, fidelity and easy access
to measurement functionality on top of Selenium + WebDriver (a
browser automation framework). The framework can be run under
either Ubuntu or macOS. It consists of four parts (Fig. 1): a web
client, automation components, instrumentation for measurements,
and a framework. As a web client, OpenWPM uses an unbranded
Firefox browser. In contrast to a regular Firefox browser, this allows
running unsigned browser extensions. There are various measure-
ment instruments implemented via one browser extension. Each
facilitates recording a specific aspect, such as JavaScript calls, cook-
ies, or HTTP traffic. Last is the framework, which acts as a maestro
orchestrating work. Its purpose is to control browsers and data
collection. It also adds various functionalities, such as monitoring
for browser crashes and liveliness, restoring after failures, loading
input data, etc.

Main contributions.
• (Sec. 3) We provide the first analysis of OpenWPM’s de-
tectability based on both conventional fingerprinting [45]
and template attacks [75] techniques. We find previously not
reported, identifiable properties for every mode of running
OpenWPM (headless, Xvfb, etc.), even allowing to distin-
guish between these modes.

• (Sec. 5)We explore how sites can attack OpenWPM’s data
collection. We find various attack vectors targeting Open-
WPM’s most commonly used instruments and implement
proof-of-concept attacks for these.

• (Sec. 6)We harden OpenWPM against poisoning attacks and
detection. This hides all identifiable properties when run in
regular mode and addresses the identified attacks against
OpenWPM’s instrumentation. We evaluate its performance
against vanilla OpenWPM. The number of cookies received
is severely impacted. Conversely, ads/tracker traffic is hardly
impacted.

• (Sec. 4) We look for bot detectors in the Tranco Top 100K
sites via both static and dynamic analysis. We find a drastic
increase of Selenium-based bot detection compared to earlier
studies. In addition, we find detectors in the wild specifically
targeting OpenWPM.

Ethics & responsible disclosure. Our work aims to make Open-
WPM a more reliable measurement framework. We responsibly
disclosed our findings and shared fixes of the identified issues. This
helpsmakeOpenWPM less detectable, and therefore its results more
reliable. Of course, a less detectable web bot may itself be abused.
For attacking specific sites, our improvements do not greatly impact

Table 1: Measurement characteristics in 72 peer-reviewed
studies that are built upon OpenWPM

Category Studies

Measures
– HTTP traffic 56
– cookies 35
– JavaScript 22
– other 6

Run mode
– unspecified 59
– virtualisation 16
– headless 7
– regular mode 3
– Docker 2
– Xvfb 2

Category Studies

Interaction
– no interaction 55
– clicking 11
– scrolling 8
– typing 5

Subpages
– not visited 53
– visited 19

Bot detection
– ignored 55
– discussed 17
◦ uses mitigation 8

the attack surface: a less detectable OpenWPM is a fine tool for
studying the web, but not for a targeted attack on a specific site.
For attacks that span thousands of sites (e.g., clickfarming), our
improvements do not help: disguising as a regular browser is insuf-
ficient to overcome contemporary defenses. For that, site-specific
fingerprints are needed [86]. Thus, existing re-identification-based
countermeasures (e.g., rate limiting) are not impacted.

Availability. Our stealth extension and our collected data set (see
Sec. 6.3) are available from https://bkrumnow.github.io/openwpm-
reliability.

2 USE OF OPENWPM IN PREVIOUS STUDIES
To understand how OpenWPM is being used, we review the dif-
ferent studies performed to date with OpenWPM. In June 2022, 76
works, of which 57 peer-reviewed, were listed1 as using OpenWPM.
We further add 15 recent studies that had not yet been listed. For
each study, we check the following: what is measured, whether
subpages are visited, whether interaction is used, and what run
mode is used. Tbl. 1 summarises our findings.

The measures category tallies how many studies used Open-
WPM’s various measurement instruments: HTTP traffic, cookies,
and JavaScript. Each of these measures may be impacted individ-
ually due to bot detection. Interestingly, while most studies use
OpenWPM to record HTTP traffic, a few (e.g. [19, 27, 55, 81]) have
used it as automation instead as a measurement tool. These are
tallied under ‘other’ in Tbl. 1. The other categories pertain to as-
pects that may impact detectability. In each case, it is currently not
known whether these play a role in bot detection. With respect to
the interaction category, we note that no study mentioned imple-
menting interaction mechanisms. Therefore, we assume all studies
used OpenWPM’s default interaction functionality.

With respect to the run mode category, note that not all studies
provide information about this. Nevertheless, the used run mode
may impact detectability (e.g. [39]) and thus should be considered.
We therefore consider all currently supported modes:

a. unspecified: does not specify mode,
b. regular : uses a full Firefox browsers,

1https://webtap.princeton.edu/software/

https://bkrumnow.github.io/openwpm-reliability
https://bkrumnow.github.io/openwpm-reliability
https://webtap.princeton.edu/software/

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

c. headless: uses Firefox without a GUI,
d. Xvfb: as regular, with visual output redirected to a buffer,
e. Docker : runs OpenWPM within a Docker container,
f. Virtualisation: uses virtual machines, possibly in cloud in-
frastructure.

Lastly, we track whether the studies considered bot detection at
all and, if so, whether they used OpenWPM’s built-in anti-detection
features. Aside from studies investigating bot detection directly,
only very few consider fingerprinting [87] or cloaking [14, 53] as a
potential risk for valid results.

3 FINGERPRINT SURFACE OF OPENWPM
We begin by addressing the research question how can OpenWPM
be distinguished from human-controlled web clients? In general, a
website operator looking to identify OpenWPM clients can either
probe for identifiable properties (i.e., fingerprinting), or attempt to
recognise OpenWPM’s interaction. The latter is due to Selenium,
whose interaction was studied in detail by Goßen et al. [37]. Those
results fully carry over to OpenWPM. This leaves uncertainty about
how OpenWPM’s fingerprint distinguishes it from other clients
and other bots. In line with previous works, we call that part of a
browser fingerprint that distinguish a certain type of client from
other types the fingerprint surface [86]. Determining the fingerprint
surface of an OpenWPM client requires a way to find its properties
that deviate from properties and values in other clients. Jonker et
al. [45] showed that it suffices to consider differences within the
client’s ‘browser family’, that is, fingerprint differences with those
clients who use the same rendering engine and JavaScript engine.
By comparing the results for multiple clients of the same browser
family, differences unique to each client are brought to light. In
previous works, two approaches for browser fingerprinting were
used: probing a specific list of properties [45], or using an automated
approach for DOM traversion [75]. While there is overlap between
the results of these methods, neither offers a complete superset of
the other. We combine the results of both approaches to determine
the fingerprint surface.

Limitations. Fingerprint-based bot detection requires identifi-
able properties of bots, such as deviations from regular user clients
or inconsistencies. While we use state-of-the-art tooling to iden-
tify outstanding characteristics in OpenWPM at the HTTP layer
and above, we cannot guarantee that all properties or methods
are covered. Furthermore, our method compares the fingerprint of
OpenWPM to the fingerprint of a regular (equivalent version) Fire-
fox. Any differences cannot be due to the browser then. However,
this by itself does not guarantee that these differences are unique
when compared to other browsers. To reduce the likelihood of this,
we validate the found fingerprint surface against a number of other
web browsers (see Sec. 3.3).

3.1 RQ1: How recognisable is OpenWPM?
We determine OpenWPM’s fingerprint surface by comparing its
client to a standalone version of the same Firefox browser. Any
differences must originate in the hosting environment, the frame-
work itself, the base implementation, the added automation, or
measurement components. Note that it is already well-known that

Table 2: Summary of deviating properties of eachOpenWPM
setup (v.017.0) contrasted with OpenWPM’s Firefox (v.90)

macOS Ubuntu Docker
10.15 18.04 19.03.6

RM HM RM HM Xvfb RM

navigator.webdriver is true ✓ ✓ ✓ ✓ ✓ ✓
screen dimension prop. ✓ ✓ ✓ ✓ ✓ ✓
screen position prop. ✓ ✓ ✓ ✓ ✓ ✓
font enumeration – – – – – ✓
timezone is 0 – – – – – ✓

navigator.languages prop. – 43 – 43 – –
deviating WebGL prop. – 2037 – 2061 18 27

With instrumentation:
- through tampering +253 +253 +252 +252 +252 +252
- added custom functions +1 +1 +1 +1 +1 +1

RM: Regular mode; HM: Headless mode; Xvfb: X virtual frame buffer mode.

Table 3: Screen properties for various configurations

OS Mode Resolution Window X Y Offset (x,y)

macOS Regular 2560 x 1440 1366 x 683 23 4 0, 0
Headless 1366 x 768 1366 x 683 4 4 0, 0

Ubuntu Regular 2560 x 1440 1366 x 683 80 35 8, 8
Headless 1366 x 768 1366 x 683 0 0 0, 0
Xvfb 1366 x 768 1366 x 683 0 0 0, 0
Docker 2560 x 1440 1366 x 683 0 0 0, 0

OpenWPM’s underlying automation component, Selenium, is triv-
ially recognisable by the navigator.webdriver property,2 which
is not addressed by OpenWPM. We are looking for further dis-
tinguishing aspects. To account for possible effects of the various
run modes of OpenWPM on the fingerprint surface, we determine
variations for each setup on Ubuntu and macOS. Tbl. 2 summarises
the identifying properties found. In addition to ways to recognise
OpenWPM’s instrumentation, we also identify ways to recognise
display-less scraping (headless or Xvfb mode), and virtualised run
mode. Thus, every mode of running OpenWPM is identifiable as a
web bot.

3.1.1 Recognisable via screen resolution, window position. We found
two new identification measures that work against all modes of
OpenWPM: screen resolution, set by OpenWPM, and window posi-
tion, set by the browser automation framework. OpenWPM screen
properties use standard values and cannot be changed (see Tbl. 3).
On macOS, all browser instances will use the same absolute coor-
dinates; on Ubuntu, each window shifts by the same offset when
using regular mode.

3.1.2 Suppressing output → more identifiable. Suppressing output
to display (by using Xvfb, headless, or Docker) adds a significant
number of differences. In headless mode, the lack of aWebGL imple-
mentation leads to thousands of missing properties.We also observe
that this mode adds 43 new properties to the navigator.language
object. Xvfb mode uses a regular Firefox browser, which contains
WebGL functionality. Nevertheless, Xvfb mode causes 5 changed
and 13 missing properties. Interestingly, both headless and Xvfb
mode allow the detection of missing user elements by accessing
2https://www.w3.org/TR/webdriver/#x4-interface

https://www.w3.org/TR/webdriver/#x4-interface

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

Table 4: Selected deviations, Ubuntu no-display modes

Mode WebGL vendors avail{Top|Left}

RM AMD AMD TAHITI 27, 72
HM Null 0, 0
Xvfb Mesa/X.org llvmpipe (LLVM 12.0.0,. . .) 0, 0
Docker VMware, Inc. llvmpipe (LLVM 10.0.0,. . .) 27, 72

Figure 2: Properties in a (A) original object or (B) by the in-
strumentation polluted object

the property screen.availTop. This describes the first y-coordinate
that does not belong to the user interface.3 In display-less modes,
this is always zero, while regular browsers have larger values.

3.1.3 Virtualisation leaves identifiable traces. Using OpenWPM’s
docker container causes the WebGL vendor property to contain
the term VMware, Inc. (Tbl. 4) – clear evidence for the use of
virtualisation [94]. In addition, the Docker environment reduces
the number of available JavaScript fonts to one (Bitstream Vera
Sans Mono), nor does it provide information about the time zone.

3.1.4 Using JS instrumentation has large effect on detectability. We
checked if using any of OpenWPM’s various instruments has any
effect on its fingerprint surface. The only differences occur when
using the JavaScript instrument. First, this instrument overwrites
certain of the browser’s standard JavaScript objects, which can be
detected by using the toString function of a function or object (see
Listing 1). Another identifying aspect of this instrument is the pres-
ence of a function in thewindow object (window.getInstrumentJS),
which is not a part of the ECMA specification,4 nor present in any
common desktop browser (Firefox, Safari, Chrome, Edge, Opera).
Third, OpenWPM’s wrapper functions can be found in stack traces.
For that, a script need to provoke an error in any overwritten func-
tion and catch the stack trace to successfully identify a modification
by OpenWPM. Lastly, the JavaScript instrument ‘pollutes’ proto-
types along the prototype chain of an object. Instrumenting is done
by changing the prototype of an object, as well as all its ancestor
prototypes. However, the properties of later ancestor prototypes
are all added to the first ancestor prototype (see Fig. 2). This distin-
guishes a visitor with instrumentation from one without.

3.2 RQ2: How stable is the fingerprint surface?
We explored how stable our determined fingerprint surface is, as
new Firefox and OpenWPM versions may appear frequently. To
that end, we repeated our experiments for older version of Open-
WPM (0.11.0 and 0.10.0). In general, we found that the fingerprint

3https://developer.mozilla.org/en-US/docs/Web/API/Screen/availTop
4https://262.ecma-international.org/5.1/

surfaces largely overlap. For example, on MacOS, the number of
WebGL deviations in headless mode increases to 2037 in Open-
WPM 0.17.0, from OpenWPM 0.11.0’s 2022. In the oldest OpenWPM
version (0.10.0), we find that the JavaScript instrument adds two
properties instead of one to the window object (jsInstruments
and instrumentFingerprintingApis). In addition, we also inves-
tigated whether using an unbranded browser (as OpenWPM does)
impacts OpenWPM’s fingerprint. We did not find differences be-
tween branded and unbranded versions.

Using outdated browsers, however, does impact the fingerprint.
For example, Google’s reCAPTCHA service assigns a higher risk
to older browser variants [78]. In the past, OpenWPM’s integrated
Firefox version has been lagging behind the official release of Firefox
several times (Tbl. 14 in Appx. C). We found that OpenWPM used
an outdated version of Firefox 69% of the time.

3.3 Validation of the fingerprint surface
Our measurement of OpenWPM’s fingerprint surface should be
validated to ensure our methodology did not introduce measure-
ment artefacts. Moreover, our method only contrasts OpenWPM
to Firefox; other browser fingerprints could contain elements that
are present in our measured fingerprint surface. To validate the
fingerprint surface, we test its distinctiveness from other consumer
browsers and platforms. We implemented an OpenWPM detector
that uses four test strategies for the entire measured fingerprint
surface to identify OpenWPM amongst web clients:

(1) test for presence of a DOM property
(2) test for absence of a DOM property
(3) test if a native function was overwritten
(4) compare a DOM property with an expected value

We tested the detector by setting up four machines, two Macin-
toshes and two PCs with Ubuntu. On each machine, we used Open-
WPM and common browsers (Chrome, Safari, Opera and Firefox).
We tested all distinguishing property from Tbl. 2. Our detector site
was able to correctly identify OpenWPM every single time. Ex-
cept for a few WebGL- and screen-related properties, all properties
uniquely identify OpenWPM. As reported in Sec. 3.1, screen prop-
erties differ per operating system. For regular modes, the screen
resolution depends on the system setup (display size and selected
resolution). For WebGL properties, we found that these also occur
on some non-OpenWPM clients (roughly 200 of 4K properties). Af-
ter removing these, the fingerprint surface still contained a sizeable
number of identifying WebGL and screen properties.

4 INCIDENCE OF OPENWPM DETECTION
To assess the extent of OpenWPM detection in the wild, we conduct
a large-scale measurement for client-side bot detection. In detail, we
focus on scripts with capabilities to detect OpenWPM, i.e. scripts
with routines to access properties unique for Selenium-based bots
and/or OpenWPM. We find both general Selenium detectors and
OpenWPM-specific detectors.

4.1 Data acquisition and classification
4.1.1 Methodology. Previous automated approaches [45, 46] to
identify bot detectors have either relied on static or dynamic analy-
sis. The idea behind static analysis is to identify code patterns in

https://developer.mozilla.org/en-US/docs/Web/API/Screen/availTop
https://262.ecma-international.org/5.1/

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

window.canvas.getContext.toString();
// output of .toString when not instrumented
"function getContext() {
[native code]

}"

// output of .toString when instrumented
"function () {
const callContext = \
getOriginatingScriptContext(!!logSettings.logCallStack);
logCall(objectName + "." + \
methodName, arguments, callContext, logSettings);
return func.apply(this, arguments);

}"

Listing 1: Detectability of OpenWPM’s JavaScript
instrumentation

source code that link to known bot detectors or that use specific
bot-related properties. A limitation is that scripts may create code
dynamically, which will be missed out by static analysis. Moreover,
minification and obfuscation further increase the false negative
rate of static analysis. The alternative approach, dynamic analysis,
is to monitor JavaScript calls that identify a script as bot detector
based on access to bot-related properties. Dynamic analysis does
cover dynamically-generated scripts. Moreover, it does not monitor
the code itself, but only executed calls. An upside of this is that
neither minification nor obfuscation affects the analysis. On the
other hand, code that happens not to be executed during the run,
is not analysed. Both static and dynamic analysis have been able
to identify some bot detectors in the wild. It is not clear whether
and to what extent the results of the methods differ in practice for
finding web bot detectors. We combine both methods to increase
coverage.

4.1.2 Setup. In order to assess the extent of client-side bot de-
tection, we scan the top 100K websites of the Tranco list [51]5.
We set up an instance of OpenWPM running Firefox in regular
mode. During a site visit, our OpenWPM client stores a copy of
any transmitted JavaScript file and records JavaScript calls. We
wait an additional 60 seconds after every completed page load6 to
give websites time to perform JavaScript operations. In addition,
our client measures the presence of bot detection on subpages by
opening a maximum of three URLs extracted from a site’s landing
page. For selecting subpages, we consider only URLs linking to
the same domain. We use the eTLD+1 scheme to identify domains.
To account for websites that use same-origin requests to redirect
clients to foreign domains, our client checks if a foreign domain
was entered after following all redirects.

Accessing OpenWPM’s fingerprint surface is cause to consider
a script as a bot detector. However, certain scripts may access fin-
gerprint surface attributes for other purposes, such as checking
supported WebGL functionality. To reduce such false positives, we
only classify a script as bot-detecting when it accesses properties
pertaining to browser automation or are unique to OpenWPM (see
Sec. 3.1). This leaves only the following: navigator.webdriver,

5https://tranco-list.eu/list/WV79
6As determined by the document.readyState property.

which is specific to WebDriver-controlled bots; and the new identi-
fying properties introduced by OpenWPM’s JavaScript instrumen-
tation: getInstrumentJS, instrumentFingerprintingApis, and
jsInstruments. Tbl. 5 shows the results of the data collection and
classification.

4.1.3 Limitations. Inherent in the above approach are several as-
sumptions that can impact the results. First, our approach relies on
the fingerprint surface we established. Detectors based on other
methods (e.g., mouse tracking [17]) will be missed. Second, we do
not account for cross-site tracking. A third-party tracker could clas-
sify our client as a bot on one site and would need only to re-identify
the client on another site, e.g., using IP filtering or regular browser
fingerprinting. This amounts to a form of website cloaking – serv-
ing different content to specific clients. To what extent third-party
tracking in general employs cloaking is a different study and left to
future work. Both these limitations may cause underestimation of
the number of detectors (false negatives). As such, our approach
approximates a lower bound on the number of detectors in the wild.

Preprocessing for static analysis. Within the static analysis, we
pre-process scripts to undo straightforward obfuscation. We de-
rive the respective encoding, transform hex literals to ASCII char-
acters, and remove code comments. We apply our static analy-
sis to scripts that we collected during our scan of the Tranco
Top 100K, which resulted in 1,535,306 unique scripts. To identify
Selenium-detector scripts, we then use patterns to look for access
to navigator.webdriver (more details can be found in Appx. B).

Using honey properties to catch iterators. For the dynamic analysis,
every recorded access to the fingerprint surface identifies a script
with the potential to detect OpenWPM as a bot. This will also be
triggered by scripts that iterate over all properties, e.g., for regular
browser fingerprinting. Determining the purpose of such iteration
requires per-script manual inspection and goes beyond dynamic
analysis.

To determine whether property iteration takes place, we extend
our client’s navigator and window object with ‘honey’7 proper-
ties. These honey properties are added on the fly and use ran-
dom strings as name. Hence, only a script using property iter-
ation would access all honey properties. We assign scripts that
use property iteration into two categories, based on access to the
navigator.webdriver property: definitely detecting bots, and in-
conclusive. Iterator scripts are classified as inconclusive if they do
not access navigator.webdriver, as all accesses to the fingerprint
surface could be due to property iteration. Scripts that iterate the
navigator object will naturally access the webdriver property. To
check whether this access is only by iteration or intentional, we dis-
tinguish between scripts that trigger our static analysis and those
that do not. Only scripts that do not surface in the static analysis
are classified as inconclusive.

4.2 RQ3: How often is OpenWPM detected?
OpenWPM can be detected directly, via OpenWPM-specific prop-
erties, or indirectly, via properties of its underlying components
(Selenium, WebDriver, etc.). Our results show that, when checking

7We are not aware of any previous works using such an approach.

https://tranco-list.eu/list/WV79

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

Table 5: Number of websites with Selenium detectors

sites static dynamic union

identified 32,694 19,139 38,264
without false positives / ‘inconclusive’ 15,838 16,762 18,714

Table 6: Sites with scripts probing OpenWPM-specific prop-
erties

cz gs google.com ad1t

total 331 14 9 2
jsInstruments 331 5 2 2
instrumentFingerprintingApis 0 6 4 0
getInstrumentJS 0 3 3 0

cz: cheqzone.com, gs: googlesyndication.com, ad1t: adzouk1tag.com

both front- and subpages, at least 16.7% of websites in the Tranco
Top 100K execute scripts that accessed properties specific to Sele-
nium. Moreover, we also find 4 actors serving scripts that access
OpenWPM-specific properties.

4.2.1 356 sites detect OpenWPM-specific properties. Most scripts
we found recognise OpenWPM by targeting Selenium. A small num-
ber of detectors also include specific routines to detect OpenWPM
itself. Overall, 356 sites executed scripts that accessed OpenWPM-
specific properties. These scripts were all included via third-party
domains, belonging to four distinct providers. Tbl. 6 summarises
these detectors and their detection method. Detectors on cheq-
zone.com were found by both static and dynamic analysis; de-
tectors on the other three domains used some form of minifica-
tion, obfuscation, and/or dynamic loading, and were only found
by dynamic analysis. We investigated the four hosting domains by
consulting whois records, EasyList,8 and the WhoTracksMe data-
base [18]. All domains are related to the advertising industry. The
domain cheqzone.com belongs to CHEQ, a company fighting ad
fraud. The scripts hosted by Google domains are included through
Google’s reCAPTCHA service. While we could not clarify the origin
of adzouk1tag.com, we found this domain listed in the EasyList
for ad domains.

4.2.2 14% of sites detect bots on the front page. Fig. 4 depicts the
distribution for detectors active on the front page of websites for
static and dynamic analysis. Dynamic analysis without considering
property iteration identifies 12,208 sites with detectors on the front
page. Static analysis measures the number of sites where bot detec-
tion could be triggered (11,897), including those where detection
is present but not (yet) executed, e.g., where detection is only trig-
gered after hovering over certain elements. While both static and
dynamic analysis identify a similar number of detectors for each
bucket, they do not fully overlap. Combining both provides a slight
increase in the presence of detectors (∼1.7K sites).

4.2.3 Deep scanning increases rate of detection by 5%-points. As
discussed in Sec. 2, 26% of studies conducted with OpenWPM (also)
investigated subpages. This raises the questionwhether such studies
are more often subject to bot detection, that is: does bot detection

8https://easylist.to/easylist/easylist.txt

Figure 3: Number of sites with bot detectors on front- and
subpages (depicted per 1K sites)

occur more frequently on subpages? Fig. 3 depicts the occurrence
of bot detectors on front pages and subpages. In general, studies
examining subpages are at greater risk to be detected: the number
of sites with active detectors increases for by at least 37%. Hence,
the average detection rate within the Top 100K sites will increase.
That is: the study will be exposed to more detectors. Combining
the results of both measurements, we see an increase of 5 per cent
points (from 14% to 19%).

4.3 RQ4: Who employs bot detection?
To explore this question, we separated detectors into first and third
parties. We find that the majority of sites includes detectors from
third-party domains. We count how often scripts on these third-
party domains are included on scanned sites, tallying each third-
party domain once per including site. Some sites include more than
one detector, hence the total number of inclusions exceeds the
number of sites with detectors. Overall, we count 3,867 first-party
detector scripts and 21,325 third-party detector scripts.

We explore what sites include detectors. For the identified 16K
websites with detectors, we collect categories using Symantec’s
site review service (https://sitereview.norton.com/). Sites may be
assigned multiple categories; for such sites, we tally each listed
category. Fig. 5 depicts the 16 most often tallied categories for
both first-party detectors (4,198 times) and third-party detectors
(16,323 times). News sites are responsible for 18.4% of all third-
party inclusions, followed by Technology (9%) and Business (7%).
Interestingly, the ranks for Shopping (16.4%) and News (5%) switch
for first-party detector inclusions. Moreover, sites in the categories
Finance (8% vs 3%) and Travel (7% vs 2%) make up for a larger
portion in the set of first-party inclusions than for third parties.

4.3.1 Third-party bot detection typically serves the advertisement
industry. Following up on the previous point, we investigated the
origins of third party detectors. Tbl. 7 breaks down the most com-
mon included domains. The top 10 domains account for two third of
inclusions. The site WhoTracks.me [18] categorises trackers accord-
ing to purpose. Using this, we find that the bot-detecting scripts
on the most commonly included domains can serve a variety of
purposes. For example, yandex.ru offers scripts used for advertising,
content delivery network, site analytics, social media, and others.
Other uses include web analytics (crazyegg.com), CDN (jsdelivr.net)

https://easylist.to/easylist/easylist.txt
https://sitereview.norton.com/

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

Figure 4: Detectors found on front pages

Figure 5: Common categories of sites with detectors

Table 7: Domains hosting 3𝑟𝑑 -party detector scripts

hosting domain # inclusions (1/site) %

all 21,325 100%
1 yandex.ru 3,848 18.04%
2 adsafeprotected.com 2,309 10.83%
3 moatads.com 2,165 10.15%
4 webgains.io 2,091 9.81%
5 crazyegg.com 1,552 7.28%
6 intercomcdn.com 1,061 4.98%
7 teads.tv 854 4.00%
8 jsdelivr.net 423 1.98%
9 mxcdn.net 416 1.95%
10 mgid.com 402 1.89%

11+ remaining 704 domains 6,204 29.1%

and live chat (intercomcdn.com). However, bot detection is most
commonly deployed by advertisers (e.g., domains 2,3,4,7,9, and 10
in Tbl. 7).

4.3.2 The vast majority of first-party detectors are embedded third
parties. To determine the origins of first-party bot detection scripts,
we look for similarities between their inclusions of detectors. To do
so, we hash the scripts and check for structural similarities in script
URLs (for more details see Appx. A). We found various similarities
amongst unrelated sites. Scripts originating from Akamai occur the
most frequent (1,004 sites). Second is Incapsula (998 sites), third is
an unknown bot detector (659 sites), and fourth is Cloudflare (486
sites). Together, these top four originators account for 3,147 out of
3,867 sites (88%) where we found first-party detectors. In contrast
to the purpose of third-party detectors, first-party detectors are not

supplied by advertisement companies. Moreover, Akamai, Incapsula
and Cloudflare all offer commercial bot detection services. With
that in mind, one should expect sites with first-party detectors
to likely tailor their responses for detected bots (e.g., throttling,
blocking, withholding resources, and serving CAPTCHAs).

5 ATTACKING JAVASCRIPT RECORDING
We have found detectors specifically targeting OpenWPM. This
raises the question to what extent a malicious site could harm
an OpenWPM study. We investigate whether a malicious website
or third party could corrupt OpenWPM’s data collection process.
In particular, we consider an attacker that can deliver arbitrary
content (HTML, cookies, JavaScript), but cannot break the browser’s
security model. To do so, our focus resides on attacks against the
integrity or completeness of measurements. More specifically, we
aim to attack the resilience of OpenWPM’s most commonly used
instruments: HTTP traffic, cookie recording, and JavaScript call
recording. Both HTTP and cookie instruments are simple wrappers
around browser functionality. Breaking them thus requires breaking
the browser, which is outside the attacker model. The JavaScript
instrument, on the other hand, needs to supply all its monitoring
functionality itself. It is therefore clearly in scope of our attacker
model.

Since the instruments focus on data recording, we investigate
attacks on data recording. More specifically, we consider:

1. whether data recording may be prevented;
2. whether fake data can be injected into the data recorder;
3. whether already recorded data can be deleted or altered;
4. finally, whether the data recording is complete.
Instruments in OpenWPM are implemented as a browser ex-

tension. Extensions are isolated to protect higher privilege APIs
from access by untrusted code. Website scripts thus cannot directly
interact with extensions. However, both extensions and website
scripts can read and change the DOM, opening the door for injec-
tion attacks against extensions that read the DOM. We conducted
source code analysis for each instrument under investigation to
identify vulnerabilities to such attacks. Below we discuss the found
vulnerabilities.

Limitations. As we focus on data recording, the scope of our
evaluation is limited to OpenWPM’s instruments. Vulnerabilities
could also be introduced by other OpenWPM components (see
Sec. 1). Furthermore, we used manual code analysis; automated
code analysis, such as code scanners or fuzzers, may give more
results. To detect false positives, we validate the findings of the
code analysis by implementing proof-of-concept attacks.

5.1 RQ5: How to prevent recording?
We found twoways to prevent OpenWPM from recording JavaScript:
first, disrupting communication to the data recorder; secondly, CSP
stopping JavaScript injections.

5.1.1 By disrupting communication. We found a vulnerability that
allows a website to turn off recording of JavaScript calls in the
JavaScript instrument. In more detail, the JavaScript instrument
overwrites several API functions which use the event dispatcher
to send messages when called. The event dispatcher then notifies

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

the JavaScript instrument’s back end to record the corresponding
API call. To prevent an attacker from silently undoing these hooks,
OpenWPM also hooks into (and thus: records access to) setters
and getters to these API functions themselves. However, the event
dispatcher itself is not protected. Thus, we can alter the event dis-
patcher to inject our own messages and manipulate messages sent
to OpenWPM (Listing. 2). To carry out this attack, the attacker
overrides the event dispatcher to block all messages (all events
from instrumented objects). This would already block OpenWPM
recording, by breaking any JavaScript API calls. However, this also
would break a website’s own JavaScript. To block only OpenWPM
messages, the block needs to be tailored. Conveniently, tags mes-
sages with an ID to identify any monitored objects. Though this ID
is randomly generated, it can easily be determined: simply trigger
an API call to a monitored object, acquire the random ID from the
observed message, and update the event dispatcher to only block
messages containing this ID.

//Step I: Retrieve OpenWPM's random ID
function grabID() { return new Promise((resolve, reject) => {
let id;
document.dispatchEvent = function (event) {
id = event.type; document.dispatchEvent = dispatch_fn;
if (id !== undefined) { resolve(id);
} else { reject(new Error(msg));}

}
// Perform an action to grab the ID
navigator.userAgent;});}

// Step II: Overwrite event dispatcher to block events
async function attackExtension() {
let id = await grabID();
document.dispatchEvent = (event) => {
if (event.type != id) { dispatch_fn(event); // Dispatch event
} else {console.log("Event swallowed: " + event);}}}

Listing 2: Turn off the script recorder

5.1.2 By CSP stopping script injections. As stated above, Open-
WPM overrides builtin browser functions. To do so, OpenWPM
injects a script to the DOM to enter page context, then calls that
script to override the APIs, and finally, it removes the script from
the DOM to hide what happened. This happens before the web-
site’s JavaScript code is loaded. However, websites may use Content
Security Policy (CSP) to shield their users from XSS and data injec-
tion attacks. We found that the CSP script-src directive can be
used to prevent OpenWPM’s code injection. This will lead to CSP
violation in the JavaScript instrument, leaving the API functions
un-instrumented.

5.2 RQ6: Can fake data be injected?
Altering the event dispatcher not only allows an attacker to block
data recording, it also allows an attacker to learn the ID OpenWPM
uses to record data. This is sufficient to inject almost arbitrary
messages to be recorded. The attacker simply creates a custom event
following the format used by OpenWPM’s JavaScript extension and
includes OpenWPM’s assigned event ID. This enables an attacker
to define most of the content of the resulting entry in OpenWPM’s
recording, such as the executing script URL or which function was
called. Crucially, though, the website that originated the call is set
outside of the browser by OpenWPM. The data sent by the event

dispatcher is properly sanitized by the back-end, which prevents
spoofing this. We can thus only inject fake data for the currently
visited website. Note that a third party included on the site can also
execute this attack.

5.3 RQ7: Can records be deleted or altered?
Whereas the previous attacks exploited a vulnerability in the DOM-
parsing front-end of the respective instruments, deleting already
recorded data requires manipulating the instrument’s back-end:
SQLite. Attacking a database back-end requires an SQL injection
vulnerability.We found that the current OpenWPM’s data recording
back-end (OpenWPM v0.20.0) properly sanitizes its inputs; we deem
this sufficient and did not investigate further.

5.4 RQ8: Is data recording complete?
We evaluated whether data recording is complete or whether there
are unobserved channels. We found two different attacks against
completeness: a bypass of the JavaScript instrument’s recording,
and silent delivery of JavaScript code.

5.4.1 JS instrument’s recording can be bypassed. We found a way
to bypass OpenWPM’s recording of JavaScript function calls. This
attack again exploits OpenWPM’s hooks to record function calls.
In particular, the hooks must be attached to every object that is to
be observed. For every new window or iframe, this must be done
afresh. However, there is a long-standing bug in Chrome and Firefox
[80], where both browsers under some circumstances fail to inject
scripts into iframes. We tested if OpenWPM’s implementation is
affect by this and we found that this is indeed the case.

Our evaluation of this attack involves two different ways to
access an iframe’s DOM9 to create/execute iframes and their code:
static vs. dynamic creation and immediate vs. delayed execution.
Of these, immediate code execution (at creation time) is required
to successfully exploit this bug. None of the other parameters we
tested influenced the result. Listing 3 shows a proof-of-concept of
this type of attack.

setTimeout(() => {
let element = document.querySelector("#unobserved");
let iframe = document.createElement('iframe');
// HTML code for instantiating an iFrame
iframe.src = "unobserved-iframe.html";
element.appendChild(iframe);
iframe.contentWindow.navigator.userAgent;

}, 500);

Listing 3: Example of an unobserved channel

5.4.2 Silent delivery of JavaScript code. The HTTP instrument ei-
ther stores all response bodies (full coverage), or it can be set to
store JavaScript files only. The latter option significantly reduces
stored content. The HTTP instrument should thus ensure recording
of the aforementioned JavaScript attacks, unless this instrument’s
recording can also be bypassed. We managed to achieve this with
an HTTP instrument only recording JavaScript files. For this mode,
an attacker can silently deliver JavaScript code by sending it as text
and, on the client-side, convert it to code and execute it (Appx. D).
9window.frames[0], and frame.contentWindow

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

To successfully bypass OpenWPM’s traffic recording of JS files,
three aspects must be accounted for:

i. the content-type attribute must be set to something other
than text/javascript;

ii. the src attribute must not contain a “.js” extension;
iii. the delivered file is not automatically executed; this must be

handled by a different client-side script (e.g., using eval()).

6 IMPROVING OPENWPM RELIABILITY
This section focuses on OpenWPM’s reliability as an instrument
measuring the web as encountered by regular visitors. We explore
how and to what extent reliability can be improved. To do so, we
design an approach to hardening OpenWPM’s instrumentation
and to hiding its distinctive fingerprint (from here on referred to as
WPMhide). Our proof-of-concept successfully hides the telltale signs
of OpenWPM from its fingerprint and makes OpenWPM robust
in the face of the discussed attacks in a lab setting. To evaluate its
effectiveness in an open world setting, we run WPMhide against
detectors in the wild and contrast its measurements with those of a
regular OpenWPM client.

6.1 RQ9: How to hide the fingerprint?
OpenWPM’s characteristic fingerprint varies with the variousmodes
of running OpenWPM. For example, in headless Firefox mode, the
fingerprint surface is difficult to hide due to headless mode’s lack
of functionality when compared to regular browsers. Hence, we
focus on run modes where OpenWPM runs the browsers natively
(Regular Mode). For such modes, we achieve stealth by overriding
properties without leaving traces. These techniques can also be
applied in other run modes (e.g., virtualisation).

The identifying properties for Regular Mode (see Tbl. 2) relate
to the webdriver property, window position, and dimension. Of
OpenWPM’s various instruments, only the JavaScript instrument
causes further identifiable properties. Hiding these properties can
be achieved by a customized browser, or by including additional
code inside a page’s scope. Implementing the former requires sig-
nificant work, but it can hide the fingerprint near-perfectly. The
latter approach is far simpler to implement but risks leaving resid-
ual traces. For our proof-of-concept, we chose the second option,
as it can be seamlessly integrated within the current OpenWPM
framework without significant effort.

To prevent detection, our proof-of-concept addresses all five iden-
tifiability issues (Sec. 3.1): (1) the toString operation of overwritten
functions must return the regular (unchanged) output string; (2) no
additional property may appear in the DOM; (3) stack traces must
not show any signs of the instrumentation; (4) prototype pollution
must be avoided; (5) prevent detection of automation components.

6.1.1 Preserve toString output. For the first issue, we found that
CanvasBlocker10 addresses this well. Its implementation success-
fully fools all our fingerprinting tests (Sec. 3). CanvasBlocker creates
a getter function with an identical signature to the function that
must be overwritten and attaches it to the DOM based on a specific
Firefox feature called exportFunction. The newly exported func-
tion is then used to redefine the getter of a object’s prototype for

10https://github.com/kkapsner/CanvasBlocker

a specific property. As a result, the overwritten function returns
the native code string like a default browser property (Listing 1).
Normally, accessing the getter of an object’s prototype leads to an
error. If this getter is replaced with a custom getter, that error is
never thrown. This makes tampering with properties via an ob-
ject’s prototype detectable [37]. Calling the original getter from
the customised getter results in the original error being thrown,
addressing this aspect of the fingerprint surface.

6.1.2 Preserve clean DOM. The second issue arises during page
load, prior to the page’s JavaScript activation. The instrumentation
injects its code as script from the content context into the page
context, overwrites the needed properties, and removes its code
from the page context again. However, in practice, not all injected
functions are deleted. We update the instrument to overwrite all
functionality directly from the content context, thus keeping the
page context clean.

6.1.3 Fake stack traces. The third issue requires the stack trace
to show no signs of instrumented functions. A web page can only
access stack traces if errors occur. Normally, if an error occurs, the
stack trace would show that the called function is called from inside
the instrumentation. We address this by catching each error and
throwing a new error with properly adjusted values for file name,
column, message, and line number.

6.1.4 Avoid prototype pollution. The fourth issue relates to the pol-
lution of an object’s prototype. OpenWPM’s instrument modifies
only the first prototype in the prototype chain, not others further in
the chain. We mitigate this by overwriting properties per prototype.
Nevertheless, this mitigation has a limitation: it is not possible to
determine the caller of a function when a prototype has multiple
descendants. This means our mitigation may inadvertently instru-
ment more objects than intended. For prototypes located higher
up the chain, the number of children increases; exacerbating this
problem. Thankfully, most of the APIs that OpenWPM instruments
by default are provided by prototypes close to the bottom of their
prototype chain.

6.1.5 Prevent detection of automation components. The automation
components are detectable by window size, window position and
the webdriver attribute. For the latter, our hidden version must set
the navigator.webdriver property to false like a regular Firefox
browser. Since Firefox version 88, this flag is not user-settable.11 We
override the getter function of the navigator.webdriver property
to return the default value (false) in the same fashion as described in
the previous section. To change OpenWPMdefault window settings,
we introduce a settings file that makes the window size and position
settable in OpenWPM.

6.2 RQ10: How to mitigate recording attacks?
6.2.1 Secure messaging from page context to background context
(see Sec. 5.1 and 5.2). A key benefit from migrating to Firefox’s
exportFunction, as described in the previous section, is the ability
to export higher privileged browser functions into the page. Hence,
we can port functionality to the page context that is otherwise only
available for content or background scripts of a browser extension.

11https://bugzilla.mozilla.org/show_bug.cgi?id=1632821

https://github.com/kkapsner/CanvasBlocker
https://bugzilla.mozilla.org/show_bug.cgi?id=1632821

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

Weuse this to secure our instrumented functions, as we now can use
the browser.runtime API to pass messages from the page to the
background context. It is crucial that such functionality is exported
to a private scope of an overwritten function to prevent access by
other scripts in the page context. In addition, injecting functionality
this way does not violate the CSP script-src directive. Thus, using
the export function prevents the ‘restriction of script injections’,
‘turn recording off’ and ‘inject fake data’ attacks.

6.2.2 Intercepting DOM-modifying APIs (see Sec. 5.4). To address
the tested variants of incomplete recordings, we use CanvasBlocker’s
frame protection. The basic idea is to intercept APIs used by page
scripts to modify the DOM or create a new, non-instrumented copy
of the DOM. This ensures that each modification or newly con-
structed DOM contains the instrumentation. Our implementation
covers five cases: window constructors, DOM modification API,
window mutations, DOM creation via the document.write API,
and finally the window.open API.

6.2.3 Filtered HTTP recording not robust (see Sec. 5.4). To the best
of our knowledge, there is no known way to distinguish JavaScript
code from text that is robust against a dedicated obfuscator. There-
fore, an active adversary should be assumed to be capable of hiding
JavaScript in a way that would accidentally be filtered out. Since
this issue only arises in the presence of active adversaries, we rec-
ommend in such a case not to use any filtering.

6.3 RQ11: Does hardening impact
measurements?

We developed a proof-of-concept implementation to hide the tell-
tale signs of automation and to mitigate the found attacks. We
evaluate the impact of our proof-of-concept implementation (from
here on,WPMhide) on web measurements when encountering bot
detection in the wild. To that end, we contrast its results with
vanilla OpenWPM (from here on:WPM) in HTTP traffic, cookies,
JavaScript execution, and delivered JavaScript files. We test on all
sites with bot detectors as found by the analysis in Sec. 4. This list
contains 1,487 sites with detectors. On these sites, we run WPM
and WPMhide in parallel (OpenWPM v.0.18.0, Firefox v.100, regular
mode, HTTP, JavaScript, and cookie instrument activated) and
configure each browser to idle 60 seconds on a page after loading
completed. We use the latest version of Firefox on both machines;
detection based on outdated browser versions thus does not apply
to our evaluation (see Sec. 3.2). We take steps to mitigate noise
in measurements. In particular, we avoid cross-client interference
by separating both crawlers via two individual machines and IP
addresses. These residential IP addresses are both located in the
same country, which avoids differences caused by geo-location and
cloud-based IP blocking [42]. We synchronise visits between both
machines to further reduce differences. Lastly, there is a risk that
one-off events or single actors alter the measurements. To prevent
the former, we repeat our measurement three times (𝑟1, 𝑟2, and
𝑟3). This allows us to check whether an effect persists or is only
temporary. To address the latter, we test for significance. As the
data sets are not normally distributed, we use the Wilcoxon signed-
rank test with a confidence interval of 95%. In general, our findings
show thatWPM encounters less privacy-invasive behaviour than

Table 8: Comparison of HTTP request resource types

𝑟1 𝑟2 𝑟3

Resource type WPM WPMhide Diff. Diff. Diff.

csp_report 784 188 -76.02% -74.19% -70.79%
media 530 610 +15.09% -15.75% -14.24%
beacon 5,951 6,622 +11.28% +8.09% +11.98%
websocket 321 302 -5.92% -6.29% -3.63%
xmlhttprequest 58,867 6,1702 +4.82% +3.21% +7.52%
imageset 5,730 5,982 +4.40% +3.89% +12.04%
font 9,608 9,356 -2.62% -0.87% -1.23%
object 50 49 -2.00% 0.00% +6.38%
main_frame 3,955 3,883 -1.82% -1.45% -0.84%
image 116,296 118,068 +1.52% +5.86% +5.65%
script 83,239 84,385 +1.38% +1.85% +2.11%
sub_frame 15,393 15,592 +1.29% +2.81% +4.86%
other 95 96 +1.05% -6.32% +6.67%
stylesheet 9,943 10,028 +0.85% +1.39% +2.11%

Total 310,737 316,673 +1.91% +3.37% +5.32%

Table 9: HTTP requests to ad/tracker resources

EasyList EasyPrivacy

WPM WPMhide WPM WPMhide

𝑟1 43,238 +1.64% 39,063 -1.64
𝑟2 41,659 +5.64% 37,710 +5.37
𝑟3 41,418 +5.81% 34,402 +7.85

WPMhide . We executed all three runs of our experiment one after
another between the 20𝑡ℎ and 21𝑠𝑡 of June 2022.

6.3.1 OpenWPM-induced CSP violations eliminated. We find that
using WPMhide results in a higher traffic volume, which increases
with each run (see ‘total’ in Tbl. 8). In order to find where this
difference originates, we group requests by their resource type.12
Tbl. 8 breaks the differences down per resource type, showing
results for data set 𝑟1; proportions are similar for the other data
sets. Most interesting are the changes in CSP reports. We see much
less CSP reports forWPMhide . This is intended: this version does
not inject nodes into the DOM. This is also highly relevant, as CSP
adoption and the directive for content restriction is on the rise [70].
We checked whether any of the remaining CSP reports was due to
WPMhide , none were. Note that the WPM column offers insights
into how often WPM fails to install its hooks. In the worst case out
of our three data sets,WPM failed to do so on 113 of 1,487 sites.

6.3.2 More ad/tracker HTTP-traffic. To assess the amount of track-
ers and advertisers in traffic, we use the same approach as previous
works [5, 15, 47]: use the EasyList and EasyPrivacy blocklists13
to identify trackers. We find that around a quarter of all HTTP
traffic falls into this category. We further see that both machines
encounter a significant difference in traffic by advertisers and track-
ers (𝑝-value < 0.0001). In most cases, this is a significant increase
(∼5%), though 𝑟1 is an outlier in this regard (see Tbl. 9).

6.3.3 Significantly more tracking cookies. For cookies, we con-
trasted the number of cookies between both variants per site. We

12https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/
webRequest/ResourceType
13https://easylist.to/

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/ResourceType
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/API/webRequest/ResourceType
https://easylist.to/

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

Table 10: Served cookies and differences withWPMhide

first-party cookies # third-party cookies # tracking cookies

WPM WPMhide WPM WPMhide WPM WPMhide

𝑟1 28,826 +3.33% 31,335 +5.05% 3,031 +41.70%
𝑟2 28,841 +3.06% 30,977 +7.12% 2,929 +52.13%
𝑟3 28,744 +4.23% 29,692 +8.11% 2,719 +59.65%

find that the number of served cookies differs significantly for many
sites, both for first parties as well as third parties (𝑝-value < 0.0001).
As shown in Tbl. 10, WPM receives less cookies, with the effect in-
creasing each repetition (possibly due to WPM being re-identified).
We see a similar effect in the number of sites that serve an unequal
number of cookies to both machines: in 𝑟1, 353 sites serve more
cookies to WPMhide vs. 156 sites serving more cookies to WPM;
this difference increases in 𝑟3 to 394 sites for WPMhide vs. 134 sites
for WPM .

We investigated whether the difference in cookies was due to
tracking cookies. To determine whether a cookie can be used for
web tracking, we use the approach of Englehardt et al. [30], as
refined by Chen et al. [16]. According to this method, a cookie may
be used for tracking when: (1) it cannot be a session cookie, (2) the
length of the cookie is 8 or more characters (excluding surrounding
quotes), (3) the cookie is always set, (4) the cookie is “long-living”
(at least 3 months), and (5) the values differ significantly based on
the Ratcliff-Obershelp algorithm [11] among all runs. In data set 𝑟1,
3,031 cookies satisfy these criteria for WPM , while 4,295 cookies
forWPMhide match; a strong increase of 41.70%. This effect is again
amplified in the other two runs.

6.3.4 Up to 37%-points more JS calls caught. As discussed in Sec. 5.4,
some access methods are not covered byWPM’s instrumentation.
For WPMhide , we track all accessing API calls, to track the total
volume of API calls. Fig. 6 depicts this for JavaScript APIs call
in 𝑟1 for WPMhide . Blue depicts the portion of calls covered by
WPM, the rest is not. Some properties were almost fully covered
(Screen.top, 99% coverage), others not. Most prominently not
covered is the Screen.availLeft API, where WPM only 63% of
calls that WPMhide catches.

7 RELATEDWORK
Determining the fingerprint surface of web bots. The idea of us-

ing fingerprinting to identify certain client components (such as
automation frameworks) has gained more attention recently. Vas-
tel [93] and Shekyan [76] conducted manual investigations of head-
less browsers to pin down identifiable properties in these frame-
works. Jonker et al. [45] automated the search for identifiable prop-
erties by using a browser fingerprinting library. They compared
properties of regular browsers against properties of bots that belong
to the same engine class. In contrast, Schwarz et al. [75] applied a
new form of fingerprinting (JavaScript template attacks) to perform
client-side vulnerability scanning. For a template creation, they
traverse object hierarchy and store characteristics of each object.
Later on, templates can be compared to determine the difference.
Our work comprises the approaches by Jonker et al. and Schwarz
et al. to explore the fingerprint surface of OpenWPM. We apply

Figure 6: API calls in the context of DOM creation

these systematically to the various run modes of OpenWPM clients,
uncovering distinguishers for each mode.

Reliability of scraping results. Multiple studies have explored
differences between various automated clients, and also between
automated clients and human-driven clients in website responses.
Ahmad et al. [5] contrasted response differences between HTTP en-
gine tools, headless browsers, and automated browsers. They found
that while HTTP engine tools miss many resources, they more
often pass bot detection than the other two classes. Jueckstock et
al. [47] studied differences between headless and regular Chrome.
For regular Chrome, they used a puppeteer plugin which hides
distinguishable properties to focus on bot detection. Their results
reinforce previous findings [29, 93] to not use headless browsers.
Zeber et al. [101] contrast data from human users with OpenWPM
clients. In their study, OpenWPM clients encountered three times
more tracking domains and had more interaction with third-party
domains than human-controlled browsers. Cassel et al. [15] inves-
tigate the reliability of emulated browsers. To avoid bot detection,
they created their own browser remote control. Interestingly, their
observations show the opposite of Zeber et al.’s findings. They ob-
served 84% less third-party traffic for a Selenium-driven vs. a non-
Selenium-driven Firefox browser. This contradiction shows that
there is yet no consistent picture for the influence of bot detection
on measurements. Further investigation to resolve this conundrum
is needed.

Attacking bots. Investigations into attacking bots predominantly
focus on cloaking [42, 96–98, 102]. To the best of our knowledge,
other attack vectors have not been extensively studied, though
Jueckstock et al. [46] argue limited reliability of JavaScript instru-
ments. They discuss several limitations based on JavaScript code

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

found in the wild. Our work overcomes these limitations for Open-
WPM’s instruments.

Measuring bot detection in the wild. Two studies exist that car-
ried out a large-scale investigation of the existence of unknown
fingerprint-based bot detectors. Jonker et al. [45] scanned 1M web-
sites gathering statically included scripts and analysing these using
static code analysis. Shortly after, Jueckstock and Kapravelos [46]
presented a similar experiment using dynamic script collection
and dynamic analysis. Their presented tool relies on a modified V8
engine to instrument browser functions.

8 CONCLUSIONS
Our work calls into question the fidelity of web measurement tools.
This fidelity has, so far, been mostly overlooked in measurement
studies (see Tbl. 1). We show that the most widely used web mea-
surement tool, OpenWPM, is easily detectable by websites. We
even found OpenWPM-specific detectors in practice. Moreover,
this detectability may be leveraged by websites to hide actions from
OpenWPM or even attack OpenWPM’s functionality, undermining
the fidelity of its results.

This illustrates that web measurements should account for op-
erating in a hostile environment. We show that OpenWPM can
be hardened for such an environment, mitigating these adverse
effects. However, similar caution should be taken with other web
measurement tools. We have shown that the browser automation
frameworks underpinning most measurement studies are them-
selves detectable. Our work should thus not be seen as an indict-
ment of OpenWPM in favour of self-written one-off tooling. On the
contrary, we need hardened tooling, which requires significant de-
velopment effort. Our work is a call to action for web measurement
studies, to ensure any potential bot-induced bias in the measure-
ment is eliminated. This means taking a hostile environment into
account while developing tooling, and validating results specifically
with a view to hostile actors.

Towards robust instrumentation. Our findings show that deploy-
ment of instruments via page context is fraught with difficulties.
Ideally, instrumentation is handled outside page scope. For example,
by leveraging the debugger API. Unfortunately, Selenium v4 (the
version used by OpenWPM) does not support this API currently.
Alternatively, instrumentation could be integrated in the browser’s
source code. This supports great flexibility in hiding distinctive as-
pects of the browser fingerprint, at the cost of significant additional
maintenance overhead. This would slow adoption of new browser
versions; however, OpenWPM’s rate of adoption is already slow –
the tradeoff may thus be worth it.

Bot detection on the rise. In comparison with previous studies,
we see the number of sites looking for the webdriver property
has significantly increased in the span of less than one year (see
Tbl. 11). This rapid change clearly suggests that websites are swiftly
transitioning to responding differently to automated clients than
to regular clients. Web studies should therefore no longer ignore
the potential impact of bot detection on their study.

Advice for web measurement studies. In general, do not use virtu-
alisation or headless or display-less modes. Studies that focus on

Table 11: Studies measuring webdriver property access on
front pages

when analysis corpus # sites %

[46] 2019–10 dynamic Alexa 50K 2,756 5.51%
This paper 2020–07 combined Tranco 100K 13,989 13.99%

– static 11,957 11,96%
– dynamic 12,194 12.19%

measuring the amount of HTTP traffic seem to not be affected by
detection and can, for now, get away with ignoring bot detection.
In contrast, studies that focus on web tracking or cookies are af-
fected (see Tbl. 10) and must take bot detection into account. Finally,
studies that automatically crawl beyond the front page will also
significantly more often be exposed to bot detectors.

Advice for automated web measurement tooling. This paper iden-
tified two main challenges for measurement tooling: tooling re-
silience and reliability of its measurements. Tooling resilience re-
quires assuming that the measured site is actively trying to break
the measurement tool. This thus necessitates programming the mea-
surement tooling defensively. Secondly, reliability of measurements
is under pressure if the tooling’s interactions with the measured
objects deviate significantly from regular interactions. To minimise
this effect, web measurement tools must take effort to blend in
with human-originating traffic. Concretely, that includes avoid-
ing DOM pollution as well as avoiding or reducing other tell-tale
traces. Finally, these aspects should both be checked. That is: the
detectability of the measurement tool should be checked using
standard techniques (e.g., fingerprinting [45], template attacks [75],
behaviour [37]). There currently are no standardised ways to check
measurement platforms for susceptibility to malicious data; how-
ever, the approach we took in Sec. 6.2 provides a starting point.

ACKNOWLEDGEMENTS
We wish to thank Daniel Goßen for his tests for injection JavaScript
into iFrames. Additional thanks are due to Alan Scott Davies and
Patrick Ruhe, whom both supported us in gaining access to residen-
tial IP addresses. We are grateful to Steven Englehardt and Stefan
Zabka from OpenWPM, for their constructive and positive interac-
tions. Christopher Wilger and Svenja Schulze were kind enough
to help with rechecking Tbl. 15 to ensure its correctness. Finally,
we would like to thank reviewers of earlier drafts of this paper for
their constructive comments.

REFERENCES
[1] Gunes Acar, Steven Englehardt, and Arvind Narayanan. No boundaries: data

exfiltration by third parties embedded on web pages. Proc. Priv. Enhancing
Technol., 2020(4):220–238, 2020.

[2] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juárez, Arvind
Narayanan, and Claudia Díaz. The web never forgets: Persistent tracking
mechanisms in the wild. In Proc. 21st ACM SIGSAC Conference on Computer and
Communications Security (CCS’14), pages 674–689. ACM, 2014.

[3] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank
Piessens, and Bart Preneel. FPDetective: dusting the web for fingerprinters. In
Proc. 20th ACM SIGSAC Conference on Computer and Communications Security
(CCS’13), pages 1129–1140. ACM, 2013.

[4] Pushkal Agarwal, Sagar Joglekar, Panagiotis Papadopoulos, Nishanth Sastry,
and Nicolas Kourtellis. Stop tracking me bro! Differential tracking of user
demographics on hyper-partisan websites. In Proc. 29th The Web Conference
2020 (WWW’20), pages 1479–1490. ACM, 2020.

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

[5] Syed Suleman Ahmad, Muhammad Daniyal Dar, Muhammad Fareed Zaffar,
Narseo Vallina-Rodriguez, and Rishab Nithyanand. Apophanies or epiphanies?
How crawlers impact our understanding of the web. In Proc. 29th The Web
Conference 2020 (WWW’20), page 271–280. ACM, 2020.

[6] Suzan Ali, Tousif Osman, Mohammad Mannan, and Amr M. Youssef. On privacy
risks of public wifi captive portals. In DPM/CBT@ESORICS, volume 11737 of
LNCS, pages 80–98. Springer, 2019.

[7] Ibrahim Altaweel, Nathan Good, and Chris Jay Hoofnagle. Web privacy census.
Technology Science, 2015121502, 2015.

[8] Amelia Andersdotter and Anders Jensen-Urstad. Evaluating websites and their
adherence to data protection principles: Tools and experiences - contributions to
IFIP summer school proceedings. In Privacy and Identity Management, volume
498 of IFIP Advances in Information and Communication Technology, pages 39–51,
2016.

[9] Muhammad Ahmad Bashir, Sajjad Arshad, William K. Robertson, and Christo
Wilson. Tracing information flows between ad exchanges using retargeted
ads. In 25th USENIX Security Symposium (USENIX Security’16), pages 481–496.
USENIX Association, 2016.

[10] Reuben Binns, Jun Zhao, Max Van Kleek, and Nigel Shadbolt. Measuring
third-party tracker power across web and mobile. ACM Trans. Internet Techn.,
18(4):52:1–52:22, 2018.

[11] Paul E. Black. Ratcliff/obershelp pattern recognition. https://www.nist.gov/dad
s/HTML/ratcliffObershelp.html, 2021. last access: November 1, 2022.

[12] Dino Bollinger, Karel Kubicek, Carlos Cotrini, and David Basin. Automating
cookie consent and GDPR violation detection. In 31st USENIX Security Sym-
posium (USENIX Security’22), pages 2893–2910, Boston, MA, 2022. USENIX
Association.

[13] Justin Brookman, Phoebe Rouge, Aaron Alva, and Christina Yeung. Cross-
device tracking: Measurement and disclosures. Proc. Priv. Enhancing Technol.,
2017(2):133–148, 2017.

[14] Stefano Calzavara, Tobias Urban, Dennis Tatang, Marius Steffens, and Ben Stock.
Reining in the web’s inconsistencies with site policy. In Proc. 28th Network and
Distributed System Security Symposium (NDSS’21). The Internet Society, 2021.

[15] Darion Cassel, Su-Chin Lin, Alessio Buraggina, William Wang, Andrew Zhang,
Lujo Bauer, Hsu-Chun Hsiao, Limin Jia, and Timothy Libert. Omnicrawl: Com-
prehensive measurement of web tracking with real desktop andmobile browsers.
Proc. Privacy Enhancing Technologies Symposium (PETS’22), 2022(1):227–252,
2022.

[16] Quan Chen, Panagiotis Ilia, Michalis Polychronakis, and Alexandros Kapravelos.
Cookie swap party: Abusing first-party cookies for web tracking. In Proc. 31st
The Web Conference 2022 (WWW’22), pages 2117–2129. ACM, 2021.

[17] Zi Chu, Steven Gianvecchio, Aaron Koehl, Haining Wang, and Sushil Jajodia.
Blog or block: Detecting blog bots through behavioral biometrics. Computer
Networks, 57(3):634–646, 2013.

[18] Cliqz GmbH. Whotracks.me - learn about tracking technologies, market struc-
ture and data-sharing on the web. https://whotracks.me/, 2021. last access:
November 1, 2022.

[19] John Cook, Rishab Nithyanand, and Zubair Shafiq. Inferring tracker-advertiser
relationships in the online advertising ecosystem using header bidding. Proc.
Priv. Enhancing Technol., 2020(1):65–82, 2020.

[20] Vittoria Cozza, Van Tien Hoang, Marinella Petrocchi, and Rocco De Nicola.
Transparency in keyword faceted search: An investigation on google shopping.
In IRCDL, volume 988 of Communications in Computer and Information Science,
pages 29–43. Springer, 2019.

[21] Ha Dao and Kensuke Fukuda. Characterizing CNAME cloaking-based tracking
on the web. In TMA. IFIP, 2020.

[22] Ha Dao and Kensuke Fukuda. A machine learning approach for detecting
CNAME cloaking-based tracking on the web. In GLOBECOM, pages 1–6. IEEE,
2020.

[23] Ha Dao, Johan Mazel, and Kensuke Fukuda. Understanding abusive web re-
sources: characteristics and counter-measures of malicious web resources and
cryptocurrency mining. In AINTEC, pages 54–61. ACM, 2018.

[24] Ha Dao, Johan Mazel, and Kensuke Fukuda. CNAME cloaking-based tracking
on the web: Characterization, detection, and protection. IEEE Trans. Netw. Serv.
Manag., 18(3):3873–3888, 2021.

[25] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. The web’s
sixth sense: A study of scripts accessing smartphone sensors. In Proc. 25th ACM
SIGSAC Conference on Computer and Communications Security (CCS’18), pages
1515–1532. ACM, 2018.

[26] Nurullah Demir, Matteo Große-Kampmann, Tobias Urban, Christian Wressneg-
ger, Thorsten Holz, and Norbert Pohlmann. Reproducibility and replicability of
web measurement studies. In Proc. 31st The Web Conference 2022 (WWW’22),
page 533–544. ACM, 2022.

[27] Rob van Eijk, Hadi Asghari, Philipp Winter, and Arvind Narayanan. The impact
of user location on cookie notices (inside and outside of the european union).
In Workshop on Technology and Consumer Protection (ConPro’19), 2019.

[28] Steven Englehardt, Jeffrey Han, and Arvind Narayanan. I never signed up
for this! privacy implications of email tracking. Proc. Priv. Enhancing Technol.,

2018(1):109–126, 2018.
[29] Steven Englehardt and Arvind Narayanan. Online tracking: A 1-million-site

measurement and analysis. In Proc. 23rd ACM SIGSAC Conference on Computer
and Communications Security (CCS’16), pages 1388–1401. ACM, 2016.

[30] Steven Englehardt, Dillon Reisman, Christian Eubank, Peter Zimmerman,
Jonathan R. Mayer, Arvind Narayanan, and Edward W. Felten. Cookies that
give you away: The surveillance implications of web tracking. In Proc. 24th
International Conference on World Wide Web (WWW’15), pages 289–299. ACM,
2015.

[31] Imane Fouad, Nataliia Bielova, Arnaud Legout, and Natasa Sarafijanovic-Djukic.
Missed by filter lists: Detecting unknown third-party trackers with invisible
pixels. Proc. Priv. Enhancing Technol., 2020(2):499–518, 2020.

[32] Imane Fouad, Cristiana Santos, Feras Al Kassar, Nataliia Bielova, and Stefano
Calzavara. On compliance of cookie purposes with the purpose specification
principle. In EuroS&P Workshops, pages 326–333. IEEE, 2020.

[33] Imane Fouad, Cristiana Santos, Arnaud Legout, and Nataliia Bielova. My cookie
is a phoenix: Detection, measurement, and lawfulness of cookie respawning
with browser fingerprinting. Proc. Priv. Enhancing Technol., 2022(3):79–98, 2022.

[34] Nathaniel Fruchter, Hsin Miao, Scott Stevenson, and Rebecca Balebako. Varia-
tions in tracking in relation to geographic location. Proc. of the 9th Workshop on
Web 2.0 Security and Privacy (W2SP) 2015, 2015.

[35] Steven Goldfeder, Harry A. Kalodner, Dillon Reisman, and Arvind Narayanan.
When the cookie meets the blockchain: Privacy risks of web payments via
cryptocurrencies. Proc. Priv. Enhancing Technol., 2018(4):179–199, 2018.

[36] Hélder Gomes, André Zúquete, Gonçalo Paiva Dias, and Fábio Marques. Usage
of HTTPS by municipal websites in portugal. InWorldCIST (2), volume 931 of
Advances in Intelligent Systems and Computing, pages 155–164. Springer, 2019.

[37] Daniel Goßen, Hugo Jonker, Stefan Karsch, Benjamin Krumnow, and David
Roefs. HLISA: Towards a more reliable measurement tool. In Proc. 21st ACM
Internet Measurement Conference (IMC’21), pages 380–389. ACM, 2021.

[38] Aniko Hannak, Gary Soeller, David Lazer, Alan Mislove, and Christo Wilson.
Measuring price discrimination and steering on e-commerce web sites. In Proc.
14th ACM Internet Measurement Conference (IMC’14), pages 305–318. ACM, 2014.

[39] Grant Ho, Dan Boneh, Lucas Ballard, and Niels Provos. Tick tock: Building
browser red pills from timing side channels. In WOOT, pages 1–11. USENIX
Association, 2014.

[40] Henry Hosseini, Martin Degeling, Christine Utz, and Thomas Hupperich. Uni-
fying privacy policy detection. Proc. Priv. Enhancing Technol., 2021(4):480–499,
2021.

[41] Xuehui Hu, Guillermo Suarez de Tangil, and Nishanth Sastry. Multi-country
study of third party trackers from real browser histories. In Proc. 6th IEEE
European Symposium on Security and Privacy (EuroS&P’20), pages 70–86. IEEE,
2020.

[42] Luca Invernizzi, Kurt Thomas, Alexandros Kapravelos, Oxana Comanescu,
Jean Michel Picod, and Elie Bursztein. Cloak of visibility: Detecting when
machines browse a different web. In Proc. 37th IEEE Symposium on Security and
Privacy, SP 2016, San Jose, CA, USA, May 22-26, 2016, pages 743–758, 2016.

[43] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. Fingerprinting the finger-
printers: Learning to detect browser fingerprinting behaviors. In Proc. 42nd
IEEE Symposium on Security and Privacy (S&P’21), pages 1143–1161, 2021.

[44] Umar Iqbal, Charlie Wolfe, Charles Nguyen, Steven Englehardt, and Zubair
Shafiq. Khaleesi: Breaker of advertising and tracking request chains. In 31st
USENIX Security Symposium (USENIX Security’22), pages 2911–2928, Boston,
MA, 2022. USENIX Association.

[45] Hugo Jonker, Benjamin Krumnow, and Gabry Vlot. Fingerprint surface-based
detection of web bot detectors. In Proc. 24th European Symposium on Research in
Computer Security (ESORICS’19), volume 11736 of LNCS, pages 586–605. Springer,
2019.

[46] Jordan Jueckstock and Alexandros Kapravelos. Visiblev8: In-browser monitoring
of javascript in the wild. In Proc. 19th ACM Internet Measurement Conference
(IMC’19), pages 393–405. ACM, 2019.

[47] Jordan Jueckstock, Shaown Sarker, Peter Snyder, Aidan Beggs, Panagiotis Pa-
padopoulos, Matteo Varvello, Ben Livshits, and Alexandros Kapravelos. Towards
realistic and reproducible web crawl measurements. In Proc. 30th The Web Con-
ference 2021 (WWW’21). ACM, 2021.

[48] Martin Koop, Erik Tews, and Stefan Katzenbeisser. In-depth evaluation of
redirect tracking and link usage. Proc. Priv. Enhancing Technol., 2020(4):394–413,
2020.

[49] Michael Kranch and Joseph Bonneau. HTTPS in mid-air: An empirical study of
strict transport security and key pinning. In Proc. 22nd Network and Distributed
System Security Symposium (NDSS’15). The Internet Society, 2015.

[50] Dhruv Kuchhal and Frank Li. Knock and talk: investigating local network
communications on websites. In Proc. 21st ACM Internet Measurement Conference
(IMC’21), pages 550–568. ACM, 2021.

[51] Victor Le Pochat, Tom Van Goethem, Samaneh Tajalizadehkhoob, Maciej Ko-
rczyński, and Wouter Joosen. Tranco: A research-oriented top sites ranking
hardened against manipulation. In Proc. 26th Network and Distributed System
Security Symposium (NDSS’19), pages 1–15. The Internet Society, 2019.

https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://www.nist.gov/dads/HTML/ratcliffObershelp.html
https://whotracks.me/

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

[52] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi Kohno, and Franziska Roesner.
Internet jones and the raiders of the lost trackers: An archaeological study of
web tracking from 1996 to 2016. In 25th USENIX Security Symposium (USENIX
Security’16). USENIX Association, 2016.

[53] Baojun Liu, Zhou Li, Peiyuan Zong, Chaoyi Lu, Hai-Xin Duan, Ying Liu,
Sumayah A. Alrwais, XiaoFengWang, Shuang Hao, Yaoqi Jia, Yiming Zhang, Kai
Chen, and Zaifeng Zhang. Traffickstop: Detecting and measuring illicit traffic
monetization through large-scale DNS analysis. In Proc. 5th IEEE European
Symposium on Security and Privacy (EuroS&P’19), pages 560–575. IEEE, 2019.

[54] Baojun Liu, Zhou Li, Peiyuan Zong, Chaoyi Lu, Hai-Xin Duan, Ying Liu,
Sumayah A. Alrwais, XiaoFengWang, Shuang Hao, Yaoqi Jia, Yiming Zhang, Kai
Chen, and Zaifeng Zhang. Traffickstop: Detecting and measuring illicit traffic
monetization through large-scale DNS analysis. In Proc. 5th IEEE European
Symposium on Security and Privacy (EuroS&P’19), pages 560–575. IEEE, 2019.

[55] Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang. Measur-
ing the insecurity of mobile deep links of android. In 26th USENIX Security
Symposium (USENIX Security’17), pages 953–969. USENIX Association, 2017.

[56] Max Maass, Stephan Schwär, and Matthias Hollick. Towards transparency in
email tracking. In APF, volume 11498 of LNCS, pages 18–27. Springer, 2019.

[57] Max Maaß, Pascal Wichmann, Henning Pridöhl, and Dominik Herrmann. Pri-
vacyscore: Improving privacy and security via crowd-sourced benchmarks of
websites. In APF, volume 10518 of LNCS, pages 178–191. Springer, 2017.

[58] Arunesh Mathur, Gunes Acar, Michael Friedman, Elena Lucherini, Jonathan R.
Mayer, Marshini Chetty, and Arvind Narayanan. Dark patterns at scale: Findings
from a crawl of 11k shopping websites. Proc. ACM Hum. Comput. Interact.,
3(CSCW):81:1–81:32, 2019.

[59] Johan Mazel, Richard Garnier, and Kensuke Fukuda. A comparison of web
privacy protection techniques. Comput. Commun., 144:162–174, 2019.

[60] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian
Neuner, Martin Schmiedecker, and Edgar R.Weippl. Block me if you can: A large-
scale study of tracker-blocking tools. In Proc. 3rd IEEE European Symposium on
Security and Privacy (EuroS&P’17), pages 319–333. IEEE, 2017.

[61] Najmeh Miramirkhani, Oleksii Starov, and Nick Nikiforakis. Dial one for scam:
A large-scale analysis of technical support scams. In Proc. 24th Network and
Distributed System Security Symposium (NDSS’17). The Internet Society, 2017.

[62] Maaz Bin Musa and Rishab Nithyanand. ATOM: ad-network tomography. Proc.
Priv. Enhancing Technol., 2022(4):295–313, 2022.

[63] Marius Musch and Martin Johns. U can’t debug this: Detecting javascript anti-
debugging techniques in the wild. In Michael Bailey and Rachel Greenstadt,
editors, 30th USENIX Security Symposium (USENIX Security’21), pages 2935–2950.
USENIX Association, 2021.

[64] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. Battery status not
included: Assessing privacy in web standards. In IWPE@SP, volume 1873 of
CEUR Workshop Proceedings, pages 17–24. CEUR-WS.org, 2017.

[65] Shahrooz Pouryousef, Muhammad Daniyal Dar, Suleman Ahmad, Phillipa Gill,
and Rishab Nithyanand. Extortion or expansion? an investigation into the
costs and consequences of ICANN’s gTLD experiments. In Passive and Active
Measurement (PAM’20), volume 12048 of LNCS, pages 141–157. Springer, 2020.

[66] Andrew Reed and Michael J. Kranch. Identifying https-protected netflix videos
in real-time. In CODASPY, pages 361–368. ACM, 2017.

[67] Nathan Reitinger and Michelle L. Mazurek. ML-CB: machine learning canvas
block. Proc. Priv. Enhancing Technol., 2021(3):453–473, 2021.

[68] Valentino Rizzo, Stefano Traverso, and Marco Mellia. Unveiling web fingerprint-
ing in the wild via code mining and machine learning. Proc. Priv. Enhancing
Technol., 2021(1):43–63, 2021.

[69] Nicky Robinson and Joseph Bonneau. Cognitive disconnect: understanding
facebook connect login permissions. In Proc. 2nd ACM Conference on Online
social networks (COSN’14), pages 247–258. ACM, 2014.

[70] Sebastian Roth, Timothy Barron, Stefano Calzavara, Nick Nikiforakis, and Ben
Stock. Complex security policy? A longitudinal analysis of deployed content
security policies. In NDSS. The Internet Society, 2020.

[71] Takahito Sakamoto and Masahiro Matsunaga. After GDPR, still tracking or
not? understanding opt-out states for online behavioral advertising. In IEEE
Symposium on Security and Privacy Workshops, pages 92–99. IEEE, 2019.

[72] Nayanamana Samarasinghe, Aashish Adhikari, Mohammad Mannan, and
Amr M. Youssef. Et tu, brute? privacy analysis of government websites and
mobile apps. In Proc. 31st The Web Conference 2022 (WWW’22), pages 564–575.
ACM, 2022.

[73] Nayanamana Samarasinghe and Mohammad Mannan. Towards a global per-
spective on web tracking. Comput. Secur., 87, 2019.

[74] Steven Schmeiser. Online advertising networks and consumer perceptions of
privacy. Applied Economics Letters, 25(11):776–780, 2017.

[75] Michael Schwarz, Florian Lackner, and Daniel Gruss. Javascript template attacks:
Automatically inferring host information for targeted exploits. In Proc. 26th
Annual Network and Distributed System Security Symposium (NDSS’19). The
Internet Society, 2019.

[76] Sergey Shekyan. Detecting PhantomJS based visitors. https://blog.shapese
curity.com/2015/01/22/detecting-phantomjs-based-visitors/, 2015. last access:

November 1, 2022.
[77] Sandra Siby, Umar Iqbal, Steven Englehardt, Zubair Shafiq, and Carmela Tron-

coso. {WebGraph}: Capturing advertising and tracking information flows for
robust blocking. In 31st USENIX Security Symposium (USENIX Security’22), pages
2875–2892, Boston, MA, 2022. USENIX Association.

[78] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. I’m not a human:
Breaking the google recaptcha. Black Hat, pages 1–12, 2016.

[79] Ido Sivan-Sevilla, Wenyi Chu, Xiaoyu Liang, and Helen Nissenbaum. Unac-
counted privacy violation: A comparative analysis of persistent identification
of users across social contexts. 2021.

[80] Peter Snyder, Cynthia Bagier Taylor, and Chris Kanich. Most websites don’t
need to vibrate: A cost-benefit approach to improving browser security. In
Proc. 24th ACM SIGSAC Conference on Computer and Communications Security
(CCS’17), pages 179–194. ACM, 2017.

[81] Konstantinos Solomos, Panagiotis Ilia, Sotiris Ioannidis, and Nicolas Kourtellis.
TALON: an automated framework for cross-device tracking detection. In RAID,
pages 227–241. USENIX Association, 2019.

[82] Konstantinos Solomos, Panagiotis Ilia, and Nicolas Kourtellis. Clash of the
trackers: Measuring the evolution of the online tracking ecosystem. In TMA.
IFIP, 2020.

[83] Jannick Kirk Sørensen and Sokol Kosta. Before and after GDPR: the changes in
third party presence at public and private european websites. In Proc. 28th The
Web Conference 2019 (WWW’19), pages 1590–1600. ACM, 2019.

[84] Oleksii Starov, Johannes Dahse, Syed Sharique Ahmad, Thorsten Holz, and Nick
Nikiforakis. No honor among thieves: A large-scale analysis of malicious web
shells. In Proc. 25th International Conference on World Wide Web (WWW’16),
pages 1021–1032. ACM, 2016.

[85] Giorgio Di Tizio and Fabio Massacci. A calculus of tracking: Theory and practice.
Proc. Priv. Enhancing Technol., 2021(2):259–281, 2021.

[86] Christof Ferreira Torres, Hugo L. Jonker, and Sjouke Mauw. Fp-block: Usable
web privacy by controlling browser fingerprinting. In Proc. 20th European
Symposium on Research in Computer Security (ESORICS’15), volume 9327 of
LNCS, pages 3–19. Springer, 2015.

[87] Tobias Urban, Martin Degeling, Thorsten Holz, and Norbert Pohlmann. Beyond
the front page:measuring third party dynamics in the field. In Proc. 29th The
Web Conference 2020 (WWW’20), page 1275–1286. ACM, 2020.

[88] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. A study on subject data access in online advertising after the GDPR.
In DPM/CBT@ESORICS, volume 11737 of LNCS, pages 61–79. Springer, 2019.

[89] Tobias Urban, Dennis Tatang, Martin Degeling, Thorsten Holz, and Norbert
Pohlmann. Measuring the impact of the GDPR on data sharing in ad networks.
In Proc. 15th ACM Asia Conference on Computer and Communications Security
(AsiaCCS’20), pages 222–235. ACM, 2020.

[90] Pelayo Vallina, Álvaro Feal, Julien Gamba, Narseo Vallina-Rodriguez, and Anto-
nio Fernández Anta. Tales from the porn: A comprehensive privacy analysis of
the web porn ecosystem. In Proc. 19th ACM Internet Measurement Conference
(IMC’19), pages 245–258. ACM, 2019.

[91] Steven Van Acker, Daniel Hausknecht, and Andrei Sabelfeld. Raising the bar:
Evaluating origin-wide security manifests. In Proc. 34th Annual Computer
Security Applications Conference (ACSAC’18), pages 342–354. ACM, 2018.

[92] Rob Van Eijk, Hadi Asghari, Philipp Winter, and Arvind Narayanan. The impact
of user location on cookie notices (inside and outside of the european union). In
Workshop on Technology and Consumer Protection (ConPro’19). IEEE. IEEE, 2019.

[93] Antoine Vastel. Detecting Chrome headless, new techniques. "https://antoinev
astel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html", 2018.
last access: November 1, 2022.

[94] Antoine Vastel, Walter Rudametkin, Romain Rouvoy, and Xavier Blanc. FP-
Crawlers: Studying the Resilience of Browser Fingerprinting to Block Crawlers.
In Proc. 2nd NDSS Workshop on Measurements, Attacks, and Defenses for the Web
(MADWEB’20), pages 2–14, 2020.

[95] Yash Vekaria, Vibhor Agarwal, Pushkal Agarwal, Sangeeta Mahapatra, Sak-
thi Balan Muthiah, Nishanth Sastry, and Nicolas Kourtellis. Differential tracking
across topical webpages of indian news media. In Proc. 13th ACM Web Science
Conference (WebSci’21), pages 299–308. ACM, 2021.

[96] David Y. Wang, Stefan Savage, and Geoffrey M. Voelker. Cloak and dagger:
dynamics of web search cloaking. In Proc. 18th ACM Conference on Computer
and Communications Security (CCS’11), pages 477–490, 2011.

[97] Baoning Wu and Brian D. Davison. Cloaking and redirection: A preliminary
study. In 1st International Workshop on Adversarial Information Retrieval on the
Web (AIRWeb’05), pages 7–16, 2005.

[98] Baoning Wu and Brian D. Davison. Detecting semantic cloaking on the web.
In Proc. 15th international conference on World Wide Web (WWW’06), pages
819–828, 2006.

[99] Zhiju Yang and Chuan Yue. A comparative measurement study of web tracking
on mobile and desktop environments. Proc. Priv. Enhancing Technol., 2020(2):24–
44, 2020.

https://blog.shapesecurity.com/2015/01/22/detecting-phantomjs-based-visitors/
https://blog.shapesecurity.com/2015/01/22/detecting-phantomjs-based-visitors/
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html
https://antoinevastel.com/bot%20detection/2018/01/17/detect-chrome-headless-v2.html

Analysing and strengthening OpenWPM’s reliability CoNEXT ’22, December 6–9, 2022, Roma, Italy

[100] Xiufen Yu, Nayanamana Samarasinghe, Mohammad Mannan, and Amr M.
Youssef. Got sick and tracked: Privacy analysis of hospital websites. In EuroS&P
Workshops, pages 278–286. IEEE, 2022.

[101] David Zeber, Sarah Bird, Camila Oliveira, Walter Rudametkin, Ilana Segall,
Fredrik Wollsén, and Martin Lopatka. The representativeness of automated web
crawls as a surrogate for human browsing. In Proc. 29th The Web Conference
2020 (WWW’20), page 167–178. ACM, 2020.

[102] Penghui Zhang, AdamOest, Haehyun Cho, RC Johnson, BradWardman, Shaown
Sarker, Alexandros Kpravelos, Tiffany Bao, Ruoyu Wang, Yan Shoshitaishvili,
Adam Doupé, and Gail-Joon Ahn. CrawlPhish: Large-scale Analysis of Client-
side Cloaking Techniques in Phishing. In Proc. 42nd IEEE Symposium on Security
and Privacy (S&P’21), pages 1109–1124, 2021.

A FIRST-PARTY DETECTOR PATTERNS
Tbl. 12 shows patterns from our first-party script analysis in Sec. 4.3.
Scripts provided by Akamai, Incapsula, Cloudflare, and PerimeterX
follow the same script pattern, these can be easily recognised. For
the unknown script, we found that the for common path patterns be-
tween larger clusters of script hashes. A manual validation showed
that scripts found under the listed path are most similar.

Table 12: Similarities in first-party detectors

Origin URL path similarities # sites

Akamai domain/akam/11/. . . 1,004
Incapsula domain/_Incapsula_Resource?. . . 998
Unknown domain/asssets/{hash of 31-32 bits length} 659

domain/resources/{hash of 32-33 bits length}
domain/public/{hash of 32-33 bits length}
domain/static/{hash of 34 bits length}

Cloudflare domain/. . . /cdn-cgi/bm/cv/2172558837/api.js 486
PerimeterX domain/. . . /{8 character string}/init.js 134

B PATTERNS USED IN STATIC ANALYSIS
We iterate on the pattern design to reduce false positives. Our very
first run used patterns matching strings literally. However, in the
specific case of matching the term webdriver, we found that this
selects scripts that use this word in another context than checking
Selenium-driven Firefox browsers (see e.g. [45, 46] for conflicting
bot detection properties with this term). In the next iteration we
used patterns that take the context of the access to a property into ac-
count. For example, the pattern navigator\[["']webdriver["']\]
only matches if the webdriver property is checked via the naviga-
tor object. Tbl. 13 lists our explored patterns. Finally, we manually
checked a random subset to check pattern performance. Only one
pattern still introduced false positives; all its matches weremanually
validated and false positives eliminated.

Table 13: Patterns evaluated in static analysis

Pattern false positives found

webdriver ✓
instrumentFingerprintingApis -
getInstrumentJS -
jsInstruments -
(?<!_|-)webdriver(?!_|-) ✓
navigator.webdriver -
navigator\[["']webdriver["']\] -

C INTEGRATION OF FIREFOX VERSIONS
Releases of OpenWPM do not appear synchronously with Firefox.
As a result, certain time frames exist where the OpenWPM client
uses an older Firefox versions than regular users. Tbl. 14 summarises
migration of Firefox versions in the OpenWPM Framework since
version 0.10.0. Between the release of Firefox 77 (March 2020) and
the release of Firefox 104 (current at the time of writing) were 780
days. Within this period, OpenWPM was shipped with an outdated
version for 540 days (69%).

Table 14: Migration to newer Firefox releases in OpenWPM

Firefox release date OpenWPM integration date Outdated

104.0 07/23/22 53 days
101.0 05/31/22
100.0 05/03/22 0.20.0 05/05/22 30 days
99.0 04/05/22
98.0 03/08/22 0.19.0 03/10/22 58 days
96.0 01/11/22
95.0 12/07/21 0.18.0 12/16/21 69 days
91.0 08/10/21
90.0 07/13/21 0.17.0 07/24/21 11 days
89.0 06/01/21 0.16.0 06/10/21 9 days
88.0 04/19/21 0.15.0 05/10/21 48 days
87.0 03/23/21

86.0.1 03/11/21 0.14.0 03/12/21 87 days
84.0 12/15/20
83.0 11/18/20 0.13.0 11/19/20 58 days
81.0 09/22/20
80.0 08/25/20 0.12.0 08/26/20 29 days
79.0 07/28/20

78.0.1 07/01/20 0.11.0 07/09/20 9 days
78.0. 06/30/20
77.0 06/03/20 0.10.0 06/23/20 20 days

D SILENT DELIVERY OF JS FILES
Listing 4 shows an attack to bypass OpenWPM’s mode of recording
only JavaScript files. Note that the loaded resource does not include
a file extension. Therefore, it will be loaded as regular text and its
content does not occur in OpenWPM’s logging of loaded JavaScript
files. After loading, the content is executed via eval.

const stealth_code = "https://{attacker_domain}/cheat";
fetch(stealth_code) // load code from server

.then(res => res.text()) // convert code to JS-string
.then(res => eval(res)); // code execution

Listing 4: Example to silently load a JS file

E OPENWPM IN LITERATURE
Tbl. 15 provides a detailed view on our analysis of peer-reviewed
studies based on OpenWPM. Each category that applies to a study
is marked with a “✓”. For those studies that measure certain aspects,
but rely on out of bound mechanisms (e.g., by deploying a proxy)
and do not rely on OpenWPM’s instrumentation are marked with a
“◦”. Running modes are shortened in the table as follow: unspecified
(u), native (n), headless (h), xvfb (x), docker (d)Papers that are not
included in the seed list, but where added by us, are highlighted
with a “★”. Studies marked with a “†” use an OpenWPM data set,
but do not perform their own data acquisition.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Benjamin Krumnow, Hugo Jonker, and Stefan Karsch

Table 15: Overview of previous studies using OpenWPM for web studies

deployed as measures/analyses performs visits uses mentions

Year Ref. Venue 1𝑠𝑡 Author Mode VM Cookies HTTP JS Scrolling Clicking Typing Sub-pages Anti-BD BD

2014 [2] CCS Acar u ✓ ◦ ◦ ✓
[69] CoSN Robinson u ✓ ✓

2015 [30] WWW Englehardt u ✓ ✓ ✓
[49] NDSS Kranch u ✓ ◦
[7] Tech Science Altaweel h ✓ ✓ ✓ ✓
[34] W2SP Fruchter u ✓ ✓ ✓

2016 [8] IFIP AICT Andersdotter u ✓ ✓ ✓
[29] CCS Englehardt x ✓ ✓ ✓ ✓ ✓
[84] WWW Starov u ✓ ✓

2017 [61] NDSS Miramirkhani u ✓ ◦ ✓ ✓
[13] PETS Brookman u ✓ ✓ ✓
[66] CODASPY Reed u ✓
[64] CEUR Olejnik u ✓
[57] APF Maass u ✓ ✓
[55] USENIX Liu h
[74] Appl. Econ. Letters Schmeiser u ✓

2018 [35] PETS Goldfeder u ✓
[28] PETS Englehardt u ✓ ✓ ✓ ✓ ✓
[10] ACM ToIT Binns h ✓ ✓
[25] CCS Das u ✓ ✓ ✓
[91] ACSAC van Acker u ✓
[23] AINTEC Dao u ✓

2019 [20] IRCDL Cozza u ✓ ✓ ✓ ✓
[36] WorldCIST Gomes u ✓
[92] ConPro van Eijk d
[83] WWW Sørensen u ✓ ✓ ✓
[54] EuroS&P Liu u ✓ ✓
[58] CSCW Mathur u ✓ ✓ ✓
[59] Comput. Comm. Mazel u ✓
[6] LPM Ali u ✓
[73] Comp. Secur. Samarasinghe u ✓ ✓ ✓
[56] APF Maass u ✓
[81] RAID Solomos u ✓ ✓
[90] IMC Vallina u ✓ ✓ ✓
[45] ESORCIS Jonker h ✓ ◦ ✓
[88] DPM Urban u ✓ ✓ ✓
[71] SPW Sakamoto u ✓

2020 [31] PETS Fouad u ✓ ✓ ✓
[19] PETS Cook u ✓ ✓ ✓
[99] PETS Yang u ✓ ✓ ✓ ✓
[1] PETS Acar u ✓ ✓ ✓ ✓ ✓ ✓
[48] PETS Koop d ✓ ✓ ✓ ✓ ✓
[101] WWW Zeber n/x ✓ ✓ ✓ ✓ ✓
[5] WWW Ahmad u ✓ ✓ ✓
[4] WWW Agarwal h ✓ ✓ ✓ ✓
[87] WWW Urban u ✓ ✓ ✓ ✓ ✓ ✓ ✓
[89] AsiaCCS Urban u ✓ ✓ ✓ ✓ ✓ ✓ ✓
[65] PAM Pouryousef u ✓
[32] EuroS&P Fouad u ✓ ✓
[79] PrivacyCon Sivan-Sevilla u ✓ ✓ ✓ ✓ ✓ ✓
[41] EuroS&P Hu u ✓ ✓
[21] TMA Dao u ✓
[82] TMA Solomos n ✓ ✓
[22] GLOBECOM Dao u ✓

2021 [14] NDSS Calzavara u ✓ ✓ ✓ ✓
[68] PETS Rizzo u ✓ ✓ ✓ ✓
[43] S&P Iqbal u ✓ ✓

★[37] IMC Goßen n ✓ ✓ ✓ ✓ ✓
★†[85] PETS Di Tizio u ✓
★[67] PETS Reitinger u ✓
★[40] PETS Hosseini u
★[95] WebSci Vekaria u ✓ ✓ ✓ ✓
★[24] IEEE TNSM. Dao u ✓ ✓

2022 ★[15] PETS Cassel u ◦ ◦ ✓
★[77] USENIX Siby u ✓ ✓ ✓
★[44] USENIX Iqbal u ✓ ✓ ✓ ✓ ✓ ✓
★[33] PETS Fouad u ✓ ✓ ✓
★[26] WWW Demir n/h ✓ ✓ ✓ ✓ ✓

★[100] EuroS&PW Yu h ✓ ✓ ✓
★[62] PETS Musa u ✓ ✓ ✓
★[72] WWW Samarasinghe u ✓ ✓ ✓ ✓
★[12] USENIX Bollinger u ✓ ✓ ✓ ✓

	Abstract
	1 Introduction
	2 Use of OpenWPM in previous studies
	3 Fingerprint surface of OpenWPM
	3.1 RQ1: How recognisable is OpenWPM?
	3.2 RQ2: How stable is the fingerprint surface?
	3.3 Validation of the fingerprint surface

	4 Incidence of OpenWPM detection
	4.1 Data acquisition and classification
	4.2 RQ3: How often is OpenWPM detected?
	4.3 RQ4: Who employs bot detection?

	5 Attacking JavaScript recording
	5.1 RQ5: How to prevent recording?
	5.2 RQ6: Can fake data be injected?
	5.3 RQ7: Can records be deleted or altered?
	5.4 RQ8: Is data recording complete?

	6 Improving OpenWPM reliability
	6.1 RQ9: How to hide the fingerprint?
	6.2 RQ10: How to mitigate recording attacks?
	6.3 RQ11: Does hardening impact measurements?

	7 Related Work
	8 Conclusions
	References
	A First-party detector patterns
	B Patterns used in static analysis
	C Integration of Firefox versions
	D Silent delivery of JS files
	E OpenWPM in literature

