A Contemporary Investigation of NTFS File Fragmentation

Vincent van der Meer®*?, Hugo Jonker™, Jeroen van den Bos!

“Zuyd University of Applied Sciences, vincent.vandermeer @ zuyd.nl
bOpen University of the Netherlands, hugo.jonker@ou.nl
°Radboud University Nijmegen
dNetherlands Forensic Institute, j.van.den.bos@nfi.nl

Abstract

There is a significant amount of research in digital forensics into analyzing file fragments or reconstructing fragmented data. At
the same time, there are no recent measurements of fragmentation on current, in-use computer systems. To close this gap, we have
analyzed file fragmentation from a corpus of 220 privately owned Windows laptops.

We provide a detailed report of our findings. This includes contemporary fragmentation rates for a wide variety of image-,
video-, office-, database-, and archive-related extensions. Our data substantiates the earlier finding that fragments for a significant
portion of fragmented files are stored out-of-order. We define metrics to measure the degree of “out-of-orderedness” and find that
the average degree of out-of-orderedness is non-negligible. Finally, we find that there is a significant group of fragmented files for
which reconstruction is insufficiently addressed by current tooling.

Keywords: File Fragmentation, File Carving, Digital Forensics

1. Introduction

File fragmentation impacts (amongst others) file system per-
formance and file recovery. Indeed, many studies in these areas
rely on assumptions with respect to fragmentation. In the do-
main of digital forensics, this includes studies into file fragment
classification (e.g., [1]), generic file carvers (e.g., [2, 3]) as well
as file type specific file carvers (e.g., [4, 5]), and fragment dat-
ing (e.g., [6]).

For all such studies, contemporary data on file fragmen-
tation is a necessary prerequisite to determine carving strate-
gies. The most recent large-scale study of file fragmentation
is from 2007 [3], with data gathered from 1998 to 2006. This
corpus is now outdated: it concerns mostly FAT-type file sys-
tems, while Windows (since XP) by default uses the NTFS file
system. Moreover, this corpus concerns deprecated versions of
Windows whose combined market share is below 1.75%".

To remedy this, we gathered data of file fragmentation on
NTES file systems from 220 laptops. These machines are in-
dividually acquired, owned and maintained, and are in regu-
lar use by their owners. As these machines were owned by
volunteer participants, privacy was paramount. Therefore, we
designed a privacy-friendly approach to data gathering [7]. In
that work, we also presented initial fragmentation findings. Key
amongst those was that out-of-order fragmentation occurs fairly
frequently — a type of fragmentation that seems to mostly have
been overlooked in literature.

Contributions. In this paper, we present in-depth, contempo-
rary data on NTFS file fragmentation. The main contributions

'https://netmarketshare.com/operating-system-market-share.

aspx?id=platformsDesktopVersions

Preprint submitted to DFRWS-APAC’20

e Our corpus provides a contemporary (Oct’18 — Jan’19)
view on file fragmentation.

e The number of files in the corpus is significantly larger
(2-10 times) than previous works (>1 mln . jpg; 14,000
.doc; 87,000 .docx; ...).

e We provide novel metrics on the convolutedness of frag-
mentation: degree of internal fragmentation and degree
of out-of-orderedness.

e We report on a number of fragmentation characteristics:
fragmentation vs. file size, fragmentation vs. used vol-
ume space, fragmentation per extension, gap size for files
fragmented in two parts, distribution of number of frag-
ments, correlation between fragmentation and disk size,
fragmentation and disk type (primary / secondary).

o We find (amongst others) that the average degree of out-
of-orderedness of fragmented files is non-negligible. This
has implications for the field of digital forensics.

2. Background

2.1. Terminology
We make use of the following NTFS terminology:

MFT: Master File Table; contains metadata (including allo-
cated blocks) for all files.

Resident files: Files without allocated blocks, whose data is
stored completely in its MFT record.

July 30, 2020

https://netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions
https://netmarketshare.com/operating-system-market-share.aspx?id=platformsDesktopVersions

Compressed files: Files may be compressed by NTFS itself,
as opposed to application-level compression. This com-
pression is transparent to any application using NTFS.

Sparse files: Files where only blocks containing non-zero
data are stored. The file size of sparse files is thus typi-
cally larger than allocated on disk. (Used e.g. for virtual
machine files.)

Hard links: An MFT entry may contain more than one path
+ filename. These names appear to the user as individual
files, but there is only one physical representation on disk.

Symbolic links: A symbolic link is an MFT entry that points
to a path + filename (possibly on another volume, includ-
ing non-NTFS volumes). They thus contain no data, only
meta data.

Volume: A storage device is a physical unit for storing data.
It is partitioned into one or more volumes, which in Win-
dows are addressable via drive letters.

In addition, we use HDD to denote Hard Disk Drive, i.c., a
storage medium based on magnetic storage with moving read
and write heads and spinning discs; and SSD to denote Solid
State Drive, i.e., a storage medium based storing data based
on integrated circuits (typically flash memory), without moving
parts. With respect to the popularity of SSDs versus HDDs: in
our dataset (Table 7), we find that 84% of the laptops use an
SSD, and 67% uses an HDD.

2.2. Data storage and deletion on SSDs

SSD devices operate differently than HDDs. For example,
to extend the longevity of the disk, they typically use wear lev-
elling: a technique to avoid writing overly much in one area of
the disk. However, wear levelling happens in the firmware and
is thus invisible to the NTFS file system. That is: it does not
affect the operation of NTFS, and the NTFS file system is not
aware of this taking place.

SSD devices also handle deletion differently than HDDs.
Regular HDDs handle deletion by marking the deleted blocks
of the disc as available. That is, regular HDDs leave the data on
the disc until it is overwritten. In contrast, an SSD drive can-
not write to an already occupied part. Thus, each block must
be empty before it can be written to. The earliest SSDs used a
form of garbage collection to empty deleted blocks. This ma-
tured into the creation of the TRIM command, which wipes the
specified blocks. Once blocks have been wiped, their data is
physically removed from the disc and thus the data no longer
recoverable. This raises the question of whether recovery of
deleted files is possible at all on SSDs.

Nisbet et al. [8] show that once the TRIM command has
been sent to the drive, erasing usually takes places within min-
utes. They also show that, within the time frame of deleting a
file by the user and the execution of the TRIM command, sig-
nificant amounts of data can still be recovered, with small files
being fully recovered, and for large files being partially recov-
ered. After the execution of the TRIM command however, only

up to 0.6% of the data was recoverable. This places concrete
boundaries on the forensic effectiveness for file carving.

In case the data on the SSD was subjected to a successfully
executed TRIM command, the data thus is not realistically re-
coverable. However, there is not a one-to-one correspondence
between file deletion and successful execution of a TRIM com-
mand. In particular, there are various reasons why a SSD either
is not TRIM-enabled, or that a TRIM command is not succes-
fully executed?.

2.3. Fragmentation

The NTFS file system stores files into blocks, where each
block occupies a fixed size on disk. Blocks are identified by
their block number. A file is thus assigned a list of block num-
bers. A file is not fragmented if the assigned block numbers
are listed in order, and these block numbers are consecutive.
When this is not the case, the file is fragmented. This may be
because the blocks occur out of order, because the block num-
bers are not consecutive, or both. This gives rise to four storage
patterns, as depicted in Figure 1. Of these storage patterns, in-
order contiguously stored files are not fragmented. The other
patterns describe fragmented files.

‘Contiguous Non-contiguous

Figure 1: Examples of the four storage patterns for a bi-fragmented file

In-order

Out-of-Order

Two types of fragmentation can occur on a file system:

1. fragmentation of free space is caused due to the deletion
and shrinking of files. While these operations typically
do not fragment the file itself, they do create unallocated
space that is likely not adjacent to the (other) already ex-
isting unallocated space.

2. file fragmentation occurs when the file system does not
write a file contiguously. File fragmentation can happen
when new files are created or existing files are extended.
Note that file system implementations may choose to do
so even when it is not strictly necessary (i.e., when there
is sufficient contiguous free space available).

Wear leveling, a technique employed by SSD firmware to ex-
tend the lifetime of the device, distributes file blocks evenly
over the physical storage. However, this is handled transpar-
ently by the firmware and thus does not affect allocation of
blocks at the file system level.

We refer to the various parts of a fragmented file as frag-
ments. More specifically, a file consists of a number of blocks,
which are grouped into one or more fragments. A fragment
is contiguous and in-order, and cannot be extended with more
blocks of the same file while remaining in-order and contigu-
ous.

2https ://www.forensicfocus.com/articles/recovering-evidence-from-ssd-
drives-in-2014-understanding-trim-garbage-collection-and-exclusions

2.4. Degree of fragmentation

The degree of fragmentation can be defined in various ways,
depending on what is considered the total number of files. In
literature, it is not always clear which definition is used. It is
the ratio of the number of fragmented files divided by a total.
Different choices can be made for the total, which gives rise to
four definitions.

definition 1 (degree of fragmentation). The degree of fragmen-
tation is the number of fragmented files divided by the total
number of files. The total number of files defined as:

I. all MFT entries, OR
II. all MFT entries with data, OR
III. all MFT entries with blocks assigned, OR
IV. all MFT entries with > 2 blocks assigned.

Note that definition I covers all MFT entries, including sym-
bolic links; definition II excludes symbolic links; and defini-
tion III furthermore excludes resident files. Nevertheless, def-
inition IIT still includes files of one block — which inherently
cannot fragment. Definition IV is the only definition which ex-
cludes all non-fragmentable MFT entries from consideration.
It is thus the most strict, while definition I is the most broad
definition (gives the smallest degree of fragmentation).

We consider definition IV most relevant for reporting on
measurements of file fragmentation. Definition III is useful
when the number of blocks of a file is unknown (e.g., in file
carving). Most studies unfortunately do not clarify which defi-
nition they use.

3. Related Work

There have been three large-scale studies reporting on file
fragmentation. We summarise their findings in Table 1.

source vear % frag used frag. definition
[3] Garfinkel 2007
— all file systems 6 ?
— NTFS file systems 12.2 ?
[9] Meyer & Bolosky 2012 4 ?
[7] Van der Meer et al. 2019 2.2 all MFT entries (I)

4.4 fragmentable files (IV)

Table 1: Comparison of fragmentation rates found in literature

The seminal large-scale study into file fragmentation is due
to Garfinkel [3]. He gathered data from over 300 used hard
disks. The data set includes 219 FAT file systems, 51 NTFS
file systems and 5 UFS file systems. He found an average per-
centage of file fragmentation of 6%. Most findings are reported
over the entire data set. The paper does provide sufficient in-
formation to derive the fragmentation rate over all 51 NTFS file
systems, namely 12.2%.

Garfinkel reports several findings. He found different file
types have different fragmentation rates, that most fragmented
files are split into two parts (bifragmented), and he reports on

the gap size between the two fragments of bifragmented files. It
is not clear which definition of degree of fragmentation Garfinkel
uses in his paper.

In a study on file system content of 597 Windows comput-
ers, Meyer and Bolosky [9] reported finding a level of file frag-
mentation of 4%. In addition, the most highly fragmented files
within their data set were log files. Note that it is not clear
which definition Meyer and Bolosky used to calculate the per-
centage of fragmented files.

We previously [7] reported on the same data set we analyse
in this paper. There, we focus on how to perform data acquisi-
tion in a privacy-friendly manner, providing only scant data on
fragmentation findings. We found that over 46% of fragmented
files were fragmented out-of-order. To the best of our knowl-
edge, this is the first report of out-of-order fragmentation found
in practice. Finally, we reported that in comparison to previous
studies the percentage of fragmented MFT entries has reduced,
yet the absolute amount of fragmented data has increased.

While the previous works focused on desktops and laptops,
several studies have investigated file fragmentation on smart-
phones. Ji et al. [10] report on EXT4 fragmentation behaviour
on four Android smartphones. They observe that files, espe-
cially database files, may suffer from severe fragmentation. In
a follow-up study using five smartphones, Ji et al. [11] find that,
under daily use, fragmentation quickly begins to occur. They
find that for such devices, fragmentation is strongly correlated
with disk space utilization. Moreover, the specific way how
SQLite files are used (frequent deletions, synchronous writes)
exacerbates fragmentation as well.

Finally, Darnowski and Chojnackhi [12] derive a model of
NTEFS block allocation algorithms that predicts how a new file
will be stored. They propose modelling the NTFS allocation
strategy as a finite state machine. They define a sequential
model for writing files, which provides predictions on block
allocation. These predictions include predicting when fragmen-
tation occurs and even cover out-of-order fragmentation. They
confirm the accuracy of their model via synthetic experiments.

4. Data collection and processing

Data was collected from the personal machines of volunteer
student participants, between October 2018 and January 2019.
The machines were individually bought, managed, and main-
tained by their respective owners. The student population is
divided into classes. By visiting each class once, we ensured
no double participation. Data was collected by a custom-made
privacy-friendly data gathering tool based on Fiwalk [13]. The
output of this is standardised DFXML? structured data. This
was converted into an SQLite database for analysis.

The data set consists of input from 220 laptops. Three of
these ran Windows 7, the other 217 ran Windows 10 (four of
which in a dual-boot configuration). With respect to storage de-
vices configurations: 111 laptops contained an SSD + an HDD,

*https://forensicswiki.xyz/wiki/index.php?title=
Category:Digital_Forensics_XML

https://forensicswiki.xyz/wiki/index.php?title=Category:Digital_Forensics_XML
https://forensicswiki.xyz/wiki/index.php?title=Category:Digital_Forensics_XML

NTFS-compressed sparse files hardlinks resident files symbolic links MFT entries [7]
all 598,119 242,844 8,778,592 12,639,771 1,380,728 84,390,537
with data 597,255 97,322 8,659,294 12,616,364 - 82,960,039
with blocks 597,255 97,322 8,079,067 - - 70,320,268
with > 2 blocks 367,284 75,645 5,365,324 - - 42,671,054
fragmented files 72,351 24,079 34,720 - - 1,871,109
out-of-order frag. files 40,660 12,156 14,259 - - 868,917
% fragmented
of all 12.1 % 9.9 % 0.4 % - - 22 %
of those with data 12.1 % 24.7 % 0.4 % - - 23 %
of those with blocks 12.1 % 24.7 % 0.4 % - - 2.7 %
of those with > 2 blocks 19.7 % 31.8 % 0.6 % - - 4.4 %
of fragmented files:
out-of-order fragmented 56.2 % 50.5 % 41.1 % - - 46.4 %
avg. internal fragmentation 8.6 % 12.8 % 243 % - - 19.9 %
avg. 000O’ness 32.5% 29.2 % 24.1 % - - 29.9 %

Table 2: Fragmentation per MFT entry type. For the right-most column, italicized text presents new additions in comparison to [7].

70 contained a single SSD, 36 contained a single HDD, and
3 laptops contained a dual SSD configuration. On six storage
devices, one or more volumes were encrypted and thus not ac-
cessible for data collection. In total, these 334 storage devices
contained 733 volumes: 729 NTFS, and 4 EXT4. We exclude
the EXT4 volumes from consideration.

Of the NTFS volumes, 707 volumes had a block size of
4096 bytes. Other NTFS block sizes were rare: 14 volumes had
a block size of 512 bytes; 7 had a block size of 1024 bytes and
1 volume had a block size of 2048 bytes.

5. Results

In this section, we present our results. Note that many of
the distributions on which we report are skewed. To provide
some insight into the skewedness, we present both average and
median values for such distributions.

The results will be presented using the different definitions
on fragmentation (primarily def. I and def. IV), where we use
the most relevant definition of the degree of fragmentation per
context. However, these metrics do not convey how complex
the fragmentation of a file is. Two aspects determine the com-
plexity of a file’s fragmentation: the number of fragments (rel-
ative to the file size) and the order between the fragments. To
provide insight into the complexity of fragmentation, we in-
troduce two corresponding metrics: the percentage of internal
fragmentation to quantify the number of fragments in relation to
the file size, and the percentage of out-of-order’ness (00O’ ness
for short), which quantifies the extent to which the fragments
occur out of order. Both definitions make use of the number of
fragmentation points, which is the number of times a process
reading the file sequentially would need to jump over one or
more blocks to continue reading the file.

definition 2 (% of internal fragmentation). The percentage of
internal fragmentation of a file f of at least 2 blocks is the ratio
of the number of fragmentation points vs. the number of blocks
minus one, i.e.:

fragpoints(f)

100,
blocks(f) — 1

intfrag(f) =

where blocks(f) denotes the total number of blocks of file f,
and fragpoints(f) is the number of times where, when reading a
block of file f, the next block of f is not the next block on disk.

For example, a file fj whose blocks are stored contiguous
and in order has O fragmentation points and therefore intfrag(f;) =
0%. Another example, consider a file f, of N blocks, where
the blocks occur in order, but every block of f, is followed by
a block of another file. In this case, there is a fragmentation
point after every block except the last block of the file. Thus,
fragpoints(f,) = N — 1, which gives intfrag(f,) = % - 100 =
100%.

definition 3 (% of O00’ness). The percentage of out-of-order’ness
of a fragmented file f is the ratio of the number of times the
next fragment occurs prior to the current vs. the total number

of fragmentation points, i.e.:

backfragpoints(f)

100,
fragpoints(f)

Oo0Oness(f) =

with fragpoints(f) defined as before, and where backfragpoints(f)
denotes the number of times the next block of file f is stored ear-
lier on disk than the current block.

For example, consider a file f3, of N blocks, which is con-
tiguous, but written backwards. I.e., the second block is the
block before the first block; the third block is the block before

% of fragmented files with ... fragments: of fragmented files:
files with % fragmented in-order out of order avg. % avg. % avg.
ext >2 blocks def. 1 def. IV 2 3 >4 2 3 >4 intfrag Q0O’ness fragments
Image
bmp 70,425 1.6 2.5 40.7 9.7 54 146 107 188 10.3 29.2 32
gif 276,241 0.8 1.8 404 7.9 53 103 9.0 270 28.4 26.4 3.6
jpeg 13,774 8.5 8.7 24.8 8.8 6.0 10.6 9.1 407 13.6 33.6 3.8
jrg 1,043,198 2.7 3.1 32.6 6.2 38 138 105 331 124 335 44
png 2,389,752 0.9 3.1 48.9 9.5 35 144 102 134 329 25.6 2.8
psd 7,022 4.5 4.5 31.0 7.8 1.6 166 172 257 6.8 37.2 9.3
pSsp 422 4.6 6.2 154 154 115 3.8 77 462 5.7 24.8 8.7
raw 5,246 1.1 12 57.8 4.7 00 125 188 6.3 35 24.9 17.1
tif 6,309 9.3 9.7 133 187 5.7 36 197 390 4.8 31.3 4.1
Video
avi 9,800 1.8 1.8 9.6 1.7 2.8 0.0 1.1 847 1.1 29.9 40.8
flv 332 26.8 26.8 6.7 3.4 1.1 1.1 45 831 1.5 38.5 29.8
mkv 2,404 2.7 3.1 44.0 2.7 0.0 120 8.0 333 0.1 324 6.8
mov 4,459 4.3 44 30.9 0.5 05 139 139 402 0.5 39.0 20.2
mp4 38,007 6.4 6.5 31.3 5.7 25 144 112 350 1.0 36.7 28.8
mpg 3,269 0.4 0.4 00 154 0.0 7.7 0.0 769 1.9 42.0 21.8
mts 1,591 0.2 0.2 333 0.0 0.0 00 333 333 0.0 524 43
wmv 27,328 0.7 0.7 332 3.6 0.0 357 107 16.8 1.8 50.1 5.8
Office
doc 14,831 5.1 5.5 21.4 9.7 9.7 85 134 373 15.8 31.4 5.1
docx 87,077 6.0 6.2 35.1 8.6 56 135 9.7 214 16.5 30.2 4.6
msg 7,120 0.7 6.2 75.7 00 0.0 236 0.0 0.7 38.2 24.1 2.1
odt 2,147 4.8 4.9 44.8 6.7 57 238 76 114 359 33.7 2.8
pdf 92,117 79 8.1 14.6 6.1 9.7 6.7 89 539 73 33.6 9.3
ppt 3,406 7.9 8.0 7.0 0.0 33 5.1 1.5 83.1 3.0 37.4 10.9
pptx 17,846 11.6 11.7 8.7 2.5 6.3 5.5 42 728 3.4 36.3 19.2
prf 1,113 0.9 4.6 66.7 0.0 00 235 0.0 9.8 31.6 26.8 2.4
pst 120 33.1 35.8 55.8 2.3 0.0 93 233 9.3 0.0 24.7 2.8
rtf 80,977 0.9 1.0 39.4 35 6.1 299 9.7 114 6.7 40.7 35
x1s 8,550 2.0 2.3 222 5.7 8.2 52 139 448 139 338 52
x1lsx 17,721 4.1 4.1 486 123 3.8 16,6 8.6 10.1 27.3 30.4 33
Database
accdb 1,450 12.0 12.0 8.6 3.4 29 29 138 684 4.7 40.6 30.0
db 33,320 12.0 17.4 28.2 7.8 35 8.8 92 425 19.5 322 24.5
mdb 11,052 3.8 6.1 21.1 79 40 140 135 395 9.8 39.2 5.1
sqlite 7,959 26.2 27.8 443 5.6 22 205 7.1 204 9.0 332 6.9
Archive
Tz 3,568 12.2 18.1 58.5 7.7 1.9 6.7 99 153 49.7 19.0 31.8
gz 48,900 1.8 3.7 334 210 6.2 59 125 209 56.2 20.5 6.4
rar 3,589 7.3 7.5 13.7 4.8 2.6 52 74 663 35 34.5 48.1
zip 53,919 7.9 11.2 229 7.6 79 8.5 7.7 455 15.9 30.4 224

Table 3: Fragmentation per extension (categorised)

the second, etc. In this case, every fragmentation point is back-
wards, hence OoOness(f3) = 100%. In contrast, OoOness(f>) =
0%, as file f> was stored in-order, so backfragpoints(f;) = 0.

Remark that extreme values of OoO’ness correspond to rel-
atively simple cases: an OoO’ness of 100% is a file where the
next block is always stored earlier on disk (e.g., f3), and an
000’ness of 0% concerns a file where the next block is always
stored further (e.g., f;). In contrast, an OoO’ness of 50% means
half the fragmentation points are backwards — i.e., when reach-
ing the end of a fragment, there is no preference for either for-
ward or backward direction to find the next block. Thus, an
average OoO’ness of 50% is a worst-case (with respect to out-
of-orderedness) situation for a file carver.

5.1. Fragmentation per MFT entry type

In Table 2, the main fragmentation characteristics of our
data set are presented, split per MFT entry type. For complete-
ness and comparison purposes, we include our previously [7]
reported totals (right column), extended with new measures of
average internal fragmentation and average OoO’ness. Remark
that both resident files and symbolic links can inherently not
fragment. In our data set, we find that hard-linked files are
up to 7 times less likely to be fragmented than the average.
Sparse files and NTFS compressed files were already known
to be prone to fragmenting; to the best of our knowledge, we
are the first to quantify the extent of this. In the data set, we
find that (under definition I) around 10% of both sparse and
NTFS compressed files are fragmented. Under a stricter defi-
nition of fragmentation, one that only considers files that may

potentially fragment (i.e., files with at least two blocks), the ra-
tios increase to one in five (NTFS compressed) and close to one
in three (sparse), respectively. Finally, note that when NTFS-
compressed files are fragmented, the average degree of internal
fragmentation is lower than average (8.6% vs. 19.9%).

5.2. Fragmentation per file extension

Table 3 provides various data on the fragmentation per ex-
tension. In this table, we list the number of files with at least
2 blocks (i.e., the number of files relevant for definition IV), as
well as the percentage of files that are fragmented. Specifically,
we include both def. I for comparison purposes, and def. IV as
most representative definition of fragmentation. Furthermore,
like Garfinkel [3], we provide the percentage of fragmented
files that are fragmented into 2, 3, and 4 or more parts com-
pletely in-order, and similar for files that are fragmented at least
partially out of order. For the fragmented files, we also provide
the average internal fragmentation (definition 2), the average
0Oo00O’ness (definition 3), as well as the average number of frag-
ments.

Images. Fragmented images are often fragmented out of or-
der. For fragmented bmp, png, and raw files, the percentage
of fragmented files that are fragmented out-of-order are 44.1%,
38.0% and 37.6%, respectively. For all other image formats,
fragmented files are more likely to be fragmented out-of-order
than in-order.

Videos. Yang et al. [5] claim avi files are more likely to be
fragmented than other files. Our dataset does not corroborate
this. We find that the average fragmentation rate for avi files
(1.8%) is lower than the general average (4.4%). However,
when avi files are fragmented, the number of fragments is of-
ten large (average of 40.8 fragments).

The .mts format is a video format typically used in cam-
corders. In our dataset, 2 systems account for 1,555 of the 1,591
mts files.

Office documents. Interestingly, Outlook pst files are often
fragmented (35.8%). The number of fragments is low, lead-
ing to a negligible rate of internal fragmentation. The main
complexity in recovering fragmented pst files is due out-of-
orderedness. Another interesting document-related finding is
that pdf files have a higher fragmentation rate than the word-
processing extensions rtf (Wordpad), odt (OpenOffice), doc
and docx (MS Word); an unexpected result considering pdf
files are typically static, i.e., not intended for editing.

Databases. Jietal. [11] studied fragmentation on Android sys-
tems and found that database files are prone to fragmentation,
due to concurrent and frequent growth. Our dataset shows that
this is true on NTFS systems as well: all database extensions
are fragmented above average.

File size® # fragmented files % frag
min*- 10 kB 11,531,201 1.8
10- 50 kB 15,669,438 39
50 - 100 kB 4,468,221 4.9
100 — 500 kB 6,490,196 74
0.5-1MB 1,573,008 6.8
1-5MB 2,096,812 8.2
5-10MB 397,872 7.8
10 -50 MB 341,782 9.5
50 - 100 MB 45,148 14.0
100 — 500 MB 44,534 21.4
> 500 MB 12,842 46.1

* min: 2 assigned blocks, irrespective of file size and block size.
kB = 1,000 bytes, MB = 1,000,000 bytes.

Table 4: Fragmented files per file size

fragments
File size' % 000 % intfrag % OoO’ness avg median
min*— 10 kB 18.7 77.0 18.2 2.0 2
10- 50 kB 29.7 26.0 24.9 2.3 2
50 - 100 kB 47.1 10.7 32.2 2.8 2
100 - 500 kB 57.5 5.5 343 3.6 3
0.5-1MB 70.2 2.9 37.3 5.5 4
1-5MB 76.2 22 38.1 10.0 5
5-10MB 80.4 1.5 374 23.1 7
10-50 MB 82.6 1.3 37.2 492 12
50 - 100 MB 76.7 1.3 337 1263 14
100 - 500 MB 66.2 0.6 359 156.8 3
> 500 MB 74.1 0.1 36.3 93.1 4

* min: 2 assigned blocks, irrespective of file size and block size.
T kB = 1,000 bytes, MB = 1,000,000 bytes.

Table 5: Fragmentation characteristics of fragmented files versus file size

5.3. Fragmentation in relation to file size

Tables 4 and 5 show fragmentation and fragment properties
split out in file size intervals. The ranges include start point,
and exclude the end point. With regards to the smallest file
that may be fragmented: this is dependent on the number of
allocated blocks. Note that allocated blocks do not need to be
filled. Indeed, we found 10 fragmented files, whose file size
was | byte.

Table 4 shows that smaller files occur more often than larger
files. Note that 74% of all files of at least two blocks are smaller
than 100 kB. Furthermore, we make the following observations:

e Of all fragmented files with a file size between 1 and
100 MB, over 75% is fragmented out-of-order.

e As file size increases, the number of fragments typically
increases (though this correlation is not perfect).

e For files >50 kB, the average OoO’ness is slightly over a
third, more or less irrespective of the file size. This means
that at each fragment boundary, there is, on average, a
probability of about % that the next fragment is located
before the current fragment, and a probability of about %
of the next fragment being ahead.

e We found that some files are extremely fragmented, such
as one file split into 20,000 fragments. This skews the

average, but the median value of the range is less affected
and provides a more nuanced view on the number of frag-
ments.

5.4. Distribution of the number of fragments

In Table 6, we extend our previously reported fragmentation
data [7, pg. 5, Table II] with file size and gap size information.

As we reported previously, 56.76% of files is bi-fragmented
(fragmented into two parts). In-order bi-fragmented files are
common amongst fragmented files, they constitute 41.84% of
all fragmented files. Theoretically, as files are fragmented into
more parts, it is increasingly less likely that all fragments occur
in order. Our data set corroborates this.

Finally, note that the average OoO’ness is hardly correlated
with the number of fragments. For any file fragmented into
three or more fragments, average OoO’ness is yet again roughly
a third.

5.5. Gapsize distribution of bi-fragmented files

For in-order fragmented files, the gap between two consec-
utive fragments is unambiguously defined as the distance from
the last block (“tail”’) of the first, to the first block (“head”) of
the second. For out-of-order files, there is not one, unique, un-
ambiguous definition of the distance between two consecutive
fragments. Note that since Garfinkel’s study does not consider
out-of-order fragmented files, a direct comparison is not possi-
ble.

I | I
c d a b
1. tail-head
2. shortest gap —
3. carving distance =~ ¢———

Figure 2: Possible metrics for gapsize of OoO fragmented files

Figure 2 depicts three possible metrics. All three metrics
have their applications. The first, tail-head distance, covers the
total length to be covered, but includes the length of both frag-
ments themselves. For file carving, this is not that useful: once
the first fragment is found, this will be skipped when search-
ing for further fragments. The second metric, shortest gap dis-
tance, measures the shortest distance between the two frag-
ments, which only makes sense if both fragments are known.
The third metric, carving distance, measures the distance an
out-of-order file carver would have to make. This includes
the fragment length of the unknown fragment, but skips the
already-found fragment.

Note that when looking at in-order fragmented files, these
three metrics are equivalent. It is only when the next fragment
appears before the current fragment that differences arise.

Figure 3 depicts the number of in-order bi-fragmented files
with a distance of 1 to 300 blocks. The part shown in the figure
covers 10.0% of all distances between the fragments of in-order
bi-fragmented files. The large trends depicted in the figure hold
over the entire range; in particular, we found that distances in

4000

3500

= = N N w
1S} @ S A 1=}
S =} S =} S
S 5] 5] 5] S

Number of in-order bi-fragmented files

n
S
8
#o
>
3

—
LAY M . °
0 50 100 150 200 250 300

Gap size in blocks

Figure 3: Gap-size distribution of in-order 2-fragmented files

Number of out-of-order bi-fragmented files

o,
o0 o

o M o0 e 2% . 0 ® “"e%00 e o oo
R AT N &,) e O 0 e’ 00l 8o o BE
- &% e of RO A A s......'...:\, ::4..\:

0 50 100 150 200 250 300

Gapsize in blocks (carving distance)

Figure 4: Gap-size distribution of out-of-order 2-fragmented files

general decline, with a generic exception for gapsize distances
that are a power of two (see also Table B.11 in the appendix).

We evaluated all three distances for out-of-order bi-fragmented

files. We found that there are only small deviations between
them. Interestingly, the peaks at distances of powers of two as
seen for in-order files occurred much more strongly for carving
distance than for the other two distance metrics. Hence, from
here on out we will use this metric for the gapsize of out-of-
order files.

Figure 4 depicts the carving distances for out-of-order files.
As was the case for in-order files, the main trends depicted in
the figure continue across the entire range. The gapsizes de-
picted in the figure cover 5.0% of all out-of-order bi-fragmented
files.

Lastly, concerning the aforementioned preference for gap
lengths of powers of two: note that these gap lengths are not
necessarily aligned with specific locations on disk. More specif-
ically, the length of the first fragment determines the gap start.
This preference for gap lengths of powers of two thus seems to
be an artefact of how NTFS assigns blocks. Consequently, the
fact that carving distance aligns well with these observations
suggests that carving distance aligns with how NTFS allocates
blocks.

Sum of all gap sizes (in blocks) (carving-distance)

#fragments #files % 000 average min average median max
000 ’ness

2 1,062,539 26.3 26.3% 1 7,038,401 711,673 517,861,056

3 340,422 56.5 32.8% 2 15,594,100 5,406,252 990,207,960

4 160,472 74.9 34.9% 3 25,645,754 11,833,174 811,066,168

5 93,835 84.6 35.5% 4 34,104,018 16,748,220 969,975,568

6-10 122,388 91.5 36.7% 5 53,979,693 28,003,492 2,002,994,256

11-20 45,031 93.5 36.8% 11 90,567,873 47,230,761 3,037,661,708

21-100 35,890 924 36.8% 42 227,973,821 96,196,576 9,852,412,280

101-1000 9,721 93.6 34.6% 399 1,194,774,735 345,806,721 69,129,433,312

1001+ 811 96.4 30.3% 17,636 5,760,340,498 948,806,352 270,488,355,485

Table 6: Distribution of number of fragments per file

5.6. Percentage of used volume space and file fragmentation

As a volume becomes more filled with data, the remaining
unallocated space becomes progressively more scarce and more
likely to be fragmented. This may impact for the degree of
fragmentation. For example, Ji et al. [11] concluded from their
study of Android devices that the degree of fragmentation is
highly correlated with the percentage of used volume space.

We examined this in our data set. First of all, we excluded
volumes with very few files (< 15), as we do not consider such
volumes to be in active daily use (but act e.g., as recovery par-
tition). Moreover, they contain so few files, that even a single
fragmentation on such a volume will strongly skew the frag-
mentation rate, and thus, strongly affect the correlation. For
example, in our data set there are 44 volumes that each con-
tain 3 files, one of which is fragmented (i.e., a fragmentation
percentage of 33%).

Given these constraints, we find a moderate positive relation
between data fragmentation and the percentage of used volume
space. For SDDs we find that the correlation is 0.462, and for
HDDs the correlation is 0.464. Though the correlation coef-
ficients are nearly identical, the underlying data distribution is
rather different, as shown in Figure 5.

T I I I
25| A HDD volumes, corr. = 0.464 ||
O SSD volumes, corr. = 0.462
Ao
O
. 20 - =
% OO OO
= 0© 2
e 15 © o o |
P 6 oa o
&=
[}
g 10} °oe S
= o
§ A A o &
& (el) 69 o
5+ ® O O o © O -
O (§ o0 A
. 3 epr
o 8OOQ
ol ga.nm.«:no “%‘fo? 2G|
! !
0 20 40 60 80 100

Percentage of volume space used

Figure 5: Fragmentation vs. used volume space

5.7. Fragmentation per storage device

For non-dual-boot systems, we distinguished between pri-
mary (boot disk) and secondary storage devices within our data
set based on file count and extension occurrence. This is pos-
sible as a Windows install has roughly 80,000 files, with many
system-related extensions such as .d11 and .com. For every
non-dual-boot system in our data set, these heuristics provided
a clear division between primary and secondary storage device.

By default, Windows has a scheduled defragment-task, with
different schedules for SSDs (monthly) and HDDs (weekly).
The defragmentation strategy can differ per storage device*.

Table 7 shows that single disk SSD-systems are more frag-
mented than single disk HDD-systems, on average 2.4 times
more. The most common system configuration is a SSD/HDD
combination. In this configuration, the primary SSDs are way
more fragmented than secondary HDDs, on average 5.2 times
more. Note that in this data set there was no system with a dual
HDD configuration.

Storage Device # average median

frag frag
Single disk (SSD) 67 5.6 % 2.0 %
Single disk (HDD) 36 23 % 1.2 %
Primary disk (SSD) 113 7.3 % 4.7 %
Secundary disk (HDD) 110 1.4 % 0.2 %
Secundary disk (SSD) 3 4.1 % 39 %

Table 7: Fragmentation per storage device

5.8. Other extremes and curiosa
e In our data set, there are 2,914 file extensions for which
no file happened to be fragmented. The top 10 most oc-
curring of these is listed in Table 8.

Among the extremely fragmented files (files with thou-
sands fragments or more), the most frequent occurring
extensions are exe, log, xml, dat, and d11.

Of all the 1,871,109 fragmented files, only 8 are frag-
mented contiguous out-of-order. All these 8 files are bi-
fragmented.

“https://docs.microsoft.com/en-us/windows-server/
administration/windows-commands/defrag

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/defrag

e Some files occupy vastly more blocks than their file size
requires. One file in our corpus had a 1 byte file size, yet
had 369 blocks allocated on disk. Moreover, this 1 byte
file was fragmented (out-of-order) into 5 fragments.

File size in bytes

Ext #files (def. 1V) # systems Avg. Median St. Dev.
ctt 51,315 28 7,596 4,904 5,545
ovl 47,998 14 313,040 33,599 3,716,227
p7x 36,030 99 10,693 10,653 733
tt 24,032 47 27,017 26,786 3,466
anm 23,807 12 42,248 22,522 125,422
ved 21,288 8 1,959 1,547 4,509
prx 20,885 197 11,889 4,286 241,195
slp 20,461 7 926,198 63,459 3,236,241
p7s 17,252 42 9,834 9,355 2,036
ovs 16,310 8 3,735952 51,213 8,313,296

Table 8: Top 10 most frequently occurring extensions without fragmented files

6. Discussion

6.1. Overall fragmentation rates

The overall fragmentation rates (Sec. 5.1) have implications
for file carvers. First, an upside for file recovery tooling: most
files are not fragmented. This means that file recovery tools
which ignore fragmentation (which are far easier to construct)
will recover most files. Indeed, various studies assume that files
are not fragmented, such as [14, 15].

However, there is also a downside: out-of-order files con-
stitute close to half of all fragmented files. This means that
any tool that aims to recover fragmented files, must account for
out-of-order fragmentation. This impacts existing studies. For
example, neither the file carver due to Garfinkel [3] nor the file
carver for fragmented jpg files due to Abdullah et al. [16] ac-
count for out-of-order fragmentation.

6.2. Fragmentation per extension

The general trend of less fragmentation compared to previ-
ous studies extends also to specific files. In Table 9, we compare
our findings to those reported in the 2007 study by Garfinkel.
Note that jpeg and jpg file formats are equivalent, but they use
a different extension. The same holds true for the mpeg and mpg
file format. In Table 9, we compare Garfinkel’s findings against
our ratio as determined by def. IV (fragmentable files). We find
a lower fragmentation rate across all extensions.

6.3. Implications for file carving

Although file fragmentation is a topic that attracts some in-
terest in the digital forensics research community, most popu-
lar file carvers used in practice focus almost exclusively on re-
covering unfragmented files. This is an understandable choice
given the considerable time it takes to carve large disks and
other media even in the simplest scenarios.

This paper makes it possible for developers and users of file
carvers to make informed choices about the type of recovery

files reported % fragmented
file type 2007, [3] 2020, def. IV 2007 2020
Image
bmp 26,018 70,425 8 25
gif 357,713 276,241 8 1.8
jpeg 108,539 13,775 16 8.7
jpg - 1,043,198 - 3.1
png 9,995 2,389,752 5 3.1
Office
doc 7,673 14,831 17 5.5
ppt 1,120 3,406 8 8.0
pst 70 120 58 35.8
xls 2,159 8,550 11 23
Video
avi 998 9,800 20 1.8
mpeg 168 9 17 11.1
mpg - 3,269 - 0.4
Database
mdb 402 11,052 27 6.1

Table 9: Comparison of fragmentation rates between 2007 and this paper

they implement and use. It allows an assessment of the added
benefits of actually using bifragment gapcarving and whether
to extend such an algorithm to include out-of-order fragments
or extend it to something else, such as reconstructing files con-
taining multiple gaps.

An important contribution is the explicit measurement of
the incidence of out-of-order fragmented files (Tables 2, 3, 6
and 5), especially given that this is a large (percentage-wise)
subset of all fragmented files. Additionally, the reporting on
encountered actual gap sizes (Sec. 5.5) allows for practical es-
timations of the performance impact on deploying such an ex-
tended file carver. Given the amount of data fragmented out of
order, as reported in this paper, the impact of a file carver able
to reconstruct such files can now be properly ascertained.

6.4. Carving of NTFS-compressed and sparse files

NTES allows special storage modes that do not store the ac-
tual file contents as-is on disk: NTFS-compression and sparse
files. For both types, the blocks as stored on disk are not suffi-
cient to reconstitute a file. Note that either mode may be used
irrespective of a file’s contents or file type. Thus, these NTFS
storage modes could pose a challenge for file carvers.

Yoo et al. [17] state that most file carvers are unable to
handle NTFS-compressed data (irrespective of fragmentation).
They consider files of at least one block. In our dataset, only
0.8% of all files with allocated blocks (597,255 / 70,320,268)
is NTFS-compressed. Yoo et al. propose a file carver to re-
cover NTFS-compressed files. Their carver does not account
for fragmented NTFS-compressed files, which (in our dataset)
constitutes 12.1% of all NTFS-compressed files with blocks.
Interestingly, their carver is targeted at NTFS-compressed avi,
wav and mp3 files. In our data set, the percentage of these files
that are NTFS-compressed is 0.1%, 0.0% and 0.1%, respec-
tively (Table A.10).

With respect to sparse files, we find only three extensions
(of those investigated) have a significant portion of them as
sparse: pst (12.8%), sqlite (9.6%), and db (7.7%). All of
these are significantly more fragmented than the average: 35.8%,
27.8% and 17.4%, respectively. The percentage of sparse files
for the other studied extensions remains below 0.5%.

7. Conclusions

We performed a contemporary study into file fragmentation.
Our data set is comprised of disk information from 220 person-
ally acquired, owned, and managed machines. The data was
collected in a period of 4 months (Oct’ 18 — Jan’19).

Previous reports lacked a clear definition on which files were
considered. We remedied this by distinguishing four possible
definitions of fragmentation rates, from including all MFT en-
tries to only including MFT entries that could possibly frag-
ment. We focused our reporting on the latter definition: files
that could possibly fragment. We found an average fragmen-
tation rate of 4.4%, which presents a significant decrease com-
pared to Garfinkel’s 2007 study. This decrease is also evident
on the level of individual file types.

We reported on a number of fragmentation characteristics,
including the convolutedness of fragmented files and the gap-
size. To assess the convolutedness of fragmented files, we pro-
posed two novel metrics: degree of internal fragmentation and
degree of out-of-orderedness. Fragments are separated by a
gap. We noted that there are three possible definitions of gap-
size in case the next fragment precedes the current. Although
the differences between these definitions are not very large, the
carving distance still stood out: of the three, its measurements
most strongly showed the “powers-of-two” gapsize property
that forward-measured gapsizes so strongly exhibit.

Future work. We intend to design and implement a modern
file carver supporting in- and out-of-order fragmentation. Fur-
thermore, carving of fragmented NTFS-compressed files and
carving of sparse files is currently unexplored territory. We
found that sparse files mostly concern system-related file ex-
tensions. We are not aware of any file carver tailored for recov-
ering sparse files, and we are exploring ways to implement such
a file carver.

Acknowledgements. The authors would like to thank Guy Dols
for his technical support, and all the volunteers (device own-
ers) for their collaboration in this research. Van der Meer was
supported by the Netherlands Organisation for Scientific Re-
search (NWO) through Doctoral Grant for Teachers number
023.012.047.

References

References

[1] R. Rahmat, F. Nicholas, S. Purnamawati, O. Sitompul, File type iden-
tification of file fragments using longest common subsequence (Ics), in:
Journal of Physics: Conference Series, Vol. 801, IOP Publishing, 2017,

pp. 1-9.

[2] H. Ying, V. L. L. Thing, A novel inequality-based fragmented file carv-
ing technique, in: Proc. 3rd International Conference on Forensics in
Telecommunications (ICST’10), Vol. 56 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunications
Engineering, Springer, 2010, pp. 28-39.

[3] S.L. Garfinkel, Carving contiguous and fragmented files with fast object
validation, Digital Investigation 4 (2007) 2—-12.

[4] E. Durmus, P. Korus, N. D. Memon, Every shred helps: Assembling ev-
idence from orphaned JPEG fragments, IEEE Trans. Information Foren-
sics and Security 14 (9) (2019) 2372-2386.

[5] Y. Yang, Z. Xu, L. Liu, G. Sun, A security carving approach for AVI video
based on frame size and index, Multimedia Tools Appl. 76 (3) (2017)
3293-3312.

[6] A. A. Bahjat, J. Jones, Deleted file fragment dating by analysis of allo-
cated neighbors, Digital Investigation 28 (Supplement) (2019) S60-S67.

[7] V. van der Meer, H. Jonker, G. Dols, H. van Beek, J. van den Bos, M. van
Eekelen, File fragmentation in the wild: a privacy-friendly approach,
in: Proc. 11th IEEE Workshop on Information Forensics and Security
(WIFS’19), IEEE, 2019, pp. 1-6.

[8] A. Nisbet, S. Lawrence, M. Ruff, A forensic analysis and comparison of
solid state drive data retention with trim enabled file systems, in: Proc.
11th Australian Digital Forensics Conference (ADFC’13), SRI Security
Research Institute, 2013, pp. 1-10.

[9] D.T. Meyer, W. J. Bolosky, A study of practical deduplication, Transac-
tions on Storage 7 (4) (2012) 14:1-14:20.

[10] C.Ji, L. Chang, L. Shi, C. Wu, Q. Li, C.J. Xue, An empirical study of file-
system fragmentation in mobile storage systems, in: Proc. 8th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage’16),
2016, pp. 1-5.

[11] C.Ji, L.-P. Chang, S. S. Hahn, R. Pan, L. Shi, J. Kim, C. J. Xue, et al., File
fragmentation in mobile devices: Measurement, evaluation, and treat-
ment, IEEE Transactions on Mobile Computing (2018).

[12] F. Darnowski, A. Chojnacki, Writing and deleting files on hard drives with
NTFS, Computer Science and Mathematical Modelling 8 (2018) 5-15.

[13] S.L. Garfinkel, Automating disk forensic processing with sleuthkit, XML
and python, in: Proc. 4th IEEE Workshop on Systematic Approaches to
Digital Forensic Engineering (SADFE’09), 2009, pp. 73-84.

[14] P. Gladysheyv, J. I. James, Decision-theoretic file carving, Digital Investi-
gation 22 (2017) 46-61.

[15] L. Sportiello, S. Zanero, Context-based file block classification, in: Proc.
8th IFIP WG 11.9 International Conference on Digital Forensics, Vol.
383 of IFIP Advances in Information and Communication Technology,
Springer, 2012, pp. 67-82.

[16] N. A. Abdullah, R. Ibrahim, K. M. Mohamad, N. A. Hamid, Carving lin-
early JPEG images using unique hex patterns (UHP), in: Proc. 1st Con-
ference on Advanced Data and Information Engineering (DaEng’13), Vol.
285 of Lecture Notes in Electrical Engineering, Springer, 2013, pp. 291—
300.

[17] B. Yoo, J. Park, S. Lim, J. Bang, S. Lee, A study on multimedia file
carving method, Multimedia Tools and Applications - MTA 61 (2012)
1-19.

Appendix A. Auxiliary data per extension

In Table A.10, we provide auxiliary data on file sizes. The
right-hand side of this table focuses on NTFS-compressed and
sparse files. Recovery of such files is complex, irrespective of
whether they are fragmented or not. Therefore, results concern-
ing these file types in Table A.10 are reported on all files with
blocks (def. IIT), and not only files that could fragment (def. IV).

Appendix B. Gapsizes of powers of two

Table B.11, shows the frequency of gap sizes (in blocks) of
powers of 2 for bi-fragmented files in our dataset. For compar-
ison, we also show the incidence for adjacent gapsizes.

systems

file size in bytes using def. IV:

using def. 111:

% NTFS-

ext def 11l def. IV avg. median st. dev. max. #files compressed % sparse

Images
bmp 214 213 380,653 36,176 4,603,975 1,150,221,432 105,371 0.1 0.0
gif 214 214 73,113 14,878 587,069 67,859,584 468,406 0.4 0.0
jpeg 181 177 430,900 132,696 921,712 19,905,785 14,137 5.1 0.1
iprg 215 215 469,789 43,499 1,383,941 202,187,275 1,157,750 1.7 0.1
png 215 215 77,909 13,385 819,778 443,815,127 6,551,794 0.6 0.0
psd 156 156 6,098,161 318,875 25,696,786 657,852,455 7,111 1.1 0.0
psp 68 67 2,913,965 164,864 13,461,247 79,354,648 444 5.0 0.0
raw 207 200 4,943,742 38,144 22,211,217 340,245,502 6,038 0.0 0.0
tif 188 178 2,174,293 178,288 9,322,608 536,980,180 6,512 0.8 0.0

Videos
avi 199 199 20,822,230 730,952 105,051,447 1,886,142,464 9,805 0.1 0.4
flv 34 34 25,612,283 3,670,220 83,269,828 911,348,494 332 0.0 0.0
mkv 206 206 250,121,103 109,239,726 351,135,887 1,994,939,880 2,406 0.1 0.2
mov 95 95 51,779,439 15,788,157 119,573,812 1,925,087,760 4,478 1.6 0.0
mp4 214 214 55,803,648 2,005,846 211,305,187 1,998,753,571 38,155 24 0.1
mpg 92 92 2,802,244 569,095 33,224,606 1,644,236,800 3,269 0.0 0.0
mts 8 7 168,426,360 113,362,944 191,510,208 1,893,931,008 1,747 0.0 0.0
wmv 206 206 4,187,920 398,973 47,347,382 1,892,176,290 27,382 0.0 0.0

Office
doc 214 214 480,189 43,520 9,447,633 1,000,000,000 15,666 0.7 0.0
docx 214 214 371,838 29,359 2,032,033 117,328,214 87,124 2.8 0.0
msg 213 213 28,180 4,823 111,153 4,486,144 36,296 0.7 0.0
odt 140 140 152,304 16,500 818,144 24,663,942 2,147 1.1 0.0
pdf 215 215 2,619,014 462,167 12,769,129 695,725,963 93,265 1.1 0.0
ppt 210 210 1,462,596 802,816 2,396,460 35,269,926 3,406 0.6 0.0
pptx 211 211 4,711,035 1,089,065 16,722,112 871,334,541 17,851 1.3 0.1
prf 119 118 15,741 8,405 101,644 3,145,728 3,156 0.2 0.0
pst 31 27 152,551,442 173,720,576 213,757,822 1,896,784,896 125 24 12.8
rtf 214 214 183,797 82,239 1,051,434 77,456,537 90,604 0.3 0.1
x1ls 207 207 252,638 67,072 642,497 15,325,184 9,891 0.1 0.0
x1sx 214 214 205,915 17,573 4,159,236 307,409,090 17,729 1.1 0.0

Databases
accdb 190 190 2,029,463 724,992 6,719,223 145,084,416 1,450 2.1 0.0
db 215 215 4,075,278 74,752 54,485,792 1,988,837,638 41,762 1.5 7.7
mdb 175 175 233,414 31,773 764,419 18,874,368 14,762 5.6 0.2
sqlite 212 212 782,992 65,536 7,712,433 454,340,608 8,245 1.8 9.6

Archives
7z 201 201 37,437,492 112,778 143,243,604 1,926,983,279 5,170 0.7 0.0
gz 213 213 243,467 10,277 7,615,496 816,336,896 84,665 1.7 0.0
rar 161 161 49,886,452 5,883,486 156,451,000 1,927,419,308 3,667 0.4 0.1
zip 217 217 18,503,962 168,076 102,922,058 1,988,366,193 67,884 0.3 0.0

Table A.10: Meta information per extension (categorised)
Gap #Files Gap #Files Gap #Files Gap #Files Gap # Files Gap #Files

20 3793

2! 2507

22 2408 24 1587 26 1346 28 300 210 78 212 20

23 2431 25 1083 27 421 2° 138 2! 43 213 7

Table B.11: In-order bi-fragmented gap sizes around powers of 2.

11

	Introduction
	Background
	Terminology
	Data storage and deletion on SSDs
	Fragmentation
	Degree of fragmentation

	Related Work
	Data collection and processing
	Results
	Fragmentation per MFT entry type
	Fragmentation per file extension
	Fragmentation in relation to file size
	Distribution of the number of fragments
	Gapsize distribution of bi-fragmented files
	Percentage of used volume space and file fragmentation
	Fragmentation per storage device
	Other extremes and curiosa

	Discussion
	Overall fragmentation rates
	Fragmentation per extension
	Implications for file carving
	Carving of NTFS-compressed and sparse files

	Conclusions
	Auxiliary data per extension
	Gapsizes of powers of two

