
Problem solved: a reliable, deterministic method for JPEG fragmentation point detection

Vincent van der Meera, Jeroen van den Bosb, Hugo Jonkerc, Laurent Dassena

aZuyd University of Applied Sciences, Heerlen, The Netherlands
bInfix Technologies, The Hague, The Netherlands

cOpen University of the Netherlands, Heerlen, The Netherlands

Abstract

Recovery of deleted JPEG files is severely hindered by fragmentation. Current state-of-the-art JPEG file recovery methods rely
on content-based approaches. That is, they consider whether a sequence of bytes translates into a consistent picture based on its
visual representation, treating fragmentation indirectly, with varying results. In contrast, in this paper, we focus on identifying
fragmentation points on bit-level, that is, identifying whether a candidate next block of bytes is a valid extension of the current
JPEG. Concretely, we extend, implement and exhaustively test a novel deterministic algorithm for finding fragmentation points in
JPEGs. Even in the worst case scenario, our implementation finds over 99.4% of fragmentation points within 4 kB – i.e., within the
standard block size on NTFS and exFAT file systems. As such, we consider the problem of detecting JPEG fragmentation points
solved.

Keywords: JPEG validation, file recovery, digital forensics

1. Introduction

Photos can contain crucial evidence in forensics. File recov-
ery (i.e., the reconstruction of deleted digital files) is an es-
sential forensic capability. By a significant margin, the JPEG
file format is the most widely used digital storage format for
photos (Hudson et al., 2018). Therefore, JPEG file recovery
is an important and ongoing field of research. Recovery of
JPEG files is severely hindered by file fragmentation. While
not all JPEG files represent photos, those that do are suffi-
ciently large (a few megabytes) that roughly ∼8% are likely to
be fragmented (van der Meer et al., 2021, Table 4) on NTFS file
systems. Exacerbating this problem is the fact that JPEG files
consist mostly of high-entropy data, without markers or check-
sums that can validate partial (nor full) integrity. This seems
to imply that there is hardly any relation between the bytes of
a JPEG file. Consequently, most existing literature on JPEG
file recovery has thus focused on one of two approaches. The
first focuses on recovering non-fragmented JPEG files based on
header and footer matching, for example, the works by Kar-
resand and Shahmehri (2008) or Fei and Abdullah (2020). The
second approach focuses on recovering any JPEG file using vi-
sual compatibility, such as the works by Li et al. (2011) or Tang
et al. (2016).

However, in our previous publication (van der Meer and
van den Bos, 2021) we showed that there are internal con-
sistency requirements for the high-entropy portion of a JPEG
file. We proposed a theoretical algorithm that would leverage
these consistency requirements to determine whether a block of
bytes, as stored on-disk, is a valid continuation of an initial part

∗Corresponding author
Email address: vincent.vandermeer@zuyd.nl (Vincent van der Meer)

of a JPEG file. While we showed feasibility, we not implement
our approach and therefore did not test efficacy.

Contributions. In this work, we expand upon, implement, and
measure efficacy of the algorithm introduced in our previous
publication (van der Meer and van den Bos, 2021). We imple-
mented a JPEG validator that reports the exact location where
the continuation of a JPEG bitstream (specifically within the
high-entropy coded data sections) becomes invalid by (1) Huff-
man code lookup errors and (2) quantization array overflow.
For the purpose of testing these validation methods, we gath-
ered a sizeable, relevant dataset of JPEG files, covering all vari-
ants of baseline and progressive JPEGs occurring in the real
world. The performance of our validator in detecting fragmen-
tation points is tested against these JPEGs. The results show
that our validator achieves phenomenal performance: for the
predominant encoding (baseline JPEGs), it achieves a success
rate of 99.997% in identifying a fragmentation point.

Availability. An open-source implementation of the algorithm
proposed in this paper is available for download from our
GitHub repository1. The JPEG datasets, as described in Sec-
tion 5.4, are also included in this repository. We have compiled
a comprehensive list of 230,157 JPEG image filenames used in
our validation process (see Section 5.1). Available as a text file
in the repository, this list aids in enhancing transparency and
facilitates the reproduction and validation of our research.

2. JPEG file format

The JPEG image file format is the predominant file format
for photos by a significant margin (Hudson et al., 2018). Since

1https://github.com/parsingdata/jpeg-fragments

Preprint submitted to DFRWS EU 2024 December 14, 2023

https://github.com/parsingdata/jpeg-fragments


Symbol Hex value Meaning

SOI FFD8 Start of Image
APP0 FFE0 JFIF metadata
APP1 FFE1 Exif metadata
DQT FFDB Define quantization table(s)
SOF0 FFC0 Start of frame, baseline DCT
SOF2 FFC1 Start of frame, progressive DCT
DHT FFC4 Define Huffman table(s)
DRI FFDD Define restart interval
SOS FFDA Start of scan
RSTn FFDn Restart (n ∈ {0, 1, ..., 7})
EOI FFD9 End of image

Table 1: Most important JPEG Markers

its introduction in 1992, it quickly became the de facto stan-
dard in many domains. The JPEG specification allows for 16
types of encoding of image data (SOF0–SOF15). In practice,
two types of encoding are used: baseline JPEGs (SOF0, Fig. 1)
and progressive JPEGs (SOF2, Fig. 2). Baseline JPEGs must
be encodable/decodable in a single scan of the image data. Pro-
gressive JPEGs require more than one scan.

A JPEG file consists of two types of data: metadata needed
for decoding, and image data (also called entropy coded data)
that is actually decoded when viewing an image. The metadata
specifies how the image should be decoded.

Markers. The JPEG format uses markers for structure. Mark-
ers are reserved two-byte values that may not be used for other
purposes. For example, there are markers for start/end of im-
age, type of encoding, metadata, etc. (see Table 1). By defini-
tion, each JPEG file starts with a start of image (SOI) marker
and ends with an end of image (EOI) marker. The start of scan
(SOS) marker indicates the start of an entropy coded data seg-
ment, and the first such marker thus is the separator between
header and content of a file. The header contains all information
needed for decoding such as information on how many color
channels an image has (part of start of frame (SOF) marker),
whether, and what type of chromatic subsampling is used (also
part of the SOF marker), what values should be used for quan-
tization (DQT marker), and compressed representations of the
Huffman tables (DHT marker) that should be used.

Decoding compressed image data. At the lowest level, the
JPEG format stores the values of each 8 × 8 block of pixels
in a Minimal Coded Unit (MCU). An MCU contains either
one (Y) or three (YCbCr) color channels. Each color channel
is described by a two-dimensional 8 × 8 data structure called
the quantization array (QA). The QA is stored as follows: the
lengths of the quantization values are Huffman-encoded. In ad-
dition, the decoded Huffman values also encode how many (if
any) zeroes must be placed in the quantization array before the
actual value. The actual values are stored directly in the bit-
stream.

Progressive encoding. Progressive JPEGs, as previously men-
tioned, mandate sequential scans since the image is constructed

Figure 1: Example JPEG baseline file structure

of multiple layers of image data, with each subsequent layer
adding additional image detail. The occurrence of markers
within the high-entropy coded data section of a progressive
JPEG differs compared to a baseline coded JPEG. Not only does
each layer start with a SOS marker, each layer can be accom-
panied by new Huffman tables, indicated by the presence of a
DHT marker.

Support for file recovery. In terms of file recovery, JPEG has
some major shortcomings. While it does have identifiable
markers, it lacks integrity checks (like CRC) or length fields
that encompass the image data. Additionally, its design prior-
itizes data storage optimization, meaning that image data has
high-entropy. By prioritizing compression over robustness, the
JPEG file format’s design severely complicates file recovery.

Figure 2: Example JPEG progressive file structure

3. Fragmentation point detection for JPEG

3.1. File fragmentation
When files are stored in a file system, they are stored on

zero2 or more blocks. Ideally, a file’s data is stored in-order
in consecutive blocks. When the file system is unable to do
so, the file becomes fragmented. In that case, the file’s data is
stored in multiple ranges of blocks. For example, a 2-block file
whose blocks are not stored in-order consecutively is already
fragmented.

Fragmentation point detection. In file recovery, sometimes a
file needs to be reconstructed from fragments that consists of
one or more consecutive blocks of data, found on a storage de-
vice. This is generally a difficult task, since the file system meta
data with the allocated blocks for that file is missing. Therefore,
a file carver uses a format-specific validator to parse candidate
blocks. If validation concludes successfully, the file is recon-
structed from the used blocks. If the validator returns an er-
ror, the reported location helps the carver determine in which
block the fragmentation occurred. The validator reports the last
known good location.

2Resident files are stored entirely within the Master File Table.

2



3.2. Validation using Huffman table lookup errors
The JPEG format employs Huffman encoding to store quan-

tization values of the MCU. The Huffman table needed for de-
coding is present in compressed form in the header of each
JPEG file. The compressed Huffman table does not contain the
Huffman codes, but instead contains the symbols and frequency
of each code-length. Each Huffman table must thus be recon-
structed during decoding (e.g., Table 2). Note that an optimal
Huffman table would allow any bit sequence to be decoded.
However, the last entry of each Huffman table in a JPEG file
always ends in a superfluous ’0’. As a consequence, not all
possible bit sequences are valid Huffman codes. For example,
in the example of Table 2, the bit sequence 11111 would re-
sult in a Huffman table lookup error. This should not occur in
a valid JPEG file. Therefore, any Huffman table lookup error
constitutes a validation error.

3.3. Validation using quantization array overflows
As discussed above, each quantization array describes one

color channel for 8 × 8 pixels. Therefore, each quantization
array must contain precisely 64 values.

When decoding JPEGs, Huffman table decoding and the fill-
ing of quantization arrays are interwoven. JPEG uses a mecha-
nism to add up to 15 zeroes to a given quantization array. De-
coding invalid data may therefore cause a quantization array
overflow. For example, if the first 60 values of a quantization
array are set, and the next decoded Huffman symbol implies 10
zeroes need to be added, this causes a quantization array over-
flow, which constitutes a JPEG validation error.

[For each color channel] (once for each matrix in the MCU), perform
the following steps:

1. set QAcounter to 1, b to empty bitstring.
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman
code length: validation error, report last known good location.

3. Convert b to symbol via DC Huffman table.
4. Interpret the symbol as integer and skip this amount of bits;

(re)set QAcounter to 1.
5. Until QAcounter is 64, perform the following steps:

5.1. Read bits from bitstream until the shortest valid Huffman
code is encountered
If not found: validation error, report last known good lo-
cation.

5.2. Use AC Huffman table to convert found code to symbol.
5.3. # Validate quantization array

Interpret the symbol:
5.3.1. If the symbol is 0x00: the quantization array is com-

plete, set QAcounter to 64, skip to next iteration.
5.3.2. If the symbol is 0xF0: add 16 to QAcounter.
5.3.3. For all other values, split symbol into upper and lower

nibble.
• Add int(upper nibble) + 1 to QAcounter
• skip int(lower nibble) number of bits in bitstream

5.4. If counter > 64: validation error, report last known good
location.

6. # Validation succeeded
return true

Code Symbol

0 00000101

10 00000100

110 00000110

1110 00000010

11110 00000011

Table 2: Example: reconstructed Huffman table

3.4. Algorithm for baseline JPEGs

The algorithm presented in the preceding column illustrates
how to leverage the two bit-level validation techniques to detect
fragmentation points in baseline JPEGs.

3.5. Validation of progressive JPEGs

Progressive JPEGs contain multiple Start-of-scan (SOS)
markers. Moreover, all progressive JPEGs use spectral selec-
tion encoding. This encoding method necessitates multiple
scans, each refining the image’s detail level. Spectral selection
affects how QA-overflow validation works. Lastly, progressive
JPEGs may also make use of successive approximation encod-
ing. Both encodings enable additional validation opportunities.

Spectral selection. Spectral selection only fills the quantization
array for a specific range of values, starting from the first value.
Each scan (indicated by a SOS-marker) adds a specific number
of values to the quantization array. The number of values to be
added is part of the SOS-marker. This alters the QA-overflow
validation method, since each SOS-marker determines the up-
per bound for QA-indices to be filled for that scan.

JPEG structure validation using SOS markers. Each SOS
marker must be present from the first bit following completion
of the previous scan. In addition, each next SOS marker must
cover QA-indices adjacent to the previously filled range. Vio-
lating either of these requirements constitutes a validation error.

Successive approximation. Successive approximation is a re-
finement of spectral selection. In successive approximation,
quantization values are stored per 8 bits. In the first scan (de-
noted as ‘DC-first’ or ‘AC-first’ in the validation algorithm), a
bit sequence of at least one bit (commonly 6 or 7 bits) are de-
coded. In the refinement scans, a single bit per quantization
value is added. This means that the decoded Huffman value
for a refinement scan must have a lower nibble with value ‘1’,
since the lower nibble of the decoded Huffman value determines
the number of bits to be read. A lower nibble with a different
value than ‘1’ in a refinement scan thus constitutes a (coefficient
length) validation error.

3



3.6. Algorithm for progressive JPEGs

The description here only shows the validation mechanisms
related to Huffman table lookup errors, quantization array size
overflow, and violations of the single-bit refinement used in suc-
cessive approximation. Interestingly, JPEGs need not be opti-
mally encoded. The specification itself leaves room for subop-
timal (or inefficient) use of Huffman encoding as well as sub-
optimal run-length encoding. Such inefficiencies are still valid
within the JPEG standard, and thus do not cause a validation
error.

The validation algorithm has four separate decoding phases.
Initial quantization values are set in the ’DC-first’ and AC-first’
phase, respectively. Progressive JPEGs that only use spec-
tral selection only use these two phases, the other two phases
are only used for JPEGs containing successive approximation
encoded values. More specifically, the ’DC-refine’ and ’AC-
refine’ phases add bits to an existing QA-value.

The resulting validation algorithm and its subalgorithms are
shown below and on the right.

Main algorithm
1. For each SOS-marker:

(a) Determine SOS-type & validate spectral selection range:
DC-first, DC-refine, AC-first, or AC-refine

(b) For all channels in this scan, for each MCU:
perform relevant validation case

2. # validation succeeded
return true

Case: DC-first
1. Set b to empty bitstring.
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman
code length: validation error, report last known good location.

3. Convert b to symbol via DC Huffman table.
4. Interpret the symbol as integer and skip this amount of bits;

Case: AC-first
1. Set QAcounter to start-of-spectral-selection, b to empty bitstring
2. while (b is not a valid Huffman code)

add next bit of bitstream to b
If no valid Huffman code found after maximum Huffman
code length: validation error, report last known good location.

3. # Validate quantization array
Interpret the symbol:
3.1. If the symbol is 0x00: the quantization array is complete,

skip to next iteration.
3.2. If the symbol is 0xF0: add 16 to QAcounter.
3.3. For all other values, split symbol into upper and lower nib-

ble.
• Add int(upper nibble) + 1 to QAcounter
• skip int(lower nibble) number of bits in bitstream

4. If QAcounter > end-of-spectral-selection: validation error, re-
port last known good location.

Case: DC-refine
1. skip one bit for each MCU.

Case: AC-refine
1. for QAcntr = SpectralSelection-start to SpectralSelection-end:

(a) while (b is not a valid Huffman code)
add next bit of bitstream to b
If no valid Huffman code found after maximum Huff-
man code length: validation error, report last known good
location.

(b) Split the symbol into a symbol into upper and lower nibble.
(c) # Check for coefficient length error

If the lower nibble is not 1:
validation error, report last known good location.

(d) Read one bit, add its value to the least significant position
at QAcntr.

(e) Set ZSKIP = upper nibble (i.e., #zeroes to be skipped)
If ZSKIP > zeroes available in spectral selection range:
validation error, report last known good location.

(f) Skip ZSKIP zeroes in the bitstream

3.7. Runtime-performance

Our algorithm, designed for integration with a file carver, is
not I/O-intensive. Compared to the tasks performed by a stan-
dard JPEG decoder, our implementation involves a subset of
these operations, primarily focusing on image validation rather
than display. Based on this, we anticipate that the algorithm
will not significantly impact the overall runtime performance
of a file carver.

4. Construction of a wide-coverage evaluation test set

To determine efficacy of these algorithms, we need a real
world, diverse set of JPEGs. There are various possible sources
for such a set, but not all are equally suitable. For instance, plat-
forms like Instagram or Imgur, which are image-centric social
media sites, could serve as potential sources for JPEGs How-
ever, these platforms tend to recompress and/or re-encode im-
ages in order to optimize storage and bandwidth. This leads
to little divergence in relation to used encoders and encoder-
settings. An alternative would be photo-sharing sites, such as
Flickr. Such sites tend to preserve the original input to avoid al-
tering the intended vision of the image. As such, the original in-
put encoder settings are more likely to be preserved. However,
such sites are typically used for high-resolution photos taken
by high-end equipment. This also leads to a bias in relation to
encoders and encoder-settings. The ideal source should offer a
wide range of encoders and/or encoder settings for JPEGs.

One suitable source for this is Wikipedia. Wikipedia requires
a very diverse set of images, from photos to maps to diagrams
of electrical wiring, the solar system, to geometric proofs, to
newspaper scans, etc. Succinctly put, any graphically repre-
sentable concept can be found on Wikipedia in order to transfer
knowledge about the concept. Moreover, Wikipedia is open to
contributions from anywhere in the world. This leads to the

4



expectation that a large variety of image creators for a large va-
riety of content can be found there, and thus that a large variety
of encoders would be used.

4.1. Collection & sanitisation

In order to collect JPEG files from Wikipedia, a crawler3 was
used with both wikipedia.org and wikimedia.org as start-
ing points, with a crawl depth of two. Only files with extension
.jpg or .jpeg (case insensitive) were collected, with a mini-
mal file size of 4097 bytes. 4 We collected 230,157 JPEG files
in January 2022. It is important to note that the media files
on Wikipedia are subject to various licenses, many of which
require attribution. Therefore, while our method of data collec-
tion can be replicated, sharing the entire set of collected images
directly is not feasible due to these attribution requirements.
To facilitate research transparency and reproducibility, the file-
names of all JPEG files in this dataset have been compiled and
are available in a text file within our GitHub repository.

Files that did not start or end with a valid JPEG marker (i.e.,
0xFFD8 or 0xFFD9) were removed. For bit-identical images,
only one image was kept in the dataset.

4.2. JPEG dataset characteristics

Table 3 shows characteristics of the collected dataset. As can
be seen, baseline JPEGs are by far the most frequently occur-
ring type of JPEGs.

Marker occurrence. Markers in the entropy-coded data can be
leveraged for validation. Progressive JPEG files contain addi-
tional SOS markers in the entropy-coded data. Both baseline
and progressive JPEG files may contain Restart Markers (RST)
in entropy-coded data. However, our data collection shows that
the rate of occurrence of these markers is rare. Only 0.6% of
the collected files are progressive, and only 1.0% of the files
contain Restart Markers.

Chromatic subsampling. Chromatic subsampling is an op-
tional JPEG feature that reduces the resolution of the chromi-
nance color-channels (Cb, Cr). This reduces the amount of
color information by a factor 2 (either horizontal or vertical
subsampling) or 4 (both horizontal and vertical subsampling).
Therefore, there are twice or even four times as many Huffman
table lookups (during decoding) for luminance (Y) compared
to a color channel (Cb, Cr). This would bias lookup errors to
occur more frequently in Huffman tables for the chrominance
channel. Nearly a quarter of all JPEGs in the dataset use a form
of chromatic subsampling (see Table 3). The most common
form is both horizontal and vertical subsampling.

3WFDownloader
4Smaller files fit into one default-sized NTFS block, which implies they

cannot be fragmented (in default settings). The default block size on exFAT
file systems varies with volume size, but is at least 4096 bytes, so the same
reasoning applies.

Description # files % of total

JPEG files in dataset 230,157 100.0%
Baseline JPEG (SOF0) 228,793 99.4%
Progressive JPEG (SOF2) 1,364 0.6%
– using spectral selection 397 0.2%
– using successive approximation 967 0.4%

JPEGs that include or use
Grayscale 26,359 11.5%
Restart markers 2,309 1.0%
Chromatic subsampling 53,128 23.1%
– horizontal subsampling 13,335 5.8%
– vertical subsampling 1,855 0.8%
– horizontal and vertical subsampling 37,937 16.5%

Table 3: JPEG dataset characteristics

4.3. Huffman code lengths

An important mechanism of validating JPEGs relies on Huff-
man table lookups (Sec. 3.2). If one or more of a JPEG’s Huff-
man tables have short maximum code-lengths, a random bit-
stream continuation is more likely to trigger a lookup valida-
tion error. Therefore, it is relevant to know what Huffman ta-
ble lengths occur in our dataset. The distribution of maximum
Huffman table code lengths is shown in two figures, in Figure 3
for Luminance-DC and AC, and in Figure 4 for Chrominance-
DC and AC.

2 4 6 8 10 12 14 16
0

10

20

30

40

50
Lum DC
Lum AC

Figure 3: Maximum HT code lengths for luminance-DC and luminance-AC

5. Evaluation design

5.1. Validating the validator

We deliberately aimed to collect a dataset of JPEGs that
would show a broad diversity in how the file format is used.
Even if these violate the official JPEG specification, these files
are in use in the real world and therefore we hold that, ideally,
all these files should be correctly processed. We fed the valida-
tor process each file in the dataset individually. Our validator

5



2 4 6 8 10 12 14 16
0

10

20

30

40

50
Chro DC
Chro AC

Figure 4: Maximum HT code lengths for chrominance DC and chrominance
AC

(at the time of writing) is able to correctly process 230,149 of
230,157 files. The 8 remaining files exhibit rarely occurring de-
viations of the JPEG specification. If desired, support for these
deviations can still be added in the future.

5.2. Choosing fragmentation points

To test the validator’s efficacy, we will feed it a stream of bits
from a JPEG file from the dataset, and then suddenly switch to
a random bitstream.

There are three main criteria for determining at which point
we want to break the input stream, which simulates a frag-
mentation point. First, we will only fragment JPEGs after the
header, since our validation mechanism is only designed to val-
idate high-entropy coded data sections. The second criteria is
to align with the most frequently occurring block size. The de-
fault block size on both exFAT and (modern) NTFS file systems
is at least 4 kB.5 Lastly, for robustness, we opt to measure vali-
dation performance at two distinct fragmentation points. These
criteria led us to test fragmentation after 16 kB and after 32 kB.

5.3. Post-fragmentation point data

An important experiment design consideration is what data
is presented after a fragmentation point. JPEG’s entropy-coded
data exhibits high entropy. Various types of file formats tend
to use compression, including audio, video, and office file for-
mats. Compressed data is, by definition, high-entropy data and
would resemble random data. Therefore, we generate and inject
random data after the fragmentation point.

5.4. Experiment goals

The main goal of our experiments is to determine efficacy of
the validation algorithms described in Sec. 3.4 and 3.6. That is,

5https://support.microsoft.com/en-us/topic/default-clust

er-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-7

3169155af95

how well do they perform in identifying fragmentation points?
We are interested in (1) how well they perform against the entire
set, but also (2) the contribution of each validation mechanism
to the validation result. Lastly, we want to evaluate (3) how well
validation mechanisms perform in extreme scenarios.

1. Benchmarking validation success. We evaluate our imple-
mentation of the baseline validation algorithm, as introduced
in our previous study, using the SOF0-set of baseline JPEGs.
Additionally, we evaluate our extensions for progressive val-
idation using the SOF2-set of progressive JPEGs. Since our
dataset contains an order of magnitude more baseline than pro-
gressive JPEGs, the SOF0 set is 10× as large as the SOF2-
set. We select subsets of 1,000 and 100 JPEGs, respectively,
from the baseline and progressive sets, of at least 100 kB. Base-
line JPEGs may optionally contain any of the following: restart
markers, gray scale, or chromatic subsampled JPEGs. Progres-
sive JPEGs may, in addition, also optionally use successive ap-
proximation.

2. Benchmarking the contribution of each validation mecha-
nism. To this end, we keep track of which validation mech-
anism raised the error for all test-sets. We include the new
coefficient length mechanism (Sec. 3.5), the various variants
of Huffman lookup table and QA-overflow mechanisms, and
existing JPEG file marker mechanisms. It’s important to note
that validation halts upon detecting the first failure, as any sub-
sequent bits would be incorrect, rendering further validation
pointless. These tests thus show which mechanisms trigger the
soonest, not how well a validation mechanism performs. The
latter would require a different kind of experiment, one where
other validation mechanisms are excluded.

3. Benchmarking extreme cases. We consider 3 extreme cases
for the validation mechanisms: HT-max, consisting of 100
JPEGs with the longest Huffman table codes from the data set;
HT-min, consisting of 100 JPEGs with the shortest Huffman
table codes; RST, consisting of 100 JPEGs containing restart
markers.

The length of the Huffman table codes impacts the likelihood
of a lookup error. Longer code length means more bit sequences
are valid Huffman symbols. This implies that the longer the
code length, the less likely a bit sequence from elsewhere trig-
gers a lookup error. The longest code lengths thus constitute
a worst-case scenario for this validation mechanism (HT-max
set). Conversely, the shortest code lengths constitute a best-
case scenario (HT-min set). Lastly, the RST-set is created to
test RST-marker validation. Although restart markers are only
present in 1.0% of all JPEG files in the dataset (Table 3), RST-
markers are one of the few marker-based validation mechanism
usable within the entropy-coded data sections (aside from SOS
markers in progressive JPEGs).

5.5. Execution

Both the SOF0- and SOF2-sets underwent tests at two frag-
mentation offsets: 16 kB and 32 kB. This approach ensures any
validation behavior unique to the 16 kB fragmentation point

6

https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95
https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95
https://support.microsoft.com/en-us/topic/default-cluster-size-for-ntfs-fat-and-exfat-9772e6f1-e31a-00d7-e18f-73169155af95


will be revealed. For the other data sets, we conducted the tests
using a single fragmentation offset, specifically at 16 kB from
the start of the data, as opposed to the dual 16 kB and 32 kB
offsets used for the SOF0- and SOF2-sets. Each file is tested
100 times, with each of these 100 tests performed with different
random data after the fragmentation point. The number of tests
performed per fragmentation offset is therefore 100,000 for the
SOF0 set and 10,000 each for the SOF2, HT-max, HT-min, and
RST-sets.

6. Results

The evaluation results are shown in Tables 4– 11.

6.1. Overall performance

Table 4 shows the performance of the algorithms in terms of
correctly identifying the fragmentation point within a number
of bytes. In Table 5, we present distribution of the location (in
bytes) at which the validation algorithms detected the fragmen-
tation points in the evaluation. Negative offsets indicate that the
last known good location precedes the fragmentation point.

SOF0 frag. point at SOF2 frag. point at

bytes 16 kB 32 kB 16 kB 32 kB

< 512 88.854% 88.878% 96.97% 93.15%
< 1,024 97.566% 97.607% 98.72% 97.28%
< 2,048 99.849% 99.853% 99.59% 99.21%
< 4,096 99.997% 99.999% 99.78% 99.92%
< 8,192 100.000% 100.000% 99.92% 100.00%
< 16,384 100.000% 100.000% 100.00% 100.00%
≥ 16,384 100.000% 100.000% 100.00% 100.00%

Table 4: Fragmentation point detection within given number of bytes

SOF0 frag. point at SOF2 frag. point at

16 kB 32 kB 16 kB 32 kB

Minimum -3 -2 -1 -25
25th percentile 52 51 8 12
50th percentile (median) 131 129 25 36
75th percentile 285 284 77 124
95th percentile 729 729 340 684
99th percentile 1,272 1,255 1,393 1,963
99.9th percentile 2,193 2,193 5,712 3,773
Maximum 5,675 4,941 11,076 5,810

Table 5: Number of bytes from frag. point till validation error (distribution)

6.2. Contributions of individual validation mechanisms

Tables 6 and 7 show the contribution of each validation
mechanism to fragmentation point detection. The results are
split into two tables, since the validation mechanisms needed to
be adapted, albeit slightly, for progressive JPEGs. In particu-
lar, Huffman encoding validation is performed in four distinct

SOF0 validation type frag. point at

16 kB 32 kB

Huffman-DC 25.944% 25.801%
Huffman-AC 0.893% 0.870%
QA-overflow 72.741% 72.979%
Restart marker 0.422% 0.350%
Start of scan marker 0.000% 0.000%
End of file marker 0.000% 0.000%

Table 6: Baseline (SOF0): Validation per validation type

SOF2 validation type frag. point at

16 kB 32 kB

Huffman-DC First 47.87% 20.00%
Huffman-AC First 1.47% 1.07%
Huffman-DC Refine 0.00% 0.00%
Huffman-AC Refine 0.00% 0.43%
Coefficient length 0.00% 0.00%
QA-overflow 49.55% 76.13%
Restart marker 0.00% 0.00%
Start of scan marker 1.11% 2.37%
End of file marker 0.00% 0.00%

Table 7: Progressive (SOF2): Validation per validation-type

phases for progressive JPEGs (Sec. 3.6). Note that the Coeffi-
cient length validation mechanism did not trigger once in our
experiments.

In addition, Table 8 splits the results per validation type and
per channel (being luminance (Y), blueness (Cb), and redness
(Cr) from the YCbCr color space).

Validation type SOF0 frag. point at

16 kB 32 kB

Huffman-DC 25.944% 25.801%
– luminance (Y) 14.143% 13.956%
– blueness (Cb) 6.070% 6.108%
– redness (Cr) 5.731% 5.737%

Huffman-AC 0.893% 0.870%
– luminance 0.245% 0.282%
– blueness 0.478% 0.451%
– redness 0.170% 0.137%

QA-overflow 72.741% 72.979%
– luminance 68.910% 69.098%
– blueness 1.948% 1.941%
– redness 1.883% 1.940%

Table 8: Baseline (SOF0): Validation types per color channel

6.3. Validation performance for extreme cases
Tables 9, 10, and 11, are the counterparts to Tables 4, 5,

and 6, respectively. These tables present the performance of the
validation algorithm for extreme cases (HT-max,HT-min, and
RST-sets).

7



7. Analysis of the results

7.1. Overall performance

Tables 4 and 5 show within how many bytes fragmentation
was detected. Table 4 present this data in number of bytes used
in block sizes on file systems; Table 5 shows the distribution of
the number of bytes from the fragmentation point till a valida-
tion error occurred.

First, we consider the position of the fragmentation point:
16 kB vs. 32 kB. In a rare few SOF2 cases, fragmentation is
not detected within 8,192 bytes from the 32 kB fragmentation
point (it always is for the 16 kB point). However, the distri-
butions associated with the two fragmentation points are rather
similar, and differences in validation performance are tiny. We
therefore conclude that no special validation behaviour should
be expected at the 16 kB point.

Secondly, we examine performance on the level of file sys-
tem blocks. In Table 4, we include the full range of allowed
block sizes for completeness sake. The default block size on
NTFS volumes is 4 kB; on exFAT volumes, 4 kB is the min-
imum size.6 The main takeaway from the table then is that,
for both SOF0 and SOF2 JPEGs, our validator is all but certain
to determine fragmentation occurred within the first file sys-
tem block following the fragmentation point. Moreover, the
validation mechanism is fully deterministic. These two factors
combined enable file carvers to use more efficient search strate-
gies, since there is next to no uncertainty in the results of the
validation mechanism.

Lastly we consider the distribution of the amount of bytes
after the fragmentation point before a validation error is trig-
gered. In Table 5, we see that the last known good location can
occur before the fragmentation point. This can happen when
JPEG-markers or Huffman table values start close to the frag-
mentation point. Such cases may end up not continuing / ter-
minating correctly after the fragmentation point, triggering the
validation error. The table also shows that the distributions are
rather skewed. The 95th and 99th percentiles are within 2 kB
from the fragmentation point, and even the 99.9th percentile for
SOF0 JPEGs (the most frequently occurring type of JPEGs in
our dataset) is slightly less than half the maximum value found.

6For exFAT volumes larger than 256 MB, the block size is at least 32 kB.

bytes HT-max HT-min RST

< 512 79.74% 95.84% 84.20%
< 1,024 95.21% 99.72% 96.87%
< 2,048 98.81% 100.00% 99.89%
< 4,096 99.41% 100.00% 100.00%
< 8,192 99.74% 100.00% 100.00%
< 16,384 99.90% 100.00% 100.00%
< 32,768 100.00% 100.00% 100.00%
≥ 32,768 100.00% 100.00% 100.00%

Table 9: Fragmentation point detection within given number of bytes for HT-
max, HT-min, and RST-sets

HT-max HT-min RST

Minimum -1 -1 0
25th percentile 94 41 78
50th percentile (median) 208 102 175
75th percentile 418 206 359
95th percentile 996 481 871
99th percentile 2,468 758 1,312
99.9th percentile 16,253 1,344 2,049
Maximum 32,766 1,621 2,705

Table 10: Number of bytes from frag. point till validation error (distribution)

Validation type HT-max HT-min RST

Huffman-DC 5.61% 28.24% 10.91%
Huffman-AC 0.34% 0.93% 0.36%
QA-overflow 94.03% 70.83% 58.92%
Restart marker 0.00% 0.00% 29.81%
Start of scan marker 0.00% 0.00% 0.00%
End of file marker 0.02% 0.00% 0.00%

Table 11: Validation types for HT-max-, HT-min-, and RST-set

7.2. Contribution of individual validation mechanisms

In our previous study where we proposed the validation al-
gorithm for SOF0 JPEGs, we hypothesized on the use of quan-
tization array overflows that they “may sometimes yield a vali-
dation error”. Indeed they do: In Tables 6 and 7, we see that the
QA-overflow mechanism triggers first in ∼73% of SOF0 cases
and SOF2 cases with a 32 kB fragmentation point.

Interestingly, the SOF2 set at the 16 kB fragmentation point
is an outlier. In this case, the Huffman-DC First validation
mechanism shows unexpected strong performance. This may
be linked to properties of progressive JPEGs. In particular, we
recall that progressive JPEGs contain multiple scans of varying
length, each of which allows the use of new Huffman tables.
We suspect that the fact that Huffman tables may be replaced
in progressive JPEGs is part of the reason, but finding a full
explanation will require further experimentation.

The difference between the performance of the Huffman-DC
and Huffman-AC mechanisms are explained by the fact that
DC-tables have a maximum length of 11, whereas the AC-
tables have a maximum length of 16. Amplifying this point,
Figures 3 and 4 show that the DC-max lengths often are much
shorter than their theoretical maximum length compared to their
AC counterparts.

When evaluating the results per color-channel (Table 8), we
see that validation errors are most frequently detected in the
luminance channel. A factor that plays a role is chromatic sub-
sampling. First, chromatic subsampling is relatively common
(23.1% of SOF0+SOF2 JPEGs). Second, chromatic subsam-
pling reduces the amount of chromatic data (compared to lumi-
nance data) by either a factor of 2 or a factor of 4. The number
of Huffman table lookups for chrominance are thus reduced by
the same factor.

When considering the QA-overflow mechanism, we see
an even more dominant result for the luminance channel.

8



This is not surprising: chrominance is often much more
compressed than luminance in the quantization tables (see
e.g., ITU/CCIT/JPEG (1992, Table K.1, K.2)). Chrominance
quantization arrays therefore typically contain significantly less
non-zero values than luminance arrays. They are therefore
more likely to contain a “fill out with zeroes” command, which
fills out the quantization array completely and correctly, thereby
avoiding triggering a QA-overflow.

7.3. Validation performance for extreme cases

The HT-max set represents a worst-case scenario for
Huffman-based validation mechanisms. Validation for this set
is indeed significantly hindered, as shown in Tables 9, and 10.
Table 11 shows clearly that the otherwise so reliable Huffman-
DC validation mechanism is kneecapped by this set. In several
test cases, the End of File marker mechanism was even trig-
gered before any other validation mechanism. This implies that
the entire (fragmented) bitstream was considered valid, except
only for the absence of an End of File marker at the correct bit.

Conversely the HT-min set constitutes a best-case scenario
for this mechanism. The distribution of number of bytes before
a validation error was triggered is only slightly better than for
the SOF0 set (Table 5 vs. Table 10). The performance of the
Huffman-DC mechanism is only slightly better in this best-case
scenario than for the SOF0 set (Table 6 vs. Table 11). Appar-
ently, the common case is thus not far off from the best-case
scenario.

Table 11 shows that ∼30% of all validation errors in the RST-
set are due to the RST validation mechanism. Even in a dataset
where all files contain restart markers, the QA-overflow mech-
anism remains the dominant validation mechanism.

8. Related work

Since the early 2000s, the recovery of deleted computer files
has been a topic of extensive research, as highlighted by Pal
and Memon (2009). Recovery strategies primarily fall into two
main categories: file structure and content-based approaches,
though there are other methods and combinations of these
methods as well.

JPEG file structure. Research on recovering JPEG files often
rely on the identification of JPEG markers. The work by Mo-
hamad and Deris (2009) focuses on the Define Huffman Table
(DHT) marker in a JPEG files. By analyzing the length fields
of the DHT marker, they determined how to validate DHT data,
highlighting fragmentation points if the subsequent data fails
this validation. The effectiveness of this method hinges on the
frequency of fragmentation within the JPEG’s DHT section.

In a study on thumbnail carving using image pattern match-
ing, Abdullah et al. (2013) use the fact that each JPEG starts
and ends with a Start of image (SOI) and End of image marker
(EOI). Thumbnails, smaller versions of the original picture,
found within the JPEG header, also use these markers. There-
fore, a JPEG might house multiple SOI/EOI pairs. When tested
on the DFRWS 2006 and 2007 datasets, their file carver flagged

4 files incorrectly as thumbnails but surpassed a benchmark al-
gorithm, recovering 31 compared to the latter’s 28 files.

In their work, Fei and Abdullah (2020) introduced a file
carver tailored for the recovery of in-order fragmented JPEGs,
using the file’s structure. When tested on the DFRWS 2006
dataset, this carver successfully retrieved 8 of the 12 JPEG im-
ages.

Content-based approach. The recovery of JPEG files can also
be approached through analyzing the visual representation of
its data—a content-based strategy. Most studies interpreting
potential JPEG image data often incorporate knowledge of the
JPEG file structure to optimize their analyses. Memon and Pal
(2006) focus on file fragment classification and present tech-
niques for image reconstruction. Using a greedy search al-
gorithm, the sum of differences metric outperformed a pixel
matching strategy for file recovery purposes. Li et al. (2011)
delve into artifacts emerging from fragmented or corrupted
data. Notably, they highlight the DC-values, which are delta
encoded, as indicators of sudden color shifts. Furthermore, they
demonstrate that the distribution of AC-values can signal errors
in JPEG data. Uzun and Sencar (2015) propose a method to
infer Huffman tables, subsampling ratios, and quantization val-
ues for dealing with a missing JPEG header. They analyzed
statistics from photos uploaded to Flickr to determine common
values for JPEG decoding metadata. Given that 99.5% of the
Flickr dataset was encoded with default Huffman tables, their
method offers a reliable way to discern the remaining decoder
settings for JPEG fragments. Birmingham et al. (2017) lever-
age the embedded thumbnail within the JPEG header to pre-
dict the primary image’s characteristics. By applying a prob-
abilistic model centered on thumbnail affinity, they showcase
this method’s capacity to pinpoint invalid JPEG data.

Recovery related to metadata. Metadata may be derived from
image data, and be used for image identification. In their re-
search, Thai et al. (2017) proposed a method to estimate quan-
tization steps for an image originally compressed as JPEG but
later saved in a lossless format. Through their analysis, they
demonstrated that a fingerprint technique could suggest poten-
tial true quantization steps, achieving over 99% identification
accuracy on grayscale images from the Dresden database (Gloe
and Böhme, 2010).

Unlike traditional digital cameras, smartphones frequently
undergo software updates and setting modifications. In a com-
prehensive study on Apple smartphones, Mullan et al. (2019)
explored how evolving software might influence source identi-
fication. Using machine learning, they devised classifications
from EXIF data and quantization matrices. Their findings re-
veal that while EXIF headers and JPEG quantization table val-
ues can effectively differentiate specific apps or OS versions,
identifying images from smartphones proves more challenging
than from standard digital cameras.

Statistics oriented. Another perspective on JPEG recovery in-
volves statistical analysis. Kadir et al. (2015) employed statisti-
cal byte frequency analysis to distinguish groups of JPEG frag-
ments, noting that each image exhibits distinct characteristics.

9



Their study on 4 JPEG files indicated that byte frequency anal-
ysis unveiled multiple unique patterns. Taking a similar route,
Tang et al. (2016) introduced a novel similarity metric, the Co-
herence of Euclidean Distance (CED), to determine if two data
blocks belong to the same JPEG. Their results showed the CED
algorithm outshining the Adriot Photo Forensics (APF) in file
recovery. For 3-piece JPEGS, CED recovered 96 out of 109
files, whereas APF managed 66. For 4-piece JPEGS, CED re-
trieved 61 out of 75, with APF securing only 32. Lastly, Azhan
et al. (2022) developed the Error Level Analysis technique to
pinpoint the distinct signature of 8x8-pixel JPEG blocks. Their
tests on 21 JPEG images demonstrated the uniqueness of each
block.

Camera sensor information. Each camera’s sensor introduces
unique noise to an image. This sensor noise can determine
if an image originated from a specific camera (Lukás et al.,
2006). Building on this concept, Durmus et al. (2017) demon-
strated how JPEG fragments can be both attributed to a partic-
ular camera and pinpointed to their location within an image,
assuming the originating camera is known. To verify fragment
correctness, the researchers employed Sum-of-Differences and
Histogram Differences. In tests, their method achieved a true
positive rate of 94.2%, correctly identifying 21,713 out of
23,040 fragments. In a subsequent study, Durmus et al. (2019)
noted the limitations of their earlier work, especially its poten-
tial weaknesses under real-world conditions due to overlooked
brightness and color artifacts. To address this, they introduced a
compatibility metric for fragment matching and subsequent im-
age stitching. They tested their approach on 2,000 images from
a single camera, all converted to JPEG with identical quality
settings. Results showed a 52.4% correct fragment identifica-
tion rate for JPEGs at a quality factor of 90, and a 42.0% iden-
tification rate for those at 80.

JPEG file carvers (other). de Bock and de Smet (2016) pre-
sented a novel file carving approach, implemented in the tool
JPGcarve, which employs an external decoder library (libjpeg-
turbo) as a validation mechanism for the JPEG data. While vali-
dating JPEG data, the decoder either processes it successfully or
fails, indicating a fragmentation point. The file carver itself in-
cludes support for single- and multifragment file recovery, and
search space reduction techniques. In tests across six datasets,
JPEGcarve successfully recovered all multi-fragmented JPEGs,
totaling 46 images.

Further advancing file carving methods, Ali and Mo-
hamad (2021) introduced RX myKarve, combining the Ex-
treme Learning Machine and JPEG structure validation. This
dual approach classifies file fragments to distinguish between
JPEG and non-JPEG fragments. Subsequent structure-based
carving aids in JPEG reconstruction. The authors highlight its
efficacy, noting the recovery of all 19 images from the DFRWS
2006 dataset and 18 from the DFRWS 2007 dataset.

Generic file recovery. Not all JPEG recovery techniques are
exclusive to the JPEG file format. Generic file recovery ap-
proaches can sometimes be applicable to JPEG. For example,

Ying and Thing (2010) posed file fragment reconstruction as
a graph-theoretic challenge. In a test involving 10 files, their
method surpassed a brute-force technique, successfully restor-
ing all files to their original state.

In a study on hash-based file carving, Garfinkel and McCar-
rin (2015) introduce a modified whole file hashing approach.
While the hash value of known files can identify intact files, this
method struggles with fragmented, altered, or incomplete files.
With their hash-based carving technique, centered on individual
data blocks of a target file and leveraging a target hash database,
the authors demonstrate the feasibility of this approach.

Leveraging Convolutional Neural Networks (CNN), Ghaleb
et al. (2023) unveil a light-weight file fragment classification
model. They report enhanced time efficiency and comparable
accuracy to earlier CNNs, achieving 79% accuracy on the FFT-
75 dataset. However, the team echoes prior findings, pointing
out the challenge in classifying high-entropy file fragments due
to their lack of distinguishable statistical patterns.

9. Conclusion

We implemented the algorithm for fragmentation point de-
tection in baseline JPEGs, initially introduced in our previous
publication (van der Meer and van den Bos, 2021). Addition-
ally, we have adapted this algorithm to accommodate progres-
sive JPEGs. To rigorously evaluate our validator, we assembled
a comprehensive test set comprising over 230,000 JPEG files by
scraping WikiMedia. This test set encompassed a diverse range
of variations in JPEG files, including differences in cameras,
encoders, and encoder settings. We tested our validator thor-
oughly, in different scenarios where each JPEG file was tested
100 times, with different random bitstreams following the frag-
mentation point. For each test scenario, we focused on specific
JPEG properties and specific fragmentation points. Of all the
validation mechanisms, the QA-overflow most often was the
mechanism that triggered first.

Considering the combined performance of all validation
mechanisms, in the worst case scenario, our implementation
has over 99.4% probability of correctly invalidating an incorrect
bitstream within 4096 bytes of the fragmentation point. For the
most common case of baseline JPEGs, the validator achieves
over 99.99%. These results are, frankly, astounding – espe-
cially given the diversity and quantity of the test set. Therefore,
we consider the problem of finding JPEG fragmentation points
solved in practice.

Future Work. The presented algorithms allow recovery of frag-
mented high-entropy data for the JPEG file format. The im-
pressive success rate invites investigating the applicability of
bit-level validation as a fragmentation point detection mecha-
nism for other file formats laden with significant amounts of
high-entropy data.

Secondly, we are currently in the process of incorporating the
JPEG validator into a novel file carving framework.

Acknowledgements.. Van der Meer was supported by the
Netherlands Organisation for Scientific Research (NWO)
through Doctoral Grant for Teachers number 023.012.047.

10



References

Abdullah, N.A., Ibrahim, R., Mohamad, K.M., 2013. Carving thumbnail/s and
embedded jpeg files using image pattern matching. Journal of Software
Engineering and Applications 6, 62.

Ali, R.R., Mohamad, K.M., 2021. Rx mykarve carving framework for re-
assembling complex fragmentations of jpeg images. Journal of King Saud
University-Computer and Information Sciences 33, 21–32.

Azhan, N.A.N., Ikuesan, R.A., Razak, S.A., Kebande, V.R., 2022. Error level
analysis technique for identifying jpeg block unique signature for digital
forensic analysis. Electronics 11, 1468.

Birmingham, B., Farrugia, R.A., Vella, M., 2017. Using thumbnail affinity for
fragmentation point detection of JPEG files, in: 17th International Confer-
ence on Smart Technologies (IEEE EUROCON), IEEE. pp. 3–8.

de Bock, J., de Smet, P., 2016. Jpgcarve: An advanced tool for automated re-
covery of fragmented JPEG files. IEEE Transactions on Information Foren-
sics and Security 11, 19–34.

Durmus, E., Korus, P., Memon, N.D., 2019. Every shred helps: Assembling
evidence from orphaned JPEG fragments. IEEE Trans. Inf. Forensics Secur.
14, 2372–2386.

Durmus, E., Mohanty, M., Taspinar, S., Uzun, E., Memon, N.D., 2017. Image
carving with missing headers and missing fragments, in: 2017 IEEE Work-
shop on Information Forensics and Security, WIFS 2017, Rennes, France,
December 4-7, 2017, IEEE. pp. 1–6.

Fei, T.K., Abdullah, N.A., 2020. Data carving linearly fragmented jpeg us-
ing file structured based technique. Applied Information Technology And
Computer Science 1, 173–180.

Garfinkel, S.L., McCarrin, M., 2015. Hash-based carving: Searching media for
complete files and file fragments with sector hashing and hashdb. Digital
Investigations 14 Supplement 1, S95–S105.

Ghaleb, M., Saaim, K.M., Felemban, M., Alsaleh, S., Almulhem, A., 2023. File
fragment classification using light-weight convolutional neural networks.
CoRR abs/2305.00656.

Gloe, T., Böhme, R., 2010. The dresden image database for benchmarking
digital image forensics. Journal of Digital Forensic Practice 3, 150–159.

Hudson, G., Léger, A., Niss, B., Sebestyén, I., Vaaben, J., 2018. JPEG-1 stan-
dard 25 years: past, present, and future reasons for a success. Journal of
Electronic Imaging 27, 040901.

ITU/CCIT/JPEG, 1992. Recommendation T.81: Digital Compression and Cod-
ing of Continuous-Tone Still Images - Requirements and Guidelines. Tech-
nical Report. International Telecommunication Union.

Kadir, N.F.A., Abd Razak, S., Chizari, H., 2015. Identification of fragmented
jpeg files in the absence of file systems, in: 2015 IEEE Conference on Open
Systems (ICOS), IEEE. pp. 1–6.

Karresand, M., Shahmehri, N., 2008. Reassembly of fragmented jpeg images
containing restart markers, in: 2008 European Conference on Computer
Network Defense, IEEE. pp. 25–32.

Li, Q., Sahin, B., Chang, E., Thing, V.L.L., 2011. Content based JPEG frag-
mentation point detection, in: IEEE International Conference on Multimedia
and Expo (ICME), IEEE. pp. 1–6.

Lukás, J., Fridrich, J.J., Goljan, M., 2006. Digital camera identification from
sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1, 205–214.

van der Meer, V., van den Bos, J., 2021. JPEG file fragmentation point detec-
tion using huffman code and quantization array validation, in: ARES 2021:
The 16th International Conference on Availability, Reliability and Security,
Vienna, Austria, August 17-20, 2021, ACM. pp. 46:1–46:7.

van der Meer, V., Jonker, H., van den Bos, J., 2021. A contemporary inves-
tigation of ntfs file fragmentation. Forensic Science International: Digital
Investigation 38, 301125.

Memon, N.D., Pal, A., 2006. Automated reassembly of file fragmented images
using greedy algorithms. IEEE Transactions on Image Processing 15, 385–
393.

Mohamad, K.M., Deris, M.M., 2009. Fragmentation point detection of jpeg im-
ages at dht using validator, in: First International Conference on Future Gen-
eration Information Technology (FGIT), Springer Berlin Heidelberg, Berlin,
Heidelberg. pp. 173–180.

Mullan, P., Riess, C., Freiling, F., 2019. Forensic source identification using
jpeg image headers: The case of smartphones. Digital Investigation 28,
S68–S76.

Pal, A., Memon, N., 2009. The evolution of file carving. IEEE Signal Process-
ing Magazine 26, 59–71.

Tang, Y., Fang, J., Chow, K., Yiu, S., Xu, J., Feng, B., Li, Q., Han, Q., 2016.
Recovery of heavily fragmented jpeg files. Digital Investigation 18, S108–
S117.

Thai, T.H., Cogranne, R., Retraint, F., Doan, T., 2017. JPEG quantization step
estimation and its applications to digital image forensics. IEEE Transactions
on Information Forensics and Security 12, 123–133.

Uzun, E., Sencar, H.T., 2015. Carving orphaned JPEG file fragments. IEEE
Transactions on Information Forensics and Security 10, 1549–1563.

Ying, H., Thing, V.L.L., 2010. A novel inequality-based fragmented file carving
technique, in: Third International ICST Conference, e-Forensics, Springer.
pp. 28–39.

11


	Introduction
	JPEG file format
	Fragmentation point detection for JPEG
	File fragmentation
	Validation using Huffman table lookup errors
	Validation using quantization array overflows
	Algorithm for baseline JPEGs
	Validation of progressive JPEGs
	Algorithm for progressive JPEGs
	Runtime-performance

	Construction of a wide-coverage evaluation test set
	Collection & sanitisation
	JPEG dataset characteristics
	Huffman code lengths

	Evaluation design
	Validating the validator
	Choosing fragmentation points
	Post-fragmentation point data
	Experiment goals
	Execution

	Results
	Overall performance
	Contributions of individual validation mechanisms
	Validation performance for extreme cases

	Analysis of the results
	Overall performance
	Contribution of individual validation mechanisms
	Validation performance for extreme cases

	Related work
	Conclusion

