
Faculty of Sciences, Technology and
Communication (FSTC)

Bachelor in Computer Science

SpyDroid

Student ID: 0090551807
Student Name: Ferreira Coelho Luis Filipe

Email: luis.ferreira.002@student.uni.lu

Local Supervisor:
Dr. Ir. Hugo Jonker

Academic Supervisor:
Prof. Dr. Sjouke Mauw

Local Establishement:
University of Luxembourg

Faculty of Sciences, Technology and Communication (FSTC)
6, rue Richard Coudenhove-Kalergi

L-1359 Luxembourg

December 28, 2012

Summary

English
This document aims to describe the context and the whole process I took
with this research project done in the university. In addition it explains what
path I decide to take to achieve it.

French
Ce document a pour but de décrire le contexte et toute la démarche que j’ai
dû entreprendre pour réaliser ce projet de recherche a l’université. De plus
il explique quel solution j’ai décidé d’utiliser pour le réaliser.

General Terms

security, information

Keywords

smartphones, mobile phones, sensors, accelerometer, android, information
leakage, security

1

Abstract

Nowadays cell phones are more and more equipped with new and modern
sensors, ranging from a 3-axis accelerometer to a barometic pressure sensor.
These sensors enable phones to react to their environment, improving usabil-
ity. They are able to help us with ease with our daily life and today most
people can’t imagine a life without their phone. But what if those “smart-
phones” with their impressive range of sensors is used to spy on its user?
The goal of this thesisis to apply the work of Verma et al. on turning Apple’s
iPhone into a keyboard spying device to the popular Android framework. We
show that: 1) a stand-alone application, running only on the phone, lacks the
processing power to duplicate their results; 2) that the rate at which sensor
data is made available via the Android framework is insufficient to duplicate
these results; 3) that this rate cannot be improved by going to the lower JNI
layer; 4) that even accessing the linux kernel directly also not possible is.

Declaration of Honesty

I, the undersigned , state that this thesis is entirely my work and no part
has been copied from another person or from other sources.

Signature

1

Appreciation

Hereby i want to thank some people for their support in my Bachelor Thesis

For Yann le Corre
Just wanted to write you a note to thank you very much for your assistance
in correcting and helping me with this project and some of my problems.
Problems that would take me hours you solved it in minutes. It certainly
was a pleasure to have someone respond so quickly to correct and help me
with my problems. Many thanks

For Hugo Jonker
Thank you for your help and support for everything and the guidance that i
needed. Thank you for motivating me when they were some technical prob-
lems. And thank you for our breaks were we could discuss and brainstorm.
This really helped me a lot. Many thanks

My family friends
Thank you for supporting me in every possible way.

I dedicate this paper especially to my grand mother.

Signature

2

Contents

1 Introduction 5
1.1 Introduction . 5
1.2 Related Work . 5

1.2.1 Keyboard Acoustic Emanations 5
1.2.2 (sp)iPhone . 5

1.3 Approach . 6

2 System Requirement 7
2.1 Equipment used . 7
2.2 Android 4.1.2 . 11
2.3 Development Software . 11
2.4 Server . 11

3 Development 12
3.1 Environment development with SDK 12

3.1.1 Introduction . 12
3.1.2 Accelerometer . 12
3.1.3 Phone application in 4.1 14
3.1.4 Server application . 30
3.1.5 First Test run . 35
3.1.6 Conclusion and Solution 35
3.1.7 Phone application in 4.2 38

3.2 Environment development with JNI 38
3.2.1 Introduction . 38
3.2.2 Phone app . 38
3.2.3 Conclusion . 42

3.3 Interfacing with the linux kernel 42
3.3.1 Introduction . 42
3.3.2 Root access . 43
3.3.3 Development ioctl and drivers 43
3.3.4 Conclusion . 44

3

3.3.5 Future possible solutions 44

4 Conclusion 46

4

Chapter 1

Introduction

1.1 Introduction

In this paper we are going to use an android powered phone and then use his
vast array of sensors for spying on the his owner. The phone is going to run
a special software that when running and the owner is typing on a physical
keyboard, is going to spy on him and try to guess what sentences he’s typing
whitout physical interaction.

1.2 Related Work

1.2.1 Keyboard Acoustic Emanations

In [Agr04] and [LZ05] they demonstrate that when typing on a keyboard
the sound that is produced can be measured. And with those measurement
we can guess what has been typed and then reproduce the typed sentences.
[Agr04] is the original work and in [LZ05] is a better replicate of that work.

1.2.2 (sp)iPhone

In [AVT11] they do the exact same project but not with an Android powered
smartphone but with an Iphone. An IOS device built and developped by
Apple. In summary they have a sampling rate which is not enough for detect
individual keystrokes. So they use probability and train a neural network to
detect words directly by sensing the direction and seeing from which quadrant
of the keyboard the keystroke comes from.

5

1.3 Approach

Our approach is that we are going to try the replicate project [AVT11] but
in a way that it works for the Android plattform. We are going to try read
the accelerometer data and then detect keystroke for guessing typed words.

6

Chapter 2

System Requirement

2.1 Equipment used

For this project we have used a total of three devices. Where we mainly
focused on one of them. The other two where more used for checking if there
were no device specific errors or problems. All three devices are developper
friendly. They are devices developped and sold by Google in collaboration
with Manufactures to mainly showcase what is possible with Android with
the correct hardware. We used them because we have almost all the sources
of them and they have powerful and modern hardware.

Here a quick summary of them:

7

Device Device Nexus S (Google and Samsung) Phone
Operating System Android 4.1.2 Jelly Bean
Processor 1 GHz Cortex A8 (Hummingbird)
Display 4.0” WVGA (480x800)
Memory 512 MB RAM (split 128MB GPU / 384MB OS)
Storage 16GB iNAND flash memory

Sensors

3-axis gyroscope
Accelerometer
Ambient light sensor
Capacitive touch-sensitive buttons
Digital compass
Microphone
Multi-touch capacitive touchscreen
Proximity sensor
Push buttons

Connectivity

GSM: 850, 900, 1800, 1900
HSDPA (7.2Mbps)
HSUPA (5.76Mbps)
Assisted GPS (A-GPS)
Wi-Fi: 802.11 n/b/g
Bluetooth 2.1+EDR
microUSB 2.0
Near Field Communication (NFC)

Dimensions
123.9 mm (4.88 in) H
63.0 mm (2.48 in) W
10.8 mm (0.43 in) D

8

Device Galaxy Nexus (Google and Samsung) Phone
Operating System Android 4.1.2 Jelly Bean (later upgraded to 4.2.1)
Processor 1.2 GHz dual-core ARM Cortex-A9
Display 4.65 in (118 mm) diagonal HD Super AMOLED 1280×720 px
Memory 1 GB
Storage 16GB iNAND flash memory

Sensors

Multi-touch
capacitive touchscreen
Accelerometer
3-axis gyroscope
A-GPS
Barometer
3-axis Digital compass
Proximity sensor
Dual microphones for active noise cancellation

Connectivity

GSM/GPRS/EDGE 850/900/1800/1900
HSPA 850/900/1700/1900/2100
HSDPA 21 Mbps
HSUPA 5.76 Mbps
3.5 mm TRRS
GPS
DLNA
Micro USB 2.0 with USB On-The-Go
MHL
Bluetooth
NFC
Wi-Fi 802.11a/b/g/n (2.4/5 GHz)

Dimensions
135.5 mm (5.33 in) H
67.94 mm (2.675 in) W
8.94 mm (0.352 in) D

9

Device Nexus 7 (Google and Asus) Tablet
Operating System Android 4.1.2 Jelly Bean (later upgraded 4.2.1)
Processor 1.3 GHz quad-core Cortex-A9 (T30L Tegra 3)
Display 7-inch (180 mm) diagonal IPS LCD 1280×800 px
Memory 1 GB
Storage 16GB flash memory

Sensors

Multi-touch
capacitive touchscreen
Accelerometer
gyroscope
proximity sensor
digital compass
GPS
magnetometer
microphone

Connectivity

0.14 in (3.5 mm)
headphone jack
Bluetooth 3.0
Wi-Fi (802.11 b/g/n @ 2.4 GHz)
NFC
Micro USB 2.0
docking pins

Dimensions 198.5×120×10.56 mm (7.81×4.7×0.416 in)

Then there is a backend that is also needed. We decided to use a Raspberry
pi as webserver because of the portability and the fast and cheap replacement
if something may go wrong.

Device RaspberryPi
Operating System Debian
CPU ARM1176JZF-S (armv6k) 1GHz MHz
chline Memory 512 MByte
Storage capacity SD Card of 4GB
Ethernet 1 x 10/100
USB 2 x 2.0
Dimensions 85.60 mm × 53.98 mm (3.370 in × 2.125 in)

Also with this we got a Asus WL-330gE. This device is a mobile 150Mbit
wireless N router but with a custom firmware called DD-WRT LINK also
using it because of portability.

10

Device Asus WL-330gE with custom firmware DD-WRT
Architecture MIPS
Vendor Asus
System-On-Chip RT3050F
CPU Speed 320 Mhz
Flash-Chip MX25L3205E
Flash size 4 MiB
Memory 32 MiB
Wireless RT28xx
Ethernet 1 x 10/100
USB 1 x 2.0

2.2 Android 4.1.2

We are focussing and developping on the Android version 4.1.2 also called
jelly bean. It’s the latest iteration till now and using the most up to date
API. Initial was planned to use 2.3 codename Gingerbread because most
android powered phones are running this version but because of outdated
version and the new Guidelines that google put in we felt that 4.1 was the
most suitable for showcasing what’s possible with this plattform.

2.3 Development Software

Eclipse with the android SDK and NDK for developing the phone application.
Octave is a open source numerical and graphical tool almost like Matlab.
Mysql Workbench for interacting and designing the database.

2.4 Server

The server is running debian with a lighttpd server. Decided to go with that
for being light and not consume to much ressources. In addition there is a
Mysql server running. Before that we had sqlite but because sqlite couldn’t
handle that much data we had to switch.

11

Chapter 3

Development

3.1 Environment development with SDK

3.1.1 Introduction

For the first approach we started to develop like any other application using
the android sdk provided by Google. We wanted to use the new android 4.0
Guidelines. These are just design guidelines so nothing mandatory for this
project but still wanted to comply to it. Basically we are going to collect an
x amount of samples from the sensors while we tap on an wodden table to
see if it’s possible to read those claps just from sensor data.

3.1.2 Accelerometer

Before we start explain how the application work we have to give a lit-
tle explanation about how accelerometer work. An accelerometer measures
the phone acceleration forces. If it stands still the it will just measure the
gravitational force of earth which is static. So when moving the phone it
will sense an acceleration, also when vibrating. Which the latter is the one
where we are interested. When tapping on a table, or in our case, typing on
a keyboard, it is possible to sense the vibration that emancipate on the table.

In figure 3.2 we see three physical accelerometer for measuring the x,y,z
gravitational forces like in 3.1. There is a spring and a metal ball in an casing
that when moved the ball lags behind, that then stretches the spring. If we
measure how much the spring stretches we can calculate the force gravity.
In an electrical sensor there are various way to do the exact same thing.
One way to do it is like an electromagnetic induction. It’s almost the same

12

R0.5

Figure 3.1: X Y Z Force measurement

L0.5

Figure 3.2: A Physical Accelerometer

13

r0.3

Figure 3.3: A digital Accelerometer found in mobile phones

like the physical one. We see in figure 3.3 there is again an housing. The
blue part is the seismic mass that when a force occurs this part will move.
Now if it moves, the fingers (green part) will generate an inductive current
accordingly which we then can measure and see how much force has been
produced.

3.1.3 Phone application in 4.1

By using the 4.0 developpment guidelines we have 4 fragments for each section
of our application. We use a @link android.support.v4.app.FragmentPagerAdapter
derivative, which will keep every loaded fragment in memory. This way we
are sure that none goes into deep sleep. For normal application it is not one
of the best solution because it is too memory intensive. For changing to the
next fragment/section we only need to swipe left/right. But for our project
it is ideal.
We have 4 fragments in total (figure 3.4). The first one (figure 3.5) is a
simple description of the application. The second one (figure 3.6) shows us
in real time the sensor data. The third one (figure 3.7) is a diagram of the
sensor data. Here we use a simple open source library (figure [Geh11]) for
showing the data on a line graph. And the forth one is for logging purpose.
The whole application works in landscape and horizontal view (figure 3.8).
And the last fragment is a log viewer for error check and debug purposes.

Fragment One ”Main Section“

Each fragment consists of 3 simple textviewer. The top, middle and bottom
viewer for better organization embedded in an simple table which is scrollable
when it’s too long. In fragment one the top viewer has the title. The middle

14

R0.5

Figure 3.4: Phone main screen

15

R0.5

Figure 3.5: Application description screen

16

R0.5

Figure 3.6: The sensor viewer while being swiped

17

R0.5

Figure 3.7: Graphical viewer

R0.5

Figure 3.8: Graphical viewer 3 axis landscape

18

has the description. The bottom has an unique id of this device which has
been generated on starting the application. And then we have a server id
which shows, when connected to the server, the id of this device on the server.

Fragment One Code

viewer =new ScrollView(getActivity());

table =new TableLayout(getActivity());

viewer.addView(table);

TextView header = new TextView(getActivity());

header.setGravity(Gravity.TOP);

header.setText("");

TextView center = new TextView(getActivity());

center.setGravity(Gravity.MIDDLE);

center.setText("");

TextView bottom = new TextView(getActivity());

bottom.setGravity(Gravity.BOTTOM);

bottom.setText("");

table.addView(header);

table.addView(center);

table.addView(bottom);

switch (args.getInt(ARG_SECTION_NUMBER)) {

case 1:// FRAGMENT 1

center.setId(1);

header.setText("SpyDroid\n\n");

center.setText(

"Recently, researchers found a way to leverage an iPhone s

accelerometers to infer keystrokes. By leaving a phone

running a special measuring app close to the keyboard,

the app is able to make reasonable guesses at what the

typed word is. The goal of this project is to develop a

proof-of-concept: implement this technique for an

Android phone, and set up a working demonstration.\n\n");

bottom.setText("Student: Filipe Ferreira\n

Supervisor: Dr. Ir. Hugo Jonker\n

Property of UNI.lu\n\nDEVICE ID: "+uniqueID+"\n

19

Server ID: "+serverId);

break;

case 2.......//FRAGMENT 2

Unique ID generation Android natively doesn’t have a unique ID gener-
ator for devices that is reliable. And we need one for identifying the devices
on the backend.

private static String uniqueID = null;

private static final String PREF_UNIQUE_ID = "PREF_UNIQUE_ID";

public synchronized static String id(Context context) {

if (uniqueID == null) {

SharedPreferences sharedPrefs =

context.getSharedPreferences(The sensor viewer while being swiped

PREF_UNIQUE_ID, Context.MODE_PRIVATE);

uniqueID = sharedPrefs.getString(PREF_UNIQUE_ID, null);

if (uniqueID == null) {

uniqueID = UUID.randomUUID().toString();

Editor editor = sharedPrefs.edit();

editor.putString(PREF_UNIQUE_ID, uniqueID);

editor.commit();

}

}

return uniqueID;

Fragment Two ”Sensor viewer“

Again here we have three texbox for better organization. When an sensor
change event occurs the value is going to be submitted real time in those
texboxes.

Sensor initialization Code When the application starts we directly ini-
tialize the sensor with a listener so that when a sensor change event triggers
we can update our textbox and later send those values to the server. Also we
have to pay attention to put this code snippet on the onresume, onpause,..
event so that it doesn’t stop when the screen turns off.

sensor=(SensorManager)getSystemService(SENSOR_SERVICE);

20

sensor.registerListener(this,

sensor.getDefaultSensor(Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_FASTEST);

sensor.registerListener(this,

sensor.getDefaultSensor(Sensor.TYPE_GYROSCOPE),

SensorManager.SENSOR_DELAY_FASTEST);

sensor.registerListener(

this,

sensor.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD),

SensorManager.SENSOR_DELAY_FASTEST);

Sensor Change Event Code Here we have to pay attention which sensor
has triggered this event. And if the sensor that we want to read has triggered
the event we can then read our values and show them onscreen.

if(event.sensor.getType()==Sensor.TYPE_ACCELEROMETER){

float x=event.values[0];

float y=event.values[1];

float z=event.values[2];

TextView center =(TextView)findViewById(2);

if(center!=null){

header.setText("Real Time Sensors");

center.setText(

"\nAccelerometer\n" +

"X: "+x+

"\nY: "+y+

"\nZ: "+z+"\nSize: "

event.values.length+"\n");

}

Fragment Three ”Graph Viewer“

Here we are using an open source library [Geh11]. We then can visualize the
3 axis directly on the phone.

21

Graph viewer initialization The graph viewer is been drawn on the
fragment page directly. This way we are sure that there are already sensor
data stored in our global array for the axis which are called xSeries, ySeries,
zSeries.

GraphViewData[] data = new GraphViewData[1];

xSeries = new GraphViewSeries("X",

new GraphViewStyle(Color.rgb(200, 50, 00), 3),data);

ySeries = new GraphViewSeries("Y",

new GraphViewStyle(Color.rgb(90, 250, 00), 3),data);

zSeries = new GraphViewSeries("Z",

new GraphViewStyle(Color.rgb(250, 250, 00), 3),data);

GraphView graphView;

graphView = new LineGraphView(this.getActivity(),"Diagramm");

graphView.addSeries(xSeries);

graphView.addSeries(ySeries);

graphView.addSeries(zSeries);

graphView.setShowLegend(true);

graphView.setScrollable(true);

graphView.setScalable(true);

graphView.setHorizontalScrollBarEnabled(true);

graphView.setVerticalScrollBarEnabled(true);

graphView.setId(4);

LinearLayout viewer1 =new LinearLayout(getActivity());

viewer1.addView(graphView);

graphView.setViewPort(2, 40);

return viewer1;

The code snippet where we are storing our axis values in the on sensor change
event.

if(xSeries!=null && ySeries!=null && zSeries!=null){

posSeries++;

xSeries.appendData(new GraphViewData(posSeries, x), true);

ySeries.appendData(new GraphViewData(posSeries, y), true);

zSeries.appendData(new GraphViewData(posSeries, z), true);

22

GraphView graph =(GraphView)findViewById(4);

graph.redrawAll();

}

Fragment four ”Log viewer“

In this fragment we only have one textbox were it’s been populated with
our system debug output coming from logcat which is android’s own logging
system.

Fragment Three ”Graph Viewer“ Problem

Unfortunately here we can see that’s not a viable solution. First the screen is
too small to visualize it so that we have to zoom in and out the whole time.
Also the phone is too underpowered for that much information. So this is
why we decided to go for a backend where we are going to send our values
where they are going to be stored and then we can visualize

Send the values to a mysql server

We decided for a mysql server because it’s good solution for handle a large
amount of data in a small amount of time and that doesn’t use much memory
on runtime. Because android new 4.0 api also changes how it send data to a
sql server. It has to spawn a new thread when making a new http post to a
webserver. This means that we have to be careful how we send the data to
the server. We can’t spawn a thread for each event that occurs. It would be
too much threads that would wait in our pool to be threated. So what we
are going to do is collect an amount of 200 values for each x,y,z value and
then send that packet. That way we send 600 values in total in each packet
with their respective timestamp. Before that we also register the device so
that we can identify from which device those values comes. In figure 3.9 we
see the database structure.

Registering When starting the application he’s going to check if the server
is on. If it is then he’s going to check if his id already exists in the server.
If yes then he’s going to send directly packages. If it doesn’t exist he’s going
to register itself on the server.
Here is the application’s code snippet

//registering the device

GetServerId getServerid=new GetServerId(uniqueID);

23

R1

Figure 3.9: Our database structure

getServerid.execute();

if(serverId.isEmpty()){

getServerid=new GetServerId(uniqueID);

getServerid.execute();

}

//Register class

private class GetServerId extends AsyncTask<URL, Integer, Long> {

private String phId;

public GetServerId (String phoneId){

if(phoneId!=null)

phId=phoneId;

}

protected Long doInBackground(URL... urls) {

InputStream is = null;

24

String result = "";

ArrayList<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();

nameValuePairs.add(new BasicNameValuePair("varId",phId));

String desc="\n OS Version: " + System.getProperty("os.version")

+ "(" + android.os.Build.VERSION.INCREMENTAL + ")";

desc += "\n OS API Level: " + android.os.Build.VERSION.SDK;

desc += "\n Device: " + android.os.Build.DEVICE;

desc += "\n Model (and Product): " + android.os.Build.MODEL

+ " ("+ android.os.Build.PRODUCT + ")";

nameValuePairs.add(new BasicNameValuePair("varDesc",desc));

try{

HttpClient httpclient = new DefaultHttpClient();

HttpPost httppost = new HttpPost("http://192.168.1.100/insert.php");

httppost.setEntity(new UrlEncodedFormEntity(nameValuePairs, HTTP.UTF_8));

HttpResponse response = httpclient.execute(httppost);

HttpEntity entity = response.getEntity();

is = entity.getContent();

}

catch(Exception e)

{

}

String returnString="";

try{

StringBuilder sb=null;

BufferedReader reader = new BufferedReader(

new InputStreamReader(is,"iso-8859-1"),8);

sb = new StringBuilder();

sb.append(reader.readLine() + "\n");

String line="0";

while ((line = reader.readLine()) != null) {

sb.append(line + "\n");

}

is.close();

25

R1

Figure 3.10: Two different devices in our database

result=sb.toString();

returnString=result.substring(result.lastIndexOf("{\"id\":\"")

+7, result.indexOf("\"}"));

}catch(Exception e){

}

serverId=returnString;

return (long) 0;

}

protected void onProgressUpdate(Integer... progress) {

setProgressPercent(progress[0]);

}

protected void onPostExecute(Long result) {

showDialog("Downloaded " + result + " bytes");

}

}

Here the webserver’s code snippet for registering the device. Before inserting
the values he’s going to check if this device exists because we need his id for
identifying the values between all the devices. In figure 3.10 we can see how
it’s going to appear in our database.

<?php

$con = mysql_connect("localhost","spyuser","spydroidpassw0rd");

26

if (!$con){

die(’Could not connect: ’ . mysql_error());

}

mysql_select_db("spydroiddb", $con);

if(isset($_POST[’varId’]) && !empty($_POST[’varId’])){

$varID=$_POST[’varId’];

$sql2="SELECT idDevice from tblDevice where dtIdDevice=’$varID’;";

$result=mysql_query($sql2);

if (mysql_num_rows($result)!=0){

$row = mysql_fetch_assoc($result);

$out[’id’]=$row[’idDevice’];

print json_encode($out);

}else {

$varDesc=$_POST[’varDesc’];

$sql2="INSERT INTO tblDevice

(dtIdDevice,dtDescription) VALUES (’$varID’,’$varDesc’);";

if (!mysql_query($sql2,$con)){

die(’Error: ’ . mysql_error());

}

$out[’id’]=mysql_insert_id();

print json_encode($out);

}

}

Now that we have an id for this device on the server we can send our
values to the server. The package consists of the 200 values for each axis
separated by ”;“ for parsing purposes with each timestamp of that value.
We collect 200 events and then attach our id for identifying and put in our
thread pool for sending that packet. After that reset our array for the next
packet.

//code snippet in our sensor change event for collecting our values

if(nArrA==200){

27

ArrayList<NameValuePair> nameValuePairs = new ArrayList<NameValuePair>();

nameValuePairs.add(new BasicNameValuePair("valXA", xArrA));

nameValuePairs.add(new BasicNameValuePair("valYA", yArrA));

nameValuePairs.add(new BasicNameValuePair("valZA", zArrA));

nameValuePairs.add(new BasicNameValuePair("timeA", tArrA));

nameValuePairs.add(new BasicNameValuePair("varAId", serverId));

SendToServer toSend=new SendToServer(nameValuePairs);

toSend.execute();

xArrA="";

yArrA="";

zArrA="";

tArrA="";

nArrA=0;

}

xArrA+=x+";";

yArrA+=y+";";

zArrA+=z+";";

tArrA+=event.timestamp+";";

nArrA++;

//our function for sending our packet to the server

private class SendToServer extends AsyncTask<URL, Integer, Long> {

private ArrayList<NameValuePair> nameValuePairs;

public SendToServer (ArrayList<NameValuePair> sendData){

if(sendData!=null)

nameValuePairs=sendData;

}

protected Long doInBackground(URL... urls) {

try {

HttpClient httpclient = new DefaultHttpClient();

HttpPost httppost = new HttpPost("http://192.168.1.100/insert.php");

// Execute HTTP Post Request

HttpResponse response = httpclient.execute(httppost);

28

} catch (ClientProtocolException e) {

center1.append("\n"+e+"\n");

} catch (IOException e) {

center1.append("\n"+e+"\n");

}

return (long) 0;

}

}

Because our application needs now a network connection we have to add
to the android manifest that we need the internet permission.

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.uni.lu.spydroid"

android:versionCode="1"

android:versionName="1.0" >

<uses-sdk

android:minSdkVersion="15"

android:targetSdkVersion="15" />

<uses-permission android:name="android.permission.INTERNET"/>

<application

android:icon="@drawable/ic_launcher"

android:label="@string/app_name"

android:theme="@style/AppTheme" >

<activity

android:name=".MainActivity"

android:label="@string/title_activity_main"

android:configChanges="keyboardHidden|orientation|screenSize">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

</activity>

29

</application>

</manifest>

Now on the server part we have to parse the packet and then save the
values to the database. This is done in the insert.php file. After we have the
check the id of the device we parse and save the values.

if(isset($_POST[’valXA’]) && !empty($_POST[’valXA’])){

$arr1A=explode(";",$_POST[’valXA’]);

$arr2A=explode(";",$_POST[’valYA’]);

$arr3A=explode(";",$_POST[’valZA’]);

$arr4A=explode(";",$_POST[’timeA’]);

$varID=$_POST[’varAId’];

$n=count($arr1A);

for($i=0;$i<$n-1;$i++) {

$var1A=$arr1A[$i];

$var2A=$arr2A[$i];

$var3A=$arr3A[$i];

$var4A=$arr4A[$i];

$sql="INSERT INTO tblDataAccelerometer

(dtValueX, dtValueY, dtValueZ, dtTimestamp,dtTime,fiDevice)

VALUES (’$var1A’,’$var2A’,’$var3A’,’$var4A’,NOW(),’$varID’);";

if (!mysql_query($sql,$con)){

die(’Error: ’ . mysql_error());

}

}

3.1.4 Server application

Now that our values are saved. We have to check how we are going to handle
everything on the server. Here two open source library are being used one for
showing the values in tables [Sis07] and the other one for showing in graphs
[AS12]. The webapplication basically conists of these two plus a page where
some calcuations are done like the average, sums,...

Here the data grid view where we can view our values.

30

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<title>Data Viewer</title>

<?php

include ("phpmydatagrid.class.php");

$dataViewer = new datagrid;

$dataViewer -> friendlyHTML();

$dataViewer -> pathtoimages("./images/");

$dataViewer -> closeTags(true);

$dataViewer -> form(’data’, true);

$dataViewer -> methodForm("post");

$dataViewer -> searchby("idData,dtValueX,dtValueY,dtValueZ,dtTimestamp");

$dataViewer -> decimalDigits(100);

$dataViewer -> decimalPoint(".");

$dataViewer -> conectadb

("localhost", "spyuser", "spydroidpassw0rd" , "spydroiddb");

$dataViewer -> tabla ("tblDataAccelerometer");

$dataViewer -> TituloGrid("Data Viewer");

$dataViewer -> FooterGrid

("Property of Uni.lu\nCopyright c© Université du Luxembourg 2012.

All rights reserved");

$dataViewer -> datarows(500);

$dataViewer -> paginationmode(’links’);

$dataViewer -> orderby("idData", "ASC");

$dataViewer -> noorderarrows();

$dataViewer -> FormatColumn

("dtValueX", "Value X", 0, 0, 0, "100", "left");

$dataViewer -> FormatColumn

("dtValueY", "Value Y", 30, 30, 0, "100","left");

$dataViewer -> FormatColumn

("dtValueZ", "Value Z", 30, 30, 0, "100", "left");

$dataViewer -> FormatColumn

("dtTimestamp", "Timestamp", 25, 25, 0, "100", "right");

$dataViewer -> setHeader();

echo "</head><body>";

$dataViewer -> grid();

31

R1.2

Figure 3.11: Our data showing in the webserver

$dataViewer -> desconectar();

?>

</body>

</html>

And in figure 3.11 is how it looks like.
For putting the data in an graph we first have to query the values. And

those values stored in array have to been painted in an canvas with the
javascript library.

//fetching the data

$con = mysql_connect("localhost","spyuser","spydroidpassw0rd");

if(!$con){

die(’Could not connect: ’ . mysql_error());

}

mysql_select_db("spydroiddb", $con);

$resultAccelerometer = mysql_query("SELECT * FROM tblDataAccelerometer;");

$xA;

$yA;

$zA;

32

$nA=-1;

while($row = mysql_fetch_array($resultAccelerometer)){

$nA++;

$xA[$nA]=$row[1];

$yA[$nA]=$row[2];

$zA[$nA]=$row[3];

}

//show it in our graph

$(function () {

$(document).ready(function() {

chartAX = new Highcharts.Chart({

chart: {

renderTo: ’containerXA’,

zoomType: ’x’,

spacingRight: 20/*,

events: {

load: function() {

// set up the updating of the chart each second

var series = this.series[0];

setInterval(function() {

var x = (new Date()).getTime(), // current time

y = Math.random();

series.addPoint([x, y]

, true, true);

} $(document).ready(function() {

chartAX = new Highcharts.Chart({

chart: {

renderTo: ’containerXA’,

zoomType: ’x’,

spacingRight: 20

},

title: {

text: ’Data Viewer Accelerometer X’

},

xAxis: {

33

title: {

text: null

}

},

yAxis: {

title: {

text: ’Value’

},

startOnTick: false,

showFirstLabel: false

},

tooltip: {

shared: true

},

legend: {

enabled: false

},

plotOptions: {

area: {

fillColor: {

linearGradient: { x1: 0, y1: 0, x2: 0, y2: 1},

stops: [

[0, Highcharts.getOptions().colors[0]],

[1, ’rgba(2,0,0,0)’]

]

},

lineWidth: 1,

marker: {

enabled: false,

states: {

hover: {

enabled: true,

radius: 5

}

}

},

shadow: false,

states: {

hover: {

lineWidth: 1

34

}

}

}

},

series: [{

name: ’X’,

data: <?php

$i=-1;

echo "[";

while($i<$nA){

$i++;

echo $xA[$i].", ";

}

echo $xA[$nA]."]"; ?>

}]

});

, 100);

</script>

</head>

<body>

<script src="js/highcharts.js"></script>

<script src="js/modules/exporting.js"></script>

<div id="containerXA" style="min-width: 400px; height: 400px; margin: 0 auto">

</div>

And in figure 3.12 we see 700 sample of the x-axis of our accelerometer

3.1.5 First Test run

After the setup we then finally could do some inital tests. We put the phone
on a wooden table and then knocked on the table three times. We clearly
could see those knocks (figure 3.13 unfiltered and 3.14 filtered.)

3.1.6 Conclusion and Solution

So now that the application works we could finally test on a keyboard. We
first try with an office dell keyboard with elevated stand. Because of the

35

R1.2

Figure 3.12: X axis of our accelerometer

elevated stand the vibrations weren strong enough to propagate from the
keyboard to the table and then to our phone. We then had to test on a
thin keyboard that has a direct connection to the table. And for this the
apple bluetooth keyboard is exactly the best. After inital testing we found
out that the phones accelerometer sampling rate not high enough is. We had
an average of 70Hz which for example in [AVT11] they had a minimum of
100Hz and only because of that sampling rate they could successful run the
application. If we assume that a person types 40 words a minute. Normalized
this means 5 character a word. So speed is approximately 3.333 chars/sec.
So if we have at least 100Hz this means we have 30 samples per key press.
Less then that we are going to start to loosen some keypresses and then we
can’t guess the words that have been typed. So our next step was to find a
way to raise our sampling rate.

When researching we found out why we had such low sampling rate. One
of the reason was battery consumption. Why have a so high sampling rate if
less than that would still give a good user experience? And because of that
Google has a ”Compatibility Definition“ document that comes out for each
android version. For getting access to the play store for example, manufac-
turer have to comply to those rules and meet the minimum requirements.
And one of those requirement is that the accelerometer sensor should have a
minimum of 50Hz. So thats why manufacturer will meet the bare minimum
and not clock higher even if for example the chip has a max sampling rate
of Hz as stated in the chips driver source. It’s possible that there would be
a manufacturer that doesn’t block it but none of the devices that we used in
this project were capable of using such a high sampling rate.

Now we need to find a work around for our problem. Because our chip

36

R1.0

Figure 3.13: 3 Knocks on a wooden table

R1.2

Figure 3.14: 4 Knocks on a wooden table filtered

37

is more than capable to get higher sampling rate. (KR3DM Accelerometer
Sensor max sampling rate at 400Hz which like is as stated in [LZ05] largely
enough is) One possible solution would be to avoid the android runtime
(figure 3.15). One way to do it provided by Google would be to use the
android java native interface.
Also we noticed that the web server solution is a neat and clean solution
but when we have too many devices with a high amount of data our browser
will start to crash because of low memory. Html5 and javascript are still not
ready too handle a such big amount of data. So now we will export the data
from our database and then run through octave. It’s a open source numerical
and graphical tool almost like Matlab.

3.1.7 Phone application in 4.2

Meanwhile a new Android version came out. Unfortunately in the updated
docs the sampling rate still was unchanged. So after updating the application
and some test run we even saw a decrease of our sampling rate to 60Hz. So
this updated version was even more unusable than the one before.

3.2 Environment development with JNI

3.2.1 Introduction

JNI is the Java Native Interface. It defines a way for our android application
to directly call native and load dynamic shared libraries (figure 3.16). If
doing it right it can be really efficient. One down of is that we have to be
careful how we write code because if done wrong it can be inefficient and
drain our battery in a matter of minutes or be a memory killer.

3.2.2 Phone app

Our application will mainly be divided in two parts. The native part written
in c and then our java part which is going to call our native code. We are
going to calculate directly how fast our sampling rate is and then input it on
the phone’s screen and also on logcat so that there will be no delay nowhere
which would slow us down.

The code snippet for the java part. We must pay attention of the name
of our library. It has to be well formatted and have the same name as the
file otherwise is not going to work.

38

R1.2

Figure 3.15: Android Structure

39

R1.2

Figure 3.16: Java Native Interface

40

public class Jni extends Activity

{

@Override

public void onCreate(Bundle savedInstanceState)

{

super.onCreate(savedInstanceState);

TextView tv = new TextView(this);

tv.setText(stringFromJNI());

sensorValue();

setContentView(tv);

}

public native String stringFromJNI();

public native void sensorValue();

public native String unimplementedStringFromJNI();

static {

System.loadLibrary("rate");

}

}

For the native code we have first to initalize our sensors and then read.
But for now we are going to just calculate the sampling rate to see if we are
fast enough. Here the code snippet for initalizing and calculate the duration
of a sample collection of 100 samples.

//initalizing our sensors

accSensor = ASensorManager_getDefaultSensor(

sensorManager, ASENSOR_TYPE_ACCELEROMETER);

gyroSensor = ASensorManager_getDefaultSensor(

sensorManager, ASENSOR_TYPE_GYROSCOPE);

magSensor = ASensorManager_getDefaultSensor(

sensorManager, ASENSOR_TYPE_MAGNETIC_FIELD);

sensorEventQueue = ASensorManager_createEventQueue(sensorManager,

looper, 3, get_sensor_events, sensor_data);

ASensorEventQueue_enableSensor(sensorEventQueue, accSensor);

ASensorEventQueue_enableSensor(sensorEventQueue, gyroSensor);

ASensorEventQueue_enableSensor(sensorEventQueue, magSensor);

//reading our sensor

41

if(event.type == ASENSOR_TYPE_ACCELEROMETER) {

//LOGI("accl(x,y,z,t): %f %f %f %lld",

event.acceleration.x,

event.acceleration.y,

event.acceleration.z,

event.timestamp);

if(accCounter == 0 || accCounter == 100){

LOGI("Acc-Time: %lld (%f)",

event.timestamp,

((double)(event.timestamp-lastAccTime))/1000000000.0);

lastAccTime = event.timestamp;

accCounter = 0;

}

accCounter++;

}

We then have to compile the c code separately so that the library can be
used from the java application.

3.2.3 Conclusion

This method unfortunately doesn’t work either. We have a constant sampling
rate of 50Hz. The java native interface is not faster but slower because it’s
event driven and we don’t have control about how fast the events should be
triggered.

3.3 Interfacing with the linux kernel

3.3.1 Introduction

With the SDK and JNI is this project not feasible. So one last method that
we are going to try is to avoid the entire Android part and go directly to the
linux kernel. This method will need root access to the phone and the code
will be device specific. So we have to rewrite code for each device. Also we
need the sources from the drivers because otherwise it would be a blind work
to try to access the sensors directly.

42

3.3.2 Root access

We first need root access. And because this is a developer phone this is easily
done. We need to make a quick update of the phone with the root binary
and make the give the him execute permission. After that we install also
busybox. Busybox is a small package containing a lot of Unix utilities and
combining them into a single executable. Because normally commandy like
rm, cp,... are not available. So this way we have all the commands that we
will need.

3.3.3 Development ioctl and drivers

Luckily we have the sources for the nexus s’s accelerometer. And there
we can see that the driver has a maximum sampling rate of 400Hz (figure
3.18). Like stated we will do an ioctl to our accelerometer and read the data
directly. Unfortunately it’s not that easy. The android system server has all
the drivers under lock like if he wanted to use it the all time even when not
using. So when we try to make open our accelerometer he will give us an
error stating that device is busy. To avoid this problem we simply kill the
android system server. Then the phone is restarting and when he’s doing we
open our accelerometer and take control over it. Meanwhile the phone has
finished booting and everything still works with exception that the phone it’s
not going to rotate because he couldn’t take control over the accelerometer
because we had it. Now we have access to the accelerometer.
For compiling c code and then run it on the phone we have to install the gcc
arm libraries for successfully compile it and then run on the phone natively.
After successful compiling we can then run our code on the phone. Because
this code is running natively and prioritary this is a really ressource hungry
and battery exhausting way.

//here the command for compiling

arm-linux-gnueabi-gcc -static -march=armv7 code.c -o output

//c code

/* kr3dm ioctl command label */

#define KR3DM_IOCTL_BASE ’a’

#define KR3DM_IOCTL_SET_DELAY _IOW(KR3DM_IOCTL_BASE, 0, int64_t)

#define KR3DM_IOCTL_GET_DELAY _IOR(KR3DM_IOCTL_BASE, 1, int64_t)

#define KR3DM_IOCTL_READ_ACCEL_XYZ _IOR(KR3DM_IOCTL_BASE, 8, \

struct kr3dm_acceldata)

if ((fd = open(argv[1] , O_RDONLY | O_NONBLOCK)) == -1) {

perror("open");

43

return 1;

}

if (ioctl(fd ,KR3DM_IOCTL_SET_DELAY,&delay)==-1){

printf("ret val %d\n%s\n",ret,strerror(errno));

return 1;

}

time_t start = time(NULL)*1000;

time_t end=start+1;

while(((end-start)/1000)<=60){

if (ioctl(fd ,KR3DM_IOCTL_READ_ACCEL_XYZ,&sum)==-1){

printf("ret val %d\n%s\n",ret,strerror(errno),&sum);

return 1;

}

count=count+1;

end = time(NULL)*1000;

}

printf("Time: %d->Count: %i\n",((end-start)/1000), count);

fclose(p);

close(fd);

return 0;

3.3.4 Conclusion

We could successfully run our code and read the accelerometer natively and
avoid the entire android runtime. But unfortunately we could achieve the
desired sampling rate. We only could get 50Hz max. In figure 3.17 we see
why. He summing up to a total of 8 samples and then he outputs it. So if
divide 400 with 8 we get exactly 50Hz which is what we are getting out. So
like prevous attempt this one also didn’t work.

3.3.5 Future possible solutions

One possible solution that one could try is to do use i2c to attempt to read
the accelerometer and avoid ioctl. Because we have the source code of this
chip this could be a viable solution.

44

R1.2

Figure 3.17: Kr3dm accelerometer ioctl problem

R1.2

Figure 3.18: Source code from Kr3dm accelerometer

45

Chapter 4

Conclusion

We have tried many attempts. SDK, JNI, Kernel direct access. None of
these worked with the hardware that we had in hand. So we can say that
the vulnerability that the iphone [AVT11] has can not be applied to the
android plattform. It’s possible that somewhere some phone has the driver
implemented in such way that it has a high sampling rate. High enough
for this project. But for now from three different manufacturer for our four
different devices reading at such high speed is not possible and because of
this, this project is not feasible.

46

List of Figures

3.1 X Y Z Force measurement . 13
3.2 A Physical Accelerometer . 13
3.3 A digital Accelerometer found in mobile phones 14
3.4 Phone main screen . 15
3.5 Application description screen 16
3.6 The sensor viewer while being swiped 17
3.7 Graphical viewer . 18
3.8 Graphical viewer 3 axis landscape 18
3.9 Our database structure . 24
3.10 Two different devices in our database 26
3.11 Our data showing in the webserver 32
3.12 X axis of our accelerometer 36
3.13 3 Knocks on a wooden table 37
3.14 4 Knocks on a wooden table filtered 37
3.15 Android Structure . 39
3.16 Java Native Interface . 40
3.17 Kr3dm accelerometer ioctl problem 45
3.18 Source code from Kr3dm accelerometer 45

47

Bibliography

[Agr04] Dmitri Asonov Rakesh Agrawal, Keyboard acoustic emanations,
no. 1, 9.

[AS12] Highsoft Solutions AS, Free to use javascript charting library, 2012.

[AVT11] Henry Carter Arunabh Verma and Patrick Traynor, (sp)iphone:
Decoding vibrations from nearby keyboards using mobile phone ac-
celerometers, no. 1, 12.

[Geh11] Jonas Gehring, Open source graphing library for android, 2011.

[LZ05] J. D. Tygar Li Zhuang, Feng Zhou, Keyboard acoustic emanations
revisited, no. 1, 28.

[Sis07] Gurú Sistemas, Open source data grid php library, 2007.

48

